sklearn.cluster.bicluster
.SpectralCoclustering¶
-
class
sklearn.cluster.bicluster.
SpectralCoclustering
(n_clusters=3, svd_method=’randomized’, n_svd_vecs=None, mini_batch=False, init=’k-means++’, n_init=10, n_jobs=None, random_state=None)[source]¶ Spectral Co-Clustering algorithm (Dhillon, 2001).
Clusters rows and columns of an array
X
to solve the relaxed normalized cut of the bipartite graph created fromX
as follows: the edge between row vertexi
and column vertexj
has weightX[i, j]
.The resulting bicluster structure is block-diagonal, since each row and each column belongs to exactly one bicluster.
Supports sparse matrices, as long as they are nonnegative.
Read more in the User Guide.
Parameters: - n_clusters : integer, optional, default: 3
The number of biclusters to find.
- svd_method : string, optional, default: ‘randomized’
Selects the algorithm for finding singular vectors. May be ‘randomized’ or ‘arpack’. If ‘randomized’, use
sklearn.utils.extmath.randomized_svd
, which may be faster for large matrices. If ‘arpack’, usescipy.sparse.linalg.svds
, which is more accurate, but possibly slower in some cases.- n_svd_vecs : int, optional, default: None
Number of vectors to use in calculating the SVD. Corresponds to
ncv
whensvd_method=arpack
andn_oversamples
whensvd_method
is ‘randomized`.- mini_batch : bool, optional, default: False
Whether to use mini-batch k-means, which is faster but may get different results.
- init : {‘k-means++’, ‘random’ or an ndarray}
Method for initialization of k-means algorithm; defaults to ‘k-means++’.
- n_init : int, optional, default: 10
Number of random initializations that are tried with the k-means algorithm.
If mini-batch k-means is used, the best initialization is chosen and the algorithm runs once. Otherwise, the algorithm is run for each initialization and the best solution chosen.
- n_jobs : int or None, optional (default=None)
The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel.
None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details.- random_state : int, RandomState instance or None (default)
Used for randomizing the singular value decomposition and the k-means initialization. Use an int to make the randomness deterministic. See Glossary.
Attributes: - rows_ : array-like, shape (n_row_clusters, n_rows)
Results of the clustering.
rows[i, r]
is True if clusteri
contains rowr
. Available only after callingfit
.- columns_ : array-like, shape (n_column_clusters, n_columns)
Results of the clustering, like
rows
.- row_labels_ : array-like, shape (n_rows,)
The bicluster label of each row.
- column_labels_ : array-like, shape (n_cols,)
The bicluster label of each column.
References
- Dhillon, Inderjit S, 2001. Co-clustering documents and words using bipartite spectral graph partitioning.
Examples
>>> from sklearn.cluster import SpectralCoclustering >>> import numpy as np >>> X = np.array([[1, 1], [2, 1], [1, 0], ... [4, 7], [3, 5], [3, 6]]) >>> clustering = SpectralCoclustering(n_clusters=2, random_state=0).fit(X) >>> clustering.row_labels_ array([0, 1, 1, 0, 0, 0], dtype=int32) >>> clustering.column_labels_ array([0, 0], dtype=int32) >>> clustering SpectralCoclustering(init='k-means++', mini_batch=False, n_clusters=2, n_init=10, n_jobs=None, n_svd_vecs=None, random_state=0, svd_method='randomized')
Methods
fit
(self, X[, y])Creates a biclustering for X. get_indices
(self, i)Row and column indices of the i’th bicluster. get_params
(self[, deep])Get parameters for this estimator. get_shape
(self, i)Shape of the i’th bicluster. get_submatrix
(self, i, data)Returns the submatrix corresponding to bicluster i
.set_params
(self, \*\*params)Set the parameters of this estimator. -
__init__
(self, n_clusters=3, svd_method=’randomized’, n_svd_vecs=None, mini_batch=False, init=’k-means++’, n_init=10, n_jobs=None, random_state=None)[source]¶
-
biclusters_
¶ Convenient way to get row and column indicators together.
Returns the
rows_
andcolumns_
members.
-
fit
(self, X, y=None)[source]¶ Creates a biclustering for X.
Parameters: - X : array-like, shape (n_samples, n_features)
- y : Ignored
-
get_indices
(self, i)[source]¶ Row and column indices of the i’th bicluster.
Only works if
rows_
andcolumns_
attributes exist.Parameters: - i : int
The index of the cluster.
Returns: - row_ind : np.array, dtype=np.intp
Indices of rows in the dataset that belong to the bicluster.
- col_ind : np.array, dtype=np.intp
Indices of columns in the dataset that belong to the bicluster.
-
get_params
(self, deep=True)[source]¶ Get parameters for this estimator.
Parameters: - deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: - params : mapping of string to any
Parameter names mapped to their values.
-
get_shape
(self, i)[source]¶ Shape of the i’th bicluster.
Parameters: - i : int
The index of the cluster.
Returns: - shape : (int, int)
Number of rows and columns (resp.) in the bicluster.
-
get_submatrix
(self, i, data)[source]¶ Returns the submatrix corresponding to bicluster
i
.Parameters: - i : int
The index of the cluster.
- data : array
The data.
Returns: - submatrix : array
The submatrix corresponding to bicluster i.
Notes
Works with sparse matrices. Only works if
rows_
andcolumns_
attributes exist.
-
set_params
(self, **params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Returns: - self