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CHAPTER

ONE

WELCOME TO SCIKIT-LEARN

1.1 Installing scikit-learn

Note: If you wish to contribute to the project, it’s recommended you install the latest development version.

1.1.1 Installing the latest release

Scikit-learn requires:

• Python (>= 2.6 or >= 3.3),

• NumPy (>= 1.6.1),

• SciPy (>= 0.9).

If you already have a working installation of numpy and scipy, the easiest way to install scikit-learn is using pip

pip install -U scikit-learn

or conda:

conda install scikit-learn

We don’t recommend installing scipy or numpy using pip on linux, as this will involve a lengthy build-process
with many dependencies. Without careful configuration, building numpy yourself can lead to an installation that is
much slower than it should be. If you are using Linux, consider using your package manager to install scikit-learn. It
is usually the easiest way, but might not provide the newest version. If you haven’t already installed numpy and scipy
and can’t install them via your operation system, it is recommended to use a third party distribution.

1.1.2 Third-party Distributions

If you don’t already have a python installation with numpy and scipy, we recommend to install either via your package
manager or via a python bundle. These come with numpy, scipy, scikit-learn, matplotlib and many other helpful
scientific and data processing libraries.

Available options are:

1
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Canopy and Anaconda for all supported platforms

Canopy and Anaconda both ship a recent version of scikit-learn, in addition to a large set of scientific python library
for Windows, Mac OSX and Linux.

Anaconda offers scikit-learn as part of its free distribution.

Warning: To upgrade or uninstall scikit-learn installed with Anaconda or conda you should not use the pip
command. Instead:
To upgrade scikit-learn:

conda update scikit-learn

To uninstall scikit-learn:

conda remove scikit-learn

Upgrading with pip install -U scikit-learn or uninstalling pip uninstall scikit-learn is
likely fail to properly remove files installed by the conda command.
pip upgrade and uninstall operations only work on packages installed via pip install.

Python(x,y) for Windows

The Python(x,y) project distributes scikit-learn as an additional plugin, which can be found in the Additional plugins
page.

For installation instructions for particular operating systems or for compiling the bleeding edge version, see the Ad-
vanced installation instructions.

1.2 Frequently Asked Questions

Here we try to give some answers to questions that regularly pop up on the mailing list.

1.2.1 What is the project name (a lot of people get it wrong)?

scikit-learn, but not scikit or SciKit nor sci-kit learn. Also not scikits.learn or scikits-learn, which where previously
used.

1.2.2 How do you pronounce the project name?

sy-kit learn. sci stands for science!

1.2.3 Why scikit?

There are multiple scikits, which are scientific toolboxes build around SciPy. You can find a list at
https://scikits.appspot.com/scikits. Apart from scikit-learn, another popular one is scikit-image.

2 Chapter 1. Welcome to scikit-learn
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scikit-learn user guide, Release 0.17

1.2.4 How can I contribute to scikit-learn?

See Contributing. Before wanting to add a new algorithm, which is usually a major and lengthy undertaking, it is
recommended to start with known issues.

1.2.5 How can I create a bunch object?

Don’t make a bunch object! They are not part of the scikit-learn API. Bunch objects are just a way to package some
numpy arrays. As a scikit-learn user you only ever need numpy arrays to feed your model with data.

For instance to train a classifier, all you need is a 2D array X for the input variables and a 1D array y for the target
variables. The array X holds the features as columns and samples as rows . The array y contains integer values to
encode the class membership of each sample in X.

To load data as numpy arrays you can use different libraries depending on the original data format:

• numpy.loadtxt to load text files (such as CSV) assuming that all the columns have an homogeneous data type
(e.g. all numeric values).

• scipy.io for common binary formats often used in scientific computing context.

• scipy.misc.imread (requires the Pillow package) to load pixel intensities data from various image file formats.

• pandas.io to load heterogeneously typed data from various file formats and database protocols that can slice and
dice before conversion to numerical features in a numpy array.

Note: if you manage your own numerical data it is recommended to use an optimized file format such as HDF5 to
reduce data load times. Various libraries such as H5Py, PyTables and pandas provides a Python interface for reading
and writing data in that format.

1.2.6 Can I add this new algorithm that I (or someone else) just published?

No. As a rule we only add well-established algorithms. A rule of thumb is at least 3 years since publications, 200+
citations and wide use and usefullness. A technique that provides a clear-cut improvement (e.g. an enhanced data
structure or efficient approximation) on a widely-used method will also be considered for inclusion. Your implemen-
tation doesn’t need to be in scikit-learn to be used together with scikit-learn tools, though. Implement your favorite
algorithm in a scikit-learn compatible way, upload it to github and we will list it under Related Projects. Also see
selectiveness.

1.2.7 Can I add this classical algorithm from the 80s?

Depends. If there is a common usecase within the scope of scikit-learn, such as classification, regression or clustering,
where it outperforms methods that are already implemented in scikit-learn, we will consider it.

1.2.8 Why are you so selective on what algorithms you include in scikit-learn?

Code is maintenance cost, and we need to balance the amount of code we have with the size of the team (and add to
this the fact that complexity scales non linearly with the number of features). The package relies on core developers
using their free time to fix bugs, maintain code and review contributions. Any algorithm that is added needs future
attention by the developers, at which point the original author might long have lost interest. Also see this thread on the
mailing list.

1.2. Frequently Asked Questions 3

http://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html
http://docs.scipy.org/doc/scipy/reference/io.html
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1.2.9 Why did you remove HMMs from scikit-learn?

See Will you add graphical models or sequence prediction to scikit-learn?.

1.2.10 Will you add graphical models or sequence prediction to scikit-learn?

Not in the foreseeable future. scikit-learn tries to provide a unified API for the basic tasks in machine learning, with
pipelines and meta-algorithms like grid search to tie everything together. The required concepts, APIs, algorithms
and expertise required for structured learning are different from what scikit-learn has to offer. If we started doing
arbitrary structured learning, we’d need to redesign the whole package and the project would likely collapse under its
own weight.

There are two project with API similar to scikit-learn that do structured prediction:

• pystruct handles general structured learning (focuses on SSVMs on arbitrary graph structures with approximate
inference; defines the notion of sample as an instance of the graph structure)

• seqlearn handles sequences only (focuses on exact inference; has HMMs, but mostly for the sake of complete-
ness; treats a feature vector as a sample and uses an offset encoding for the dependencies between feature
vectors)

1.2.11 Will you add GPU support?

No, or at least not in the near future. The main reason is that GPU support will introduce many software dependencies
and introduce platform specific issues. scikit-learn is designed to be easy to install on a wide variety of platforms.
Outside of neural networks, GPUs don’t play a large role in machine learning today, and much larger gains in speed
can often be achieved by a careful choice of algorithms.

1.2.12 Do you support PyPy?

In case you didn’t know, PyPy is the new, fast, just-in-time compiling Python implementation. We don’t support it.
When the NumPy support in PyPy is complete or near-complete, and SciPy is ported over as well, we can start thinking
of a port. We use too much of NumPy to work with a partial implementation.

1.2.13 How do I deal with string data (or trees, graphs...)?

scikit-learn estimators assume you’ll feed them real-valued feature vectors. This assumption is hard-coded in pretty
much all of the library. However, you can feed non-numerical inputs to estimators in several ways.

If you have text documents, you can use a term frequency features; see Text feature extraction for the built-in text
vectorizers. For more general feature extraction from any kind of data, see Loading features from dicts and Feature
hashing.

Another common case is when you have non-numerical data and a custom distance (or similarity) metric on these data.
Examples include strings with edit distance (aka. Levenshtein distance; e.g., DNA or RNA sequences). These can be
encoded as numbers, but doing so is painful and error-prone. Working with distance metrics on arbitrary data can be
done in two ways.

Firstly, many estimators take precomputed distance/similarity matrices, so if the dataset is not too large, you can
compute distances for all pairs of inputs. If the dataset is large, you can use feature vectors with only one “feature”,
which is an index into a separate data structure, and supply a custom metric function that looks up the actual data in
this data structure. E.g., to use DBSCAN with Levenshtein distances:

4 Chapter 1. Welcome to scikit-learn
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>>> from leven import levenshtein
>>> import numpy as np
>>> from sklearn.cluster import dbscan
>>> data = ["ACCTCCTAGAAG", "ACCTACTAGAAGTT", "GAATATTAGGCCGA"]
>>> def lev_metric(x, y):
... i, j = int(x[0]), int(y[0]) # extract indices
... return levenshtein(data[i], data[j])
...
>>> X = np.arange(len(data)).reshape(-1, 1)
>>> X
array([[0],

[1],
[2]])

>>> dbscan(X, metric=lev_metric, eps=5, min_samples=2)
([0, 1], array([ 0, 0, -1]))

(This uses the third-party edit distance package leven.)

Similar tricks can be used, with some care, for tree kernels, graph kernels, etc.

1.2.14 Why do I sometime get a crash/freeze with n_jobs > 1 under OSX or Linux?

Several scikit-learn tools such as GridSearchCV and cross_val_score rely internally on Python’s multipro-
cessing module to parallelize execution onto several Python processes by passing n_jobs > 1 as argument.

The problem is that Python multiprocessing does a fork system call without following it with an exec system
call for performance reasons. Many libraries like (some versions of) Accelerate / vecLib under OSX, (some versions
of) MKL, the OpenMP runtime of GCC, nvidia’s Cuda (and probably many others), manage their own internal thread
pool. Upon a call to fork, the thread pool state in the child process is corrupted: the thread pool believes it has many
threads while only the main thread state has been forked. It is possible to change the libraries to make them detect
when a fork happens and reinitialize the thread pool in that case: we did that for OpenBLAS (merged upstream in
master since 0.2.10) and we contributed a patch to GCC’s OpenMP runtime (not yet reviewed).

But in the end the real culprit is Python’s multiprocessing that does fork without exec to reduce the overhead
of starting and using new Python processes for parallel computing. Unfortunately this is a violation of the POSIX
standard and therefore some software editors like Apple refuse to consider the lack of fork-safety in Accelerate /
vecLib as a bug.

In Python 3.4+ it is now possible to configure multiprocessing to use the ‘forkserver’ or ‘spawn’ start methods
(instead of the default ‘fork’) to manage the process pools. This makes it possible to not be subject to this issue
anymore. The version of joblib shipped with scikit-learn automatically uses that setting by default (under Python 3.4
and later).

If you have custom code that uses multiprocessing directly instead of using it via joblib you can enable the the
‘forkserver’ mode globally for your program: Insert the following instructions in your main script:

import multiprocessing

# other imports, custom code, load data, define model...

if __name__ == '__main__':
multiprocessing.set_start_method('forkserver')

# call scikit-learn utils with n_jobs > 1 here

You can find more default on the new start methods in the multiprocessing documentation.

1.2. Frequently Asked Questions 5
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1.3 Support

There are several ways to get in touch with the developers.

1.3.1 Mailing List

• The main mailing list is scikit-learn-general.

• There is also a commit list scikit-learn-commits, where updates to the main repository and test failures get
notified.

1.3.2 User questions

• Some scikit-learn developers support users on StackOverflow using the [scikit-learn] tag.

• For general theoretical or methodological Machine Learning questions metaoptimize.com/qa is probably a more
suitable venue.

In both cases please use a descriptive question in the title field (e.g. no “Please help with scikit-learn!” as this is not a
question) and put details on what you tried to achieve, what were the expected results and what you observed instead
in the details field.

Code and data snippets are welcome. Minimalistic (up to ~20 lines long) reproduction script very helpful.

Please describe the nature of your data and the how you preprocessed it: what is the number of samples, what is the
number and type of features (i.d. categorical or numerical) and for supervised learning tasks, what target are your
trying to predict: binary, multiclass (1 out of n_classes) or multilabel (k out of n_classes) classification or
continuous variable regression.

1.3.3 Bug tracker

If you think you’ve encountered a bug, please report it to the issue tracker:

https://github.com/scikit-learn/scikit-learn/issues

Don’t forget to include:

• steps (or better script) to reproduce,

• expected outcome,

• observed outcome or python (or gdb) tracebacks

To help developers fix your bug faster, please link to a https://gist.github.com holding a standalone minimalistic python
script that reproduces your bug and optionally a minimalistic subsample of your dataset (for instance exported as CSV
files using numpy.savetxt).

Note: gists are git cloneable repositories and thus you can use git to push datafiles to them.

1.3.4 IRC

Some developers like to hang out on channel #scikit-learn on irc.freenode.net.

If you do not have an IRC client or are behind a firewall this web client works fine: http://webchat.freenode.net
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1.3.5 Documentation resources

This documentation is relative to 0.17. Documentation for other versions can be found here:

• 0.15

• 0.14

• 0.13

• 0.12

• 0.11

• 0.10

• 0.9

• 0.8

• 0.7

• 0.6

• 0.5

Printable pdf documentation for all versions can be found here.

1.4 Related Projects

Below is a list of sister-projects, extensions and domain specific packages.

1.4.1 Interoperability and framework enhancements

These tools adapt scikit-learn for use with other technologies or otherwise enhance the functionality of scikit-learn’s
estimators.

• sklearn_pandas bridge for scikit-learn pipelines and pandas data frame with dedicated transformers.

• Scikit-Learn Laboratory A command-line wrapper around scikit-learn that makes it easy to run machine learning
experiments with multiple learners and large feature sets.

• auto-sklearn An automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator

• sklearn-pmml Serialization of (some) scikit-learn estimators into PMML.

1.4.2 Other estimators and tasks

Not everything belongs or is mature enough for the central scikit-learn project. The following are projects providing
interfaces similar to scikit-learn for additional learning algorithms, infrastructures and tasks.

• pylearn2 A deep learning and neural network library build on theano with scikit-learn like interface.

• sklearn_theano scikit-learn compatible estimators, transformers, and datasets which use Theano internally

• lightning Fast state-of-the-art linear model solvers (SDCA, AdaGrad, SVRG, SAG, etc...).

• Seqlearn Sequence classification using HMMs or structured perceptron.

• HMMLearn Implementation of hidden markov models that was previously part of scikit-learn.
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• PyStruct General conditional random fields and structured prediction.

• py-earth Multivariate adaptive regression splines

• sklearn-compiledtrees Generate a C++ implementation of the predict function for decision trees (and ensembles)
trained by sklearn. Useful for latency-sensitive production environments.

• lda: Fast implementation of Latent Dirichlet Allocation in Cython.

• Sparse Filtering Unsupervised feature learning based on sparse-filtering

• Kernel Regression Implementation of Nadaraya-Watson kernel regression with automatic bandwidth selection

• gplearn Genetic Programming for symbolic regression tasks.

• nolearn A number of wrappers and abstractions around existing neural network libraries

• sparkit-learn Scikit-learn functionality and API on PySpark.

• keras Theano-based Deep Learning library.

• mlxtend Includes a number of additional estimators as well as model visualization utilities.

1.4.3 Statistical learning with Python

Other packages useful for data analysis and machine learning.

• Pandas Tools for working with heterogeneous and columnar data, relational queries, time series and basic statis-
tics.

• theano A CPU/GPU array processing framework geared towards deep learning research.

• Statsmodel Estimating and analysing statistical models. More focused on statistical tests and less on prediction
than scikit-learn.

• PyMC Bayesian statistical models and fitting algorithms.

• REP Environment for conducting data-driven research in a consistent and reproducible way

• Sacred Tool to help you configure, organize, log and reproduce experiments

• gensim A library for topic modelling, document indexing and similarity retrieval

• Seaborn Visualization library based on matplotlib. It provides a high-level interface for drawing attractive
statistical graphics.

• Deep Learning A curated list of deep learning software libraries.

Domain specific packages

• scikit-image Image processing and computer vision in python.

• Natural language toolkit (nltk) Natural language processing and some machine learning.

• NiLearn Machine learning for neuro-imaging.

• AstroML Machine learning for astronomy.

• MSMBuilder Machine learning for protein conformational dynamics time series.

1.4.4 Snippets and tidbits

The wiki has more!
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1.5 About us

This is a community effort, and as such many people have contributed to it over the years.

1.5.1 History

This project was started in 2007 as a Google Summer of Code project by David Cournapeau. Later that year, Matthieu
Brucher started work on this project as part of his thesis.

In 2010 Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort and Vincent Michel of INRIA took leadership of the
project and made the first public release, February the 1st 2010. Since then, several releases have appeared following
a ~3 month cycle, and a thriving international community has been leading the development.

1.5.2 People

• David Cournapeau
• Jarrod Millman
• Matthieu Brucher
• Fabian Pedregosa
• Gael Varoquaux
• Jake VanderPlas
• Alexandre Gramfort
• Olivier Grisel
• Bertrand Thirion
• Vincent Michel
• Chris Filo Gorgolewski
• Angel Soler Gollonet
• Yaroslav Halchenko
• Ron Weiss
• Virgile Fritsch
• Mathieu Blondel
• Peter Prettenhofer
• Vincent Dubourg
• Alexandre Passos
• Vlad Niculae
• Edouard Duchesnay
• Thouis (Ray) Jones
• Lars Buitinck
• Paolo Losi
• Nelle Varoquaux
• Brian Holt
• Robert Layton
• Gilles Louppe
• Andreas Müller (release manager)
• Satra Ghosh
• Wei Li
• Arnaud Joly
• Kemal Eren
• Michael Becker

1.5. About us 9

http://matt.eifelle.com/
http://fseoane.net/blog/
http://gael-varoquaux.info/blog/
http://www.astro.washington.edu/users/vanderplas/
http://alexandre.gramfort.net
http://twitter.com/ogrisel
http://webylimonada.com
http://www.onerussian.com/
http://parietal.saclay.inria.fr/Members/virgile-fritsch
http://mblondel.org
http://sites.google.com/site/peterprettenhofer/
http://atpassos.posterous.com
http://vene.ro
http://info.ee.surrey.ac.uk/Personal/B.Holt/
http://www.montefiore.ulg.ac.be/~glouppe
http://peekaboo-vision.blogspot.com
http://www.mit.edu/~satra
http://kuantkid.github.com
http://www.ajoly.org
http://www.kemaleren.com
http://beckerfuffle.com


scikit-learn user guide, Release 0.17

1.5.3 Citing scikit-learn

If you use scikit-learn in a scientific publication, we would appreciate citations to the following paper:

Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.

Bibtex entry:

@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.

and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},

journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}

If you want to cite scikit-learn for its API or design, you may also want to consider the following paper:

API design for machine learning software: experiences from the scikit-learn project, Buitinck et al., 2013.

Bibtex entry:

@inproceedings{sklearn_api,
author = {Lars Buitinck and Gilles Louppe and Mathieu Blondel and

Fabian Pedregosa and Andreas Mueller and Olivier Grisel and
Vlad Niculae and Peter Prettenhofer and Alexandre Gramfort
and Jaques Grobler and Robert Layton and Jake VanderPlas and
Arnaud Joly and Brian Holt and Ga{\"{e}}l Varoquaux},

title = {{API} design for machine learning software: experiences from the scikit-learn
project},

booktitle = {ECML PKDD Workshop: Languages for Data Mining and Machine Learning},
year = {2013},
pages = {108--122},

}

1.5.4 Artwork

High quality PNG and SVG logos are available in the doc/logos/ source directory.
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1.5.5 Funding

INRIA actively supports this project. It has provided funding for Fabian Pedregosa (2010-2012), Jaques Grobler
(2012-2013) and Olivier Grisel (2013-2015) to work on this project full-time. It also hosts coding sprints and other
events.

Paris-Saclay Center for Data Science funded one year for a developer to work on the project full-time (2014-2015).

The following students were sponsored by Google to work on scikit-learn through the Google Summer of Code
program.

• 2007 - David Cournapeau

• 2011 - Vlad Niculae

• 2012 - Vlad Niculae, Immanuel Bayer.

• 2013 - Kemal Eren, Nicolas Trésegnie

• 2014 - Hamzeh Alsalhi, Issam Laradji, Maheshakya Wijewardena, Manoj Kumar.

It also provided funding for sprints and events around scikit-learn. If you would like to participate in the next Google
Summer of code program, please see this page

The NeuroDebian project providing Debian packaging and contributions is supported by Dr. James V. Haxby (Dart-
mouth College).

The PSF helped find and manage funding for our 2011 Granada sprint. More information can be found here

tinyclues funded the 2011 international Granada sprint.

Donating to the project

If you are interested in donating to the project or to one of our code-sprints, you can use the Paypal button below or the
NumFOCUS Donations Page (if you use the latter, please indicate that you are donating for the scikit-learn project).

All donations will be handled by NumFOCUS, a non-profit-organization which is managed by a board of Scipy
community members. NumFOCUS’s mission is to foster scientific computing software, in particular in Python. As
a fiscal home of scikit-learn, it ensures that money is available when needed to keep the project funded and available
while in compliance with tax regulations.

The received donations for the scikit-learn project mostly will go towards covering travel-expenses for code sprints, as
well as towards the organization budget of the project 1.

1 Regarding the organization budget in particular, we might use some of the donated funds to pay for other project expenses such as DNS,
hosting or continuous integration services.
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Notes

The 2013’ Paris international sprint

Figure 1.1: IAP VII/19 - DYSCO

For more information on this sprint, see here

1.5.6 Infrastructure support

• We would like to thank Rackspace for providing us with a free Rackspace Cloud account to automatically build
the documentation and the example gallery from for the development version of scikit-learn using this tool.

• We would also like to thank Shining Panda for free CPU time on their Continuous Integration server.

1.6 Who is using scikit-learn?

1.6.1 Spotify

Scikit-learn provides a toolbox with solid implementations of a bunch of state-of-the-
art models and makes it easy to plug them into existing applications. We’ve been using it quite a lot for music
recommendations at Spotify and I think it’s the most well-designed ML package I’ve seen so far.

Erik Bernhardsson, Engineering Manager Music Discovery & Machine Learning, Spotify

1.6.2 Inria

At INRIA, we use scikit-learn to support leading-edge basic research in many teams:
Parietal for neuroimaging, Lear for computer vision, Visages for medical image analysis, Privatics for security. The
project is a fantastic tool to address difficult applications of machine learing in an academic environment as it is
performant and versatile, but all easy-to-use and well documented, which makes it well suited to grad students.

Gaël Varoquaux, research at Parietal
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1.6.3 Evernote

Building a classifier is typically an iterative process of exploring the data, selecting the
features (the attributes of the data believed to be predictive in some way), training the models, and finally evaluating
them. For many of these tasks, we relied on the excellent scikit-learn package for Python.

Read more

Mark Ayzenshtat, VP, Augmented Intelligence

1.6.4 Télécom ParisTech

At Telecom ParisTech, scikit-learn is used for hands-on sessions and home assignments
in introductory and advanced machine learning courses. The classes are for undergrads and masters students. The
great benefit of scikit-learn is its fast learning curve that allows students to quickly start working on interesting and
motivating problems.

Alexandre Gramfort, Assistant Professor

1.6.5 AWeber

The scikit-learn toolkit is indispensable for the Data Analysis and Management team
at AWeber. It allows us to do AWesome stuff we would not otherwise have the time or resources to accomplish. The
documentation is excellent, allowing new engineers to quickly evaluate and apply many different algorithms to our
data. The text feature extraction utilities are useful when working with the large volume of email content we have
at AWeber. The RandomizedPCA implementation, along with Pipelining and FeatureUnions, allows us to develop
complex machine learning algorithms efficiently and reliably.

Anyone interested in learning more about how AWeber deploys scikit-learn in a production environment should check
out talks from PyData Boston by AWeber’s Michael Becker available at https://github.com/mdbecker/pydata_2013

Michael Becker, Software Engineer, Data Analysis and Management Ninjas
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1.6.6 Yhat

The combination of consistent APIs, thorough documentation, and top notch implemen-
tation make scikit-learn our favorite machine learning package in Python. scikit-learn makes doing advanced analysis
in Python accessible to anyone. At Yhat, we make it easy to integrate these models into your production applications.
Thus eliminating the unnecessary dev time encountered productionizing analytical work.

Greg Lamp, Co-founder Yhat

1.6.7 Rangespan

The Python scikit-learn toolkit is a core tool in the data science group at Rangespan.
Its large collection of well documented models and algorithms allow our team of data scientists to prototype fast and
quickly iterate to find the right solution to our learning problems. We find that scikit-learn is not only the right tool
for prototyping, but its careful and well tested implementation give us the confidence to run scikit-learn models in
production.

Jurgen Van Gael, Data Science Director at Rangespan Ltd

1.6.8 Birchbox

At Birchbox, we face a range of machine learning problems typical to E-commerce:
product recommendation, user clustering, inventory prediction, trends detection, etc. Scikit-learn lets us experiment
with many models, especially in the exploration phase of a new project: the data can be passed around in a consistent
way; models are easy to save and reuse; updates keep us informed of new developments from the pattern discovery
research community. Scikit-learn is an important tool for our team, built the right way in the right language.

Thierry Bertin-Mahieux, Birchbox, Data Scientist
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1.6.9 Bestofmedia Group

Scikit-learn is our #1 toolkit for all things machine learning at Bestofmedia. We use
it for a variety of tasks (e.g. spam fighting, ad click prediction, various ranking models) thanks to the varied, state-
of-the-art algorithm implementations packaged into it. In the lab it accelerates prototyping of complex pipelines. In
production I can say it has proven to be robust and efficient enough to be deployed for business critical components.

Eustache Diemert, Lead Scientist Bestofmedia Group

1.6.10 Change.org

At change.org we automate the use of scikit-learn’s RandomForestClassifier in our pro-
duction systems to drive email targeting that reaches millions of users across the world each week. In the lab, scikit-
learn’s ease-of-use, performance, and overall variety of algorithms implemented has proved invaluable in giving us a
single reliable source to turn to for our machine-learning needs.

Vijay Ramesh, Software Engineer in Data/science at Change.org

1.6.11 PHIMECA Engineering

At PHIMECA Engineering, we use scikit-learn estimators as surrogates for expensive-
to-evaluate numerical models (mostly but not exclusively finite-element mechanical models) for speeding up the inten-
sive post-processing operations involved in our simulation-based decision making framework. Scikit-learn’s fit/predict
API together with its efficient cross-validation tools considerably eases the task of selecting the best-fit estimator. We
are also using scikit-learn for illustrating concepts in our training sessions. Trainees are always impressed by the
ease-of-use of scikit-learn despite the apparent theoretical complexity of machine learning.

Vincent Dubourg, PHIMECA Engineering, PhD Engineer
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1.6.12 HowAboutWe

At HowAboutWe, scikit-learn lets us implement a wide array of machine learning tech-
niques in analysis and in production, despite having a small team. We use scikit-learn’s classification algorithms to
predict user behavior, enabling us to (for example) estimate the value of leads from a given traffic source early in
the lead’s tenure on our site. Also, our users’ profiles consist of primarily unstructured data (answers to open-ended
questions), so we use scikit-learn’s feature extraction and dimensionality reduction tools to translate these unstructured
data into inputs for our matchmaking system.

Daniel Weitzenfeld, Senior Data Scientist at HowAboutWe

1.6.13 PeerIndex

At PeerIndex we use scientific methodology to build the Influence Graph - a unique
dataset that allows us to identify who’s really influential and in which context. To do this, we have to tackle a range
of machine learning and predictive modeling problems. Scikit-learn has emerged as our primary tool for developing
prototypes and making quick progress. From predicting missing data and classifying tweets to clustering communities
of social media users, scikit- learn proved useful in a variety of applications. Its very intuitive interface and excellent
compatibility with other python tools makes it and indispensable tool in our daily research efforts.

Ferenc Huszar - Senior Data Scientist at Peerindex

1.6.14 DataRobot

DataRobot is building next generation predictive analytics software to make data scien-
tists more productive, and scikit-learn is an integral part of our system. The variety of machine learning techniques in
combination with the solid implementations that scikit-learn offers makes it a one-stop-shopping library for machine
learning in Python. Moreover, its consistent API, well-tested code and permissive licensing allow us to use it in a
production environment. Scikit-learn has literally saved us years of work we would have had to do ourselves to bring
our product to market.

Jeremy Achin, CEO & Co-founder DataRobot Inc.
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1.6.15 OkCupid

We’re using scikit-learn at OkCupid to evaluate and improve our matchmaking system.
The range of features it has, especially preprocessing utilities, means we can use it for a wide variety of projects,
and it’s performant enough to handle the volume of data that we need to sort through. The documentation is really
thorough, as well, which makes the library quite easy to use.

David Koh - Senior Data Scientist at OkCupid

1.6.16 Lovely

At Lovely, we strive to deliver the best apartment marketplace, with respect to our users
and our listings. From understanding user behavior, improving data quality, and detecting fraud, scikit-learn is a
regular tool for gathering insights, predictive modeling and improving our product. The easy-to-read documentation
and intuitive architecture of the API makes machine learning both explorable and accessible to a wide range of python
developers. I’m constantly recommending that more developers and scientists try scikit-learn.

Simon Frid - Data Scientist, Lead at Lovely

1.6.17 Data Publica

Data Publica builds a new predictive sales tool for commercial and marketing teams
called C-Radar. We extensively use scikit-learn to build segmentations of customers through clustering, and to predict
future customers based on past partnerships success or failure. We also categorize companies using their website com-
munication thanks to scikit-learn and its machine learning algorithm implementations. Eventually, machine learning
makes it possible to detect weak signals that traditional tools cannot see. All these complex tasks are performed in an
easy and straightforward way thanks to the great quality of the scikit-learn framework.

Guillaume Lebourgeois & Samuel Charron - Data Scientists at Data Publica
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1.6.18 Machinalis

Scikit-learn is the cornerstone of all the machine learning projects carried at Machinalis.
It has a consistent API, a wide selection of algorithms and lots of auxiliary tools to deal with the boilerplate. We
have used it in production environments on a variety of projects including click-through rate prediction, information
extraction, and even counting sheep!

In fact, we use it so much that we’ve started to freeze our common use cases into Python packages, some of them
open-sourced, like FeatureForge . Scikit-learn in one word: Awesome.

Rafael Carrascosa, Lead developer

1.6.19 solido

Scikit-learn is helping to drive Moore’s Law, via Solido. Solido creates computer-aided
design tools used by the majority of top-20 semiconductor companies and fabs, to design the bleeding-edge chips
inside smartphones, automobiles, and more. Scikit-learn helps to power Solido’s algorithms for rare-event estimation,
worst-case verification, optimization, and more. At Solido, we are particularly fond of scikit-learn’s libraries for
Gaussian Process models, large-scale regularized linear regression, and classification. Scikit-learn has increased our
productivity, because for many ML problems we no longer need to “roll our own” code. This PyData 2014 talk has
details.

Trent McConaghy, founder, Solido Design Automation Inc.

1.6.20 INFONEA

We employ scikit-learn for rapid prototyping and custom-made Data Science solutions
within our in-memory based Business Intelligence Software INFONEA®. As a well-documented and comprehensive
collection of state-of-the-art algorithms and pipelining methods, scikit-learn enables us to provide flexible and scalable
scientific analysis solutions. Thus, scikit-learn is immensely valuable in realizing a powerful integration of Data
Science technology within self-service business analytics.

