.. _sphx_glr_auto_examples_decomposition_plot_pca_vs_fa_model_selection.py:


===============================================================
Model selection with Probabilistic PCA and Factor Analysis (FA)
===============================================================

Probabilistic PCA and Factor Analysis are probabilistic models.
The consequence is that the likelihood of new data can be used
for model selection and covariance estimation.
Here we compare PCA and FA with cross-validation on low rank data corrupted
with homoscedastic noise (noise variance
is the same for each feature) or heteroscedastic noise (noise variance
is the different for each feature). In a second step we compare the model
likelihood to the likelihoods obtained from shrinkage covariance estimators.

One can observe that with homoscedastic noise both FA and PCA succeed
in recovering the size of the low rank subspace. The likelihood with PCA
is higher than FA in this case. However PCA fails and overestimates
the rank when heteroscedastic noise is present. Under appropriate
circumstances the low rank models are more likely than shrinkage models.

The automatic estimation from
Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604
by Thomas P. Minka is also compared.



.. code-block:: python


    # Authors: Alexandre Gramfort
    #          Denis A. Engemann
    # License: BSD 3 clause

    import numpy as np
    import matplotlib.pyplot as plt
    from scipy import linalg

    from sklearn.decomposition import PCA, FactorAnalysis
    from sklearn.covariance import ShrunkCovariance, LedoitWolf
    from sklearn.model_selection import cross_val_score
    from sklearn.model_selection import GridSearchCV

    print(__doc__)







Create the data


.. code-block:: python


    n_samples, n_features, rank = 1000, 50, 10
    sigma = 1.
    rng = np.random.RandomState(42)
    U, _, _ = linalg.svd(rng.randn(n_features, n_features))
    X = np.dot(rng.randn(n_samples, rank), U[:, :rank].T)

    # Adding homoscedastic noise
    X_homo = X + sigma * rng.randn(n_samples, n_features)

    # Adding heteroscedastic noise
    sigmas = sigma * rng.rand(n_features) + sigma / 2.
    X_hetero = X + rng.randn(n_samples, n_features) * sigmas







Fit the models


.. code-block:: python


    n_components = np.arange(0, n_features, 5)  # options for n_components


    def compute_scores(X):
        pca = PCA(svd_solver='full')
        fa = FactorAnalysis()

        pca_scores, fa_scores = [], []
        for n in n_components:
            pca.n_components = n
            fa.n_components = n
            pca_scores.append(np.mean(cross_val_score(pca, X)))
            fa_scores.append(np.mean(cross_val_score(fa, X)))

        return pca_scores, fa_scores


    def shrunk_cov_score(X):
        shrinkages = np.logspace(-2, 0, 30)
        cv = GridSearchCV(ShrunkCovariance(), {'shrinkage': shrinkages})
        return np.mean(cross_val_score(cv.fit(X).best_estimator_, X))


    def lw_score(X):
        return np.mean(cross_val_score(LedoitWolf(), X))


    for X, title in [(X_homo, 'Homoscedastic Noise'),
                     (X_hetero, 'Heteroscedastic Noise')]:
        pca_scores, fa_scores = compute_scores(X)
        n_components_pca = n_components[np.argmax(pca_scores)]
        n_components_fa = n_components[np.argmax(fa_scores)]

        pca = PCA(svd_solver='full', n_components='mle')
        pca.fit(X)
        n_components_pca_mle = pca.n_components_

        print("best n_components by PCA CV = %d" % n_components_pca)
        print("best n_components by FactorAnalysis CV = %d" % n_components_fa)
        print("best n_components by PCA MLE = %d" % n_components_pca_mle)

        plt.figure()
        plt.plot(n_components, pca_scores, 'b', label='PCA scores')
        plt.plot(n_components, fa_scores, 'r', label='FA scores')
        plt.axvline(rank, color='g', label='TRUTH: %d' % rank, linestyle='-')
        plt.axvline(n_components_pca, color='b',
                    label='PCA CV: %d' % n_components_pca, linestyle='--')
        plt.axvline(n_components_fa, color='r',
                    label='FactorAnalysis CV: %d' % n_components_fa,
                    linestyle='--')
        plt.axvline(n_components_pca_mle, color='k',
                    label='PCA MLE: %d' % n_components_pca_mle, linestyle='--')

        # compare with other covariance estimators
        plt.axhline(shrunk_cov_score(X), color='violet',
                    label='Shrunk Covariance MLE', linestyle='-.')
        plt.axhline(lw_score(X), color='orange',
                    label='LedoitWolf MLE' % n_components_pca_mle, linestyle='-.')

        plt.xlabel('nb of components')
        plt.ylabel('CV scores')
        plt.legend(loc='lower right')
        plt.title(title)

    plt.show()



.. rst-class:: sphx-glr-horizontal


    *

      .. image:: /auto_examples/decomposition/images/sphx_glr_plot_pca_vs_fa_model_selection_001.png
            :scale: 47

    *

      .. image:: /auto_examples/decomposition/images/sphx_glr_plot_pca_vs_fa_model_selection_002.png
            :scale: 47


.. rst-class:: sphx-glr-script-out

 Out::

      best n_components by PCA CV = 10
    best n_components by FactorAnalysis CV = 10
    best n_components by PCA MLE = 10
    best n_components by PCA CV = 40
    best n_components by FactorAnalysis CV = 10
    best n_components by PCA MLE = 38


**Total running time of the script:**
(0 minutes 12.618 seconds)



.. container:: sphx-glr-download

    **Download Python source code:** :download:`plot_pca_vs_fa_model_selection.py <plot_pca_vs_fa_model_selection.py>`


.. container:: sphx-glr-download

    **Download IPython notebook:** :download:`plot_pca_vs_fa_model_selection.ipynb <plot_pca_vs_fa_model_selection.ipynb>`