sklearn.decomposition
.LatentDirichletAllocation¶
-
class
sklearn.decomposition.
LatentDirichletAllocation
(n_components=10, doc_topic_prior=None, topic_word_prior=None, learning_method=’batch’, learning_decay=0.7, learning_offset=10.0, max_iter=10, batch_size=128, evaluate_every=-1, total_samples=1000000.0, perp_tol=0.1, mean_change_tol=0.001, max_doc_update_iter=100, n_jobs=None, verbose=0, random_state=None)[source]¶ Latent Dirichlet Allocation with online variational Bayes algorithm
New in version 0.17.
Read more in the User Guide.
Parameters: - n_components : int, optional (default=10)
Number of topics.
- doc_topic_prior : float, optional (default=None)
Prior of document topic distribution
theta
. If the value is None, defaults to1 / n_components
. In [1]_, this is calledalpha
.- topic_word_prior : float, optional (default=None)
Prior of topic word distribution
beta
. If the value is None, defaults to1 / n_components
. In [1]_, this is calledeta
.- learning_method : ‘batch’ | ‘online’, default=’batch’
Method used to update
_component
. Only used infit
method. In general, if the data size is large, the online update will be much faster than the batch update.Valid options:
'batch': Batch variational Bayes method. Use all training data in each EM update. Old `components_` will be overwritten in each iteration. 'online': Online variational Bayes method. In each EM update, use mini-batch of training data to update the ``components_`` variable incrementally. The learning rate is controlled by the ``learning_decay`` and the ``learning_offset`` parameters.
Changed in version 0.20: The default learning method is now
"batch"
.- learning_decay : float, optional (default=0.7)
It is a parameter that control learning rate in the online learning method. The value should be set between (0.5, 1.0] to guarantee asymptotic convergence. When the value is 0.0 and batch_size is
n_samples
, the update method is same as batch learning. In the literature, this is called kappa.- learning_offset : float, optional (default=10.)
A (positive) parameter that downweights early iterations in online learning. It should be greater than 1.0. In the literature, this is called tau_0.
- max_iter : integer, optional (default=10)
The maximum number of iterations.
- batch_size : int, optional (default=128)
Number of documents to use in each EM iteration. Only used in online learning.
- evaluate_every : int, optional (default=0)
How often to evaluate perplexity. Only used in
fit
method. set it to 0 or negative number to not evalute perplexity in training at all. Evaluating perplexity can help you check convergence in training process, but it will also increase total training time. Evaluating perplexity in every iteration might increase training time up to two-fold.- total_samples : int, optional (default=1e6)
Total number of documents. Only used in the
partial_fit
method.- perp_tol : float, optional (default=1e-1)
Perplexity tolerance in batch learning. Only used when
evaluate_every
is greater than 0.- mean_change_tol : float, optional (default=1e-3)
Stopping tolerance for updating document topic distribution in E-step.
- max_doc_update_iter : int (default=100)
Max number of iterations for updating document topic distribution in the E-step.
- n_jobs : int or None, optional (default=None)
The number of jobs to use in the E-step.
None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details.- verbose : int, optional (default=0)
Verbosity level.
- random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by
np.random
.
Attributes: - components_ : array, [n_components, n_features]
Variational parameters for topic word distribution. Since the complete conditional for topic word distribution is a Dirichlet,
components_[i, j]
can be viewed as pseudocount that represents the number of times wordj
was assigned to topici
. It can also be viewed as distribution over the words for each topic after normalization:model.components_ / model.components_.sum(axis=1)[:, np.newaxis]
.- n_batch_iter_ : int
Number of iterations of the EM step.
- n_iter_ : int
Number of passes over the dataset.