Thorsten Kranz, Data Scientist, Coma Soft AG.
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1.6.21 Dataiku

Our software, Data Science Studio (DSS), enables users to create data services that
combine ETL with Machine Learning. Our Machine Learning module integrates many scikit-learn algorithms. The
scikit-learn library is a perfect integration with DSS because it offers algorithms for virtually all business cases. Our
goal is to offer a transparent and flexible tool that makes it easier to optimize time consuming aspects of building a
data service, preparing data, and training machine learning algorithms on all types of data.

Florian Douetteau, CEO, Dataiku

1.7 Release history

1.7.1 Version 0.17

Changelog

New features

• All the Scaler classes but RobustScaler can be fitted online by calling partial_fit. By Giorgio Patrini.

• The new class ensemble.VotingClassifier implements a “majority rule” / “soft voting” ensemble clas-
sifier to combine estimators for classification. By Sebastian Raschka.

• The new class preprocessing.RobustScaler provides an alternative to
preprocessing.StandardScaler for feature-wise centering and range normalization that is ro-
bust to outliers. By Thomas Unterthiner.

• The new class preprocessing.MaxAbsScaler provides an alternative to
preprocessing.MinMaxScaler for feature-wise range normalization when the data is already
centered or sparse. By Thomas Unterthiner.

• The new class preprocessing.FunctionTransformer turns a Python function into a Pipeline-
compatible transformer object. By Joe Jevnik.

• The new classes cross_validation.LabelKFold and cross_validation.LabelShuffleSplit
generate train-test folds, respectively similar to cross_validation.KFold and
cross_validation.ShuffleSplit, except that the folds are conditioned on a label array. By
Brian McFee, Jean Kossaifi and Gilles Louppe.

• decomposition.LatentDirichletAllocation implements the Latent Dirichlet Allocation topic
model with online variational inference. By Chyi-Kwei Yau, with code based on an implementation by Matt
Hoffman. (#3659)

• The new solver sag implements a Stochastic Average Gradient descent and is available in both
linear_model.LogisticRegression and linear_model.Ridge. This solver is very efficient for
large datasets. By Danny Sullivan and Tom Dupre la Tour. (#4738)

• The new solver cd implements a Coordinate Descent in decomposition.NMF. Previous solver based on
Projected Gradient is still available setting new parameter solver to pg, but is deprecated and will be removed
in 0.19, along with decomposition.ProjectedGradientNMF and parameters sparseness, eta,
beta and nls_max_iter. New parameters alpha and l1_ratio control L1 and L2 regularization, and
shuffle adds a shuffling step in the cd solver. By Tom Dupre la Tour and Mathieu Blondel.
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• IndexError bug #5495 when doing OVR(SVC(decision_function_shape=”ovr”)). Fixed by Elvis Dohmatob.

Enhancements

• manifold.TSNE now supports approximate optimization via the Barnes-Hut method, leading to much faster
fitting. By Christopher Erick Moody. (#4025)

• cluster.mean_shift_.MeanShift now supports parallel execution, as implemented in the
mean_shift function. By Martino Sorbaro.

• naive_bayes.GaussianNB now supports fitting with sample_weights. By Jan Hendrik Metzen.

• dummy.DummyClassifier now supports a prior fitting strategy. By Arnaud Joly.

• Added a fit_predict method for mixture.GMM and subclasses. By Cory Lorenz.

• Added the metrics.label_ranking_loss metric. By Arnaud Joly.

• Added the metrics.cohen_kappa_score metric.

• Added a warm_start constructor parameter to the bagging ensemble models to increase the size of the en-
semble. By Tim Head.

• Added option to use multi-output regression metrics without averaging. By Konstantin Shmelkov and Michael
Eickenberg.

• Added stratify option to cross_validation.train_test_split for stratified splitting. By
Miroslav Batchkarov.

• The tree.export_graphviz function now supports aesthetic improvements for
tree.DecisionTreeClassifier and tree.DecisionTreeRegressor, including options
for coloring nodes by their majority class or impurity, showing variable names, and using node proportions
instead of raw sample counts. By Trevor Stephens.

• Improved speed of newton-cg solver in linear_model.LogisticRegression, by avoiding loss com-
putation. By Mathieu Blondel and Tom Dupre la Tour.

• The class_weight="auto" heuristic in classifiers supporting class_weight was deprecated and re-
placed by the class_weight="balanced" option, which has a simpler forumlar and interpretation. By
Hanna Wallach and Andreas Müller.

• Add class_weight parameter to automatically weight samples by class frequency for
linear_model.PassiveAgressiveClassifier. By Trevor Stephens.

• Added backlinks from the API reference pages to the user guide. By Andreas Müller.

• The labels parameter to sklearn.metrics.f1_score, sklearn.metrics.fbeta_score,
sklearn.metrics.recall_score and sklearn.metrics.precision_score has been ex-
tended. It is now possible to ignore one or more labels, such as where a multiclass problem has a majority
class to ignore. By Joel Nothman.

• Add sample_weight support to linear_model.RidgeClassifier. By Trevor Stephens.

• Provide an option for sparse output from sklearn.metrics.pairwise.cosine_similarity. By
Jaidev Deshpande.

• Add minmax_scale to provide a function interface for MinMaxScaler. By Thomas Unterthiner.

• dump_svmlight_file now handles multi-label datasets. By Chih-Wei Chang.

• RCV1 dataset loader (sklearn.datasets.fetch_rcv1). By Tom Dupre la Tour.
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• The “Wisconsin Breast Cancer” classical two-class classification dataset is now included in scikit-learn, avail-
able with sklearn.dataset.load_breast_cancer.

• Upgraded to joblib 0.9.3 to benefit from the new automatic batching of short tasks. This makes it possible for
scikit-learn to benefit from parallelism when many very short tasks are executed in parallel, for instance by the
grid_search.GridSearchCV meta-estimator with n_jobs > 1 used with a large grid of parameters on
a small dataset. By Vlad Niculae, Olivier Grisel and Loic Esteve.

• For more details about changes in joblib 0.9.3 see the release notes:
https://github.com/joblib/joblib/blob/master/CHANGES.rst#release-093

• Improved speed (3 times per iteration) of decomposition.DictLearning with coordinate descent
method from linear_model.Lasso. By Arthur Mensch.

• Parallel processing (threaded) for queries of nearest neighbors (using the ball-tree) by Nikolay Mayorov.

• Allow datasets.make_multilabel_classification to output a sparse y. By Kashif Rasul.

• cluster.DBSCAN now accepts a sparse matrix of precomputed distances, allowing memory-efficient distance
precomputation. By Joel Nothman.

• tree.DecisionTreeClassifier now exposes an apply method for retrieving the leaf indices samples
are predicted as. By Daniel Galvez and Gilles Louppe.

• Speed up decision tree regressors, random forest regressors, extra trees regressors and gradient boosting estima-
tors by computing a proxy of the impurity improvement during the tree growth. The proxy quantity is such that
the split that maximizes this value also maximizes the impurity improvement. By Arnaud Joly, Jacob Schreiber
and Gilles Louppe.

• Speed up tree based methods by reducing the number of computations needed when computing the impurity
measure taking into account linear relationship of the computed statistics. The effect is particularly visible with
extra trees and on datasets with categorical or sparse features. By Arnaud Joly.

• ensemble.GradientBoostingRegressor and ensemble.GradientBoostingClassifier
now expose an apply method for retrieving the leaf indices each sample ends up in under each try. By Ja-
cob Schreiber.

• Add sample_weight support to linear_model.LinearRegression. By Sonny Hu. (#4481)

• Add n_iter_without_progress to manifold.TSNE to control the stopping criterion. By Santi Vil-
lalba. (#5185)

• Added optional parameter random_state in linear_model.Ridge , to set the seed of the pseudo random
generator used in sag solver. By Tom Dupre la Tour.

• Added optional parameter warm_start in linear_model.LogisticRegression. If set to True, the
solvers lbfgs, newton-cg and sag will be initialized with the coefficients computed in the previous fit. By
Tom Dupre la Tour.

• Added sample_weight support to linear_model.LogisticRegression for the lbfgs,
newton-cg, and sag solvers. By Valentin Stolbunov.

• Added optional parameter presort to ensemble.GradientBoostingRegressor and
ensemble.GradientBoostingClassifier, keeping default behavior the same. This allows
gradient boosters to turn off presorting when building deep trees or using sparse data. By Jacob Schreiber.

• Altered metrics.roc_curve to drop unnecessary thresholds by default. By Graham Clenaghan.

• Added feature_selection.SelectFromModel meta-transformer which can be used along with es-
timators that have coef_ or feature_importances_ attribute to select important features of the input data. By
Maheshakya Wijewardena, Joel Nothman and Manoj Kumar.

• Added metrics.pairwise.laplacian_kernel. By Clyde Fare.
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• covariance.GraphLasso allows separate control of the convergence criterion for the Elastic-Net subprob-
lem via the enet_tol parameter.

• Improved verbosity in decomposition.DictionaryLearning.

• ensemble.RandomForestClassifier and ensemble.RandomForestRegressor no longer ex-
plicitly store the samples used in bagging, resulting in a much reduced memory footprint for storing random
forest models.

• Added positive option to linear_model.Lars and linear_model.lars_path to force coeffi-
cients to be positive. (#5131 <https://github.com/scikit-learn/scikit-learn/pull/5131>)

• Added the X_norm_squared parameter to metrics.pairwise.euclidean_distances to provide
precomputed squared norms for X.

• Added the fit_predict method to pipeline.Pipeline.

• Added the preprocessing.min_max_scale function.

Bug fixes

• Fixed non-determinism in dummy.DummyClassifier with sparse multi-label output. By Andreas Müller.

• Fixed the output shape of linear_model.RANSACRegressor to (n_samples, ). By Andreas Müller.

• Fixed bug in decomposition.DictLearning when n_jobs < 0. By Andreas Müller.

• Fixed bug where grid_search.RandomizedSearchCV could consume a lot of memory for large discrete
grids. By Joel Nothman.

• Fixed bug in linear_model.LogisticRegressionCV where penalty was ignored in the final fit. By
Manoj Kumar.

• Fixed bug in ensemble.forest.ForestClassifier while computing oob_score and X is a
sparse.csc_matrix. By Ankur Ankan.

• All regressors now consistently handle and warn when given y that is of shape (n_samples, 1). By Andreas
Müller.

• Fix in cluster.KMeans cluster reassignment for sparse input by Lars Buitinck.

• Fixed a bug in lda.LDA that could cause asymmetric covariance matrices when using shrinkage. By Martin
Billinger.

• Fixed cross_validation.cross_val_predict for estimators with sparse predictions. By Buddha
Prakash.

• Fixed the predict_proba method of linear_model.LogisticRegression to use soft-max instead
of one-vs-rest normalization. By Manoj Kumar. (#5182)

• Fixed the partial_fit method of linear_model.SGDClassifier when called with
average=True. By Andrew Lamb. (#5282)

• Dataset fetchers use different filenames under Python 2 and Python 3 to avoid pickling compatibility issues. By
Olivier Grisel. (#5355)

• Fixed a bug in naive_bayes.GaussianNB which caused classification results to depend on scale. By Jake
Vanderplas.

• Fixed temporarily linear_model.Ridge, which was incorrect when fitting the intercept in the case of
sparse data. The fix automatically changes the solver to ‘sag’ in this case. (#5360) By Tom Dupre la Tour.
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• Fixed a performance bug in decomposition.RandomizedPCA on data with a large number of features
and fewer samples. (#4478) By Andreas Müller, Loic Esteve and Giorgio Patrini.

• Fixed bug in cross_decomposition.PLS that yielded unstable and platform dependent output, and failed
on fit_transform. By Arthur Mensch.

• Fixes to the Bunch class used to store datasets.

• Fixed ensemble.plot_partial_dependence ignoring the percentiles parameter.

• Providing a set as vocabulary in CountVectorizer no longer leads to inconsistent results when pickling.

• Fixed the conditions on when a precomputed Gram matrix needs to be recomputed in
linear_model.LinearRegression, linear_model.OrthogonalMatchingPursuit,
linear_model.Lasso and linear_model.ElasticNet.

• Fixed inconsistent memory layout in the coordinate descent solver that affected
linear_model.DictionaryLearning and covariance.GraphLasso. (#5337
<https://github.com/scikit-learn/scikit-learn/pull/5337>) By Olivier Grisel.

• manifold.LocallyLinearEmbedding no longer ignores the reg parameter.

• Nearest Neighbor estimators with custom distance metrics can now be pickled. (4362 <https://github.com/scikit-
learn/scikit-learn/pull/4362>)

• Fixed a bug in pipeline.FeatureUnion where transformer_weights were not properly handled
when performing grid-searches.

• Fixed a bug in linear_model.LogisticRegression and linear_model.LogisticRegressionCV
when using class_weight=’balanced’‘‘‘or ‘‘class_weight=’auto’. By Tom Dupre la Tour.

API changes summary

• Attribute data_min, data_max and data_range in preprocessing.MinMaxScaler are deprecated and
won’t be available from 0.19. Instead, the class now exposes data_min_, data_max_ and data_range_. By
Giorgio Patrini.

• All Scaler classes now have an scale_ attribute, the feature-wise rescaling applied by their transform methods.
The old attribute std_ in preprocessing.StandardScaler is deprecated and superseded by scale_; it
won’t be available in 0.19. By Giorgio Patrini.

• svm.SVC‘ and svm.NuSVC now have an decision_function_shape parameter to make their decision
function of shape (n_samples, n_classes) by setting decision_function_shape=’ovr’. This
will be the default behavior starting in 0.19. By Andreas Müller.

• Passing 1D data arrays as input to estimators is now deprecated as it caused confusion in how the array ele-
ments should be interpreted as features or as samples. All data arrays are now expected to be explicitly shaped
(n_samples, n_features). By Vighnesh Birodkar.

• lda.LDA and qda.QDA have been moved to discriminant_analysis.LinearDiscriminantAnalysis
and discriminant_analysis.QuadraticDiscriminantAnalysis.

• The store_covariance and tol parameters have been moved from the fit method to
the constructor in discriminant_analysis.LinearDiscriminantAnalysis and the
store_covariances and tol parameters have been moved from the fit method to the constructor
in discriminant_analysis.QuadraticDiscriminantAnalysis.

• Models inheriting from _LearntSelectorMixin will no longer support the transform methods. (i.e, Ran-
domForests, GradientBoosting, LogisticRegression, DecisionTrees, SVMs and SGD related models). Wrap
these models around the metatransfomer feature_selection.SelectFromModel to remove features
(according to coefs_ or feature_importances_) which are below a certain threshold value instead.
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• cluster.KMeans re-runs cluster-assignments in case of non-convergence, to ensure consistency of
predict(X) and labels_. By Vighnesh Birodkar.

• Classifier and Regressor models are now tagged as such using the _estimator_type attribute.

• Cross-validation iterators allways provide indices into training and test set, not boolean masks.

• The decision_function on all regressors was deprecated and will be removed in 0.19. Use predict
instead.

• datasets.load_lfw_pairs is deprecated and will be removed in 0.19. Use
datasets.fetch_lfw_pairs instead.

• The deprecated hmm module was removed.

• The deprecated Bootstrap cross-validation iterator was removed.

• The deprecated Ward and WardAgglomerative classes have been removed. Use
clustering.AgglomerativeClustering instead.

• cross_validation.check_cv is now a public function.

• The property residues_ of linear_model.LinearRegression is deprecated and will be removed in
0.19.

• The deprecated n_jobs parameter of linear_model.LinearRegression has been moved to the con-
structor.

• Removed deprecated class_weight parameter from linear_model.SGDClassifier‘s fit method.
Use the construction parameter instead.

• The deprecated support for the sequence of sequences (or list of lists) multilabel format was removed. To convert
to and from the supported binary indicator matrix format, use MultiLabelBinarizer.

• The behavior of calling the inverse_transform method of Pipeline.pipeline will change in 0.19.
It will no longer reshape one-dimensional input to two-dimensional input.

• The deprecated attributes indicator_matrix_, multilabel_ and classes_ of
preprocessing.LabelBinarizer were removed.

• Using gamma=0 in svm.SVC and svm.SVR to automatically set the gamma to 1. / n_features is
deprecated and will be removed in 0.19. Use gamma="auto" instead.

1.7.2 Version 0.16.1

Changelog

Bug fixes

• Allow input data larger than block_size in covariance.LedoitWolf by Andreas Müller.

• Fix a bug in isotonic.IsotonicRegression deduplication that caused unstable result in
calibration.CalibratedClassifierCV by Jan Hendrik Metzen.

• Fix sorting of labels in func:preprocessing.label_binarize by Michael Heilman.

• Fix several stability and convergence issues in cross_decomposition.CCA and
cross_decomposition.PLSCanonical by Andreas Müller

• Fix a bug in cluster.KMeans when precompute_distances=False on fortran-ordered data.

• Fix a speed regression in ensemble.RandomForestClassifier‘s predict and predict_proba
by Andreas Müller.
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• Fix a regression where utils.shuffle converted lists and dataframes to arrays, by Olivier Grisel

1.7.3 Version 0.16

Highlights

• Speed improvements (notably in cluster.DBSCAN), reduced memory requirements, bug-fixes and better
default settings.

• Multinomial Logistic regression and a path algorithm in linear_model.LogisticRegressionCV.

• Out-of core learning of PCA via decomposition.IncrementalPCA.

• Probability callibration of classifiers using calibration.CalibratedClassifierCV.

• cluster.Birch clustering method for large-scale datasets.

• Scalable approximate nearest neighbors search with Locality-sensitive hashing forests in
neighbors.LSHForest.

• Improved error messages and better validation when using malformed input data.

• More robust integration with pandas dataframes.

Changelog

New features

• The new neighbors.LSHForest implements locality-sensitive hashing for approximate nearest neighbors
search. By Maheshakya Wijewardena.

• Added svm.LinearSVR. This class uses the liblinear implementation of Support Vector Regression which is
much faster for large sample sizes than svm.SVR with linear kernel. By Fabian Pedregosa and Qiang Luo.

• Incremental fit for GaussianNB.

• Added sample_weight support to dummy.DummyClassifier and dummy.DummyRegressor. By
Arnaud Joly.

• Added the metrics.label_ranking_average_precision_score metrics. By Arnaud Joly.

• Add the metrics.coverage_error metrics. By Arnaud Joly.

• Added linear_model.LogisticRegressionCV. By Manoj Kumar, Fabian Pedregosa, Gael Varoquaux
and Alexandre Gramfort.

• Added warm_start constructor parameter to make it possible for any trained forest model to grow additional
trees incrementally. By Laurent Direr.

• Added sample_weight support to ensemble.GradientBoostingClassifier and
ensemble.GradientBoostingRegressor. By Peter Prettenhofer.

• Added decomposition.IncrementalPCA, an implementation of the PCA algorithm that supports out-
of-core learning with a partial_fit method. By Kyle Kastner.

• Averaged SGD for SGDClassifier and SGDRegressor By Danny Sullivan.

• Added cross_val_predict function which computes cross-validated estimates. By Luis Pedro Coelho

• Added linear_model.TheilSenRegressor, a robust generalized-median-based estimator. By Florian
Wilhelm.
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• Added metrics.median_absolute_error, a robust metric. By Gael Varoquaux and Florian Wilhelm.

• Add cluster.Birch, an online clustering algorithm. By Manoj Kumar, Alexandre Gramfort and Joel Noth-
man.

• Added shrinkage support to discriminant_analysis.LinearDiscriminantAnalysis using two
new solvers. By Clemens Brunner and Martin Billinger.

• Added kernel_ridge.KernelRidge, an implementation of kernelized ridge regression. By Mathieu
Blondel and Jan Hendrik Metzen.

• All solvers in linear_model.Ridge now support sample_weight. By Mathieu Blondel.

• Added cross_validation.PredefinedSplit cross-validation for fixed user-provided cross-validation
folds. By Thomas Unterthiner.

• Added calibration.CalibratedClassifierCV, an approach for calibrating the predicted probabili-
ties of a classifier. By Alexandre Gramfort, Jan Hendrik Metzen, Mathieu Blondel and Balazs Kegl.

Enhancements

• Add option return_distance in hierarchical.ward_tree to return distances between nodes for
both structured and unstructured versions of the algorithm. By Matteo Visconti di Oleggio Castello. The same
option was added in hierarchical.linkage_tree. By Manoj Kumar

• Add support for sample weights in scorer objects. Metrics with sample weight support will automatically benefit
from it. By Noel Dawe and Vlad Niculae.

• Added newton-cg and lbfgs solver support in linear_model.LogisticRegression. By Manoj Ku-
mar.

• Add selection="random" parameter to implement stochastic coordinate descent for
linear_model.Lasso, linear_model.ElasticNet and related. By Manoj Kumar.

• Add sample_weight parameter to metrics.jaccard_similarity_score and
metrics.log_loss. By Jatin Shah.

• Support sparse multilabel indicator representation in preprocessing.LabelBinarizer and
multiclass.OneVsRestClassifier (by Hamzeh Alsalhi with thanks to Rohit Sivaprasad), as
well as evaluation metrics (by Joel Nothman).

• Add sample_weight parameter to metrics.jaccard_similarity_score. By Jatin Shah.

• Add support for multiclass in metrics.hinge_loss. Added labels=None as optional paramter. By Saurabh
Jha.

• Add sample_weight parameter to metrics.hinge_loss. By Saurabh Jha.

• Add multi_class="multinomial" option in linear_model.LogisticRegression to imple-
ment a Logistic Regression solver that minimizes the cross-entropy or multinomial loss instead of the default
One-vs-Rest setting. Supports lbfgs and newton-cg solvers. By Lars Buitinck and Manoj Kumar. Solver option
newton-cg by Simon Wu.

• DictVectorizer can now perform fit_transform on an iterable in a single pass, when giving the option
sort=False. By Dan Blanchard.

• GridSearchCV and RandomizedSearchCV can now be configured to work with estimators that may fail
and raise errors on individual folds. This option is controlled by the error_score parameter. This does not affect
errors raised on re-fit. By Michal Romaniuk.

• Add digits parameter to metrics.classification_report to allow report to show different precision of floating
point numbers. By Ian Gilmore.
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• Add a quantile prediction strategy to the dummy.DummyRegressor. By Aaron Staple.

• Add handle_unknown option to preprocessing.OneHotEncoder to handle unknown categorical fea-
tures more gracefully during transform. By Manoj Kumar.

• Added support for sparse input data to decision trees and their ensembles. By Fares Hedyati and Arnaud Joly.

• Optimized cluster.AffinityPropagation by reducing the number of memory allocations of large
temporary data-structures. By Antony Lee.

• Parellization of the computation of feature importances in random forest. By Olivier Grisel and Arnaud Joly.

• Add n_iter_ attribute to estimators that accept a max_iter attribute in their constructor. By Manoj Kumar.

• Added decision function for multiclass.OneVsOneClassifier By Raghav R V and Kyle Beauchamp.

• neighbors.kneighbors_graph and radius_neighbors_graph support non-Euclidean metrics.
By Manoj Kumar

• Parameter connectivity in cluster.AgglomerativeClustering and family now accept callables
that return a connectivity matrix. By Manoj Kumar.

• Sparse support for paired_distances. By Joel Nothman.

• cluster.DBSCAN now supports sparse input and sample weights and has been optimized: the inner loop has
been rewritten in Cython and radius neighbors queries are now computed in batch. By Joel Nothman and Lars
Buitinck.

• Add class_weight parameter to automatically weight samples by class frequency
for ensemble.RandomForestClassifier, tree.DecisionTreeClassifier,
ensemble.ExtraTreesClassifier and tree.ExtraTreeClassifier. By Trevor Stephens.

• grid_search.RandomizedSearchCV now does sampling without replacement if all parameters are given
as lists. By Andreas Müller.

• Parallelized calculation of pairwise_distances is now supported for scipy metrics and custom callables.
By Joel Nothman.

• Allow the fitting and scoring of all clustering algorithms in pipeline.Pipeline. By Andreas Müller.

• More robust seeding and improved error messages in cluster.MeanShift by Andreas Müller.

• Make the stopping criterion for mixture.GMM, mixture.DPGMM and mixture.VBGMM less dependent on
the number of samples by thresholding the average log-likelihood change instead of its sum over all samples.
By Hervé Bredin.

• The outcome of manifold.spectral_embedding was made deterministic by flipping the sign of eigen
vectors. By Hasil Sharma.

• Significant performance and memory usage improvements in preprocessing.PolynomialFeatures.
By Eric Martin.

• Numerical stability improvements for preprocessing.StandardScaler and
preprocessing.scale. By Nicolas Goix

• svm.SVC fitted on sparse input now implements decision_function. By Rob Zinkov and Andreas
Müller.

• cross_validation.train_test_split now preserves the input type, instead of converting to numpy
arrays.
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Documentation improvements

• Added example of using FeatureUnion for heterogeneous input. By Matt Terry

• Documentation on scorers was improved, to highlight the handling of loss functions. By Matt Pico.

• A discrepancy between liblinear output and scikit-learn’s wrappers is now noted. By Manoj Kumar.

• Improved documentation generation: examples referring to a class or function are now shown in a gallery on
the class/function’s API reference page. By Joel Nothman.

• More explicit documentation of sample generators and of data transformation. By Joel Nothman.

• sklearn.neighbors.BallTree and sklearn.neighbors.KDTree used to point to empty pages
stating that they are aliases of BinaryTree. This has been fixed to show the correct class docs. By Manoj Kumar.

• Added silhouette plots for analysis of KMeans clustering using metrics.silhouette_samples and
metrics.silhouette_score. See Selecting the number of clusters with silhouette analysis on KMeans
clustering

Bug fixes

• Metaestimators now support ducktyping for the presence of decision_function,
predict_proba and other methods. This fixes behavior of grid_search.GridSearchCV,
grid_search.RandomizedSearchCV, pipeline.Pipeline, feature_selection.RFE,
feature_selection.RFECV when nested. By Joel Nothman

• The scoring attribute of grid-search and cross-validation methods is no longer ignored when a
grid_search.GridSearchCV is given as a base estimator or the base estimator doesn’t have predict.

• The function hierarchical.ward_tree now returns the children in the same order for both the structured
and unstructured versions. By Matteo Visconti di Oleggio Castello.

• feature_selection.RFECV now correctly handles cases when step is not equal to 1. By Nikolay May-
orov

• The decomposition.PCA now undoes whitening in its inverse_transform. Also, its components_
now always have unit length. By Michael Eickenberg.

• Fix incomplete download of the dataset when datasets.download_20newsgroups is called. By Manoj
Kumar.

• Various fixes to the Gaussian processes subpackage by Vincent Dubourg and Jan Hendrik Metzen.

• Calling partial_fit with class_weight==’auto’ throws an appropriate error message and suggests
a work around. By Danny Sullivan.

• RBFSampler with gamma=g formerly approximated rbf_kernel with gamma=g/2.; the definition of
gamma is now consistent, which may substantially change your results if you use a fixed value. (If you cross-
validated over gamma, it probably doesn’t matter too much.) By Dougal Sutherland.

• Pipeline object delegate the classes_ attribute to the underlying estimator. It allows for instance to make
bagging of a pipeline object. By Arnaud Joly

• neighbors.NearestCentroid now uses the median as the centroid when metric is set to manhattan.
It was using the mean before. By Manoj Kumar

• Fix numerical stability issues in linear_model.SGDClassifier and
linear_model.SGDRegressor by clipping large gradients and ensuring that weight decay rescal-
ing is always positive (for large l2 regularization and large learning rate values). By Olivier Grisel

28 Chapter 1. Welcome to scikit-learn

https://github.com/mrterry
https://github.com/MattpSoftware
https://manojbits.wordpress.com
http://joelnothman.com
http://joelnothman.com
https://manojbits.wordpress.com
http://joelnothman.com
http://www.mvdoc.me
https://github.com/nmayorov
https://github.com/nmayorov
https://github.com/eickenberg
https://manojbits.wordpress.com
https://manojbits.wordpress.com
https://github.com/dsullivan7
https://github.com/dougalsutherland
http://www.ajoly.org
https://manojbits.wordpress.com
http://twitter.com/ogrisel


scikit-learn user guide, Release 0.17

• When compute_full_tree is set to “auto”, the full tree is built when n_clusters is high and is early stopped when
n_clusters is low, while the behavior should be vice-versa in cluster.AgglomerativeClustering (and
friends). This has been fixed By Manoj Kumar

• Fix lazy centering of data in linear_model.enet_path and linear_model.lasso_path. It was
centered around one. It has been changed to be centered around the origin. By Manoj Kumar

• Fix handling of precomputed affinity matrices in cluster.AgglomerativeClustering when using
connectivity constraints. By Cathy Deng

• Correct partial_fit handling of class_prior for sklearn.naive_bayes.MultinomialNB and
sklearn.naive_bayes.BernoulliNB. By Trevor Stephens.

• Fixed a crash in metrics.precision_recall_fscore_supportwhen using unsorted labels in the
multi-label setting. By Andreas Müller.

• Avoid skipping the first nearest neighbor in the methods radius_neighbors,
kneighbors, kneighbors_graph and radius_neighbors_graph in
sklearn.neighbors.NearestNeighbors and family, when the query data is not the same as fit
data. By Manoj Kumar.

• Fix log-density calculation in the mixture.GMM with tied covariance. By Will Dawson

• Fixed a scaling error in feature_selection.SelectFdr where a factor n_features was missing. By
Andrew Tulloch

• Fix zero division in neighbors.KNeighborsRegressor and related classes when using distance weight-
ing and having identical data points. By Garret-R.

• Fixed round off errors with non positive-definite covariance matrices in GMM. By Alexis Mignon.

• Fixed a error in the computation of conditional probabilities in naive_bayes.BernoulliNB. By Hanna
Wallach.

• Make the method radius_neighbors of neighbors.NearestNeighbors return the samples lying
on the boundary for algorithm=’brute’. By Yan Yi.

• Flip sign of dual_coef_ of svm.SVC to make it consistent with the documentation and
decision_function. By Artem Sobolev.

• Fixed handling of ties in isotonic.IsotonicRegression. We now use the weighted average of targets
(secondary method). By Andreas Müller and Michael Bommarito.

API changes summary

• GridSearchCV and cross_val_score and other meta-estimators don’t convert pandas DataFrames into
arrays any more, allowing DataFrame specific operations in custom estimators.

• multiclass.fit_ovr, multiclass.predict_ovr, predict_proba_ovr,
multiclass.fit_ovo, multiclass.predict_ovo, multiclass.fit_ecoc and
multiclass.predict_ecoc are deprecated. Use the underlying estimators instead.

• Nearest neighbors estimators used to take arbitrary keyword arguments and pass these to their distance metric.
This will no longer be supported in scikit-learn 0.18; use the metric_params argument instead.

• n_jobs parameter of the fit method shifted to the constructor of the LinearRegression class.

• The predict_proba method of multiclass.OneVsRestClassifier now returns two probabilities
per sample in the multiclass case; this is consistent with other estimators and with the method’s documenta-
tion, but previous versions accidentally returned only the positive probability. Fixed by Will Lamond and Lars
Buitinck.
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• Change default value of precompute in ElasticNet and Lasso to False. Setting precompute to “auto” was
found to be slower when n_samples > n_features since the computation of the Gram matrix is computationally
expensive and outweighs the benefit of fitting the Gram for just one alpha. precompute="auto" is now
deprecated and will be removed in 0.18 By Manoj Kumar.

• Expose positive option in linear_model.enet_path and linear_model.enet_path which
constrains coefficients to be positive. By Manoj Kumar.

• Users should now supply an explicit average parameter to sklearn.metrics.f1_score,
sklearn.metrics.fbeta_score, sklearn.metrics.recall_score and
sklearn.metrics.precision_score when performing multiclass or multilabel (i.e. not binary)
classification. By Joel Nothman.

• scoring parameter for cross validation now accepts ‘f1_micro’, ‘f1_macro’ or ‘f1_weighted’. ‘f1’ is now for
binary classification only. Similar changes apply to ‘precision’ and ‘recall’. By Joel Nothman.

• The fit_intercept, normalize and return_models parameters in linear_model.enet_path
and linear_model.lasso_path have been removed. They were deprecated since 0.14

• From now onwards, all estimators will uniformly raise NotFittedError
(utils.validation.NotFittedError), when any of the predict like methods are called be-
fore the model is fit. By Raghav R V.

• Input data validation was refactored for more consistent input validation. The check_arrays function was
replaced by check_array and check_X_y. By Andreas Müller.

• Allow X=None in the methods radius_neighbors, kneighbors, kneighbors_graph and
radius_neighbors_graph in sklearn.neighbors.NearestNeighbors and family. If set to
None, then for every sample this avoids setting the sample itself as the first nearest neighbor. By Manoj Kumar.

• Add parameter include_self in neighbors.kneighbors_graph and
neighbors.radius_neighbors_graph which has to be explicitly set by the user. If set to True,
then the sample itself is considered as the first nearest neighbor.

• thresh parameter is deprecated in favor of new tol parameter in GMM, DPGMM and VBGMM. See Enhancements
section for details. By Hervé Bredin.

• Estimators will treat input with dtype object as numeric when possible. By Andreas Müller

• Estimators now raise ValueError consistently when fitted on empty data (less than 1 sample or less than 1 feature
for 2D input). By Olivier Grisel.

• The shuffle option of linear_model.SGDClassifier, linear_model.SGDRegressor,
linear_model.Perceptron, linear_model.PassiveAgressiveClassifier and
linear_model.PassiveAgressiveRegressor now defaults to True.

• cluster.DBSCAN now uses a deterministic initialization. The random_state parameter is deprecated. By
Erich Schubert.

1.7.4 Version 0.15.2

Bug fixes

• Fixed handling of the p parameter of the Minkowski distance that was previously ignored in nearest neighbors
models. By Nikolay Mayorov.

• Fixed duplicated alphas in linear_model.LassoLars with early stopping on 32 bit Python. By Olivier
Grisel and Fabian Pedregosa.
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• Fixed the build under Windows when scikit-learn is built with MSVC while NumPy is built with MinGW. By
Olivier Grisel and Federico Vaggi.

• Fixed an array index overflow bug in the coordinate descent solver. By Gael Varoquaux.

• Better handling of numpy 1.9 deprecation warnings. By Gael Varoquaux.

• Removed unnecessary data copy in cluster.KMeans. By Gael Varoquaux.

• Explicitly close open files to avoid ResourceWarnings under Python 3. By Calvin Giles.

• The transform of discriminant_analysis.LinearDiscriminantAnalysis now projects the
input on the most discriminant directions. By Martin Billinger.

• Fixed potential overflow in _tree.safe_realloc by Lars Buitinck.

• Performance optimization in isotonic.IsotonicRegression. By Robert Bradshaw.

• nose is non-longer a runtime dependency to import sklearn, only for running the tests. By Joel Nothman.

• Many documentation and website fixes by Joel Nothman, Lars Buitinck Matt Pico, and others.

1.7.5 Version 0.15.1

Bug fixes

• Made cross_validation.cross_val_score use cross_validation.KFold instead of
cross_validation.StratifiedKFold on multi-output classification problems. By Nikolay Mayorov.

• Support unseen labels preprocessing.LabelBinarizer to restore the default behavior of 0.14.1 for
backward compatibility. By Hamzeh Alsalhi.

• Fixed the cluster.KMeans stopping criterion that prevented early convergence detection. By Edward Raff
and Gael Varoquaux.

• Fixed the behavior of multiclass.OneVsOneClassifier. in case of ties at the per-class vote level by
computing the correct per-class sum of prediction scores. By Andreas Müller.

• Made cross_validation.cross_val_score and grid_search.GridSearchCV accept Python
lists as input data. This is especially useful for cross-validation and model selection of text processing pipelines.
By Andreas Müller.

• Fixed data input checks of most estimators to accept input data that implements the NumPy __array__
protocol. This is the case for for pandas.Series and pandas.DataFrame in recent versions of pandas.
By Gael Varoquaux.

• Fixed a regression for linear_model.SGDClassifier with class_weight="auto" on data with
non-contiguous labels. By Olivier Grisel.

1.7.6 Version 0.15

Highlights

• Many speed and memory improvements all across the code

• Huge speed and memory improvements to random forests (and extra trees) that also benefit better from parallel
computing.

• Incremental fit to BernoulliRBM
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• Added cluster.AgglomerativeClustering for hierarchical agglomerative clustering with average
linkage, complete linkage and ward strategies.

• Added linear_model.RANSACRegressor for robust regression models.

• Added dimensionality reduction with manifold.TSNE which can be used to visualize high-dimensional data.

Changelog

New features

• Added ensemble.BaggingClassifier and ensemble.BaggingRegressor meta-estimators for
ensembling any kind of base estimator. See the Bagging section of the user guide for details and examples.
By Gilles Louppe.

• New unsupervised feature selection algorithm feature_selection.VarianceThreshold, by Lars
Buitinck.

• Added linear_model.RANSACRegressor meta-estimator for the robust fitting of regression models. By
Johannes Schönberger.

• Added cluster.AgglomerativeClustering for hierarchical agglomerative clustering with average
linkage, complete linkage and ward strategies, by Nelle Varoquaux and Gael Varoquaux.

• Shorthand constructors pipeline.make_pipeline and pipeline.make_union were added by Lars
Buitinck.

• Shuffle option for cross_validation.StratifiedKFold. By Jeffrey Blackburne.

• Incremental learning (partial_fit) for Gaussian Naive Bayes by Imran Haque.

• Added partial_fit to BernoulliRBM By Danny Sullivan.

• Added learning_curve utility to chart performance with respect to training size. See Plotting Learning
Curves. By Alexander Fabisch.

• Add positive option in LassoCV and ElasticNetCV. By Brian Wignall and Alexandre Gramfort.

• Added linear_model.MultiTaskElasticNetCV and linear_model.MultiTaskLassoCV. By
Manoj Kumar.

• Added manifold.TSNE. By Alexander Fabisch.

Enhancements

• Add sparse input support to ensemble.AdaBoostClassifier and
ensemble.AdaBoostRegressor meta-estimators. By Hamzeh Alsalhi.

• Memory improvements of decision trees, by Arnaud Joly.

• Decision trees can now be built in best-first manner by using max_leaf_nodes as the stopping criteria.
Refactored the tree code to use either a stack or a priority queue for tree building. By Peter Prettenhofer and
Gilles Louppe.

• Decision trees can now be fitted on fortran- and c-style arrays, and non-continuous arrays without the need to
make a copy. If the input array has a different dtype than np.float32, a fortran- style copy will be made
since fortran-style memory layout has speed advantages. By Peter Prettenhofer and Gilles Louppe.

• Speed improvement of regression trees by optimizing the the computation of the mean square error criterion.
This lead to speed improvement of the tree, forest and gradient boosting tree modules. By Arnaud Joly
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• The img_to_graph and grid_tograph functions in sklearn.feature_extraction.image now
return np.ndarray instead of np.matrix when return_as=np.ndarray. See the Notes section for
more information on compatibility.

• Changed the internal storage of decision trees to use a struct array. This fixed some small bugs, while improving
code and providing a small speed gain. By Joel Nothman.

• Reduce memory usage and overhead when fitting and predicting with forests of randomized trees in parallel
with n_jobs != 1 by leveraging new threading backend of joblib 0.8 and releasing the GIL in the tree fitting
Cython code. By Olivier Grisel and Gilles Louppe.

• Speed improvement of the sklearn.ensemble.gradient_boosting module. By Gilles Louppe and
Peter Prettenhofer.

• Various enhancements to the sklearn.ensemble.gradient_boosting module: a warm_start ar-
gument to fit additional trees, a max_leaf_nodes argument to fit GBM style trees, a monitor fit argument
to inspect the estimator during training, and refactoring of the verbose code. By Peter Prettenhofer.

• Faster sklearn.ensemble.ExtraTrees by caching feature values. By Arnaud Joly.

• Faster depth-based tree building algorithm such as decision tree, random forest, extra trees or gradient tree
boosting (with depth based growing strategy) by avoiding trying to split on found constant features in the sample
subset. By Arnaud Joly.

• Add min_weight_fraction_leaf pre-pruning parameter to tree-based methods: the minimum weighted
fraction of the input samples required to be at a leaf node. By Noel Dawe.

• Added metrics.pairwise_distances_argmin_min, by Philippe Gervais.

• Added predict method to cluster.AffinityPropagation and cluster.MeanShift, by Mathieu
Blondel.

• Vector and matrix multiplications have been optimised throughout the library by Denis Engemann, and Alexan-
dre Gramfort. In particular, they should take less memory with older NumPy versions (prior to 1.7.2).

• Precision-recall and ROC examples now use train_test_split, and have more explanation of why these metrics
are useful. By Kyle Kastner

• The training algorithm for decomposition.NMF is faster for sparse matrices and has much lower memory
complexity, meaning it will scale up gracefully to large datasets. By Lars Buitinck.

• Added svd_method option with default value to “randomized” to decomposition.FactorAnalysis to
save memory and significantly speedup computation by Denis Engemann, and Alexandre Gramfort.

• Changed cross_validation.StratifiedKFold to try and preserve as much of the original ordering of
samples as possible so as not to hide overfitting on datasets with a non-negligible level of samples dependency.
By Daniel Nouri and Olivier Grisel.

• Add multi-output support to gaussian_process.GaussianProcess by John Novak.

• Support for precomputed distance matrices in nearest neighbor estimators by Robert Layton and Joel Nothman.

• Norm computations optimized for NumPy 1.6 and later versions by Lars Buitinck. In particular, the k-means
algorithm no longer needs a temporary data structure the size of its input.

• dummy.DummyClassifier can now be used to predict a constant output value. By Manoj Kumar.

• dummy.DummyRegressor has now a strategy parameter which allows to predict the mean, the median of the
training set or a constant output value. By Maheshakya Wijewardena.

• Multi-label classification output in multilabel indicator format is now supported by
metrics.roc_auc_score and metrics.average_precision_score by Arnaud Joly.
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• Significant performance improvements (more than 100x speedup for large problems) in
isotonic.IsotonicRegression by Andrew Tulloch.

• Speed and memory usage improvements to the SGD algorithm for linear models: it now uses threads, not
separate processes, when n_jobs>1. By Lars Buitinck.

• Grid search and cross validation allow NaNs in the input arrays so that preprocessors such as
preprocessing.Imputer can be trained within the cross validation loop, avoiding potentially skewed
results.

• Ridge regression can now deal with sample weights in feature space (only sample space until then). By Michael
Eickenberg. Both solutions are provided by the Cholesky solver.

• Several classification and regression metrics now support weighted samples with the new
sample_weight argument: metrics.accuracy_score, metrics.zero_one_loss,
metrics.precision_score, metrics.average_precision_score, metrics.f1_score,
metrics.fbeta_score, metrics.recall_score, metrics.roc_auc_score,
metrics.explained_variance_score, metrics.mean_squared_error,
metrics.mean_absolute_error, metrics.r2_score. By Noel Dawe.

• Speed up of the sample generator datasets.make_multilabel_classification. By Joel Nothman.

Documentation improvements

• The Working With Text Data tutorial has now been worked in to the main documentation’s tutorial section.
Includes exercises and skeletons for tutorial presentation. Original tutorial created by several authors including
Olivier Grisel, Lars Buitinck and many others. Tutorial integration into the scikit-learn documentation by Jaques
Grobler

• Added Computational Performance documentation. Discussion and examples of prediction latency / throughput
and different factors that have influence over speed. Additional tips for building faster models and choosing a
relevant compromise between speed and predictive power. By Eustache Diemert.

Bug fixes

• Fixed bug in decomposition.MiniBatchDictionaryLearning : partial_fit was not working
properly.

• Fixed bug in linear_model.stochastic_gradient : l1_ratiowas used as (1.0 - l1_ratio)
.

• Fixed bug in multiclass.OneVsOneClassifier with string labels

• Fixed a bug in LassoCV and ElasticNetCV: they would not pre-compute the Gram matrix with
precompute=True or precompute="auto" and n_samples > n_features. By Manoj Kumar.

• Fixed incorrect estimation of the degrees of freedom in feature_selection.f_regression when vari-
ates are not centered. By Virgile Fritsch.

• Fixed a race condition in parallel processing with pre_dispatch != "all" (for instance in
cross_val_score). By Olivier Grisel.

• Raise error in cluster.FeatureAgglomeration and cluster.WardAgglomeration when no
samples are given, rather than returning meaningless clustering.

• Fixed bug in gradient_boosting.GradientBoostingRegressor with loss=’huber’: gamma
might have not been initialized.
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• Fixed feature importances as computed with a forest of randomized trees when fit with sample_weight !=
None and/or with bootstrap=True. By Gilles Louppe.

API changes summary

• sklearn.hmm is deprecated. Its removal is planned for the 0.17 release.

• Use of covariance.EllipticEnvelop has now been removed after deprecation. Please use
covariance.EllipticEnvelope instead.

• cluster.Ward is deprecated. Use cluster.AgglomerativeClustering instead.

• cluster.WardClustering is deprecated. Use

• cluster.AgglomerativeClustering instead.

• cross_validation.Bootstrap is deprecated. cross_validation.KFold or
cross_validation.ShuffleSplit are recommended instead.

• Direct support for the sequence of sequences (or list of lists) multilabel format is deprecated. To convert to and
from the supported binary indicator matrix format, use MultiLabelBinarizer. By Joel Nothman.

• Add score method to PCA following the model of probabilistic PCA and deprecate ProbabilisticPCA
model whose score implementation is not correct. The computation now also exploits the matrix inversion
lemma for faster computation. By Alexandre Gramfort.

• The score method of FactorAnalysis now returns the average log-likelihood of the samples. Use
score_samples to get log-likelihood of each sample. By Alexandre Gramfort.

• Generating boolean masks (the setting indices=False) from cross-validation generators is deprecated. Sup-
port for masks will be removed in 0.17. The generators have produced arrays of indices by default since 0.10.
By Joel Nothman.

• 1-d arrays containing strings with dtype=object (as used in Pandas) are now considered valid classification
targets. This fixes a regression from version 0.13 in some classifiers. By Joel Nothman.

• Fix wrong explained_variance_ratio_ attribute in RandomizedPCA. By Alexandre Gramfort.

• Fit alphas for each l1_ratio instead of mean_l1_ratio in linear_model.ElasticNetCV and
linear_model.LassoCV. This changes the shape of alphas_ from (n_alphas,) to (n_l1_ratio,
n_alphas) if the l1_ratio provided is a 1-D array like object of length greater than one. By Manoj Kumar.

• Fix linear_model.ElasticNetCV and linear_model.LassoCV when fitting intercept and input
data is sparse. The automatic grid of alphas was not computed correctly and the scaling with normalize was
wrong. By Manoj Kumar.

• Fix wrong maximal number of features drawn (max_features) at each split for decision trees, random forests
and gradient tree boosting. Previously, the count for the number of drawn features started only after one non
constant features in the split. This bug fix will affect computational and generalization performance of those
algorithms in the presence of constant features. To get back previous generalization performance, you should
modify the value of max_features. By Arnaud Joly.

• Fix wrong maximal number of features drawn (max_features) at each split for
ensemble.ExtraTreesClassifier and ensemble.ExtraTreesRegressor. Previously,
only non constant features in the split was counted as drawn. Now constant features are counted as drawn.
Furthermore at least one feature must be non constant in order to make a valid split. This bug fix will affect
computational and generalization performance of extra trees in the presence of constant features. To get back
previous generalization performance, you should modify the value of max_features. By Arnaud Joly.

• Fix utils.compute_class_weight when class_weight=="auto". Previously it was broken for
input of non-integer dtype and the weighted array that was returned was wrong. By Manoj Kumar.
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• Fix cross_validation.Bootstrap to return ValueError when n_train + n_test > n. By
Ronald Phlypo.

People

List of contributors for release 0.15 by number of commits.

• 312 Olivier Grisel

• 275 Lars Buitinck

• 221 Gael Varoquaux

• 148 Arnaud Joly

• 134 Johannes Schönberger

• 119 Gilles Louppe

• 113 Joel Nothman

• 111 Alexandre Gramfort

• 95 Jaques Grobler

• 89 Denis Engemann

• 83 Peter Prettenhofer

• 83 Alexander Fabisch

• 62 Mathieu Blondel

• 60 Eustache Diemert

• 60 Nelle Varoquaux

• 49 Michael Bommarito

• 45 Manoj-Kumar-S

• 28 Kyle Kastner

• 26 Andreas Mueller

• 22 Noel Dawe

• 21 Maheshakya Wijewardena

• 21 Brooke Osborn

• 21 Hamzeh Alsalhi

• 21 Jake VanderPlas

• 21 Philippe Gervais

• 19 Bala Subrahmanyam Varanasi

• 12 Ronald Phlypo

• 10 Mikhail Korobov

• 8 Thomas Unterthiner

• 8 Jeffrey Blackburne

• 8 eltermann
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• 8 bwignall

• 7 Ankit Agrawal

• 7 CJ Carey

• 6 Daniel Nouri

• 6 Chen Liu

• 6 Michael Eickenberg

• 6 ugurthemaster

• 5 Aaron Schumacher

• 5 Baptiste Lagarde

• 5 Rajat Khanduja

• 5 Robert McGibbon

• 5 Sergio Pascual

• 4 Alexis Metaireau

• 4 Ignacio Rossi

• 4 Virgile Fritsch

• 4 Sebastian Saeger

• 4 Ilambharathi Kanniah

• 4 sdenton4

• 4 Robert Layton

• 4 Alyssa

• 4 Amos Waterland

• 3 Andrew Tulloch

• 3 murad

• 3 Steven Maude

• 3 Karol Pysniak

• 3 Jacques Kvam

• 3 cgohlke

• 3 cjlin

• 3 Michael Becker

• 3 hamzeh

• 3 Eric Jacobsen

• 3 john collins

• 3 kaushik94

• 3 Erwin Marsi

• 2 csytracy

• 2 LK
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• 2 Vlad Niculae

• 2 Laurent Direr

• 2 Erik Shilts

• 2 Raul Garreta

• 2 Yoshiki Vázquez Baeza

• 2 Yung Siang Liau

• 2 abhishek thakur

• 2 James Yu

• 2 Rohit Sivaprasad

• 2 Roland Szabo

• 2 amormachine

• 2 Alexis Mignon

• 2 Oscar Carlsson

• 2 Nantas Nardelli

• 2 jess010

• 2 kowalski87

• 2 Andrew Clegg

• 2 Federico Vaggi

• 2 Simon Frid

• 2 Félix-Antoine Fortin

• 1 Ralf Gommers

• 1 t-aft

• 1 Ronan Amicel

• 1 Rupesh Kumar Srivastava

• 1 Ryan Wang

• 1 Samuel Charron

• 1 Samuel St-Jean

• 1 Fabian Pedregosa

• 1 Skipper Seabold

• 1 Stefan Walk

• 1 Stefan van der Walt

• 1 Stephan Hoyer

• 1 Allen Riddell

• 1 Valentin Haenel

• 1 Vijay Ramesh

• 1 Will Myers
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• 1 Yaroslav Halchenko

• 1 Yoni Ben-Meshulam

• 1 Yury V. Zaytsev

• 1 adrinjalali

• 1 ai8rahim

• 1 alemagnani

• 1 alex

• 1 benjamin wilson

• 1 chalmerlowe

• 1 dzikie drożdże

• 1 jamestwebber

• 1 matrixorz

• 1 popo

• 1 samuela

• 1 François Boulogne

• 1 Alexander Measure

• 1 Ethan White

• 1 Guilherme Trein

• 1 Hendrik Heuer

• 1 IvicaJovic

• 1 Jan Hendrik Metzen

• 1 Jean Michel Rouly

• 1 Eduardo Ariño de la Rubia

• 1 Jelle Zijlstra

• 1 Eddy L O Jansson

• 1 Denis

• 1 John

• 1 John Schmidt

• 1 Jorge Cañardo Alastuey

• 1 Joseph Perla

• 1 Joshua Vredevoogd

• 1 José Ricardo

• 1 Julien Miotte

• 1 Kemal Eren

• 1 Kenta Sato

• 1 David Cournapeau
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• 1 Kyle Kelley

• 1 Daniele Medri

• 1 Laurent Luce

• 1 Laurent Pierron

• 1 Luis Pedro Coelho

• 1 DanielWeitzenfeld

• 1 Craig Thompson

• 1 Chyi-Kwei Yau

• 1 Matthew Brett

• 1 Matthias Feurer

• 1 Max Linke

• 1 Chris Filo Gorgolewski

• 1 Charles Earl

• 1 Michael Hanke

• 1 Michele Orrù

• 1 Bryan Lunt

• 1 Brian Kearns

• 1 Paul Butler

• 1 Paweł Mandera

• 1 Peter

• 1 Andrew Ash

• 1 Pietro Zambelli

• 1 staubda

1.7.7 Version 0.14

Changelog

• Missing values with sparse and dense matrices can be imputed with the transformer
preprocessing.Imputer by Nicolas Trésegnie.

• The core implementation of decisions trees has been rewritten from scratch, allowing for faster tree induction
and lower memory consumption in all tree-based estimators. By Gilles Louppe.

• Added ensemble.AdaBoostClassifier and ensemble.AdaBoostRegressor, by Noel Dawe and
Gilles Louppe. See the AdaBoost section of the user guide for details and examples.

• Added grid_search.RandomizedSearchCV and grid_search.ParameterSampler for random-
ized hyperparameter optimization. By Andreas Müller.

• Added biclustering algorithms (sklearn.cluster.bicluster.SpectralCoclustering
and sklearn.cluster.bicluster.SpectralBiclustering), data generation methods
(sklearn.datasets.make_biclusters and sklearn.datasets.make_checkerboard),
and scoring metrics (sklearn.metrics.consensus_score). By Kemal Eren.
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• Added Restricted Boltzmann Machines (neural_network.BernoulliRBM). By Yann Dauphin.

• Python 3 support by Justin Vincent, Lars Buitinck, Subhodeep Moitra and Olivier Grisel. All tests now pass
under Python 3.3.

• Ability to pass one penalty (alpha value) per target in linear_model.Ridge, by @eickenberg and Mathieu
Blondel.

• Fixed sklearn.linear_model.stochastic_gradient.py L2 regularization issue (minor practical
significance). By Norbert Crombach and Mathieu Blondel .

• Added an interactive version of Andreas Müller‘s Machine Learning Cheat Sheet (for scikit-learn) to the docu-
mentation. See Choosing the right estimator. By Jaques Grobler.

• grid_search.GridSearchCV and cross_validation.cross_val_score now support the use
of advanced scoring function such as area under the ROC curve and f-beta scores. See The scoring parameter:
defining model evaluation rules for details. By Andreas Müller and Lars Buitinck. Passing a function from
sklearn.metrics as score_func is deprecated.

• Multi-label classification output is now supported by metrics.accuracy_score,
metrics.zero_one_loss, metrics.f1_score, metrics.fbeta_score,
metrics.classification_report, metrics.precision_score and
metrics.recall_score by Arnaud Joly.

• Two new metrics metrics.hamming_loss and metrics.jaccard_similarity_score are added
with multi-label support by Arnaud Joly.

• Speed and memory usage improvements in feature_extraction.text.CountVectorizer and
feature_extraction.text.TfidfVectorizer, by Jochen Wersdörfer and Roman Sinayev.

• The min_df parameter in feature_extraction.text.CountVectorizer and
feature_extraction.text.TfidfVectorizer, which used to be 2, has been reset to 1 to
avoid unpleasant surprises (empty vocabularies) for novice users who try it out on tiny document collections. A
value of at least 2 is still recommended for practical use.

• svm.LinearSVC, linear_model.SGDClassifier and linear_model.SGDRegressor now
have a sparsify method that converts their coef_ into a sparse matrix, meaning stored models trained
using these estimators can be made much more compact.

• linear_model.SGDClassifier now produces multiclass probability estimates when trained under log
loss or modified Huber loss.

• Hyperlinks to documentation in example code on the website by Martin Luessi.

• Fixed bug in preprocessing.MinMaxScaler causing incorrect scaling of the features for non-default
feature_range settings. By Andreas Müller.

• max_features in tree.DecisionTreeClassifier, tree.DecisionTreeRegressor and all
derived ensemble estimators now supports percentage values. By Gilles Louppe.

• Performance improvements in isotonic.IsotonicRegression by Nelle Varoquaux.

• metrics.accuracy_score has an option normalize to return the fraction or the number of correctly clas-
sified sample by Arnaud Joly.

• Added metrics.log_loss that computes log loss, aka cross-entropy loss. By Jochen Wersdörfer and Lars
Buitinck.

• A bug that caused ensemble.AdaBoostClassifier‘s to output incorrect probabilities has been fixed.

• Feature selectors now share a mixin providing consistent transform, inverse_transform and
get_support methods. By Joel Nothman.
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• A fitted grid_search.GridSearchCV or grid_search.RandomizedSearchCV can now generally
be pickled. By Joel Nothman.

• Refactored and vectorized implementation of metrics.roc_curve and
metrics.precision_recall_curve. By Joel Nothman.

• The new estimator sklearn.decomposition.TruncatedSVD performs dimensionality reduction using
SVD on sparse matrices, and can be used for latent semantic analysis (LSA). By Lars Buitinck.

• Added self-contained example of out-of-core learning on text data Out-of-core classification of text documents.
By Eustache Diemert.

• The default number of components for sklearn.decomposition.RandomizedPCA is now correctly
documented to be n_features. This was the default behavior, so programs using it will continue to work as
they did.

• sklearn.cluster.KMeans now fits several orders of magnitude faster on sparse data (the speedup depends
on the sparsity). By Lars Buitinck.

• Reduce memory footprint of FastICA by Denis Engemann and Alexandre Gramfort.

• Verbose output in sklearn.ensemble.gradient_boosting now uses a column format and prints
progress in decreasing frequency. It also shows the remaining time. By Peter Prettenhofer.

• sklearn.ensemble.gradient_boosting provides out-of-bag improvement oob_improvement_
rather than the OOB score for model selection. An example that shows how to use OOB estimates to select the
number of trees was added. By Peter Prettenhofer.

• Most metrics now support string labels for multiclass classification by Arnaud Joly and Lars Buitinck.

• New OrthogonalMatchingPursuitCV class by Alexandre Gramfort and Vlad Niculae.

• Fixed a bug in sklearn.covariance.GraphLassoCV: the ‘alphas’ parameter now works as expected
when given a list of values. By Philippe Gervais.

• Fixed an important bug in sklearn.covariance.GraphLassoCV that prevented all folds provided by
a CV object to be used (only the first 3 were used). When providing a CV object, execution time may thus
increase significantly compared to the previous version (bug results are correct now). By Philippe Gervais.

• cross_validation.cross_val_score and the grid_search module is now tested with multi-
output data by Arnaud Joly.

• datasets.make_multilabel_classification can now return the output in label indicator multil-
abel format by Arnaud Joly.

• K-nearest neighbors, neighbors.KNeighborsRegressor and neighbors.RadiusNeighborsRegressor,
and radius neighbors, neighbors.RadiusNeighborsRegressor and
neighbors.RadiusNeighborsClassifier support multioutput data by Arnaud Joly.

• Random state in LibSVM-based estimators (svm.SVC, NuSVC, OneClassSVM, svm.SVR, svm.NuSVR)
can now be controlled. This is useful to ensure consistency in the probability estimates for the classifiers trained
with probability=True. By Vlad Niculae.

• Out-of-core learning support for discrete naive Bayes classifiers sklearn.naive_bayes.MultinomialNB
and sklearn.naive_bayes.BernoulliNB by adding the partial_fit method by Olivier Grisel.

• New website design and navigation by Gilles Louppe, Nelle Varoquaux, Vincent Michel and Andreas Müller.

• Improved documentation on multi-class, multi-label and multi-output classification by Yannick Schwartz and
Arnaud Joly.

• Better input and error handling in the metrics module by Arnaud Joly and Joel Nothman.

• Speed optimization of the hmm module by Mikhail Korobov
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• Significant speed improvements for sklearn.cluster.DBSCAN by cleverless

API changes summary

• The auc_score was renamed roc_auc_score.

• Testing scikit-learn with sklearn.test() is deprecated. Use nosetests sklearn from the command
line.

• Feature importances in tree.DecisionTreeClassifier, tree.DecisionTreeRegressor and all
derived ensemble estimators are now computed on the fly when accessing the feature_importances_
attribute. Setting compute_importances=True is no longer required. By Gilles Louppe.

• linear_model.lasso_path and linear_model.enet_path can return its results in the same format
as that of linear_model.lars_path. This is done by setting the return_models parameter to False.
By Jaques Grobler and Alexandre Gramfort

• grid_search.IterGrid was renamed to grid_search.ParameterGrid.

• Fixed bug in KFold causing imperfect class balance in some cases. By Alexandre Gramfort and Tadej Janež.

• sklearn.neighbors.BallTree has been refactored, and a sklearn.neighbors.KDTree has been
added which shares the same interface. The Ball Tree now works with a wide variety of distance metrics.
Both classes have many new methods, including single-tree and dual-tree queries, breadth-first and depth-first
searching, and more advanced queries such as kernel density estimation and 2-point correlation functions. By
Jake Vanderplas

• Support for scipy.spatial.cKDTree within neighbors queries has been removed, and the functionality replaced
with the new KDTree class.

• sklearn.neighbors.KernelDensity has been added, which performs efficient kernel density estima-
tion with a variety of kernels.

• sklearn.decomposition.KernelPCA now always returns output with n_components components,
unless the new parameter remove_zero_eig is set to True. This new behavior is consistent with the way
kernel PCA was always documented; previously, the removal of components with zero eigenvalues was tacitly
performed on all data.

• gcv_mode="auto" no longer tries to perform SVD on a densified sparse matrix in
sklearn.linear_model.RidgeCV.

• Sparse matrix support in sklearn.decomposition.RandomizedPCA is now deprecated in favor of the
new TruncatedSVD.