References
- [1] “Online Learning for Latent Dirichlet Allocation”, Matthew D. Hoffman,
- David M. Blei, Francis Bach, 2010
- [2] “Stochastic Variational Inference”, Matthew D. Hoffman, David M. Blei,
- Chong Wang, John Paisley, 2013
- [3] Matthew D. Hoffman’s onlineldavb code. Link:
- https://github.com/blei-lab/onlineldavb
Examples
>>> from sklearn.decomposition import LatentDirichletAllocation >>> from sklearn.datasets import make_multilabel_classification >>> # This produces a feature matrix of token counts, similar to what >>> # CountVectorizer would produce on text. >>> X, _ = make_multilabel_classification(random_state=0) >>> lda = LatentDirichletAllocation(n_components=5, ... random_state=0) >>> lda.fit(X) LatentDirichletAllocation(...) >>> # get topics for some given samples: >>> lda.transform(X[-2:]) array([[0.00360392, 0.25499205, 0.0036211 , 0.64236448, 0.09541846], [0.15297572, 0.00362644, 0.44412786, 0.39568399, 0.003586 ]])
Methods
fit
(self, X[, y])Learn model for the data X with variational Bayes method. fit_transform
(self, X[, y])Fit to data, then transform it. get_params
(self[, deep])Get parameters for this estimator. partial_fit
(self, X[, y])Online VB with Mini-Batch update. perplexity
(self, X[, sub_sampling])Calculate approximate perplexity for data X. score
(self, X[, y])Calculate approximate log-likelihood as score. set_params
(self, \*\*params)Set the parameters of this estimator. transform
(self, X)Transform data X according to the fitted model. -
__init__
(self, n_components=10, doc_topic_prior=None, topic_word_prior=None, learning_method=’batch’, learning_decay=0.7, learning_offset=10.0, max_iter=10, batch_size=128, evaluate_every=-1, total_samples=1000000.0, perp_tol=0.1, mean_change_tol=0.001, max_doc_update_iter=100, n_jobs=None, verbose=0, random_state=None)[source]¶
-
fit
(self, X, y=None)[source]¶ Learn model for the data X with variational Bayes method.
When
learning_method
is ‘online’, use mini-batch update. Otherwise, use batch update.Parameters: - X : array-like or sparse matrix, shape=(n_samples, n_features)
Document word matrix.
- y : Ignored
Returns: - self
-
fit_transform
(self, X, y=None, **fit_params)[source]¶ Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters: - X : numpy array of shape [n_samples, n_features]
Training set.
- y : numpy array of shape [n_samples]
Target values.
Returns: - X_new : numpy array of shape [n_samples, n_features_new]
Transformed array.
-
get_params
(self, deep=True)[source]¶ Get parameters for this estimator.
Parameters: - deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: - params : mapping of string to any
Parameter names mapped to their values.
-
partial_fit
(self, X, y=None)[source]¶ Online VB with Mini-Batch update.
Parameters: - X : array-like or sparse matrix, shape=(n_samples, n_features)
Document word matrix.
- y : Ignored
Returns: - self
-
perplexity
(self, X, sub_sampling=False)[source]¶ Calculate approximate perplexity for data X.
Perplexity is defined as exp(-1. * log-likelihood per word)
Changed in version 0.19: doc_topic_distr argument has been deprecated and is ignored because user no longer has access to unnormalized distribution
Parameters: - X : array-like or sparse matrix, [n_samples, n_features]
Document word matrix.
- sub_sampling : bool
Do sub-sampling or not.
Returns: - score : float
Perplexity score.
-
score
(self, X, y=None)[source]¶ Calculate approximate log-likelihood as score.
Parameters: - X : array-like or sparse matrix, shape=(n_samples, n_features)
Document word matrix.
- y : Ignored
Returns: - score : float
Use approximate bound as score.
-
set_params
(self, **params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Returns: - self
-
transform
(self, X)[source]¶ Transform data X according to the fitted model.
Changed in version 0.18: doc_topic_distr is now normalized
Parameters: - X : array-like or sparse matrix, shape=(n_samples, n_features)
Document word matrix.
Returns: - doc_topic_distr : shape=(n_samples, n_components)
Document topic distribution for X.