• cross_validation.KFold and cross_validation.StratifiedKFold now enforce n_folds >=
2 otherwise a ValueError is raised. By Olivier Grisel.

• datasets.load_files‘s charset and charset_errors parameters were renamed encoding and
decode_errors.

• Attribute oob_score_ in sklearn.ensemble.GradientBoostingRegressor and
sklearn.ensemble.GradientBoostingClassifier is deprecated and has been replaced by
oob_improvement_ .

• Attributes in OrthogonalMatchingPursuit have been deprecated (copy_X, Gram, ...) and precompute_gram
renamed precompute for consistency. See #2224.

• sklearn.preprocessing.StandardScaler now converts integer input to float, and raises a warning.
Previously it rounded for dense integer input.
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• sklearn.multiclass.OneVsRestClassifier now has a decision_function method. This
will return the distance of each sample from the decision boundary for each class, as long as the underlying
estimators implement the decision_function method. By Kyle Kastner.

• Better input validation, warning on unexpected shapes for y.

People

List of contributors for release 0.14 by number of commits.

• 277 Gilles Louppe

• 245 Lars Buitinck

• 187 Andreas Mueller

• 124 Arnaud Joly

• 112 Jaques Grobler

• 109 Gael Varoquaux

• 107 Olivier Grisel

• 102 Noel Dawe

• 99 Kemal Eren

• 79 Joel Nothman

• 75 Jake VanderPlas

• 73 Nelle Varoquaux

• 71 Vlad Niculae

• 65 Peter Prettenhofer

• 64 Alexandre Gramfort

• 54 Mathieu Blondel

• 38 Nicolas Trésegnie

• 35 eustache

• 27 Denis Engemann

• 25 Yann N. Dauphin

• 19 Justin Vincent

• 17 Robert Layton

• 15 Doug Coleman

• 14 Michael Eickenberg

• 13 Robert Marchman

• 11 Fabian Pedregosa

• 11 Philippe Gervais

• 10 Jim Holmström

• 10 Tadej Janež

• 10 syhw
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• 9 Mikhail Korobov

• 9 Steven De Gryze

• 8 sergeyf

• 7 Ben Root

• 7 Hrishikesh Huilgolkar

• 6 Kyle Kastner

• 6 Martin Luessi

• 6 Rob Speer

• 5 Federico Vaggi

• 5 Raul Garreta

• 5 Rob Zinkov

• 4 Ken Geis

• 3 A. Flaxman

• 3 Denton Cockburn

• 3 Dougal Sutherland

• 3 Ian Ozsvald

• 3 Johannes Schönberger

• 3 Robert McGibbon

• 3 Roman Sinayev

• 3 Szabo Roland

• 2 Diego Molla

• 2 Imran Haque

• 2 Jochen Wersdörfer

• 2 Sergey Karayev

• 2 Yannick Schwartz

• 2 jamestwebber

• 1 Abhijeet Kolhe

• 1 Alexander Fabisch

• 1 Bastiaan van den Berg

• 1 Benjamin Peterson

• 1 Daniel Velkov

• 1 Fazlul Shahriar

• 1 Felix Brockherde

• 1 Félix-Antoine Fortin

• 1 Harikrishnan S

• 1 Jack Hale
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• 1 JakeMick

• 1 James McDermott

• 1 John Benediktsson

• 1 John Zwinck

• 1 Joshua Vredevoogd

• 1 Justin Pati

• 1 Kevin Hughes

• 1 Kyle Kelley

• 1 Matthias Ekman

• 1 Miroslav Shubernetskiy

• 1 Naoki Orii

• 1 Norbert Crombach

• 1 Rafael Cunha de Almeida

• 1 Rolando Espinoza La fuente

• 1 Seamus Abshere

• 1 Sergey Feldman

• 1 Sergio Medina

• 1 Stefano Lattarini

• 1 Steve Koch

• 1 Sturla Molden

• 1 Thomas Jarosch

• 1 Yaroslav Halchenko

1.7.8 Version 0.13.1

The 0.13.1 release only fixes some bugs and does not add any new functionality.

Changelog

• Fixed a testing error caused by the function cross_validation.train_test_split being interpreted
as a test by Yaroslav Halchenko.

• Fixed a bug in the reassignment of small clusters in the cluster.MiniBatchKMeans by Gael Varoquaux.

• Fixed default value of gamma in decomposition.KernelPCA by Lars Buitinck.

• Updated joblib to 0.7.0d by Gael Varoquaux.

• Fixed scaling of the deviance in ensemble.GradientBoostingClassifier by Peter Prettenhofer.

• Better tie-breaking in multiclass.OneVsOneClassifier by Andreas Müller.

• Other small improvements to tests and documentation.
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People

List of contributors for release 0.13.1 by number of commits.

• 16 Lars Buitinck

• 12 Andreas Müller

• 8 Gael Varoquaux

• 5 Robert Marchman

• 3 Peter Prettenhofer

• 2 Hrishikesh Huilgolkar

• 1 Bastiaan van den Berg

• 1 Diego Molla

• 1 Gilles Louppe

• 1 Mathieu Blondel

• 1 Nelle Varoquaux

• 1 Rafael Cunha de Almeida

• 1 Rolando Espinoza La fuente

• 1 Vlad Niculae

• 1 Yaroslav Halchenko

1.7.9 Version 0.13

New Estimator Classes

• dummy.DummyClassifier and dummy.DummyRegressor, two data-independent predictors by Mathieu
Blondel. Useful to sanity-check your estimators. See Dummy estimators in the user guide. Multioutput support
added by Arnaud Joly.

• decomposition.FactorAnalysis, a transformer implementing the classical factor analysis, by Chris-
tian Osendorfer and Alexandre Gramfort. See Factor Analysis in the user guide.

• feature_extraction.FeatureHasher, a transformer implementing the “hashing
trick” for fast, low-memory feature extraction from string fields by Lars Buitinck and
feature_extraction.text.HashingVectorizer for text documents by Olivier Grisel See
Feature hashing and Vectorizing a large text corpus with the hashing trick for the documentation and sample
usage.

• pipeline.FeatureUnion, a transformer that concatenates results of several other transformers by Andreas
Müller. See FeatureUnion: composite feature spaces in the user guide.

• random_projection.GaussianRandomProjection, random_projection.SparseRandomProjection
and the function random_projection.johnson_lindenstrauss_min_dim. The first two are trans-
formers implementing Gaussian and sparse random projection matrix by Olivier Grisel and Arnaud Joly. See
Random Projection in the user guide.

• kernel_approximation.Nystroem, a transformer for approximating arbitrary kernels by Andreas
Müller. See Nystroem Method for Kernel Approximation in the user guide.
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• preprocessing.OneHotEncoder, a transformer that computes binary encodings of categorical features
by Andreas Müller. See Encoding categorical features in the user guide.

• linear_model.PassiveAggressiveClassifier and linear_model.PassiveAggressiveRegressor,
predictors implementing an efficient stochastic optimization for linear models by Rob Zinkov and Mathieu
Blondel. See Passive Aggressive Algorithms in the user guide.

• ensemble.RandomTreesEmbedding, a transformer for creating high-dimensional sparse representations
using ensembles of totally random trees by Andreas Müller. See Totally Random Trees Embedding in the user
guide.

• manifold.SpectralEmbedding and function manifold.spectral_embedding, implementing
the “laplacian eigenmaps” transformation for non-linear dimensionality reduction by Wei Li. See Spectral
Embedding in the user guide.

• isotonic.IsotonicRegression by Fabian Pedregosa, Alexandre Gramfort and Nelle Varoquaux,

Changelog

• metrics.zero_one_loss (formerly metrics.zero_one) now has option for normalized output that
reports the fraction of misclassifications, rather than the raw number of misclassifications. By Kyle Beauchamp.

• tree.DecisionTreeClassifier and all derived ensemble models now support sample weighting, by
Noel Dawe and Gilles Louppe.

• Speedup improvement when using bootstrap samples in forests of randomized trees, by Peter Prettenhofer and
Gilles Louppe.

• Partial dependence plots for Gradient Tree Boosting in ensemble.partial_dependence.partial_dependence
by Peter Prettenhofer. See Partial Dependence Plots for an example.

• The table of contents on the website has now been made expandable by Jaques Grobler.

• feature_selection.SelectPercentile now breaks ties deterministically instead of returning all
equally ranked features.

• feature_selection.SelectKBest and feature_selection.SelectPercentile are more
numerically stable since they use scores, rather than p-values, to rank results. This means that they might
sometimes select different features than they did previously.

• Ridge regression and ridge classification fitting with sparse_cg solver no longer has quadratic memory com-
plexity, by Lars Buitinck and Fabian Pedregosa.

• Ridge regression and ridge classification now support a new fast solver called lsqr, by Mathieu Blondel.

• Speed up of metrics.precision_recall_curve by Conrad Lee.

• Added support for reading/writing svmlight files with pairwise preference attribute (qid in svmlight file format)
in datasets.dump_svmlight_file and datasets.load_svmlight_file by Fabian Pedregosa.

• Faster and more robust metrics.confusion_matrix and Clustering performance evaluation by Wei Li.

• cross_validation.cross_val_score now works with precomputed kernels and affinity matrices, by
Andreas Müller.

• LARS algorithm made more numerically stable with heuristics to drop regressors too correlated as well as to
stop the path when numerical noise becomes predominant, by Gael Varoquaux.

• Faster implementation of metrics.precision_recall_curve by Conrad Lee.

• New kernel metrics.chi2_kernel by Andreas Müller, often used in computer vision applications.

• Fix of longstanding bug in naive_bayes.BernoulliNB fixed by Shaun Jackman.
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• Implemented predict_proba in multiclass.OneVsRestClassifier, by Andrew Winterman.

• Improve consistency in gradient boosting: estimators ensemble.GradientBoostingRegressor and
ensemble.GradientBoostingClassifier use the estimator tree.DecisionTreeRegressor
instead of the tree._tree.Tree data structure by Arnaud Joly.

• Fixed a floating point exception in the decision trees module, by Seberg.

• Fix metrics.roc_curve fails when y_true has only one class by Wei Li.

• Add the metrics.mean_absolute_error function which computes the mean absolute error. The
metrics.mean_squared_error, metrics.mean_absolute_error and metrics.r2_score
metrics support multioutput by Arnaud Joly.

• Fixed class_weight support in svm.LinearSVC and linear_model.LogisticRegression by
Andreas Müller. The meaning of class_weight was reversed as erroneously higher weight meant less
positives of a given class in earlier releases.

• Improve narrative documentation and consistency in sklearn.metrics for regression and classification
metrics by Arnaud Joly.

• Fixed a bug in sklearn.svm.SVC when using csr-matrices with unsorted indices by Xinfan Meng and An-
dreas Müller.

• MiniBatchKMeans: Add random reassignment of cluster centers with little observations attached to them,
by Gael Varoquaux.

API changes summary

• Renamed all occurrences of n_atoms to n_components for con-
sistency. This applies to decomposition.DictionaryLearning,
decomposition.MiniBatchDictionaryLearning, decomposition.dict_learning,
decomposition.dict_learning_online.

• Renamed all occurrences of max_iters to max_iter for consis-
tency. This applies to semi_supervised.LabelPropagation and
semi_supervised.label_propagation.LabelSpreading.

• Renamed all occurrences of learn_rate to learning_rate for consistency in
ensemble.BaseGradientBoosting and ensemble.GradientBoostingRegressor.

• The module sklearn.linear_model.sparse is gone. Sparse matrix support was already integrated into
the “regular” linear models.

• sklearn.metrics.mean_square_error, which incorrectly returned the accumulated error, was re-
moved. Use mean_squared_error instead.

• Passing class_weight parameters to fit methods is no longer supported. Pass them to estimator construc-
tors instead.

• GMMs no longer have decode and rvs methods. Use the score, predict or sample methods instead.

• The solver fit option in Ridge regression and classification is now deprecated and will be removed in v0.14.
Use the constructor option instead.

• feature_extraction.text.DictVectorizer now returns sparse matrices in the CSR format, in-
stead of COO.

• Renamed k in cross_validation.KFold and cross_validation.StratifiedKFold to
n_folds, renamed n_bootstraps to n_iter in cross_validation.Bootstrap.
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• Renamed all occurrences of n_iterations to n_iter for consistency. This applies to
cross_validation.ShuffleSplit, cross_validation.StratifiedShuffleSplit,
utils.randomized_range_finder and utils.randomized_svd.

• Replaced rho in linear_model.ElasticNet and linear_model.SGDClassifier by
l1_ratio. The rho parameter had different meanings; l1_ratio was introduced to avoid confu-
sion. It has the same meaning as previously rho in linear_model.ElasticNet and (1-rho) in
linear_model.SGDClassifier.

• linear_model.LassoLars and linear_model.Lars now store a list of paths in the case of multiple
targets, rather than an array of paths.

• The attribute gmm of hmm.GMMHMM was renamed to gmm_ to adhere more strictly with the API.

• cluster.spectral_embedding was moved to manifold.spectral_embedding.

• Renamed eig_tol in manifold.spectral_embedding, cluster.SpectralClustering to
eigen_tol, renamed mode to eigen_solver.

• Renamed mode in manifold.spectral_embedding and cluster.SpectralClustering to
eigen_solver.

• classes_ and n_classes_ attributes of tree.DecisionTreeClassifier and all derived ensemble
models are now flat in case of single output problems and nested in case of multi-output problems.

• The estimators_ attribute of ensemble.gradient_boosting.GradientBoostingRegressor
and ensemble.gradient_boosting.GradientBoostingClassifier is now an array of
:class:’tree.DecisionTreeRegressor’.

• Renamed chunk_size to batch_size in decomposition.MiniBatchDictionaryLearning
and decomposition.MiniBatchSparsePCA for consistency.

• svm.SVC and svm.NuSVC now provide a classes_ attribute and support arbitrary dtypes for labels y. Also,
the dtype returned by predict now reflects the dtype of y during fit (used to be np.float).

• Changed default test_size in cross_validation.train_test_split to None, added pos-
sibility to infer test_size from train_size in cross_validation.ShuffleSplit and
cross_validation.StratifiedShuffleSplit.

• Renamed function sklearn.metrics.zero_one to sklearn.metrics.zero_one_loss.
Be aware that the default behavior in sklearn.metrics.zero_one_loss is different from
sklearn.metrics.zero_one: normalize=False is changed to normalize=True.

• Renamed function metrics.zero_one_score to metrics.accuracy_score.

• datasets.make_circles now has the same number of inner and outer points.

• In the Naive Bayes classifiers, the class_prior parameter was moved from fit to __init__.

People

List of contributors for release 0.13 by number of commits.

• 364 Andreas Müller

• 143 Arnaud Joly

• 137 Peter Prettenhofer

• 131 Gael Varoquaux

• 117 Mathieu Blondel

• 108 Lars Buitinck
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• 106 Wei Li

• 101 Olivier Grisel

• 65 Vlad Niculae

• 54 Gilles Louppe

• 40 Jaques Grobler

• 38 Alexandre Gramfort

• 30 Rob Zinkov

• 19 Aymeric Masurelle

• 18 Andrew Winterman

• 17 Fabian Pedregosa

• 17 Nelle Varoquaux

• 16 Christian Osendorfer

• 14 Daniel Nouri

• 13 Virgile Fritsch

• 13 syhw

• 12 Satrajit Ghosh

• 10 Corey Lynch

• 10 Kyle Beauchamp

• 9 Brian Cheung

• 9 Immanuel Bayer

• 9 mr.Shu

• 8 Conrad Lee

• 8 James Bergstra

• 7 Tadej Janež

• 6 Brian Cajes

• 6 Jake Vanderplas

• 6 Michael

• 6 Noel Dawe

• 6 Tiago Nunes

• 6 cow

• 5 Anze

• 5 Shiqiao Du

• 4 Christian Jauvin

• 4 Jacques Kvam

• 4 Richard T. Guy

• 4 Robert Layton
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• 3 Alexandre Abraham

• 3 Doug Coleman

• 3 Scott Dickerson

• 2 ApproximateIdentity

• 2 John Benediktsson

• 2 Mark Veronda

• 2 Matti Lyra

• 2 Mikhail Korobov

• 2 Xinfan Meng

• 1 Alejandro Weinstein

• 1 Alexandre Passos

• 1 Christoph Deil

• 1 Eugene Nizhibitsky

• 1 Kenneth C. Arnold

• 1 Luis Pedro Coelho

• 1 Miroslav Batchkarov

• 1 Pavel

• 1 Sebastian Berg

• 1 Shaun Jackman

• 1 Subhodeep Moitra

• 1 bob

• 1 dengemann

• 1 emanuele

• 1 x006

1.7.10 Version 0.12.1

The 0.12.1 release is a bug-fix release with no additional features, but is instead a set of bug fixes

Changelog

• Improved numerical stability in spectral embedding by Gael Varoquaux

• Doctest under windows 64bit by Gael Varoquaux

• Documentation fixes for elastic net by Andreas Müller and Alexandre Gramfort

• Proper behavior with fortran-ordered NumPy arrays by Gael Varoquaux

• Make GridSearchCV work with non-CSR sparse matrix by Lars Buitinck

• Fix parallel computing in MDS by Gael Varoquaux

• Fix Unicode support in count vectorizer by Andreas Müller
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• Fix MinCovDet breaking with X.shape = (3, 1) by Virgile Fritsch

• Fix clone of SGD objects by Peter Prettenhofer

• Stabilize GMM by Virgile Fritsch

People

• 14 Peter Prettenhofer

• 12 Gael Varoquaux

• 10 Andreas Müller

• 5 Lars Buitinck

• 3 Virgile Fritsch

• 1 Alexandre Gramfort

• 1 Gilles Louppe

• 1 Mathieu Blondel

1.7.11 Version 0.12

Changelog

• Various speed improvements of the decision trees module, by Gilles Louppe.

• ensemble.GradientBoostingRegressor and ensemble.GradientBoostingClassifier
now support feature subsampling via the max_features argument, by Peter Prettenhofer.

• Added Huber and Quantile loss functions to ensemble.GradientBoostingRegressor, by Peter Pret-
tenhofer.

• Decision trees and forests of randomized trees now support multi-output classification and regression problems,
by Gilles Louppe.

• Added preprocessing.LabelEncoder, a simple utility class to normalize labels or transform non-
numerical labels, by Mathieu Blondel.

• Added the epsilon-insensitive loss and the ability to make probabilistic predictions with the modified huber loss
in Stochastic Gradient Descent, by Mathieu Blondel.

• Added Multi-dimensional Scaling (MDS), by Nelle Varoquaux.

• SVMlight file format loader now detects compressed (gzip/bzip2) files and decompresses them on the fly, by
Lars Buitinck.

• SVMlight file format serializer now preserves double precision floating point values, by Olivier Grisel.

• A common testing framework for all estimators was added, by Andreas Müller.

• Understandable error messages for estimators that do not accept sparse input by Gael Varoquaux

• Speedups in hierarchical clustering by Gael Varoquaux. In particular building the tree now supports early
stopping. This is useful when the number of clusters is not small compared to the number of samples.

• Add MultiTaskLasso and MultiTaskElasticNet for joint feature selection, by Alexandre Gramfort.

• Added metrics.auc_score and metrics.average_precision_score convenience functions by
Andreas Müller.
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• Improved sparse matrix support in the Feature selection module by Andreas Müller.

• New word boundaries-aware character n-gram analyzer for the Text feature extraction module by @kernc.

• Fixed bug in spectral clustering that led to single point clusters by Andreas Müller.

• In feature_extraction.text.CountVectorizer, added an option to ignore infrequent words,
min_df by Andreas Müller.

• Add support for multiple targets in some linear models (ElasticNet, Lasso and OrthogonalMatchingPursuit) by
Vlad Niculae and Alexandre Gramfort.

• Fixes in decomposition.ProbabilisticPCA score function by Wei Li.

• Fixed feature importance computation in Gradient Tree Boosting.

API changes summary

• The old scikits.learn package has disappeared; all code should import from sklearn instead, which
was introduced in 0.9.

• In metrics.roc_curve, the thresholds array is now returned with it’s order reversed, in order to keep
it consistent with the order of the returned fpr and tpr.

• In hmm objects, like hmm.GaussianHMM, hmm.MultinomialHMM, etc., all parameters must be passed to
the object when initialising it and not through fit. Now fit will only accept the data as an input parameter.

• For all SVM classes, a faulty behavior of gamma was fixed. Previously, the default gamma value was only
computed the first time fit was called and then stored. It is now recalculated on every call to fit.

• All Base classes are now abstract meta classes so that they can not be instantiated.

• cluster.ward_tree now also returns the parent array. This is necessary for early-stopping in which case
the tree is not completely built.

• In feature_extraction.text.CountVectorizer the parameters min_n and max_n were joined to
the parameter n_gram_range to enable grid-searching both at once.

• In feature_extraction.text.CountVectorizer, words that appear only in one document are now
ignored by default. To reproduce the previous behavior, set min_df=1.

• Fixed API inconsistency: linear_model.SGDClassifier.predict_proba now returns 2d array
when fit on two classes.

• Fixed API inconsistency: discriminant_analysis.QuadraticDiscriminantAnalysis.decision_function
and discriminant_analysis.LinearDiscriminantAnalysis.decision_function now
return 1d arrays when fit on two classes.

• Grid of alphas used for fitting linear_model.LassoCV and linear_model.ElasticNetCV is now
stored in the attribute alphas_ rather than overriding the init parameter alphas.

• Linear models when alpha is estimated by cross-validation store the estimated value in the alpha_ attribute
rather than just alpha or best_alpha.

• ensemble.GradientBoostingClassifier now supports ensemble.GradientBoostingClassifier.staged_predict_proba,
and ensemble.GradientBoostingClassifier.staged_predict.

• svm.sparse.SVC and other sparse SVM classes are now deprecated. The all classes in the Support Vector
Machines module now automatically select the sparse or dense representation base on the input.

• All clustering algorithms now interpret the array X given to fit as input data, in particular
cluster.SpectralClustering and cluster.AffinityPropagationwhich previously expected
affinity matrices.
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• For clustering algorithms that take the desired number of clusters as a parameter, this parameter is now called
n_clusters.

People

• 267 Andreas Müller

• 94 Gilles Louppe

• 89 Gael Varoquaux

• 79 Peter Prettenhofer

• 60 Mathieu Blondel

• 57 Alexandre Gramfort

• 52 Vlad Niculae

• 45 Lars Buitinck

• 44 Nelle Varoquaux

• 37 Jaques Grobler

• 30 Alexis Mignon

• 30 Immanuel Bayer

• 27 Olivier Grisel

• 16 Subhodeep Moitra

• 13 Yannick Schwartz

• 12 @kernc

• 11 Virgile Fritsch

• 9 Daniel Duckworth

• 9 Fabian Pedregosa

• 9 Robert Layton

• 8 John Benediktsson

• 7 Marko Burjek

• 5 Nicolas Pinto

• 4 Alexandre Abraham

• 4 Jake Vanderplas

• 3 Brian Holt

• 3 Edouard Duchesnay

• 3 Florian Hoenig

• 3 flyingimmidev

• 2 Francois Savard

• 2 Hannes Schulz

• 2 Peter Welinder
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• 2 Yaroslav Halchenko

• 2 Wei Li

• 1 Alex Companioni

• 1 Brandyn A. White

• 1 Bussonnier Matthias

• 1 Charles-Pierre Astolfi

• 1 Dan O’Huiginn

• 1 David Cournapeau

• 1 Keith Goodman

• 1 Ludwig Schwardt

• 1 Olivier Hervieu

• 1 Sergio Medina

• 1 Shiqiao Du

• 1 Tim Sheerman-Chase

• 1 buguen

1.7.12 Version 0.11

Changelog

Highlights

• Gradient boosted regression trees (Gradient Tree Boosting) for classification and regression by Peter Pretten-
hofer and Scott White .

• Simple dict-based feature loader with support for categorical variables
(feature_extraction.DictVectorizer) by Lars Buitinck.

• Added Matthews correlation coefficient (metrics.matthews_corrcoef) and added macro and micro av-
erage options to metrics.precision_score, metrics.recall_score and metrics.f1_score
by Satrajit Ghosh.

• Out of Bag Estimates of generalization error for Ensemble methods by Andreas Müller.

• Randomized sparse models: Randomized sparse linear models for feature selection, by Alexandre Gramfort and
Gael Varoquaux

• Label Propagation for semi-supervised learning, by Clay Woolam. Note the semi-supervised API is still work
in progress, and may change.

• Added BIC/AIC model selection to classical Gaussian mixture models and unified the API with the remainder
of scikit-learn, by Bertrand Thirion

• Added sklearn.cross_validation.StratifiedShuffleSplit, which is a
sklearn.cross_validation.ShuffleSplit with balanced splits, by Yannick Schwartz.

• sklearn.neighbors.NearestCentroid classifier added, along with a shrink_threshold param-
eter, which implements shrunken centroid classification, by Robert Layton.
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Other changes

• Merged dense and sparse implementations of Stochastic Gradient Descent module and exposed utility extension
types for sequential datasets seq_dataset and weight vectors weight_vector by Peter Prettenhofer.

• Added partial_fit (support for online/minibatch learning) and warm_start to the Stochastic Gradient De-
scent module by Mathieu Blondel.

• Dense and sparse implementations of Support Vector Machines classes and
linear_model.LogisticRegression merged by Lars Buitinck.

• Regressors can now be used as base estimator in the Multiclass and multilabel algorithms module by Mathieu
Blondel.

• Added n_jobs option to metrics.pairwise.pairwise_distances and
metrics.pairwise.pairwise_kernels for parallel computation, by Mathieu Blondel.

• K-means can now be run in parallel, using the n_jobs argument to either K-means or KMeans, by Robert
Layton.

• Improved Cross-validation: evaluating estimator performance and Grid Search: Searching for estimator pa-
rameters documentation and introduced the new cross_validation.train_test_split helper func-
tion by Olivier Grisel

• svm.SVC members coef_ and intercept_ changed sign for consistency with decision_function;
for kernel==linear, coef_ was fixed in the the one-vs-one case, by Andreas Müller.

• Performance improvements to efficient leave-one-out cross-validated Ridge regression, esp. for the
n_samples > n_features case, in linear_model.RidgeCV, by Reuben Fletcher-Costin.

• Refactoring and simplification of the Text feature extraction API and fixed a bug that caused possible negative
IDF, by Olivier Grisel.

• Beam pruning option in _BaseHMM module has been removed since it is difficult to Cythonize. If you are
interested in contributing a Cython version, you can use the python version in the git history as a reference.

• Classes in Nearest Neighbors now support arbitrary Minkowski metric for nearest neighbors searches. The
metric can be specified by argument p.

API changes summary

• covariance.EllipticEnvelop is now deprecated - Please use covariance.EllipticEnvelope
instead.

• NeighborsClassifier and NeighborsRegressor are gone in the module Nearest Neighbors. Use
the classes KNeighborsClassifier, RadiusNeighborsClassifier, KNeighborsRegressor
and/or RadiusNeighborsRegressor instead.

• Sparse classes in the Stochastic Gradient Descent module are now deprecated.

• In mixture.GMM, mixture.DPGMM and mixture.VBGMM, parameters must be passed to an object when
initialising it and not through fit. Now fit will only accept the data as an input parameter.

• methods rvs and decode in GMM module are now deprecated. sample and score or predict should be
used instead.

• attribute _scores and _pvalues in univariate feature selection objects are now deprecated. scores_ or
pvalues_ should be used instead.

• In LogisticRegression, LinearSVC, SVC and NuSVC, the class_weight parameter is now an ini-
tialization parameter, not a parameter to fit. This makes grid searches over this parameter possible.
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• LFW data is now always shape (n_samples, n_features) to be consistent with the Olivetti faces
dataset. Use images and pairs attribute to access the natural images shapes instead.

• In svm.LinearSVC, the meaning of the multi_class parameter changed. Options now are ’ovr’ and
’crammer_singer’, with ’ovr’ being the default. This does not change the default behavior but hopefully
is less confusing.

• Class feature_selection.text.Vectorizer is deprecated and replaced by
feature_selection.text.TfidfVectorizer.

• The preprocessor / analyzer nested structure for text feature extraction has been removed. All those features are
now directly passed as flat constructor arguments to feature_selection.text.TfidfVectorizer
and feature_selection.text.CountVectorizer, in particular the following parameters are now
used:

– analyzer can be ’word’ or ’char’ to switch the default analysis scheme, or use a specific python
callable (as previously).

– tokenizer and preprocessor have been introduced to make it still possible to customize those steps
with the new API.

– input explicitly control how to interpret the sequence passed to fit and predict: filenames, file
objects or direct (byte or Unicode) strings.

– charset decoding is explicit and strict by default.

– the vocabulary, fitted or not is now stored in the vocabulary_ attribute to be consistent with the
project conventions.

• Class feature_selection.text.TfidfVectorizer now derives directly from
feature_selection.text.CountVectorizer to make grid search trivial.

• methods rvs in _BaseHMM module are now deprecated. sample should be used instead.

• Beam pruning option in _BaseHMM module is removed since it is difficult to be Cythonized. If you are inter-
ested, you can look in the history codes by git.

• The SVMlight format loader now supports files with both zero-based and one-based column indices, since both
occur “in the wild”.

• Arguments in class ShuffleSplit are now consistent with StratifiedShuffleSplit. Arguments
test_fraction and train_fraction are deprecated and renamed to test_size and train_size
and can accept both float and int.

• Arguments in class Bootstrap are now consistent with StratifiedShuffleSplit. Arguments
n_test and n_train are deprecated and renamed to test_size and train_size and can accept both
float and int.

• Argument p added to classes in Nearest Neighbors to specify an arbitrary Minkowski metric for nearest neigh-
bors searches.

People

• 282 Andreas Müller

• 239 Peter Prettenhofer

• 198 Gael Varoquaux

• 129 Olivier Grisel

• 114 Mathieu Blondel

58 Chapter 1. Welcome to scikit-learn

http://peekaboo-vision.blogspot.com
http://sites.google.com/site/peterprettenhofer/
http://gael-varoquaux.info
http://twitter.com/ogrisel
http://www.mblondel.org


scikit-learn user guide, Release 0.17

• 103 Clay Woolam

• 96 Lars Buitinck

• 88 Jaques Grobler

• 82 Alexandre Gramfort

• 50 Bertrand Thirion

• 42 Robert Layton

• 28 flyingimmidev

• 26 Jake Vanderplas

• 26 Shiqiao Du

• 21 Satrajit Ghosh

• 17 David Marek

• 17 Gilles Louppe

• 14 Vlad Niculae

• 11 Yannick Schwartz

• 10 Fabian Pedregosa

• 9 fcostin

• 7 Nick Wilson

• 5 Adrien Gaidon

• 5 Nicolas Pinto

• 4 David Warde-Farley

• 5 Nelle Varoquaux

• 5 Emmanuelle Gouillart

• 3 Joonas Sillanpää

• 3 Paolo Losi

• 2 Charles McCarthy

• 2 Roy Hyunjin Han

• 2 Scott White

• 2 ibayer

• 1 Brandyn White

• 1 Carlos Scheidegger

• 1 Claire Revillet

• 1 Conrad Lee

• 1 Edouard Duchesnay

• 1 Jan Hendrik Metzen

• 1 Meng Xinfan

• 1 Rob Zinkov

1.7. Release history 59

https://github.com/larsmans
https://github.com/jaquesgrobler/scikit-learn/wiki/Jaques-Grobler
http://alexandre.gramfort.net
http://parietal.saclay.inria.fr/Members/bertrand-thirion
http://www.twitter.com/robertlayton
http://www.astro.washington.edu/users/vanderplas/
http://www.mit.edu/~satra/
http://www.davidmarek.cz/
http://www.montefiore.ulg.ac.be/~glouppe/
http://vene.ro
http://fseoane.net/blog/
http://pinto.scripts.mit.edu/
http://www-etud.iro.umontreal.ca/~wardefar/
http://www.lnao.fr/spip.php?rubrique30
http://zinkov.com


scikit-learn user guide, Release 0.17

• 1 Shiqiao

• 1 Udi Weinsberg

• 1 Virgile Fritsch

• 1 Xinfan Meng

• 1 Yaroslav Halchenko

• 1 jansoe

• 1 Leon Palafox

1.7.13 Version 0.10

Changelog

• Python 2.5 compatibility was dropped; the minimum Python version needed to use scikit-learn is now 2.6.

• Sparse inverse covariance estimation using the graph Lasso, with associated cross-validated estimator, by Gael
Varoquaux

• New Tree module by Brian Holt, Peter Prettenhofer, Satrajit Ghosh and Gilles Louppe. The module comes with
complete documentation and examples.

• Fixed a bug in the RFE module by Gilles Louppe (issue #378).

• Fixed a memory leak in in Support Vector Machines module by Brian Holt (issue #367).

• Faster tests by Fabian Pedregosa and others.

• Silhouette Coefficient cluster analysis evaluation metric added as sklearn.metrics.silhouette_score
by Robert Layton.

• Fixed a bug in K-means in the handling of the n_init parameter: the clustering algorithm used to be run
n_init times but the last solution was retained instead of the best solution by Olivier Grisel.

• Minor refactoring in Stochastic Gradient Descent module; consolidated dense and sparse predict methods; En-
hanced test time performance by converting model parameters to fortran-style arrays after fitting (only multi-
class).

• Adjusted Mutual Information metric added as sklearn.metrics.adjusted_mutual_info_score
by Robert Layton.

• Models like SVC/SVR/LinearSVC/LogisticRegression from libsvm/liblinear now support scaling of C regular-
ization parameter by the number of samples by Alexandre Gramfort.

• New Ensemble Methods module by Gilles Louppe and Brian Holt. The module comes with the random forest
algorithm and the extra-trees method, along with documentation and examples.

• Novelty and Outlier Detection: outlier and novelty detection, by Virgile Fritsch.

• Kernel Approximation: a transform implementing kernel approximation for fast SGD on non-linear kernels by
Andreas Müller.

• Fixed a bug due to atom swapping in Orthogonal Matching Pursuit (OMP) by Vlad Niculae.

• Sparse coding with a precomputed dictionary by Vlad Niculae.

• Mini Batch K-Means performance improvements by Olivier Grisel.

• K-means support for sparse matrices by Mathieu Blondel.

• Improved documentation for developers and for the sklearn.utils module, by Jake Vanderplas.
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• Vectorized 20newsgroups dataset loader (sklearn.datasets.fetch_20newsgroups_vectorized)
by Mathieu Blondel.

• Multiclass and multilabel algorithms by Lars Buitinck.

• Utilities for fast computation of mean and variance for sparse matrices by Mathieu Blondel.

• Make sklearn.preprocessing.scale and sklearn.preprocessing.Scaler work on sparse
matrices by Olivier Grisel

• Feature importances using decision trees and/or forest of trees, by Gilles Louppe.

• Parallel implementation of forests of randomized trees by Gilles Louppe.

• sklearn.cross_validation.ShuffleSplit can subsample the train sets as well as the test sets by
Olivier Grisel.

• Errors in the build of the documentation fixed by Andreas Müller.

API changes summary

Here are the code migration instructions when upgrading from scikit-learn version 0.9:

• Some estimators that may overwrite their inputs to save memory previously had overwrite_ parameters;
these have been replaced with copy_ parameters with exactly the opposite meaning.

This particularly affects some of the estimators in linear_model. The default behavior is still to copy
everything passed in.

• The SVMlight dataset loader sklearn.datasets.load_svmlight_file no longer supports loading
two files at once; use load_svmlight_files instead. Also, the (unused) buffer_mb parameter is gone.

• Sparse estimators in the Stochastic Gradient Descent module use dense parameter vector coef_ instead of
sparse_coef_. This significantly improves test time performance.

• The Covariance estimation module now has a robust estimator of covariance, the Minimum Covariance Deter-
minant estimator.

• Cluster evaluation metrics in metrics.cluster have been refactored but the changes are back-
wards compatible. They have been moved to the metrics.cluster.supervised, along with
metrics.cluster.unsupervised which contains the Silhouette Coefficient.

• The permutation_test_score function now behaves the same way as cross_val_score (i.e. uses
the mean score across the folds.)

• Cross Validation generators now use integer indices (indices=True) by default instead of boolean masks.
This make it more intuitive to use with sparse matrix data.

• The functions used for sparse coding, sparse_encode and sparse_encode_parallel have been com-
bined into sklearn.decomposition.sparse_encode, and the shapes of the arrays have been trans-
posed for consistency with the matrix factorization setting, as opposed to the regression setting.

• Fixed an off-by-one error in the SVMlight/LibSVM file format handling; files generated using
sklearn.datasets.dump_svmlight_file should be re-generated. (They should continue to work,
but accidentally had one extra column of zeros prepended.)

• BaseDictionaryLearning class replaced by SparseCodingMixin.

• sklearn.utils.extmath.fast_svd has been renamed sklearn.utils.extmath.randomized_svd
and the default oversampling is now fixed to 10 additional random vectors instead of doubling the number of
components to extract. The new behavior follows the reference paper.
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People

The following people contributed to scikit-learn since last release:

• 246 Andreas Müller

• 242 Olivier Grisel

• 220 Gilles Louppe

• 183 Brian Holt

• 166 Gael Varoquaux

• 144 Lars Buitinck

• 73 Vlad Niculae

• 65 Peter Prettenhofer

• 64 Fabian Pedregosa

• 60 Robert Layton

• 55 Mathieu Blondel

• 52 Jake Vanderplas

• 44 Noel Dawe

• 38 Alexandre Gramfort

• 24 Virgile Fritsch

• 23 Satrajit Ghosh

• 3 Jan Hendrik Metzen

• 3 Kenneth C. Arnold

• 3 Shiqiao Du

• 3 Tim Sheerman-Chase

• 3 Yaroslav Halchenko

• 2 Bala Subrahmanyam Varanasi

• 2 DraXus

• 2 Michael Eickenberg

• 1 Bogdan Trach

• 1 Félix-Antoine Fortin

• 1 Juan Manuel Caicedo Carvajal

• 1 Nelle Varoquaux

• 1 Nicolas Pinto

• 1 Tiziano Zito

• 1 Xinfan Meng
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1.7.14 Version 0.9

scikit-learn 0.9 was released on September 2011, three months after the 0.8 release and includes the new modules
Manifold learning, The Dirichlet Process as well as several new algorithms and documentation improvements.

This release also includes the dictionary-learning work developed by Vlad Niculae as part of the Google Summer of
Code program.
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Changelog

• New Manifold learning module by Jake Vanderplas and Fabian Pedregosa.

• New Dirichlet Process Gaussian Mixture Model by Alexandre Passos

• Nearest Neighbors module refactoring by Jake Vanderplas : general refactoring, support for sparse matrices in
input, speed and documentation improvements. See the next section for a full list of API changes.

• Improvements on the Feature selection module by Gilles Louppe : refactoring of the RFE classes, documenta-
tion rewrite, increased efficiency and minor API changes.

• Sparse principal components analysis (SparsePCA and MiniBatchSparsePCA) by Vlad Niculae, Gael Varo-
quaux and Alexandre Gramfort

• Printing an estimator now behaves independently of architectures and Python version thanks to Jean Kossaifi.

• Loader for libsvm/svmlight format by Mathieu Blondel and Lars Buitinck

• Documentation improvements: thumbnails in example gallery by Fabian Pedregosa.

• Important bugfixes in Support Vector Machines module (segfaults, bad performance) by Fabian Pedregosa.

• Added Multinomial Naive Bayes and Bernoulli Naive Bayes by Lars Buitinck

• Text feature extraction optimizations by Lars Buitinck

• Chi-Square feature selection (feature_selection.univariate_selection.chi2) by Lars Buit-
inck.

• Sample generators module refactoring by Gilles Louppe

• Multiclass and multilabel algorithms by Mathieu Blondel

• Ball tree rewrite by Jake Vanderplas
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• Implementation of DBSCAN algorithm by Robert Layton

• Kmeans predict and transform by Robert Layton

• Preprocessing module refactoring by Olivier Grisel

• Faster mean shift by Conrad Lee

• New Bootstrap, Random permutations cross-validation a.k.a. Shuffle & Split and various other improve-
ments in cross validation schemes by Olivier Grisel and Gael Varoquaux

• Adjusted Rand index and V-Measure clustering evaluation metrics by Olivier Grisel

• Added Orthogonal Matching Pursuit by Vlad Niculae

• Added 2D-patch extractor utilities in the Feature extraction module by Vlad Niculae

• Implementation of linear_model.LassoLarsCV (cross-validated Lasso solver using the Lars algorithm)
and linear_model.LassoLarsIC (BIC/AIC model selection in Lars) by Gael Varoquaux and Alexandre
Gramfort

• Scalability improvements to metrics.roc_curve by Olivier Hervieu

• Distance helper functions metrics.pairwise.pairwise_distances and
metrics.pairwise.pairwise_kernels by Robert Layton

• Mini-Batch K-Means by Nelle Varoquaux and Peter Prettenhofer.

• Downloading datasets from the mldata.org repository utilities by Pietro Berkes.

• The Olivetti faces dataset by David Warde-Farley.

API changes summary

Here are the code migration instructions when upgrading from scikit-learn version 0.8:

• The scikits.learn package was renamed sklearn. There is still a scikits.learn package alias for
backward compatibility.

Third-party projects with a dependency on scikit-learn 0.9+ should upgrade their codebase. For instance under
Linux / MacOSX just run (make a backup first!):

find -name "*.py" | xargs sed -i 's/\bscikits.learn\b/sklearn/g'

• Estimators no longer accept model parameters as fit arguments: instead all parameters must be only
be passed as constructor arguments or using the now public set_params method inherited from
base.BaseEstimator.

Some estimators can still accept keyword arguments on the fit but this is restricted to data-dependent values
(e.g. a Gram matrix or an affinity matrix that are precomputed from the X data matrix.

• The cross_val package has been renamed to cross_validation although there is also a cross_val
package alias in place for backward compatibility.

Third-party projects with a dependency on scikit-learn 0.9+ should upgrade their codebase. For instance under
Linux / MacOSX just run (make a backup first!):

find -name "*.py" | xargs sed -i 's/\bcross_val\b/cross_validation/g'

• The score_func argument of the sklearn.cross_validation.cross_val_score function is
now expected to accept y_test and y_predicted as only arguments for classification and regression tasks
or X_test for unsupervised estimators.
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• gamma parameter for support vector machine algorithms is set to 1 / n_features by default, instead of 1
/ n_samples.

• The sklearn.hmm has been marked as orphaned: it will be removed from scikit-learn in version 0.11 unless
someone steps up to contribute documentation, examples and fix lurking numerical stability issues.

• sklearn.neighbors has been made into a submodule. The two previously available estimators,
NeighborsClassifier and NeighborsRegressor have been marked as deprecated. Their function-
ality has been divided among five new classes: NearestNeighbors for unsupervised neighbors searches,
KNeighborsClassifier & RadiusNeighborsClassifier for supervised classification problems,
and KNeighborsRegressor & RadiusNeighborsRegressor for supervised regression problems.

• sklearn.ball_tree.BallTree has been moved to sklearn.neighbors.BallTree. Using the
former will generate a warning.

• sklearn.linear_model.LARS() and related classes (LassoLARS, LassoLARSCV, etc.) have been re-
named to sklearn.linear_model.Lars().

• All distance metrics and kernels in sklearn.metrics.pairwise now have a Y parameter, which by
default is None. If not given, the result is the distance (or kernel similarity) between each sample in Y. If given,
the result is the pairwise distance (or kernel similarity) between samples in X to Y.

• sklearn.metrics.pairwise.l1_distance is now called manhattan_distance, and by default
returns the pairwise distance. For the component wise distance, set the parameter sum_over_features to
False.

Backward compatibility package aliases and other deprecated classes and functions will be removed in version 0.11.

People

38 people contributed to this release.

• 387 Vlad Niculae

• 320 Olivier Grisel

• 192 Lars Buitinck

• 179 Gael Varoquaux

• 168 Fabian Pedregosa (INRIA, Parietal Team)

• 127 Jake Vanderplas

• 120 Mathieu Blondel

• 85 Alexandre Passos

• 67 Alexandre Gramfort

• 57 Peter Prettenhofer

• 56 Gilles Louppe

• 42 Robert Layton

• 38 Nelle Varoquaux

• 32 Jean Kossaifi

• 30 Conrad Lee

• 22 Pietro Berkes

• 18 andy
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• 17 David Warde-Farley

• 12 Brian Holt

• 11 Robert

• 8 Amit Aides

• 8 Virgile Fritsch

• 7 Yaroslav Halchenko

• 6 Salvatore Masecchia

• 5 Paolo Losi

• 4 Vincent Schut

• 3 Alexis Metaireau

• 3 Bryan Silverthorn

• 3 Andreas Müller

• 2 Minwoo Jake Lee

• 1 Emmanuelle Gouillart

• 1 Keith Goodman

• 1 Lucas Wiman

• 1 Nicolas Pinto

• 1 Thouis (Ray) Jones

• 1 Tim Sheerman-Chase

1.7.15 Version 0.8

scikit-learn 0.8 was released on May 2011, one month after the first “international” scikit-learn coding sprint and is
marked by the inclusion of important modules: Hierarchical clustering, Cross decomposition, Non-negative matrix
factorization (NMF or NNMF), initial support for Python 3 and by important enhancements and bug fixes.

Changelog

Several new modules where introduced during this release:

• New Hierarchical clustering module by Vincent Michel, Bertrand Thirion, Alexandre Gramfort and Gael Varo-
quaux.

• Kernel PCA implementation by Mathieu Blondel

• The Labeled Faces in the Wild face recognition dataset by Olivier Grisel.

• New Cross decomposition module by Edouard Duchesnay.

• Non-negative matrix factorization (NMF or NNMF) module Vlad Niculae

• Implementation of the Oracle Approximating Shrinkage algorithm by Virgile Fritsch in the Covariance estima-
tion module.

Some other modules benefited from significant improvements or cleanups.
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• Initial support for Python 3: builds and imports cleanly, some modules are usable while others have failing tests
by Fabian Pedregosa.

• decomposition.PCA is now usable from the Pipeline object by Olivier Grisel.

• Guide How to optimize for speed by Olivier Grisel.

• Fixes for memory leaks in libsvm bindings, 64-bit safer BallTree by Lars Buitinck.

• bug and style fixing in K-means algorithm by Jan Schlüter.

• Add attribute converged to Gaussian Mixture Models by Vincent Schut.

• Implemented transform, predict_log_proba in discriminant_analysis.LinearDiscriminantAnalysis
By Mathieu Blondel.

• Refactoring in the Support Vector Machines module and bug fixes by Fabian Pedregosa, Gael Varoquaux and
Amit Aides.

• Refactored SGD module (removed code duplication, better variable naming), added interface for sample weight
by Peter Prettenhofer.

• Wrapped BallTree with Cython by Thouis (Ray) Jones.

• Added function svm.l1_min_c by Paolo Losi.

• Typos, doc style, etc. by Yaroslav Halchenko, Gael Varoquaux, Olivier Grisel, Yann Malet, Nicolas Pinto, Lars
Buitinck and Fabian Pedregosa.

People

People that made this release possible preceded by number of commits:

• 159 Olivier Grisel

• 96 Gael Varoquaux

• 96 Vlad Niculae

• 94 Fabian Pedregosa

• 36 Alexandre Gramfort

• 32 Paolo Losi

• 31 Edouard Duchesnay

• 30 Mathieu Blondel

• 25 Peter Prettenhofer

• 22 Nicolas Pinto

• 11 Virgile Fritsch

• 7 Lars Buitinck

• 6 Vincent Michel

• 5 Bertrand Thirion

• 4 Thouis (Ray) Jones

• 4 Vincent Schut

• 3 Jan Schlüter

• 2 Julien Miotte
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• 2 Matthieu Perrot

• 2 Yann Malet

• 2 Yaroslav Halchenko

• 1 Amit Aides

• 1 Andreas Müller

• 1 Feth Arezki

• 1 Meng Xinfan

1.7.16 Version 0.7

scikit-learn 0.7 was released in March 2011, roughly three months after the 0.6 release. This release is marked by the
speed improvements in existing algorithms like k-Nearest Neighbors and K-Means algorithm and by the inclusion of
an efficient algorithm for computing the Ridge Generalized Cross Validation solution. Unlike the preceding release,
no new modules where added to this release.

Changelog

• Performance improvements for Gaussian Mixture Model sampling [Jan Schlüter].

• Implementation of efficient leave-one-out cross-validated Ridge in linear_model.RidgeCV [Mathieu
Blondel]

• Better handling of collinearity and early stopping in linear_model.lars_path [Alexandre Gramfort and
Fabian Pedregosa].

• Fixes for liblinear ordering of labels and sign of coefficients [Dan Yamins, Paolo Losi, Mathieu Blondel and
Fabian Pedregosa].

• Performance improvements for Nearest Neighbors algorithm in high-dimensional spaces [Fabian Pedregosa].

• Performance improvements for cluster.KMeans [Gael Varoquaux and James Bergstra].

• Sanity checks for SVM-based classes [Mathieu Blondel].

• Refactoring of neighbors.NeighborsClassifier and neighbors.kneighbors_graph: added
different algorithms for the k-Nearest Neighbor Search and implemented a more stable algorithm for finding
barycenter weights. Also added some developer documentation for this module, see notes_neighbors for more
information [Fabian Pedregosa].

• Documentation improvements: Added pca.RandomizedPCA and linear_model.LogisticRegression
to the class reference. Also added references of matrices used for clustering and other fixes [Gael Varoquaux,
Fabian Pedregosa, Mathieu Blondel, Olivier Grisel, Virgile Fritsch , Emmanuelle Gouillart]

• Binded decision_function in classes that make use of liblinear, dense and sparse variants, like
svm.LinearSVC or linear_model.LogisticRegression [Fabian Pedregosa].

• Performance and API improvements to metrics.euclidean_distances and to
pca.RandomizedPCA [James Bergstra].

• Fix compilation issues under NetBSD [Kamel Ibn Hassen Derouiche]

• Allow input sequences of different lengths in hmm.GaussianHMM [Ron Weiss].

• Fix bug in affinity propagation caused by incorrect indexing [Xinfan Meng]
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People

People that made this release possible preceded by number of commits:

• 85 Fabian Pedregosa

• 67 Mathieu Blondel

• 20 Alexandre Gramfort

• 19 James Bergstra

• 14 Dan Yamins

• 13 Olivier Grisel

• 12 Gael Varoquaux

• 4 Edouard Duchesnay

• 4 Ron Weiss

• 2 Satrajit Ghosh

• 2 Vincent Dubourg

• 1 Emmanuelle Gouillart

• 1 Kamel Ibn Hassen Derouiche

• 1 Paolo Losi

• 1 VirgileFritsch

• 1 Yaroslav Halchenko

• 1 Xinfan Meng

1.7.17 Version 0.6

scikit-learn 0.6 was released on December 2010. It is marked by the inclusion of several new modules and a general
renaming of old ones. It is also marked by the inclusion of new example, including applications to real-world datasets.

Changelog

• New stochastic gradient descent module by Peter Prettenhofer. The module comes with complete documentation
and examples.

• Improved svm module: memory consumption has been reduced by 50%, heuristic to automatically set class
weights, possibility to assign weights to samples (see SVM: Weighted samples for an example).

• New Gaussian Processes module by Vincent Dubourg. This module also has great documenta-
tion and some very neat examples. See example_gaussian_process_plot_gp_regression.py or exam-
ple_gaussian_process_plot_gp_probabilistic_classification_after_regression.py for a taste of what can be done.

• It is now possible to use liblinear’s Multi-class SVC (option multi_class in svm.LinearSVC)

• New features and performance improvements of text feature extraction.

• Improved sparse matrix support, both in main classes (grid_search.GridSearchCV) as in modules
sklearn.svm.sparse and sklearn.linear_model.sparse.
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• Lots of cool new examples and a new section that uses real-world datasets was created. These include: Faces
recognition example using eigenfaces and SVMs, Species distribution modeling, Libsvm GUI, Wikipedia princi-
pal eigenvector and others.

• Faster Least Angle Regression algorithm. It is now 2x faster than the R version on worst case and up to 10x
times faster on some cases.

• Faster coordinate descent algorithm. In particular, the full path version of lasso
(linear_model.lasso_path) is more than 200x times faster than before.

• It is now possible to get probability estimates from a linear_model.LogisticRegression model.

• module renaming: the glm module has been renamed to linear_model, the gmm module has been included into
the more general mixture model and the sgd module has been included in linear_model.

• Lots of bug fixes and documentation improvements.

People

People that made this release possible preceded by number of commits:

• 207 Olivier Grisel

• 167 Fabian Pedregosa

• 97 Peter Prettenhofer

• 68 Alexandre Gramfort

• 59 Mathieu Blondel

• 55 Gael Varoquaux

• 33 Vincent Dubourg

• 21 Ron Weiss

• 9 Bertrand Thirion

• 3 Alexandre Passos

• 3 Anne-Laure Fouque

• 2 Ronan Amicel

• 1 Christian Osendorfer

1.7.18 Version 0.5

Changelog

New classes

• Support for sparse matrices in some classifiers of modules svm and linear_model (see svm.sparse.SVC,
svm.sparse.SVR, svm.sparse.LinearSVC, linear_model.sparse.Lasso,
linear_model.sparse.ElasticNet)

• New pipeline.Pipeline object to compose different estimators.

• Recursive Feature Elimination routines in module Feature selection.

• Addition of various classes capable of cross validation in the linear_model module
(linear_model.LassoCV, linear_model.ElasticNetCV, etc.).
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• New, more efficient LARS algorithm implementation. The Lasso variant of the algorithm is also implemented.
See linear_model.lars_path, linear_model.Lars and linear_model.LassoLars.

• New Hidden Markov Models module (see classes hmm.GaussianHMM, hmm.MultinomialHMM,
hmm.GMMHMM)

• New module feature_extraction (see class reference)

• New FastICA algorithm in module sklearn.fastica

Documentation

• Improved documentation for many modules, now separating narrative documentation from the class reference.
As an example, see documentation for the SVM module and the complete class reference.

Fixes

• API changes: adhere variable names to PEP-8, give more meaningful names.

• Fixes for svm module to run on a shared memory context (multiprocessing).

• It is again possible to generate latex (and thus PDF) from the sphinx docs.

Examples

• new examples using some of the mlcomp datasets: example_mlcomp_sparse_document_classification.py
(since removed) and Classification of text documents using sparse features

• Many more examples. See here the full list of examples.

External dependencies

• Joblib is now a dependency of this package, although it is shipped with (sklearn.externals.joblib).

Removed modules

• Module ann (Artificial Neural Networks) has been removed from the distribution. Users wanting this sort of
algorithms should take a look into pybrain.

Misc

• New sphinx theme for the web page.

Authors

The following is a list of authors for this release, preceded by number of commits:

• 262 Fabian Pedregosa

• 240 Gael Varoquaux

• 149 Alexandre Gramfort

• 116 Olivier Grisel
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• 40 Vincent Michel

• 38 Ron Weiss

• 23 Matthieu Perrot

• 10 Bertrand Thirion

• 7 Yaroslav Halchenko

• 9 VirgileFritsch

• 6 Edouard Duchesnay

• 4 Mathieu Blondel

• 1 Ariel Rokem

• 1 Matthieu Brucher

1.7.19 Version 0.4

Changelog

Major changes in this release include:

• Coordinate Descent algorithm (Lasso, ElasticNet) refactoring & speed improvements (roughly 100x times
faster).

• Coordinate Descent Refactoring (and bug fixing) for consistency with R’s package GLMNET.

• New metrics module.

• New GMM module contributed by Ron Weiss.

• Implementation of the LARS algorithm (without Lasso variant for now).

• feature_selection module redesign.

• Migration to GIT as version control system.

• Removal of obsolete attrselect module.

• Rename of private compiled extensions (added underscore).

• Removal of legacy unmaintained code.

• Documentation improvements (both docstring and rst).

• Improvement of the build system to (optionally) link with MKL. Also, provide a lite BLAS implementation in
case no system-wide BLAS is found.

• Lots of new examples.

• Many, many bug fixes ...

Authors

The committer list for this release is the following (preceded by number of commits):

• 143 Fabian Pedregosa

• 35 Alexandre Gramfort

• 34 Olivier Grisel
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• 11 Gael Varoquaux

• 5 Yaroslav Halchenko

• 2 Vincent Michel

• 1 Chris Filo Gorgolewski

1.7.20 Earlier versions

Earlier versions included contributions by Fred Mailhot, David Cooke, David Huard, Dave Morrill, Ed Schofield,
Travis Oliphant, Pearu Peterson.
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CHAPTER

TWO

SCIKIT-LEARN TUTORIALS

2.1 An introduction to machine learning with scikit-learn

Section contents

In this section, we introduce the machine learning vocabulary that we use throughout scikit-learn and give a
simple learning example.

2.1.1 Machine learning: the problem setting

In general, a learning problem considers a set of n samples of data and then tries to predict properties of unknown data.
If each sample is more than a single number and, for instance, a multi-dimensional entry (aka multivariate data), is it
said to have several attributes or features.

We can separate learning problems in a few large categories:

• supervised learning, in which the data comes with additional attributes that we want to predict (Click here to go
to the scikit-learn supervised learning page).This problem can be either:

– classification: samples belong to two or more classes and we want to learn from already labeled data how
to predict the class of unlabeled data. An example of classification problem would be the handwritten digit
recognition example, in which the aim is to assign each input vector to one of a finite number of discrete
categories. Another way to think of classification is as a discrete (as opposed to continuous) form of
supervised learning where one has a limited number of categories and for each of the n samples provided,
one is to try to label them with the correct category or class.

– regression: if the desired output consists of one or more continuous variables, then the task is called
regression. An example of a regression problem would be the prediction of the length of a salmon as a
function of its age and weight.

• unsupervised learning, in which the training data consists of a set of input vectors x without any corresponding
target values. The goal in such problems may be to discover groups of similar examples within the data, where
it is called clustering, or to determine the distribution of data within the input space, known as density estima-
tion, or to project the data from a high-dimensional space down to two or three dimensions for the purpose of
visualization (Click here to go to the Scikit-Learn unsupervised learning page).
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Training set and testing set

Machine learning is about learning some properties of a data set and applying them to new data. This is why a
common practice in machine learning to evaluate an algorithm is to split the data at hand into two sets, one that
we call the training set on which we learn data properties and one that we call the testing set on which we test
these properties.

2.1.2 Loading an example dataset

scikit-learn comes with a few standard datasets, for instance the iris and digits datasets for classification and the boston
house prices dataset for regression.

In the following, we start a Python interpreter from our shell and then load the iris and digits datasets. Our
notational convention is that $ denotes the shell prompt while >>> denotes the Python interpreter prompt:

$ python
>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> digits = datasets.load_digits()

A dataset is a dictionary-like object that holds all the data and some metadata about the data. This data is stored in
the .data member, which is a n_samples, n_features array. In the case of supervised problem, one or more
response variables are stored in the .target member. More details on the different datasets can be found in the
dedicated section.

For instance, in the case of the digits dataset, digits.data gives access to the features that can be used to classify
the digits samples:

>>> print(digits.data)
[[ 0. 0. 5. ..., 0. 0. 0.]
[ 0. 0. 0. ..., 10. 0. 0.]
[ 0. 0. 0. ..., 16. 9. 0.]
...,
[ 0. 0. 1. ..., 6. 0. 0.]
[ 0. 0. 2. ..., 12. 0. 0.]
[ 0. 0. 10. ..., 12. 1. 0.]]

and digits.target gives the ground truth for the digit dataset, that is the number corresponding to each digit
image that we are trying to learn:

>>> digits.target
array([0, 1, 2, ..., 8, 9, 8])
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Shape of the data arrays

The data is always a 2D array, shape (n_samples, n_features), although the original data may have
had a different shape. In the case of the digits, each original sample is an image of shape (8, 8) and can be
accessed using:

>>> digits.images[0]
array([[ 0., 0., 5., 13., 9., 1., 0., 0.],

[ 0., 0., 13., 15., 10., 15., 5., 0.],
[ 0., 3., 15., 2., 0., 11., 8., 0.],
[ 0., 4., 12., 0., 0., 8., 8., 0.],
[ 0., 5., 8., 0., 0., 9., 8., 0.],
[ 0., 4., 11., 0., 1., 12., 7., 0.],
[ 0., 2., 14., 5., 10., 12., 0., 0.],
[ 0., 0., 6., 13., 10., 0., 0., 0.]])

The simple example on this dataset illustrates how starting from the original problem one can shape the data for
consumption in scikit-learn.

2.1.3 Learning and predicting

In the case of the digits dataset, the task is to predict, given an image, which digit it represents. We are given samples
of each of the 10 possible classes (the digits zero through nine) on which we fit an estimator to be able to predict the
classes to which unseen samples belong.

In scikit-learn, an estimator for classification is a Python object that implements the methods fit(X, y) and
predict(T).

An example of an estimator is the class sklearn.svm.SVC that implements support vector classification. The
constructor of an estimator takes as arguments the parameters of the model, but for the time being, we will consider
the estimator as a black box:

>>> from sklearn import svm
>>> clf = svm.SVC(gamma=0.001, C=100.)

Choosing the parameters of the model

In this example we set the value of gamma manually. It is possible to automatically find good values for the
parameters by using tools such as grid search and cross validation.

We call our estimator instance clf, as it is a classifier. It now must be fitted to the model, that is, it must learn from
the model. This is done by passing our training set to the fit method. As a training set, let us use all the images of
our dataset apart from the last one. We select this training set with the [:-1] Python syntax, which produces a new
array that contains all but the last entry of digits.data:

>>> clf.fit(digits.data[:-1], digits.target[:-1])
SVC(C=100.0, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape=None, degree=3, gamma=0.001, kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

Now you can predict new values, in particular, we can ask to the classifier what is the digit of our last image in the
digits dataset, which we have not used to train the classifier:

>>> clf.predict(digits.data[-1:])
array([8])
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The corresponding image is the following: As you can see, it is a challenging task: the
images are of poor resolution. Do you agree with the classifier?

A complete example of this classification problem is available as an example that you can run and study: Recognizing
hand-written digits.

2.1.4 Model persistence

It is possible to save a model in the scikit by using Python’s built-in persistence model, namely pickle:

>>> from sklearn import svm
>>> from sklearn import datasets
>>> clf = svm.SVC()
>>> iris = datasets.load_iris()
>>> X, y = iris.data, iris.target
>>> clf.fit(X, y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

>>> import pickle
>>> s = pickle.dumps(clf)
>>> clf2 = pickle.loads(s)
>>> clf2.predict(X[0:1])
array([0])
>>> y[0]
0

In the specific case of the scikit, it may be more interesting to use joblib’s replacement of pickle (joblib.dump &
joblib.load), which is more efficient on big data, but can only pickle to the disk and not to a string:

>>> from sklearn.externals import joblib
>>> joblib.dump(clf, 'filename.pkl')

Later you can load back the pickled model (possibly in another Python process) with:

>>> clf = joblib.load('filename.pkl')

Note: joblib.dump returns a list of filenames. Each individual numpy array contained in the clf object is serialized
as a separate file on the filesystem. All files are required in the same folder when reloading the model with joblib.load.

Note that pickle has some security and maintainability issues. Please refer to section Model persistence for more
detailed information about model persistence with scikit-learn.

2.1.5 Conventions

scikit-learn estimators follow certain rules to make their behavior more predictive.
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Type casting

Unless otherwise specified, input will be cast to float64:

>>> import numpy as np
>>> from sklearn import random_projection

>>> rng = np.random.RandomState(0)
>>> X = rng.rand(10, 2000)
>>> X = np.array(X, dtype='float32')
>>> X.dtype
dtype('float32')

>>> transformer = random_projection.GaussianRandomProjection()
>>> X_new = transformer.fit_transform(X)
>>> X_new.dtype
dtype('float64')

In this example, X is float32, which is cast to float64 by fit_transform(X).

Regression targets are cast to float64, classification targets are maintained:

>>> from sklearn import datasets
>>> from sklearn.svm import SVC
>>> iris = datasets.load_iris()
>>> clf = SVC()
>>> clf.fit(iris.data, iris.target)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

>>> list(clf.predict(iris.data[:3]))
[0, 0, 0]

>>> clf.fit(iris.data, iris.target_names[iris.target])
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

>>> list(clf.predict(iris.data[:3]))
['setosa', 'setosa', 'setosa']

Here, the first predict() returns an integer array, since iris.target (an integer array) was used in fit. The
second predict returns a string array, since iris.target_names was for fitting.

Refitting and updating parameters

Hyper-parameters of an estimator can be updated after it has been constructed via the
sklearn.pipeline.Pipeline.set_params method. Calling fit() more than once will overwrite
what was learned by any previous fit():

>>> import numpy as np
>>> from sklearn.svm import SVC

>>> rng = np.random.RandomState(0)
>>> X = rng.rand(100, 10)
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>>> y = rng.binomial(1, 0.5, 100)
>>> X_test = rng.rand(5, 10)

>>> clf = SVC()
>>> clf.set_params(kernel='linear').fit(X, y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape=None, degree=3, gamma='auto', kernel='linear',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

>>> clf.predict(X_test)
array([1, 0, 1, 1, 0])

>>> clf.set_params(kernel='rbf').fit(X, y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

>>> clf.predict(X_test)
array([0, 0, 0, 1, 0])

Here, the default kernel rbf is first changed to linear after the estimator has been constructed via SVC(), and
changed back to rbf to refit the estimator and to make a second prediction.

2.2 A tutorial on statistical-learning for scientific data processing

Statistical learning

Machine learning is a technique with a growing importance, as the size of the datasets experimental sciences
are facing is rapidly growing. Problems it tackles range from building a prediction function linking different
observations, to classifying observations, or learning the structure in an unlabeled dataset.
This tutorial will explore statistical learning, the use of machine learning techniques with the goal of statistical
inference: drawing conclusions on the data at hand.
Scikit-learn is a Python module integrating classic machine learning algorithms in the tightly-knit world of
scientific Python packages (NumPy, SciPy, matplotlib).

2.2.1 Statistical learning: the setting and the estimator object in scikit-learn

Datasets

Scikit-learn deals with learning information from one or more datasets that are represented as 2D arrays. They can be
understood as a list of multi-dimensional observations. We say that the first axis of these arrays is the samples axis,
while the second is the features axis.
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A simple example shipped with the scikit: iris dataset

>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> data = iris.data
>>> data.shape
(150, 4)

It is made of 150 observations of irises, each described by 4 features: their sepal and petal length and width, as
detailed in iris.DESCR.

When the data is not initially in the (n_samples, n_features) shape, it needs to be preprocessed in order to
be used by scikit-learn.

An example of reshaping data would be the digits dataset

The digits dataset is made of 1797 8x8 images of hand-written digits

>>> digits = datasets.load_digits()
>>> digits.images.shape
(1797, 8, 8)
>>> import pylab as pl
>>> pl.imshow(digits.images[-1], cmap=pl.cm.gray_r)
<matplotlib.image.AxesImage object at ...>

To use this dataset with the scikit, we transform each 8x8 image into a feature vector of length 64

>>> data = digits.images.reshape((digits.images.shape[0], -1))

Estimators objects

Fitting data: the main API implemented by scikit-learn is that of the estimator. An estimator is any object that learns
from data; it may be a classification, regression or clustering algorithm or a transformer that extracts/filters useful
features from raw data.

All estimator objects expose a fit method that takes a dataset (usually a 2-d array):

>>> estimator.fit(data)

Estimator parameters: All the parameters of an estimator can be set when it is instantiated or by modifying the
corresponding attribute:

>>> estimator = Estimator(param1=1, param2=2)
>>> estimator.param1
1

2.2. A tutorial on statistical-learning for scientific data processing 81



scikit-learn user guide, Release 0.17

Estimated parameters: When data is fitted with an estimator, parameters are estimated from the data at hand. All the
estimated parameters are attributes of the estimator object ending by an underscore:

>>> estimator.estimated_param_

2.2.2 Supervised learning: predicting an output variable from high-dimensional ob-
servations

The problem solved in supervised learning

Supervised learning consists in learning the link between two datasets: the observed data X and an external
variable y that we are trying to predict, usually called “target” or “labels”. Most often, y is a 1D array of length
n_samples.
All supervised estimators in scikit-learn implement a fit(X, y) method to fit the model and a predict(X)
method that, given unlabeled observations X, returns the predicted labels y.

Vocabulary: classification and regression

If the prediction task is to classify the observations in a set of finite labels, in other words to “name” the objects
observed, the task is said to be a classification task. On the other hand, if the goal is to predict a continuous
target variable, it is said to be a regression task.
When doing classification in scikit-learn, y is a vector of integers or strings.
Note: See the Introduction to machine learning with scikit-learn Tutorial for a quick run-through on the basic
machine learning vocabulary used within scikit-learn.

Nearest neighbor and the curse of dimensionality

82 Chapter 2. scikit-learn Tutorials

http://en.wikipedia.org/wiki/Estimator


scikit-learn user guide, Release 0.17

Classifying irises:

The iris dataset is a classification task
consisting in identifying 3 different types of irises (Setosa, Versicolour, and Virginica) from their petal and sepal
length and width:

>>> import numpy as np
>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> iris_X = iris.data
>>> iris_y = iris.target
>>> np.unique(iris_y)
array([0, 1, 2])

k-Nearest neighbors classifier

The simplest possible classifier is the nearest neighbor: given a new observation X_test, find in the training set (i.e.
the data used to train the estimator) the observation with the closest feature vector. (Please see the Nearest Neighbors
section of the online Scikit-learn documentation for more information about this type of classifier.)

Training set and testing set

While experimenting with any learning algorithm, it is important not to test the prediction of an estimator on the
data used to fit the estimator as this would not be evaluating the performance of the estimator on new data. This
is why datasets are often split into train and test data.
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KNN (k nearest neighbors) classification example:

>>> # Split iris data in train and test data
>>> # A random permutation, to split the data randomly
>>> np.random.seed(0)
>>> indices = np.random.permutation(len(iris_X))
>>> iris_X_train = iris_X[indices[:-10]]
>>> iris_y_train = iris_y[indices[:-10]]
>>> iris_X_test = iris_X[indices[-10:]]
>>> iris_y_test = iris_y[indices[-10:]]
>>> # Create and fit a nearest-neighbor classifier
>>> from sklearn.neighbors import KNeighborsClassifier
>>> knn = KNeighborsClassifier()
>>> knn.fit(iris_X_train, iris_y_train)
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',

metric_params=None, n_jobs=1, n_neighbors=5, p=2,
weights='uniform')

>>> knn.predict(iris_X_test)
array([1, 2, 1, 0, 0, 0, 2, 1, 2, 0])
>>> iris_y_test
array([1, 1, 1, 0, 0, 0, 2, 1, 2, 0])

The curse of dimensionality

For an estimator to be effective, you need the distance between neighboring points to be less than some value 𝑑, which
depends on the problem. In one dimension, this requires on average 𝑛 1/𝑑 points. In the context of the above 𝑘-NN
example, if the data is described by just one feature with values ranging from 0 to 1 and with 𝑛 training observations,
then new data will be no further away than 1/𝑛. Therefore, the nearest neighbor decision rule will be efficient as soon
as 1/𝑛 is small compared to the scale of between-class feature variations.

If the number of features is 𝑝, you now require 𝑛 1/𝑑𝑝 points. Let’s say that we require 10 points in one dimension:
now 10𝑝 points are required in 𝑝 dimensions to pave the [0, 1] space. As 𝑝 becomes large, the number of training points
required for a good estimator grows exponentially.

For example, if each point is just a single number (8 bytes), then an effective 𝑘-NN estimator in a paltry 𝑝 20 di-
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mensions would require more training data than the current estimated size of the entire internet (±1000 Exabytes or
so).

This is called the curse of dimensionality and is a core problem that machine learning addresses.

Linear model: from regression to sparsity

Diabetes dataset

The diabetes dataset consists of 10 physiological variables (age, sex, weight, blood pressure) measure on 442
patients, and an indication of disease progression after one year:

>>> diabetes = datasets.load_diabetes()
>>> diabetes_X_train = diabetes.data[:-20]
>>> diabetes_X_test = diabetes.data[-20:]
>>> diabetes_y_train = diabetes.target[:-20]
>>> diabetes_y_test = diabetes.target[-20:]

The task at hand is to predict disease progression from physiological variables.

Linear regression

LinearRegression, in it’s simplest form, fits a linear model to the data set by adjusting a set
of parameters in order to make the sum of the squared residuals of the model as small as possible.

Linear models: 𝑦 = 𝑋𝛽 + 𝜖

• 𝑋: data

• 𝑦: target variable

• 𝛽: Coefficients

• 𝜖: Observation noise

>>> from sklearn import linear_model
>>> regr = linear_model.LinearRegression()
>>> regr.fit(diabetes_X_train, diabetes_y_train)
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
>>> print(regr.coef_)
[ 0.30349955 -237.63931533 510.53060544 327.73698041 -814.13170937

492.81458798 102.84845219 184.60648906 743.51961675 76.09517222]

>>> # The mean square error
>>> np.mean((regr.predict(diabetes_X_test)-diabetes_y_test)**2)
2004.56760268...

2.2. A tutorial on statistical-learning for scientific data processing 85

http://en.wikipedia.org/wiki/Curse_of_dimensionality


scikit-learn user guide, Release 0.17

>>> # Explained variance score: 1 is perfect prediction
>>> # and 0 means that there is no linear relationship
>>> # between X and Y.
>>> regr.score(diabetes_X_test, diabetes_y_test)
0.5850753022690...

Shrinkage

If there are few data points per dimension, noise in the observations induces high variance:

>>> X = np.c_[ .5, 1].T
>>> y = [.5, 1]
>>> test = np.c_[ 0, 2].T
>>> regr = linear_model.LinearRegression()

>>> import pylab as pl
>>> pl.figure()

>>> np.random.seed(0)
>>> for _ in range(6):
... this_X = .1*np.random.normal(size=(2, 1)) + X
... regr.fit(this_X, y)
... pl.plot(test, regr.predict(test))
... pl.scatter(this_X, y, s=3)

A solution in high-dimensional statistical learning is to shrink the regression coefficients to zero: any
two randomly chosen set of observations are likely to be uncorrelated. This is called Ridge regression:
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>>> regr = linear_model.Ridge(alpha=.1)

>>> pl.figure()

>>> np.random.seed(0)
>>> for _ in range(6):
... this_X = .1*np.random.normal(size=(2, 1)) + X
... regr.fit(this_X, y)
... pl.plot(test, regr.predict(test))
... pl.scatter(this_X, y, s=3)

This is an example of bias/variance tradeoff: the larger the ridge alpha parameter, the higher the bias and the lower
the variance.

We can choose alpha to minimize left out error, this time using the diabetes dataset rather than our synthetic data:

>>> alphas = np.logspace(-4, -1, 6)
>>> from __future__ import print_function
>>> print([regr.set_params(alpha=alpha
... ).fit(diabetes_X_train, diabetes_y_train,
... ).score(diabetes_X_test, diabetes_y_test) for alpha in alphas])
[0.5851110683883..., 0.5852073015444..., 0.5854677540698..., 0.5855512036503..., 0.5830717085554..., 0.57058999437...]

Note: Capturing in the fitted parameters noise that prevents the model to generalize to new data is called overfitting.
The bias introduced by the ridge regression is called a regularization.

Sparsity

Fitting only features 1 and 2
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Note: A representation of the full diabetes dataset would involve 11 dimensions (10 feature dimensions and one of
the target variable). It is hard to develop an intuition on such representation, but it may be useful to keep in mind that
it would be a fairly empty space.

We can see that, although feature 2 has a strong coefficient on the full model, it conveys little information on y when
considered with feature 1.

To improve the conditioning of the problem (i.e. mitigating the The curse of dimensionality), it would be interesting
to select only the informative features and set non-informative ones, like feature 2 to 0. Ridge regression will decrease
their contribution, but not set them to zero. Another penalization approach, called Lasso (least absolute shrinkage and
selection operator), can set some coefficients to zero. Such methods are called sparse method and sparsity can be
seen as an application of Occam’s razor: prefer simpler models.

>>> regr = linear_model.Lasso()
>>> scores = [regr.set_params(alpha=alpha
... ).fit(diabetes_X_train, diabetes_y_train
... ).score(diabetes_X_test, diabetes_y_test)
... for alpha in alphas]
>>> best_alpha = alphas[scores.index(max(scores))]
>>> regr.alpha = best_alpha
>>> regr.fit(diabetes_X_train, diabetes_y_train)
Lasso(alpha=0.025118864315095794, copy_X=True, fit_intercept=True,

max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)

>>> print(regr.coef_)
[ 0. -212.43764548 517.19478111 313.77959962 -160.8303982 -0.
-187.19554705 69.38229038 508.66011217 71.84239008]

Different algorithms for the same problem

Different algorithms can be used to solve the same mathematical problem. For instance the Lasso object
in scikit-learn solves the lasso regression problem using a coordinate decent method, that is efficient on large
datasets. However, scikit-learn also provides the LassoLars object using the LARS algorthm, which is very
efficient for problems in which the weight vector estimated is very sparse (i.e. problems with very few observa-
tions).

Classification

For classification, as in the labeling iris task, linear regression is not
the right approach as it will give too much weight to data far from the decision frontier. A linear approach is to fit a
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sigmoid function or logistic function:

𝑦 = sigmoid(𝑋𝛽 − offset) + 𝜖 =
1

1 + exp(−𝑋𝛽 + offset)
+ 𝜖

>>> logistic = linear_model.LogisticRegression(C=1e5)
>>> logistic.fit(iris_X_train, iris_y_train)
LogisticRegression(C=100000.0, class_weight=None, dual=False,

fit_intercept=True, intercept_scaling=1, max_iter=100,
multi_class='ovr', n_jobs=1, penalty='l2', random_state=None,
solver='liblinear', tol=0.0001, verbose=0, warm_start=False)

This is known as LogisticRegression.

Multiclass classification

If you have several classes to predict, an option often used is to fit one-versus-all classifiers and then use a voting
heuristic for the final decision.

Shrinkage and sparsity with logistic regression

The C parameter controls the amount of regularization in the LogisticRegression object: a large value
for C results in less regularization. penalty="l2" gives Shrinkage (i.e. non-sparse coefficients), while
penalty="l1" gives Sparsity.

Exercise

Try classifying the digits dataset with nearest neighbors and a linear model. Leave out the last 10% and test
prediction performance on these observations.

from sklearn import datasets, neighbors, linear_model

digits = datasets.load_digits()
X_digits = digits.data
y_digits = digits.target

Solution: ../../auto_examples/exercises/digits_classification_exercise.py
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Support vector machines (SVMs)

Linear SVMs

Support Vector Machines belong to the discriminant model family: they try to find a combination of samples to build
a plane maximizing the margin between the two classes. Regularization is set by the C parameter: a small value for C
means the margin is calculated using many or all of the observations around the separating line (more regularization);
a large value for C means the margin is calculated on observations close to the separating line (less regularization).

Unregularized SVM Regularized SVM (default)

Example:

• Plot different SVM classifiers in the iris dataset

SVMs can be used in regression –SVR (Support Vector Regression)–, or in classification –SVC (Support Vector Clas-
sification).

>>> from sklearn import svm
>>> svc = svm.SVC(kernel='linear')
>>> svc.fit(iris_X_train, iris_y_train)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape=None, degree=3, gamma='auto', kernel='linear',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

Warning: Normalizing data
For many estimators, including the SVMs, having datasets with unit standard deviation for each feature is important
to get good prediction.

Using kernels

Classes are not always linearly separable in feature space. The solution is to build a decision function that is not linear
but may be polynomial instead. This is done using the kernel trick that can be seen as creating a decision energy by
positioning kernels on observations:
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Linear kernel Polynomial kernel

>>> svc = svm.SVC(kernel='linear') >>> svc = svm.SVC(kernel='poly',
... degree=3)
>>> # degree: polynomial degree

RBF kernel (Radial Basis Function)

>>> svc = svm.SVC(kernel='rbf')
>>> # gamma: inverse of size of
>>> # radial kernel

Interactive example

See the SVM GUI to download svm_gui.py; add data points of both classes with right and left button, fit the
model and change parameters and data.
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Exercise

Try classifying classes 1 and 2 from the iris dataset with SVMs, with the 2 first features. Leave out 10% of each
class and test prediction performance on these observations.
Warning: the classes are ordered, do not leave out the last 10%, you would be testing on only one class.
Hint: You can use the decision_function method on a grid to get intuitions.

iris = datasets.load_iris()
X = iris.data
y = iris.target

X = X[y != 0, :2]
y = y[y != 0]

Solution: ../../auto_examples/exercises/plot_iris_exercise.py

2.2.3 Model selection: choosing estimators and their parameters

Score, and cross-validated scores

As we have seen, every estimator exposes a score method that can judge the quality of the fit (or the prediction) on
new data. Bigger is better.

>>> from sklearn import datasets, svm
>>> digits = datasets.load_digits()
>>> X_digits = digits.data
>>> y_digits = digits.target
>>> svc = svm.SVC(C=1, kernel='linear')
>>> svc.fit(X_digits[:-100], y_digits[:-100]).score(X_digits[-100:], y_digits[-100:])
0.97999999999999998

To get a better measure of prediction accuracy (which we can use as a proxy for goodness of fit of the model), we can
successively split the data in folds that we use for training and testing:
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>>> import numpy as np
>>> X_folds = np.array_split(X_digits, 3)
>>> y_folds = np.array_split(y_digits, 3)
>>> scores = list()
>>> for k in range(3):
... # We use 'list' to copy, in order to 'pop' later on
... X_train = list(X_folds)
... X_test = X_train.pop(k)
... X_train = np.concatenate(X_train)
... y_train = list(y_folds)
... y_test = y_train.pop(k)
... y_train = np.concatenate(y_train)
... scores.append(svc.fit(X_train, y_train).score(X_test, y_test))
>>> print(scores)
[0.93489148580968284, 0.95659432387312182, 0.93989983305509184]

This is called a KFold cross validation

Cross-validation generators

The code above to split data in train and test sets is tedious to write. Scikit-learn exposes cross-validation generators
to generate list of indices for this purpose:

>>> from sklearn import cross_validation
>>> k_fold = cross_validation.KFold(n=6, n_folds=3)
>>> for train_indices, test_indices in k_fold:
... print('Train: %s | test: %s' % (train_indices, test_indices))
Train: [2 3 4 5] | test: [0 1]
Train: [0 1 4 5] | test: [2 3]
Train: [0 1 2 3] | test: [4 5]

The cross-validation can then be implemented easily:

>>> kfold = cross_validation.KFold(len(X_digits), n_folds=3)
>>> [svc.fit(X_digits[train], y_digits[train]).score(X_digits[test], y_digits[test])
... for train, test in kfold]
[0.93489148580968284, 0.95659432387312182, 0.93989983305509184]

To compute the score method of an estimator, the sklearn exposes a helper function:

>>> cross_validation.cross_val_score(svc, X_digits, y_digits, cv=kfold, n_jobs=-1)
array([ 0.93489149, 0.95659432, 0.93989983])

n_jobs=-1 means that the computation will be dispatched on all the CPUs of the computer.

Cross-validation generators

KFold (n, k) StratifiedKFold (y, k) LeaveOneOut
(n)

LeaveOneLabelOut
(labels)

Split it K folds, train on K-1
and then test on left-out

It preserves the class ratios / label
distribution within each fold.

Leave one
observation
out

Takes a label array to
group observations
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Exercise

On the digits dataset, plot the cross-validation
score of a SVC estimator with an linear kernel as a function of parameter C (use a logarithmic grid of points,
from 1 to 10).

import numpy as np
from sklearn import cross_validation, datasets, svm

digits = datasets.load_digits()
X = digits.data
y = digits.target

svc = svm.SVC(kernel='linear')
C_s = np.logspace(-10, 0, 10)

Solution: Cross-validation on Digits Dataset Exercise

Grid-search and cross-validated estimators

Grid-search

The sklearn provides an object that, given data, computes the score during the fit of an estimator on a parameter
grid and chooses the parameters to maximize the cross-validation score. This object takes an estimator during the
construction and exposes an estimator API:

>>> from sklearn.grid_search import GridSearchCV
>>> Cs = np.logspace(-6, -1, 10)
>>> clf = GridSearchCV(estimator=svc, param_grid=dict(C=Cs),
... n_jobs=-1)
>>> clf.fit(X_digits[:1000], y_digits[:1000])
GridSearchCV(cv=None,...
>>> clf.best_score_
0.925...
>>> clf.best_estimator_.C
0.0077...

>>> # Prediction performance on test set is not as good as on train set
>>> clf.score(X_digits[1000:], y_digits[1000:])
0.943...
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By default, the GridSearchCV uses a 3-fold cross-validation. However, if it detects that a classifier is passed, rather
than a regressor, it uses a stratified 3-fold.

Nested cross-validation

>>> cross_validation.cross_val_score(clf, X_digits, y_digits)
...
array([ 0.938..., 0.963..., 0.944...])

Two cross-validation loops are performed in parallel: one by the GridSearchCV estimator to set gamma and
the other one by cross_val_score to measure the prediction performance of the estimator. The resulting
scores are unbiased estimates of the prediction score on new data.

Warning: You cannot nest objects with parallel computing (n_jobs different than 1).

Cross-validated estimators

Cross-validation to set a parameter can be done more efficiently on an algorithm-by-algorithm basis. This is why for
certain estimators the sklearn exposes Cross-validation: evaluating estimator performance estimators that set their
parameter automatically by cross-validation:

>>> from sklearn import linear_model, datasets
>>> lasso = linear_model.LassoCV()
>>> diabetes = datasets.load_diabetes()
>>> X_diabetes = diabetes.data
>>> y_diabetes = diabetes.target
>>> lasso.fit(X_diabetes, y_diabetes)
LassoCV(alphas=None, copy_X=True, cv=None, eps=0.001, fit_intercept=True,

max_iter=1000, n_alphas=100, n_jobs=1, normalize=False, positive=False,
precompute='auto', random_state=None, selection='cyclic', tol=0.0001,
verbose=False)

>>> # The estimator chose automatically its lambda:
>>> lasso.alpha_
0.01229...

These estimators are called similarly to their counterparts, with ‘CV’ appended to their name.

Exercise

On the diabetes dataset, find the optimal regularization parameter alpha.
Bonus: How much can you trust the selection of alpha?

from sklearn import cross_validation, datasets, linear_model

diabetes = datasets.load_diabetes()
X = diabetes.data[:150]
y = diabetes.target[:150]

lasso = linear_model.Lasso()
alphas = np.logspace(-4, -.5, 30)

Solution: Cross-validation on diabetes Dataset Exercise

2.2. A tutorial on statistical-learning for scientific data processing 95



scikit-learn user guide, Release 0.17

2.2.4 Unsupervised learning: seeking representations of the data

Clustering: grouping observations together

The problem solved in clustering

Given the iris dataset, if we knew that there were 3 types of iris, but did not have access to a taxonomist to label
them: we could try a clustering task: split the observations into well-separated group called clusters.

K-means clustering

Note that there exist a lot of different clustering criteria and associated algorithms. The simplest clustering algorithm

is K-means.

>>> from sklearn import cluster, datasets
>>> iris = datasets.load_iris()
>>> X_iris = iris.data
>>> y_iris = iris.target

>>> k_means = cluster.KMeans(n_clusters=3)
>>> k_means.fit(X_iris)
KMeans(copy_x=True, init='k-means++', ...
>>> print(k_means.labels_[::10])
[1 1 1 1 1 0 0 0 0 0 2 2 2 2 2]
>>> print(y_iris[::10])
[0 0 0 0 0 1 1 1 1 1 2 2 2 2 2]

Warning: There is absolutely no guarantee of recovering a ground truth. First, choosing the right number of
clusters is hard. Second, the algorithm is sensitive to initialization, and can fall into local minima, although scikit-
learn employs several tricks to mitigate this issue.

Bad initialization 8 clusters Ground truth
Don’t over-interpret clustering results
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Application example: vector quantization

Clustering in general and KMeans, in particular, can be seen as a way of choosing a small number of exemplars
to compress the information. The problem is sometimes known as vector quantization. For instance, this can be
used to posterize an image:

>>> import scipy as sp
>>> try:
... lena = sp.lena()
... except AttributeError:
... from scipy import misc
... lena = misc.lena()
>>> X = lena.reshape((-1, 1)) # We need an (n_sample, n_feature) array
>>> k_means = cluster.KMeans(n_clusters=5, n_init=1)
>>> k_means.fit(X)
KMeans(copy_x=True, init='k-means++', ...
>>> values = k_means.cluster_centers_.squeeze()
>>> labels = k_means.labels_
>>> lena_compressed = np.choose(labels, values)
>>> lena_compressed.shape = lena.shape

Raw image K-means quantization Equal bins Image histogram

Hierarchical agglomerative clustering: Ward

A Hierarchical clustering method is a type of cluster analysis that aims to build a hierarchy of clusters. In general, the
various approaches of this technique are either:

• Agglomerative - bottom-up approaches: each observation starts in its own cluster, and clusters are iterativelly
merged in such a way to minimize a linkage criterion. This approach is particularly interesting when the clus-
ters of interest are made of only a few observations. When the number of clusters is large, it is much more
computationally efficient than k-means.

• Divisive - top-down approaches: all observations start in one cluster, which is iteratively split as one moves
down the hierarchy. For estimating large numbers of clusters, this approach is both slow (due to all observations
starting as one cluster, which it splits recursively) and statistically ill-posed.

Connectivity-constrained clustering With agglomerative clustering, it is possible to specify which samples can
be clustered together by giving a connectivity graph. Graphs in the scikit are represented by their adjacency matrix.
Often, a sparse matrix is used. This can be useful, for instance, to retrieve connected regions (sometimes also referred
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to as connected components) when clustering an image:

from sklearn.feature_extraction.image import grid_to_graph
from sklearn.cluster import AgglomerativeClustering

###############################################################################
# Generate data
lena = sp.misc.lena()
# Downsample the image by a factor of 4
lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2]
X = np.reshape(lena, (-1, 1))

###############################################################################
# Define the structure A of the data. Pixels connected to their neighbors.
connectivity = grid_to_graph(*lena.shape)

###############################################################################
# Compute clustering
print("Compute structured hierarchical clustering...")
st = time.time()
n_clusters = 15 # number of regions
ward = AgglomerativeClustering(n_clusters=n_clusters,

linkage='ward', connectivity=connectivity).fit(X)
label = np.reshape(ward.labels_, lena.shape)
print("Elapsed time: ", time.time() - st)
print("Number of pixels: ", label.size)
print("Number of clusters: ", np.unique(label).size)

Feature agglomeration We have seen that sparsity could be used to mitigate the curse of dimensionality, i.e an
insufficient amount of observations compared to the number of features. Another approach is to merge together
similar features: feature agglomeration. This approach can be implemented by clustering in the feature direction, in

other words clustering the transposed data.
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>>> digits = datasets.load_digits()
>>> images = digits.images
>>> X = np.reshape(images, (len(images), -1))
>>> connectivity = grid_to_graph(*images[0].shape)

>>> agglo = cluster.FeatureAgglomeration(connectivity=connectivity,
... n_clusters=32)
>>> agglo.fit(X)
FeatureAgglomeration(affinity='euclidean', compute_full_tree='auto',...
>>> X_reduced = agglo.transform(X)

>>> X_approx = agglo.inverse_transform(X_reduced)
>>> images_approx = np.reshape(X_approx, images.shape)

transform and inverse_transform methods

Some estimators expose a transform method, for instance to reduce the dimensionality of the dataset.

Decompositions: from a signal to components and loadings

Components and loadings

If X is our multivariate data, then the problem that we are trying to solve is to rewrite it on a different observa-
tional basis: we want to learn loadings L and a set of components C such that X = L C. Different criteria exist to
choose the components

Principal component analysis: PCA

Principal component analysis (PCA) selects the successive components that explain the maximum variance in the
signal.

The point cloud spanned by the observations above is very flat in one direction: one of the three univariate features
can almost be exactly computed using the other two. PCA finds the directions in which the data is not flat

When used to transform data, PCA can reduce the dimensionality of the data by projecting on a principal subspace.

>>> # Create a signal with only 2 useful dimensions
>>> x1 = np.random.normal(size=100)
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>>> x2 = np.random.normal(size=100)
>>> x3 = x1 + x2
>>> X = np.c_[x1, x2, x3]

>>> from sklearn import decomposition
>>> pca = decomposition.PCA()
>>> pca.fit(X)
PCA(copy=True, n_components=None, whiten=False)
>>> print(pca.explained_variance_)
[ 2.18565811e+00 1.19346747e+00 8.43026679e-32]

>>> # As we can see, only the 2 first components are useful
>>> pca.n_components = 2
>>> X_reduced = pca.fit_transform(X)
>>> X_reduced.shape
(100, 2)

Independent Component Analysis: ICA

Independent component analysis (ICA) selects components so that the distribution of their loadings carries
a maximum amount of independent information. It is able to recover non-Gaussian independent signals:

>>> # Generate sample data
>>> time = np.linspace(0, 10, 2000)
>>> s1 = np.sin(2 * time) # Signal 1 : sinusoidal signal
>>> s2 = np.sign(np.sin(3 * time)) # Signal 2 : square signal
>>> S = np.c_[s1, s2]
>>> S += 0.2 * np.random.normal(size=S.shape) # Add noise
>>> S /= S.std(axis=0) # Standardize data
>>> # Mix data
>>> A = np.array([[1, 1], [0.5, 2]]) # Mixing matrix
>>> X = np.dot(S, A.T) # Generate observations

>>> # Compute ICA
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>>> ica = decomposition.FastICA()
>>> S_ = ica.fit_transform(X) # Get the estimated sources
>>> A_ = ica.mixing_.T
>>> np.allclose(X, np.dot(S_, A_) + ica.mean_)
True

2.2.5 Putting it all together

Pipelining

We have seen that some estimators can transform data and that some estimators can predict variables. We can also

create combined estimators:

from sklearn import linear_model, decomposition, datasets
from sklearn.pipeline import Pipeline
from sklearn.grid_search import GridSearchCV

logistic = linear_model.LogisticRegression()

pca = decomposition.PCA()
pipe = Pipeline(steps=[('pca', pca), ('logistic', logistic)])

digits = datasets.load_digits()
X_digits = digits.data
y_digits = digits.target

###############################################################################
# Plot the PCA spectrum
pca.fit(X_digits)

plt.figure(1, figsize=(4, 3))
plt.clf()
plt.axes([.2, .2, .7, .7])
plt.plot(pca.explained_variance_, linewidth=2)
plt.axis('tight')
plt.xlabel('n_components')
plt.ylabel('explained_variance_')

###############################################################################
# Prediction

n_components = [20, 40, 64]
Cs = np.logspace(-4, 4, 3)
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#Parameters of pipelines can be set using ‘__’ separated parameter names:

estimator = GridSearchCV(pipe,
dict(pca__n_components=n_components,

logistic__C=Cs))
estimator.fit(X_digits, y_digits)

plt.axvline(estimator.best_estimator_.named_steps['pca'].n_components,
linestyle=':', label='n_components chosen')

plt.legend(prop=dict(size=12))

Face recognition with eigenfaces

The dataset used in this example is a preprocessed excerpt of the “Labeled Faces in the Wild”, also known as LFW:

http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB)

"""
===================================================
Faces recognition example using eigenfaces and SVMs
===================================================

The dataset used in this example is a preprocessed excerpt of the
"Labeled Faces in the Wild", aka LFW_:

http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB)

.. _LFW: http://vis-www.cs.umass.edu/lfw/

Expected results for the top 5 most represented people in the dataset:

================== ============ ======= ========== =======
precision recall f1-score support

================== ============ ======= ========== =======
Ariel Sharon 0.67 0.92 0.77 13
Colin Powell 0.75 0.78 0.76 60

Donald Rumsfeld 0.78 0.67 0.72 27
George W Bush 0.86 0.86 0.86 146

Gerhard Schroeder 0.76 0.76 0.76 25
Hugo Chavez 0.67 0.67 0.67 15
Tony Blair 0.81 0.69 0.75 36

avg / total 0.80 0.80 0.80 322
================== ============ ======= ========== =======

"""
from __future__ import print_function

from time import time
import logging
import matplotlib.pyplot as plt

from sklearn.cross_validation import train_test_split
from sklearn.datasets import fetch_lfw_people
from sklearn.grid_search import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
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from sklearn.decomposition import RandomizedPCA
from sklearn.svm import SVC

print(__doc__)

# Display progress logs on stdout
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')

###############################################################################
# Download the data, if not already on disk and load it as numpy arrays

lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

# introspect the images arrays to find the shapes (for plotting)
n_samples, h, w = lfw_people.images.shape

# for machine learning we use the 2 data directly (as relative pixel
# positions info is ignored by this model)
X = lfw_people.data
n_features = X.shape[1]

# the label to predict is the id of the person
y = lfw_people.target
target_names = lfw_people.target_names
n_classes = target_names.shape[0]

print("Total dataset size:")
print("n_samples: %d" % n_samples)
print("n_features: %d" % n_features)
print("n_classes: %d" % n_classes)

###############################################################################
# Split into a training set and a test set using a stratified k fold

# split into a training and testing set
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.25, random_state=42)

###############################################################################
# Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled
# dataset): unsupervised feature extraction / dimensionality reduction
n_components = 150

print("Extracting the top %d eigenfaces from %d faces"
% (n_components, X_train.shape[0]))

t0 = time()
pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train)
print("done in %0.3fs" % (time() - t0))

eigenfaces = pca.components_.reshape((n_components, h, w))

print("Projecting the input data on the eigenfaces orthonormal basis")
t0 = time()
X_train_pca = pca.transform(X_train)
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X_test_pca = pca.transform(X_test)
print("done in %0.3fs" % (time() - t0))

###############################################################################
# Train a SVM classification model

print("Fitting the classifier to the training set")
t0 = time()
param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5],

'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }
clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid)
clf = clf.fit(X_train_pca, y_train)
print("done in %0.3fs" % (time() - t0))
print("Best estimator found by grid search:")
print(clf.best_estimator_)

###############################################################################
# Quantitative evaluation of the model quality on the test set

print("Predicting people's names on the test set")
t0 = time()
y_pred = clf.predict(X_test_pca)
print("done in %0.3fs" % (time() - t0))

print(classification_report(y_test, y_pred, target_names=target_names))
print(confusion_matrix(y_test, y_pred, labels=range(n_classes)))

###############################################################################
# Qualitative evaluation of the predictions using matplotlib

def plot_gallery(images, titles, h, w, n_row=3, n_col=4):
"""Helper function to plot a gallery of portraits"""
plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))
plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)
for i in range(n_row * n_col):

plt.subplot(n_row, n_col, i + 1)
plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)
plt.title(titles[i], size=12)
plt.xticks(())
plt.yticks(())

# plot the result of the prediction on a portion of the test set

def title(y_pred, y_test, target_names, i):
pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1]
true_name = target_names[y_test[i]].rsplit(' ', 1)[-1]
return 'predicted: %s\ntrue: %s' % (pred_name, true_name)

prediction_titles = [title(y_pred, y_test, target_names, i)
for i in range(y_pred.shape[0])]

plot_gallery(X_test, prediction_titles, h, w)

# plot the gallery of the most significative eigenfaces
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eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]
plot_gallery(eigenfaces, eigenface_titles, h, w)

plt.show()

Prediction Eigenfaces

Expected results for the top 5 most represented people in the dataset:

precision recall f1-score support

Gerhard_Schroeder 0.91 0.75 0.82 28
Donald_Rumsfeld 0.84 0.82 0.83 33

Tony_Blair 0.65 0.82 0.73 34
Colin_Powell 0.78 0.88 0.83 58

George_W_Bush 0.93 0.86 0.90 129

avg / total 0.86 0.84 0.85 282

Open problem: Stock Market Structure

Can we predict the variation in stock prices for Google over a given time frame?

Learning a graph structure

2.2.6 Finding help

The project mailing list

If you encounter a bug with scikit-learn or something that needs clarification in the docstring or the online
documentation, please feel free to ask on the Mailing List

Q&A communities with Machine Learning practitioners

Metaoptimize/QA A forum for Machine Learning, Natural Language Processing and
other Data Analytics discussions (similar to what Stackoverflow is for developers):
http://metaoptimize.com/qa

A good starting point is the discussion on good freely available textbooks on machine
learning

Quora.com Quora has a topic for Machine Learning related questions that also features some
interesting discussions: http://quora.com/Machine-Learning
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Have a look at the best questions section, eg: What are some good resources for learning
about machine learning.

– _’An excellent free online course for Machine Learning taught by Professor Andrew Ng of Stanford’:
https://www.coursera.org/course/ml

– _’Another excellent free online course that takes a more general approach to Artificial Intelli-
gence’:http://www.udacity.com/overview/Course/cs271/CourseRev/1

2.3 Working With Text Data

The goal of this guide is to explore some of the main scikit-learn tools on a single practical task: analysing a
collection of text documents (newsgroups posts) on twenty different topics.

In this section we will see how to:

• load the file contents and the categories

• extract feature vectors suitable for machine learning

• train a linear model to perform categorization

• use a grid search strategy to find a good configuration of both the feature extraction components and the classifier

2.3.1 Tutorial setup

To get started with this tutorial, you firstly must have the scikit-learn and all of its required dependencies installed.

Please refer to the installation instructions page for more information and for per-system instructions.

The source of this tutorial can be found within your scikit-learn folder:

scikit-learn/doc/tutorial/text_analytics/

The tutorial folder, should contain the following folders:

• *.rst files - the source of the tutorial document written with sphinx

• data - folder to put the datasets used during the tutorial

• skeletons - sample incomplete scripts for the exercises

• solutions - solutions of the exercises

You can already copy the skeletons into a new folder somewhere on your hard-drive named
sklearn_tut_workspace where you will edit your own files for the exercises while keeping the original
skeletons intact:

% cp -r skeletons work_directory/sklearn_tut_workspace

Machine Learning algorithms need data. Go to each $TUTORIAL_HOME/data sub-folder and run the
fetch_data.py script from there (after having read them first).

For instance:

% cd $TUTORIAL_HOME/data/languages
% less fetch_data.py
% python fetch_data.py

106 Chapter 2. scikit-learn Tutorials

http://www.quora.com/What-are-some-good-resources-for-learning-about-machine-learning
http://www.quora.com/What-are-some-good-resources-for-learning-about-machine-learning
https://www.coursera.org/course/ml
http://www.udacity.com/overview/Course/cs271/CourseRev/1


scikit-learn user guide, Release 0.17

2.3.2 Loading the 20 newsgroups dataset

The dataset is called “Twenty Newsgroups”. Here is the official description, quoted from the website:

The 20 Newsgroups data set is a collection of approximately 20,000 newsgroup documents, partitioned
(nearly) evenly across 20 different newsgroups. To the best of our knowledge, it was originally collected
by Ken Lang, probably for his paper “Newsweeder: Learning to filter netnews,” though he does not explic-
itly mention this collection. The 20 newsgroups collection has become a popular data set for experiments
in text applications of machine learning techniques, such as text classification and text clustering.

In the following we will use the built-in dataset loader for 20 newsgroups from scikit-learn. Alternatively, it is possible
to download the dataset manually from the web-site and use the sklearn.datasets.load_files function by
pointing it to the 20news-bydate-train subfolder of the uncompressed archive folder.

In order to get faster execution times for this first example we will work on a partial dataset with only 4 categories out
of the 20 available in the dataset:

>>> categories = ['alt.atheism', 'soc.religion.christian',
... 'comp.graphics', 'sci.med']

We can now load the list of files matching those categories as follows:

>>> from sklearn.datasets import fetch_20newsgroups
>>> twenty_train = fetch_20newsgroups(subset='train',
... categories=categories, shuffle=True, random_state=42)

The returned dataset is a scikit-learn “bunch”: a simple holder object with fields that can be both accessed
as python dict keys or object attributes for convenience, for instance the target_names holds the list of the
requested category names:

>>> twenty_train.target_names
['alt.atheism', 'comp.graphics', 'sci.med', 'soc.religion.christian']

The files themselves are loaded in memory in the data attribute. For reference the filenames are also available:

>>> len(twenty_train.data)
2257
>>> len(twenty_train.filenames)
2257

Let’s print the first lines of the first loaded file:

>>> print("\n".join(twenty_train.data[0].split("\n")[:3]))
From: sd345@city.ac.uk (Michael Collier)
Subject: Converting images to HP LaserJet III?
Nntp-Posting-Host: hampton

>>> print(twenty_train.target_names[twenty_train.target[0]])
comp.graphics

Supervised learning algorithms will require a category label for each document in the training set. In this case the cat-
egory is the name of the newsgroup which also happens to be the name of the folder holding the individual documents.

For speed and space efficiency reasons scikit-learn loads the target attribute as an array of integers that corre-
sponds to the index of the category name in the target_names list. The category integer id of each sample is stored
in the target attribute:

>>> twenty_train.target[:10]
array([1, 1, 3, 3, 3, 3, 3, 2, 2, 2])

It is possible to get back the category names as follows:
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>>> for t in twenty_train.target[:10]:
... print(twenty_train.target_names[t])
...
comp.graphics
comp.graphics
soc.religion.christian
soc.religion.christian
soc.religion.christian
soc.religion.christian
soc.religion.christian
sci.med
sci.med
sci.med

You can notice that the samples have been shuffled randomly (with a fixed RNG seed): this is useful if you select only
the first samples to quickly train a model and get a first idea of the results before re-training on the complete dataset
later.

2.3.3 Extracting features from text files

In order to perform machine learning on text documents, we first need to turn the text content into numerical feature
vectors.

Bags of words

The most intuitive way to do so is the bags of words representation:

1. assign a fixed integer id to each word occurring in any document of the training set (for instance by building a
dictionary from words to integer indices).

2. for each document #i, count the number of occurrences of each word w and store it in X[i, j] as the value
of feature #j where j is the index of word w in the dictionary

The bags of words representation implies that n_features is the number of distinct words in the corpus: this
number is typically larger that 100,000.

If n_samples == 10000, storing X as a numpy array of type float32 would require 10000 x 100000 x 4 bytes =
4GB in RAM which is barely manageable on today’s computers.

Fortunately, most values in X will be zeros since for a given document less than a couple thousands of distinct words
will be used. For this reason we say that bags of words are typically high-dimensional sparse datasets. We can save
a lot of memory by only storing the non-zero parts of the feature vectors in memory.

scipy.sparse matrices are data structures that do exactly this, and scikit-learn has built-in support for these
structures.

Tokenizing text with scikit-learn

Text preprocessing, tokenizing and filtering of stopwords are included in a high level component that is able to build a
dictionary of features and transform documents to feature vectors:

>>> from sklearn.feature_extraction.text import CountVectorizer
>>> count_vect = CountVectorizer()
>>> X_train_counts = count_vect.fit_transform(twenty_train.data)
>>> X_train_counts.shape
(2257, 35788)
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CountVectorizer supports counts of N-grams of words or consequective characters. Once fitted, the vectorizer
has built a dictionary of feature indices:

>>> count_vect.vocabulary_.get(u'algorithm')
4690

The index value of a word in the vocabulary is linked to its frequency in the whole training corpus.

From occurrences to frequencies

Occurrence count is a good start but there is an issue: longer documents will have higher average count values than
shorter documents, even though they might talk about the same topics.

To avoid these potential discrepancies it suffices to divide the number of occurrences of each word in a document by
the total number of words in the document: these new features are called tf for Term Frequencies.

Another refinement on top of tf is to downscale weights for words that occur in many documents in the corpus and are
therefore less informative than those that occur only in a smaller portion of the corpus.

This downscaling is called tf–idf for “Term Frequency times Inverse Document Frequency”.

Both tf and tf–idf can be computed as follows:

>>> from sklearn.feature_extraction.text import TfidfTransformer
>>> tf_transformer = TfidfTransformer(use_idf=False).fit(X_train_counts)
>>> X_train_tf = tf_transformer.transform(X_train_counts)
>>> X_train_tf.shape
(2257, 35788)

In the above example-code, we firstly use the fit(..) method to fit our estimator to the data and secondly
the transform(..) method to transform our count-matrix to a tf-idf representation. These two steps can be
combined to achieve the same end result faster by skipping redundant processing. This is done through using the
fit_transform(..) method as shown below, and as mentioned in the note in the previous section:

>>> tfidf_transformer = TfidfTransformer()
>>> X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts)
>>> X_train_tfidf.shape
(2257, 35788)

2.3.4 Training a classifier

Now that we have our features, we can train a classifier to try to predict the category of a post. Let’s start with a
naïve Bayes classifier, which provides a nice baseline for this task. scikit-learn includes several variants of this
classifier; the one most suitable for word counts is the multinomial variant:

>>> from sklearn.naive_bayes import MultinomialNB
>>> clf = MultinomialNB().fit(X_train_tfidf, twenty_train.target)

To try to predict the outcome on a new document we need to extract the features using almost the same feature extract-
ing chain as before. The difference is that we call transform instead of fit_transform on the transformers,
since they have already been fit to the training set:

>>> docs_new = ['God is love', 'OpenGL on the GPU is fast']
>>> X_new_counts = count_vect.transform(docs_new)
>>> X_new_tfidf = tfidf_transformer.transform(X_new_counts)

>>> predicted = clf.predict(X_new_tfidf)
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>>> for doc, category in zip(docs_new, predicted):
... print('%r => %s' % (doc, twenty_train.target_names[category]))
...
'God is love' => soc.religion.christian
'OpenGL on the GPU is fast' => comp.graphics

2.3.5 Building a pipeline

In order to make the vectorizer => transformer => classifier easier to work with, scikit-learn provides a
Pipeline class that behaves like a compound classifier:

>>> from sklearn.pipeline import Pipeline
>>> text_clf = Pipeline([('vect', CountVectorizer()),
... ('tfidf', TfidfTransformer()),
... ('clf', MultinomialNB()),
... ])

The names vect, tfidf and clf (classifier) are arbitrary. We shall see their use in the section on grid search, below.
We can now train the model with a single command:

>>> text_clf = text_clf.fit(twenty_train.data, twenty_train.target)

2.3.6 Evaluation of the performance on the test set

Evaluating the predictive accuracy of the model is equally easy:

>>> import numpy as np
>>> twenty_test = fetch_20newsgroups(subset='test',
... categories=categories, shuffle=True, random_state=42)
>>> docs_test = twenty_test.data
>>> predicted = text_clf.predict(docs_test)
>>> np.mean(predicted == twenty_test.target)
0.834...

I.e., we achieved 83.4% accuracy. Let’s see if we can do better with a linear support vector machine (SVM), which is
widely regarded as one of the best text classification algorithms (although it’s also a bit slower than naïve Bayes). We
can change the learner by just plugging a different classifier object into our pipeline:

>>> from sklearn.linear_model import SGDClassifier
>>> text_clf = Pipeline([('vect', CountVectorizer()),
... ('tfidf', TfidfTransformer()),
... ('clf', SGDClassifier(loss='hinge', penalty='l2',
... alpha=1e-3, n_iter=5, random_state=42)),
... ])
>>> _ = text_clf.fit(twenty_train.data, twenty_train.target)
>>> predicted = text_clf.predict(docs_test)
>>> np.mean(predicted == twenty_test.target)
0.912...

scikit-learn further provides utilities for more detailed performance analysis of the results:

>>> from sklearn import metrics
>>> print(metrics.classification_report(twenty_test.target, predicted,
... target_names=twenty_test.target_names))
...

precision recall f1-score support
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alt.atheism 0.95 0.81 0.87 319
comp.graphics 0.88 0.97 0.92 389

sci.med 0.94 0.90 0.92 396
soc.religion.christian 0.90 0.95 0.93 398

avg / total 0.92 0.91 0.91 1502

>>> metrics.confusion_matrix(twenty_test.target, predicted)
array([[258, 11, 15, 35],

[ 4, 379, 3, 3],
[ 5, 33, 355, 3],
[ 5, 10, 4, 379]])

As expected the confusion matrix shows that posts from the newsgroups on atheism and christian are more often
confused for one another than with computer graphics.

2.3.7 Parameter tuning using grid search

We’ve already encountered some parameters such as use_idf in the TfidfTransformer. Classifiers tend to have
many parameters as well; e.g., MultinomialNB includes a smoothing parameter alpha and SGDClassifier
has a penalty parameter alpha and configurable loss and penalty terms in the objective function (see the module
documentation, or use the Python help function, to get a description of these).

Instead of tweaking the parameters of the various components of the chain, it is possible to run an exhaustive search of
the best parameters on a grid of possible values. We try out all classifiers on either words or bigrams, with or without
idf, and with a penalty parameter of either 0.01 or 0.001 for the linear SVM:

>>> from sklearn.grid_search import GridSearchCV
>>> parameters = {'vect__ngram_range': [(1, 1), (1, 2)],
... 'tfidf__use_idf': (True, False),
... 'clf__alpha': (1e-2, 1e-3),
... }

Obviously, such an exhaustive search can be expensive. If we have multiple CPU cores at our disposal, we can tell
the grid searcher to try these eight parameter combinations in parallel with the n_jobs parameter. If we give this
parameter a value of -1, grid search will detect how many cores are installed and uses them all:

>>> gs_clf = GridSearchCV(text_clf, parameters, n_jobs=-1)

The grid search instance behaves like a normal scikit-learn model. Let’s perform the search on a smaller subset
of the training data to speed up the computation:

>>> gs_clf = gs_clf.fit(twenty_train.data[:400], twenty_train.target[:400])

The result of calling fit on a GridSearchCV object is a classifier that we can use to predict:

>>> twenty_train.target_names[gs_clf.predict(['God is love'])]
'soc.religion.christian'

but otherwise, it’s a pretty large and clumsy object. We can, however, get the optimal parameters out by inspecting the
object’s grid_scores_ attribute, which is a list of parameters/score pairs. To get the best scoring attributes, we can
do:

>>> best_parameters, score, _ = max(gs_clf.grid_scores_, key=lambda x: x[1])
>>> for param_name in sorted(parameters.keys()):
... print("%s: %r" % (param_name, best_parameters[param_name]))
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...
clf__alpha: 0.001
tfidf__use_idf: True
vect__ngram_range: (1, 1)

>>> score
0.900...

Exercises

To do the exercises, copy the content of the ‘skeletons’ folder as a new folder named ‘workspace’:

% cp -r skeletons workspace

You can then edit the content of the workspace without fear of loosing the original exercise instructions.

Then fire an ipython shell and run the work-in-progress script with:

[1] %run workspace/exercise_XX_script.py arg1 arg2 arg3

If an exception is triggered, use %debug to fire-up a post mortem ipdb session.

Refine the implementation and iterate until the exercise is solved.

For each exercise, the skeleton file provides all the necessary import statements, boilerplate code to load the
data and sample code to evaluate the predictive accurracy of the model.

2.3.8 Exercise 1: Language identification

• Write a text classification pipeline using a custom preprocessor and CharNGramAnalyzer using data from
Wikipedia articles as training set.

• Evaluate the performance on some held out test set.

ipython command line:

%run workspace/exercise_01_language_train_model.py data/languages/paragraphs/

2.3.9 Exercise 2: Sentiment Analysis on movie reviews

• Write a text classification pipeline to classify movie reviews as either positive or negative.

• Find a good set of parameters using grid search.

• Evaluate the performance on a held out test set.

ipython command line:

%run workspace/exercise_02_sentiment.py data/movie_reviews/txt_sentoken/

2.3.10 Exercise 3: CLI text classification utility

Using the results of the previous exercises and the cPickle module of the standard library, write a command line
utility that detects the language of some text provided on stdin and estimate the polarity (positive or negative) if the
text is written in English.

Bonus point if the utility is able to give a confidence level for its predictions.
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2.3.11 Where to from here

Here are a few suggestions to help further your scikit-learn intuition upon the completion of this tutorial:

• Try playing around with the analyzer and token normalisation under CountVectorizer

• If you don’t have labels, try using Clustering on your problem.

• If you have multiple labels per document, e.g categories, have a look at the Multiclass and multilabel section

• Try using Truncated SVD for latent semantic analysis.

• Have a look at using Out-of-core Classification to learn from data that would not fit into the computer main
memory.

• Have a look at the Hashing Vectorizer as a memory efficient alternative to CountVectorizer.

2.4 Choosing the right estimator

Often the hardest part of solving a machine learning problem can be finding the right estimator for the job.

Different estimators are better suited for different types of data and different problems.

The flowchart below is designed to give users a bit of a rough guide on how to approach problems with regard to which
estimators to try on your data.

Click on any estimator in the chart below to see it’s documentation.

2.5 External Resources, Videos and Talks

For written tutorials, see the Tutorial section of the documentation.

2.5.1 New to Scientific Python?

For those that are still new to the scientific Python ecosystem, we highly recommend the Python Scientific Lecture
Notes. This will help you find your footing a bit and will definitely improve your scikit-learn experience. A basic
understanding of NumPy arrays is recommended to make the most of scikit-learn.

2.5.2 External Tutorials

There are several online tutorials available which are geared toward specific subject areas:

• Machine Learning for NeuroImaging in Python

• Machine Learning for Astronomical Data Analysis

2.5.3 Videos

• An introduction to scikit-learn Part I and Part II at Scipy 2013 by Gael Varoquaux, Jake Vanderplas and Olivier
Grisel. Notebooks on github.

• Introduction to scikit-learn by Gael Varoquaux at ICML 2010

A three minute video from a very early stage of the scikit, explaining the basic idea and approach we
are following.
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• Introduction to statistical learning with scikit-learn by Gael Varoquaux at SciPy 2011

An extensive tutorial, consisting of four sessions of one hour. The tutorial covers the basics of ma-
chine learning, many algorithms and how to apply them using scikit-learn. The material correspond-
ing is now in the scikit-learn documentation section A tutorial on statistical-learning for scientific
data processing.

• Statistical Learning for Text Classification with scikit-learn and NLTK (and slides) by Olivier Grisel at PyCon
2011

Thirty minute introduction to text classification. Explains how to use NLTK and scikit-learn to solve
real-world text classification tasks and compares against cloud-based solutions.

• Introduction to Interactive Predictive Analytics in Python with scikit-learn by Olivier Grisel at PyCon 2012

3-hours long introduction to prediction tasks using scikit-learn.

• scikit-learn - Machine Learning in Python by Jake Vanderplas at the 2012 PyData workshop at Google

Interactive demonstration of some scikit-learn features. 75 minutes.

• scikit-learn tutorial by Jake Vanderplas at PyData NYC 2012

Presentation using the online tutorial, 45 minutes.

Note: Doctest Mode
The code-examples in the above tutorials are written in a python-console format. If you wish to easily execute these
examples in IPython, use:

%doctest_mode

in the IPython-console. You can then simply copy and paste the examples directly into IPython without having to
worry about removing the >>> manually.
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3.1 Supervised learning

3.1.1 Generalized Linear Models

The following are a set of methods intended for regression in which the target value is expected to be a linear combi-
nation of the input variables. In mathematical notion, if 𝑦 is the predicted value.

𝑦(𝑤, 𝑥) = 𝑤0 + 𝑤1𝑥1 + ...+ 𝑤𝑝𝑥𝑝

Across the module, we designate the vector 𝑤 = (𝑤1, ..., 𝑤𝑝) as coef_ and 𝑤0 as intercept_.

To perform classification with generalized linear models, see Logistic regression.

Ordinary Least Squares

LinearRegression fits a linear model with coefficients 𝑤 = (𝑤1, ..., 𝑤𝑝) to minimize the residual sum of squares
between the observed responses in the dataset, and the responses predicted by the linear approximation. Mathemati-
cally it solves a problem of the form:

𝑚𝑖𝑛
𝑤
||𝑋𝑤 − 𝑦||22

LinearRegression will take in its fit method arrays X, y and will store the coefficients 𝑤 of the linear model
in its coef_ member:
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>>> from sklearn import linear_model
>>> clf = linear_model.LinearRegression()
>>> clf.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2])
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
>>> clf.coef_
array([ 0.5, 0.5])

However, coefficient estimates for Ordinary Least Squares rely on the independence of the model terms. When terms
are correlated and the columns of the design matrix 𝑋 have an approximate linear dependence, the design matrix
becomes close to singular and as a result, the least-squares estimate becomes highly sensitive to random errors in the
observed response, producing a large variance. This situation of multicollinearity can arise, for example, when data
are collected without an experimental design.

Examples:

• Linear Regression Example

Ordinary Least Squares Complexity

This method computes the least squares solution using a singular value decomposition of X. If X is a matrix of size (n,
p) this method has a cost of 𝑂(𝑛𝑝2), assuming that 𝑛 ≥ 𝑝.

Ridge Regression

Ridge regression addresses some of the problems of Ordinary Least Squares by imposing a penalty on the size of
coefficients. The ridge coefficients minimize a penalized residual sum of squares,

𝑚𝑖𝑛
𝑤
||𝑋𝑤 − 𝑦||22 + 𝛼||𝑤||22

Here, 𝛼 ≥ 0 is a complexity parameter that controls the amount of shrinkage: the larger the value of 𝛼, the greater the
amount of shrinkage and thus the coefficients become more robust to collinearity.

As with other linear models, Ridge will take in its fit method arrays X, y and will store the coefficients 𝑤 of the
linear model in its coef_ member:
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>>> from sklearn import linear_model
>>> clf = linear_model.Ridge (alpha = .5)
>>> clf.fit ([[0, 0], [0, 0], [1, 1]], [0, .1, 1])
Ridge(alpha=0.5, copy_X=True, fit_intercept=True, max_iter=None,

normalize=False, random_state=None, solver='auto', tol=0.001)
>>> clf.coef_
array([ 0.34545455, 0.34545455])
>>> clf.intercept_
0.13636...

Examples:

• Plot Ridge coefficients as a function of the regularization
• Classification of text documents using sparse features

Ridge Complexity

This method has the same order of complexity than an Ordinary Least Squares.

Setting the regularization parameter: generalized Cross-Validation

RidgeCV implements ridge regression with built-in cross-validation of the alpha parameter. The object works in
the same way as GridSearchCV except that it defaults to Generalized Cross-Validation (GCV), an efficient form of
leave-one-out cross-validation:

>>> from sklearn import linear_model
>>> clf = linear_model.RidgeCV(alphas=[0.1, 1.0, 10.0])
>>> clf.fit([[0, 0], [0, 0], [1, 1]], [0, .1, 1])
RidgeCV(alphas=[0.1, 1.0, 10.0], cv=None, fit_intercept=True, scoring=None,

normalize=False)
>>> clf.alpha_
0.1

References

• “Notes on Regularized Least Squares”, Rifkin & Lippert (technical report, course slides).

Lasso

The Lasso is a linear model that estimates sparse coefficients. It is useful in some contexts due to its tendency
to prefer solutions with fewer parameter values, effectively reducing the number of variables upon which the given
solution is dependent. For this reason, the Lasso and its variants are fundamental to the field of compressed sensing.
Under certain conditions, it can recover the exact set of non-zero weights (see Compressive sensing: tomography
reconstruction with L1 prior (Lasso)).

Mathematically, it consists of a linear model trained with ℓ1 prior as regularizer. The objective function to minimize
is:

𝑚𝑖𝑛
𝑤

1

2𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
||𝑋𝑤 − 𝑦||22 + 𝛼||𝑤||1
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The lasso estimate thus solves the minimization of the least-squares penalty with 𝛼||𝑤||1 added, where 𝛼 is a constant
and ||𝑤||1 is the ℓ1-norm of the parameter vector.

The implementation in the class Lasso uses coordinate descent as the algorithm to fit the coefficients. See Least
Angle Regression for another implementation:

>>> from sklearn import linear_model
>>> clf = linear_model.Lasso(alpha = 0.1)
>>> clf.fit([[0, 0], [1, 1]], [0, 1])
Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000,

normalize=False, positive=False, precompute=False, random_state=None,
selection='cyclic', tol=0.0001, warm_start=False)

>>> clf.predict([[1, 1]])
array([ 0.8])

Also useful for lower-level tasks is the function lasso_path that computes the coefficients along the full path of
possible values.

Examples:

• Lasso and Elastic Net for Sparse Signals
• Compressive sensing: tomography reconstruction with L1 prior (Lasso)

Note: Feature selection with Lasso
As the Lasso regression yields sparse models, it can thus be used to perform feature selection, as detailed in L1-based
feature selection.

Note: Randomized sparsity
For feature selection or sparse recovery, it may be interesting to use Randomized sparse models.

Setting regularization parameter

The alpha parameter controls the degree of sparsity of the coefficients estimated.

Using cross-validation scikit-learn exposes objects that set the Lasso alpha parameter by cross-validation:
LassoCV and LassoLarsCV. LassoLarsCV is based on the Least Angle Regression algorithm explained below.

For high-dimensional datasets with many collinear regressors, LassoCV is most often preferable. However,
LassoLarsCV has the advantage of exploring more relevant values of alpha parameter, and if the number of samples
is very small compared to the number of observations, it is often faster than LassoCV.
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Information-criteria based model selection Alternatively, the estimator LassoLarsIC proposes to use the
Akaike information criterion (AIC) and the Bayes Information criterion (BIC). It is a computationally cheaper al-
ternative to find the optimal value of alpha as the regularization path is computed only once instead of k+1 times
when using k-fold cross-validation. However, such criteria needs a proper estimation of the degrees of freedom of
the solution, are derived for large samples (asymptotic results) and assume the model is correct, i.e. that the data are
actually generated by this model. They also tend to break when the problem is badly conditioned (more features than
samples).

Examples:

• Lasso model selection: Cross-Validation / AIC / BIC

Elastic Net

ElasticNet is a linear regression model trained with L1 and L2 prior as regularizer. This combination allows for
learning a sparse model where few of the weights are non-zero like Lasso, while still maintaining the regularization
properties of Ridge. We control the convex combination of L1 and L2 using the l1_ratio parameter.

Elastic-net is useful when there are multiple features which are correlated with one another. Lasso is likely to pick one
of these at random, while elastic-net is likely to pick both.
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A practical advantage of trading-off between Lasso and Ridge is it allows Elastic-Net to inherit some of Ridge’s
stability under rotation.

The objective function to minimize is in this case

𝑚𝑖𝑛
𝑤

1

2𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
||𝑋𝑤 − 𝑦||22 + 𝛼𝜌||𝑤||1 +

𝛼(1− 𝜌)

2
||𝑤||22

The class ElasticNetCV can be used to set the parameters alpha (𝛼) and l1_ratio (𝜌) by cross-validation.

Examples:

• Lasso and Elastic Net for Sparse Signals
• Lasso and Elastic Net

Multi-task Lasso

The MultiTaskLasso is a linear model that estimates sparse coefficients for multiple regression problems jointly:
y is a 2D array, of shape (n_samples, n_tasks). The constraint is that the selected features are the same for all the
regression problems, also called tasks.

The following figure compares the location of the non-zeros in W obtained with a simple Lasso or a MultiTaskLasso.
The Lasso estimates yields scattered non-zeros while the non-zeros of the MultiTaskLasso are full columns.
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Fitting a time-series model, imposing that any active feature be active at all times.

Examples:

• Joint feature selection with multi-task Lasso

Mathematically, it consists of a linear model trained with a mixed ℓ1 ℓ2 prior as regularizer. The objective function to
minimize is:

𝑚𝑖𝑛
𝑤

1

2𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
||𝑋𝑊 − 𝑌 ||22 + 𝛼||𝑊 ||21

where;

||𝑊 ||21 =
∑︁
𝑖

√︃∑︁
𝑗

𝑤2
𝑖𝑗

The implementation in the class MultiTaskLasso uses coordinate descent as the algorithm to fit the coefficients.

Least Angle Regression

Least-angle regression (LARS) is a regression algorithm for high-dimensional data, developed by Bradley Efron,
Trevor Hastie, Iain Johnstone and Robert Tibshirani.

The advantages of LARS are:

• It is numerically efficient in contexts where p >> n (i.e., when the number of dimensions is significantly greater
than the number of points)

• It is computationally just as fast as forward selection and has the same order of complexity as an ordinary least
squares.

• It produces a full piecewise linear solution path, which is useful in cross-validation or similar attempts to tune
the model.

• If two variables are almost equally correlated with the response, then their coefficients should increase at ap-
proximately the same rate. The algorithm thus behaves as intuition would expect, and also is more stable.

• It is easily modified to produce solutions for other estimators, like the Lasso.

The disadvantages of the LARS method include:
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• Because LARS is based upon an iterative refitting of the residuals, it would appear to be especially sensitive to
the effects of noise. This problem is discussed in detail by Weisberg in the discussion section of the Efron et al.
(2004) Annals of Statistics article.

The LARS model can be used using estimator Lars, or its low-level implementation lars_path.

LARS Lasso

LassoLars is a lasso model implemented using the LARS algorithm, and unlike the implementation based on
coordinate_descent, this yields the exact solution, which is piecewise linear as a function of the norm of its coefficients.

>>> from sklearn import linear_model
>>> clf = linear_model.LassoLars(alpha=.1)
>>> clf.fit([[0, 0], [1, 1]], [0, 1])
LassoLars(alpha=0.1, copy_X=True, eps=..., fit_intercept=True,

fit_path=True, max_iter=500, normalize=True, positive=False,
precompute='auto', verbose=False)

>>> clf.coef_
array([ 0.717157..., 0. ])

Examples:

• Lasso path using LARS

The Lars algorithm provides the full path of the coefficients along the regularization parameter almost for free, thus a
common operation consist of retrieving the path with function lars_path

Mathematical formulation

The algorithm is similar to forward stepwise regression, but instead of including variables at each step, the estimated
parameters are increased in a direction equiangular to each one’s correlations with the residual.

Instead of giving a vector result, the LARS solution consists of a curve denoting the solution for each value of the
L1 norm of the parameter vector. The full coefficients path is stored in the array coef_path_, which has size
(n_features, max_features+1). The first column is always zero.
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References:

• Original Algorithm is detailed in the paper Least Angle Regression by Hastie et al.

Orthogonal Matching Pursuit (OMP)

OrthogonalMatchingPursuit and orthogonal_mp implements the OMP algorithm for approximating the
fit of a linear model with constraints imposed on the number of non-zero coefficients (ie. the L 0 pseudo-norm).

Being a forward feature selection method like Least Angle Regression, orthogonal matching pursuit can approximate
the optimum solution vector with a fixed number of non-zero elements:

arg min ||𝑦 −𝑋𝛾||22 subject to ||𝛾||0 ≤ 𝑛𝑛𝑜𝑛𝑧𝑒𝑟𝑜_𝑐𝑜𝑒𝑓𝑠

Alternatively, orthogonal matching pursuit can target a specific error instead of a specific number of non-zero coeffi-
cients. This can be expressed as:

arg min ||𝛾||0 subject to ||𝑦 −𝑋𝛾||22 ≤ tol

OMP is based on a greedy algorithm that includes at each step the atom most highly correlated with the current
residual. It is similar to the simpler matching pursuit (MP) method, but better in that at each iteration, the residual is
recomputed using an orthogonal projection on the space of the previously chosen dictionary elements.

Examples:

• Orthogonal Matching Pursuit

References:

• http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf
• Matching pursuits with time-frequency dictionaries, S. G. Mallat, Z. Zhang,

Bayesian Regression

Bayesian regression techniques can be used to include regularization parameters in the estimation procedure: the
regularization parameter is not set in a hard sense but tuned to the data at hand.

This can be done by introducing uninformative priors over the hyper parameters of the model. The ℓ2 regularization
used in Ridge Regression is equivalent to finding a maximum a-postiori solution under a Gaussian prior over the
parameters 𝑤 with precision 𝜆−1. Instead of setting lambda manually, it is possible to treat it as a random variable to
be estimated from the data.

To obtain a fully probabilistic model, the output 𝑦 is assumed to be Gaussian distributed around 𝑋𝑤:

𝑝(𝑦|𝑋,𝑤, 𝛼) = 𝒩 (𝑦|𝑋𝑤,𝛼)

Alpha is again treated as a random variable that is to be estimated from the data.

The advantages of Bayesian Regression are:

• It adapts to the data at hand.

• It can be used to include regularization parameters in the estimation procedure.
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The disadvantages of Bayesian regression include:

• Inference of the model can be time consuming.

References

• A good introduction to Bayesian methods is given in C. Bishop: Pattern Recognition and Machine learning
• Original Algorithm is detailed in the book Bayesian learning for neural networks by Radford M. Neal

Bayesian Ridge Regression

BayesianRidge estimates a probabilistic model of the regression problem as described above. The prior for the
parameter 𝑤 is given by a spherical Gaussian:

𝑝(𝑤|𝜆) = 𝒩 (𝑤|0, 𝜆−1Ip)

The priors over 𝛼 and 𝜆 are chosen to be gamma distributions, the conjugate prior for the precision of the Gaussian.

The resulting model is called Bayesian Ridge Regression, and is similar to the classical Ridge. The parameters
𝑤, 𝛼 and 𝜆 are estimated jointly during the fit of the model. The remaining hyperparameters are the parameters of
the gamma priors over 𝛼 and 𝜆. These are usually chosen to be non-informative. The parameters are estimated by
maximizing the marginal log likelihood.

By default 𝛼1 = 𝛼2 = 𝜆1 = 𝜆2 = 1.𝑒−6.

Bayesian Ridge Regression is used for regression:

>>> from sklearn import linear_model
>>> X = [[0., 0.], [1., 1.], [2., 2.], [3., 3.]]
>>> Y = [0., 1., 2., 3.]
>>> clf = linear_model.BayesianRidge()
>>> clf.fit(X, Y)
BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True,

fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300,
normalize=False, tol=0.001, verbose=False)

After being fitted, the model can then be used to predict new values:
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>>> clf.predict ([[1, 0.]])
array([ 0.50000013])

The weights 𝑤 of the model can be access:

>>> clf.coef_
array([ 0.49999993, 0.49999993])

Due to the Bayesian framework, the weights found are slightly different to the ones found by Ordinary Least Squares.
However, Bayesian Ridge Regression is more robust to ill-posed problem.

Examples:

• Bayesian Ridge Regression

References

• More details can be found in the article Bayesian Interpolation by MacKay, David J. C.

Automatic Relevance Determination - ARD

ARDRegression is very similar to Bayesian Ridge Regression, but can lead to sparser weights 𝑤 1 2.
ARDRegression poses a different prior over 𝑤, by dropping the assumption of the Gaussian being spherical.

Instead, the distribution over 𝑤 is assumed to be an axis-parallel, elliptical Gaussian distribution.

This means each weight 𝑤𝑖 is drawn from a Gaussian distribution, centered on zero and with a precision 𝜆𝑖:

𝑝(𝑤|𝜆) = 𝒩 (𝑤|0, 𝐴−1)

with 𝑑𝑖𝑎𝑔 (𝐴) = 𝜆 = {𝜆1, ..., 𝜆𝑝}.

In contrast to Bayesian Ridge Regression, each coordinate of 𝑤𝑖 has its own standard deviation 𝜆𝑖. The prior over all
𝜆𝑖 is chosen to be the same gamma distribution given by hyperparameters 𝜆1 and 𝜆2.

1 Christopher M. Bishop: Pattern Recognition and Machine Learning, Chapter 7.2.1
2 David Wipf and Srikantan Nagarajan: A new view of automatic relevance determination.
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Examples:

• Automatic Relevance Determination Regression (ARD)

References:

Logistic regression

Logistic regression, despite its name, is a linear model for classification rather than regression. Logistic regression is
also known in the literature as logit regression, maximum-entropy classification (MaxEnt) or the log-linear classifier.
In this model, the probabilities describing the possible outcomes of a single trial are modeled using a logistic function.

The implementation of logistic regression in scikit-learn can be accessed from class LogisticRegression. This
implementation can fit a multiclass (one-vs-rest) logistic regression with optional L2 or L1 regularization.

As an optimization problem, binary class L2 penalized logistic regression minimizes the following cost function:

𝑚𝑖𝑛
𝑤,𝑐

1

2
𝑤𝑇𝑤 + 𝐶

𝑛∑︁
𝑖=1

log(exp(−𝑦𝑖(𝑋𝑇
𝑖 𝑤 + 𝑐)) + 1).

Similarly, L1 regularized logistic regression solves the following optimization problem

𝑚𝑖𝑛
𝑤,𝑐
‖𝑤‖1 + 𝐶

𝑛∑︁
𝑖=1

log(exp(−𝑦𝑖(𝑋𝑇
𝑖 𝑤 + 𝑐)) + 1).

The solvers implemented in the class LogisticRegression are “liblinear” (which is a wrapper around the C++
library, LIBLINEAR), “newton-cg”, “lbfgs” and “sag”.

The “lbfgs” and “newton-cg” solvers only support L2 penalization and are found to converge faster for some high
dimensional data. L1 penalization yields sparse predicting weights.

The solver “liblinear” uses a coordinate descent (CD) algorithm based on Liblinear. For L1 penalization
sklearn.svm.l1_min_c allows to calculate the lower bound for C in order to get a non “null” (all feature weights
to zero) model. This relies on the excellent LIBLINEAR library, which is shipped with scikit-learn. However, the CD
algorithm implemented in liblinear cannot learn a true multinomial (multiclass) model; instead, the optimization prob-
lem is decomposed in a “one-vs-rest” fashion so separate binary classifiers are trained for all classes. This happens
under the hood, so LogisticRegression instances using this solver behave as multiclass classifiers.

Setting multi_class to “multinomial” with the “lbfgs” or “newton-cg” solver in LogisticRegression learns a true
multinomial logistic regression model, which means that its probability estimates should be better calibrated than the
default “one-vs-rest” setting. “lbfgs”, “newton-cg” and “sag” solvers cannot optimize L1-penalized models, though,
so the “multinomial” setting does not learn sparse models.

The solver “sag” uses a Stochastic Average Gradient descent 3. It does not handle “multinomial” case, and is limited
to L2-penalized models, yet it is often faster than other solvers for large datasets, when both the number of samples
and the number of features are large.

In a nutshell, one may choose the solver with the following rules:

Case Solver
Small dataset or L1 penalty “liblinear”
Multinomial loss “lbfgs” or newton-cg”
Large dataset “sag”

3 Mark Schmidt, Nicolas Le Roux, and Francis Bach: Minimizing Finite Sums with the Stochastic Average Gradient.
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For large dataset, you may also consider using SGDClassifier with ‘log’ loss.

Examples:

• L1 Penalty and Sparsity in Logistic Regression
• Path with L1- Logistic Regression

Differences from liblinear:

There might be a difference in the scores obtained between LogisticRegression with
solver=liblinear or LinearSVC and the external liblinear library directly, when
fit_intercept=False and the fit coef_ (or) the data to be predicted are zeroes. This is because
for the sample(s) with decision_function zero, LogisticRegression and LinearSVC predict the
negative class, while liblinear predicts the positive class. Note that a model with fit_intercept=False
and having many samples with decision_function zero, is likely to be a underfit, bad model and you are
advised to set fit_intercept=True and increase the intercept_scaling.

Note: Feature selection with sparse logistic regression
A logistic regression with L1 penalty yields sparse models, and can thus be used to perform feature selection, as
detailed in L1-based feature selection.

LogisticRegressionCV implements Logistic Regression with builtin cross-validation to find out the optimal C
parameter. “newton-cg”, “sag” and “lbfgs” solvers are found to be faster for high-dimensional dense data, due to
warm-starting. For the multiclass case, if multi_class option is set to “ovr”, an optimal C is obtained for each class and
if the multi_class option is set to “multinomial”, an optimal C is obtained that minimizes the cross-entropy loss.

References:

Stochastic Gradient Descent - SGD

Stochastic gradient descent is a simple yet very efficient approach to fit linear models. It is particularly useful when the
number of samples (and the number of features) is very large. The partial_fit method allows only/out-of-core
learning.

The classes SGDClassifier and SGDRegressor provide functionality to fit linear models for classifica-
tion and regression using different (convex) loss functions and different penalties. E.g., with loss="log",
SGDClassifier fits a logistic regression model, while with loss="hinge" it fits a linear support vector ma-
chine (SVM).

References

• Stochastic Gradient Descent

Perceptron

The Perceptron is another simple algorithm suitable for large scale learning. By default:

• It does not require a learning rate.
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• It is not regularized (penalized).

• It updates its model only on mistakes.

The last characteristic implies that the Perceptron is slightly faster to train than SGD with the hinge loss and that the
resulting models are sparser.

Passive Aggressive Algorithms

The passive-aggressive algorithms are a family of algorithms for large-scale learning. They are similar to the Per-
ceptron in that they do not require a learning rate. However, contrary to the Perceptron, they include a regularization
parameter C.

For classification, PassiveAggressiveClassifier can be used with loss=’hinge’ (PA-I) or
loss=’squared_hinge’ (PA-II). For regression, PassiveAggressiveRegressor can be used with
loss=’epsilon_insensitive’ (PA-I) or loss=’squared_epsilon_insensitive’ (PA-II).

References:

• “Online Passive-Aggressive Algorithms” K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer
- JMLR 7 (2006)

Robustness regression: outliers and modeling errors

Robust regression is interested in fitting a regression model in the presence of corrupt data: either outliers, or error in
the model.

Different scenario and useful concepts

There are different things to keep in mind when dealing with data corrupted by outliers:

• Outliers in X or in y?
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Outliers in the y direction Outliers in the X direction

• Fraction of outliers versus amplitude of error

The number of outlying points matters, but also how much they are outliers.

Small outliers Large outliers

An important notion of robust fitting is that of breakdown point: the fraction of data that can be outlying for the fit to
start missing the inlying data.

Note that in general, robust fitting in high-dimensional setting (large n_features) is very hard. The robust models here
will probably not work in these settings.

Trade-offs: which estimator?

Scikit-learn provides 2 robust regression estimators: RANSAC and Theil Sen
• RANSAC is faster, and scales much better with the number of samples
• RANSAC will deal better with large outliers in the y direction (most common situa-

tion)
• Theil Sen will cope better with medium-size outliers in the X direction, but this property will

disappear in large dimensional settings.
When in doubt, use RANSAC

RANSAC: RANdom SAmple Consensus

RANSAC (RANdom SAmple Consensus) fits a model from random subsets of inliers from the complete data set.

RANSAC is a non-deterministic algorithm producing only a reasonable result with a certain probability, which is de-
pendent on the number of iterations (see max_trials parameter). It is typically used for linear and non-linear regression
problems and is especially popular in the fields of photogrammetric computer vision.

The algorithm splits the complete input sample data into a set of inliers, which may be subject to noise, and outliers,
which are e.g. caused by erroneous measurements or invalid hypotheses about the data. The resulting model is then
estimated only from the determined inliers.

Details of the algorithm Each iteration performs the following steps:
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1. Select min_samples random samples from the original data and check whether the set of data is valid (see
is_data_valid).

2. Fit a model to the random subset (base_estimator.fit) and check whether the estimated model is valid
(see is_model_valid).

3. Classify all data as inliers or outliers by calculating the residuals to the estimated model
(base_estimator.predict(X) - y) - all data samples with absolute residuals smaller than the
residual_threshold are considered as inliers.

4. Save fitted model as best model if number of inlier samples is maximal. In case the current estimated model has
the same number of inliers, it is only considered as the best model if it has better score.

These steps are performed either a maximum number of times (max_trials) or until one of the special stop criteria
are met (see stop_n_inliers and stop_score). The final model is estimated using all inlier samples (consensus
set) of the previously determined best model.

The is_data_valid and is_model_valid functions allow to identify and reject degenerate combinations of
random sub-samples. If the estimated model is not needed for identifying degenerate cases, is_data_valid should
be used as it is called prior to fitting the model and thus leading to better computational performance.

Examples:

• Robust linear model estimation using RANSAC
• Robust linear estimator fitting

References:

• http://en.wikipedia.org/wiki/RANSAC
• “Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and

Automated Cartography” Martin A. Fischler and Robert C. Bolles - SRI International (1981)
• “Performance Evaluation of RANSAC Family” Sunglok Choi, Taemin Kim and Wonpil Yu - BMVC

(2009)
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Theil-Sen estimator: generalized-median-based estimator

The TheilSenRegressor estimator uses a generalization of the median in multiple dimensions. It is thus robust to
multivariate outliers. Note however that the robustness of the estimator decreases quickly with the dimensionality of
the problem. It looses its robustness properties and becomes no better than an ordinary least squares in high dimension.

Examples:

• Theil-Sen Regression
• Robust linear estimator fitting

References:

• http://en.wikipedia.org/wiki/Theil%E2%80%93Sen_estimator

Theoretical considerations TheilSenRegressor is comparable to the Ordinary Least Squares (OLS) in terms
of asymptotic efficiency and as an unbiased estimator. In contrast to OLS, Theil-Sen is a non-parametric method
which means it makes no assumption about the underlying distribution of the data. Since Theil-Sen is a median-based
estimator, it is more robust against corrupted data aka outliers. In univariate setting, Theil-Sen has a breakdown point
of about 29.3% in case of a simple linear regression which means that it can tolerate arbitrary corrupted data of up to
29.3%.

The implementation of TheilSenRegressor in scikit-learn follows a generalization to a multivariate linear re-
gression model 4 using the spatial median which is a generalization of the median to multiple dimensions 5.

In terms of time and space complexity, Theil-Sen scales according to(︂
𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑛𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒𝑠

)︂
which makes it infeasible to be applied exhaustively to problems with a large number of samples and features. There-
fore, the magnitude of a subpopulation can be chosen to limit the time and space complexity by considering only a
random subset of all possible combinations.

4 Xin Dang, Hanxiang Peng, Xueqin Wang and Heping Zhang: Theil-Sen Estimators in a Multiple Linear Regression Model.
5

20. Kärkkäinen and S. Äyrämö: On Computation of Spatial Median for Robust Data Mining.
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Examples:

• Theil-Sen Regression

References:

Polynomial regression: extending linear models with basis functions

One common pattern within machine learning is to use linear models trained on nonlinear functions of the data. This
approach maintains the generally fast performance of linear methods, while allowing them to fit a much wider range
of data.

For example, a simple linear regression can be extended by constructing polynomial features from the coefficients.
In the standard linear regression case, you might have a model that looks like this for two-dimensional data:

𝑦(𝑤, 𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2

If we want to fit a paraboloid to the data instead of a plane, we can combine the features in second-order polynomials,
so that the model looks like this:

𝑦(𝑤, 𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥1𝑥2 + 𝑤4𝑥
2
1 + 𝑤5𝑥

2
2

The (sometimes surprising) observation is that this is still a linear model: to see this, imagine creating a new variable

𝑧 = [𝑥1, 𝑥2, 𝑥1𝑥2, 𝑥
2
1, 𝑥

2
2]

With this re-labeling of the data, our problem can be written

𝑦(𝑤, 𝑥) = 𝑤0 + 𝑤1𝑧1 + 𝑤2𝑧2 + 𝑤3𝑧3 + 𝑤4𝑧4 + 𝑤5𝑧5

We see that the resulting polynomial regression is in the same class of linear models we’d considered above (i.e. the
model is linear in 𝑤) and can be solved by the same techniques. By considering linear fits within a higher-dimensional
space built with these basis functions, the model has the flexibility to fit a much broader range of data.

Here is an example of applying this idea to one-dimensional data, using polynomial features of varying degrees:

This figure is created using the PolynomialFeatures preprocessor. This preprocessor transforms an input data
matrix into a new data matrix of a given degree. It can be used as follows:
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>>> from sklearn.preprocessing import PolynomialFeatures
>>> import numpy as np
>>> X = np.arange(6).reshape(3, 2)
>>> X
array([[0, 1],

[2, 3],
[4, 5]])

>>> poly = PolynomialFeatures(degree=2)
>>> poly.fit_transform(X)
array([[ 1., 0., 1., 0., 0., 1.],

[ 1., 2., 3., 4., 6., 9.],
[ 1., 4., 5., 16., 20., 25.]])

The features of X have been transformed from [𝑥1, 𝑥2] to [1, 𝑥1, 𝑥2, 𝑥
2
1, 𝑥1𝑥2, 𝑥

2
2], and can now be used within any

linear model.

This sort of preprocessing can be streamlined with the Pipeline tools. A single object representing a simple polynomial
regression can be created and used as follows:

>>> from sklearn.preprocessing import PolynomialFeatures
>>> from sklearn.linear_model import LinearRegression
>>> from sklearn.pipeline import Pipeline
>>> import numpy as np
>>> model = Pipeline([('poly', PolynomialFeatures(degree=3)),
... ('linear', LinearRegression(fit_intercept=False))])
>>> # fit to an order-3 polynomial data
>>> x = np.arange(5)
>>> y = 3 - 2 * x + x ** 2 - x ** 3
>>> model = model.fit(x[:, np.newaxis], y)
>>> model.named_steps['linear'].coef_
array([ 3., -2., 1., -1.])

The linear model trained on polynomial features is able to exactly recover the input polynomial coefficients.

In some cases it’s not necessary to include higher powers of any single feature, but only the so-called interaction
features that multiply together at most 𝑑 distinct features. These can be gotten from PolynomialFeatures with
the setting interaction_only=True.

For example, when dealing with boolean features, 𝑥𝑛𝑖 = 𝑥𝑖 for all 𝑛 and is therefore useless; but 𝑥𝑖𝑥𝑗 represents the
conjunction of two booleans. This way, we can solve the XOR problem with a linear classifier:

>>> from sklearn.linear_model import Perceptron
>>> from sklearn.preprocessing import PolynomialFeatures
>>> import numpy as np
>>> X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
>>> y = X[:, 0] ^ X[:, 1]
>>> X = PolynomialFeatures(interaction_only=True).fit_transform(X)
>>> X
array([[ 1., 0., 0., 0.],

[ 1., 0., 1., 0.],
[ 1., 1., 0., 0.],
[ 1., 1., 1., 1.]])

>>> clf = Perceptron(fit_intercept=False, n_iter=10, shuffle=False).fit(X, y)
>>> clf.score(X, y)
1.0
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3.1.2 Linear and Quadratic Discriminant Analysis

Linear Discriminant Analysis (discriminant_analysis.LinearDiscriminantAnalysis) and
Quadratic Discriminant Analysis (discriminant_analysis.QuadraticDiscriminantAnalysis)
are two classic classifiers, with, as their names suggest, a linear and a quadratic decision surface, respectively.

These classifiers are attractive because they have closed-form solutions that can be easily computed, are inherently
multiclass, have proven to work well in practice and have no hyperparameters to tune.

The plot shows decision boundaries for Linear Discriminant Analysis and Quadratic Discriminant Analysis. The
bottom row demonstrates that Linear Discriminant Analysis can only learn linear boundaries, while Quadratic Dis-
criminant Analysis can learn quadratic boundaries and is therefore more flexible.

Examples:

Linear and Quadratic Discriminant Analysis with confidence ellipsoid: Comparison of LDA and QDA on syn-
thetic data.

Dimensionality reduction using Linear Discriminant Analysis

discriminant_analysis.LinearDiscriminantAnalysis can be used to perform supervised dimen-
sionality reduction, by projecting the input data to a linear subspace consisting of the directions which maximize
the separation between classes (in a precise sense discussed in the mathematics section below). The dimension of the
output is necessarily less that the number of classes, so this is a in general a rather strong dimensionality reduction,
and only makes senses in a multiclass setting.

This is implemented in discriminant_analysis.LinearDiscriminantAnalysis.transform.
The desired dimensionality can be set using the n_components constructor parameter. This pa-
rameter has no influence on discriminant_analysis.LinearDiscriminantAnalysis.fit or
discriminant_analysis.LinearDiscriminantAnalysis.predict.
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Examples:

Comparison of LDA and PCA 2D projection of Iris dataset: Comparison of LDA and PCA for dimensionality
reduction of the Iris dataset

Mathematical formulation of the LDA and QDA classifiers

Both LDA and QDA can be derived from simple probabilistic models which model the class conditional distribution
of the data 𝑃 (𝑋|𝑦 = 𝑘) for each class 𝑘. Predictions can then be obtained by using Bayes’ rule:

𝑃 (𝑦 = 𝑘|𝑋) =
𝑃 (𝑋|𝑦 = 𝑘)𝑃 (𝑦 = 𝑘)

𝑃 (𝑋)
=

𝑃 (𝑋|𝑦 = 𝑘)𝑃 (𝑦 = 𝑘)∑︀
𝑙 𝑃 (𝑋|𝑦 = 𝑙) · 𝑃 (𝑦 = 𝑙)

and we select the class 𝑘 which maximizes this conditional probability.

More specifically, for linear and quadratic discriminant analysis, 𝑃 (𝑋|𝑦) is modelled as a multivariate Gaussian
distribution with density:

𝑝(𝑋|𝑦 = 𝑘) =
1

(2𝜋)𝑛|Σ𝑘|1/2
exp

(︂
−1

2
(𝑋 − 𝜇𝑘)𝑡Σ−1

𝑘 (𝑋 − 𝜇𝑘)

)︂
To use this model as a classifier, we just need to estimate from the training data the class priors 𝑃 (𝑦 = 𝑘) (by the
proportion of instances of class 𝑘), the class means 𝜇𝑘 (by the empirical sample class means) and the covariance
matrices (either by the empirical sample class covariance matrices, or by a regularized estimator: see the section on
shrinkage below).

In the case of LDA, the Gaussians for each class are assumed to share the same covariance matrix: Σ𝑘 = Σ for
all 𝑘. This leads to linear decision surfaces between, as can be seen by comparing the the log-probability ratios
log[𝑃 (𝑦 = 𝑘|𝑋)/𝑃 (𝑦 = 𝑙|𝑋)]:

log

(︂
𝑃 (𝑦 = 𝑘|𝑋)

𝑃 (𝑦 = 𝑙|𝑋)

)︂
= 0⇔ (𝜇𝑘 − 𝜇𝑙)Σ

−1𝑋 =
1

2
(𝜇𝑡

𝑘Σ−1𝜇𝑘 − 𝜇𝑡
𝑙Σ

−1𝜇𝑙)

In the case of QDA, there are no assumptions on the covariance matrices Σ𝑘 of the Gaussians, leading to quadratic
decision surfaces. See 6 for more details.

Note: Relation with Gaussian Naive Bayes
If in the QDA model one assumes that the covariance matrices are diagonal, then this means that we assume the
classes are conditionally independent, and the resulting classifier is equivalent to the Gaussian Naive Bayes classifier
naive_bayes.GaussianNB.

Mathematical formulation of LDA dimensionality reduction

To understand the use of LDA in dimensionality reduction, it is useful to start with a geometric reformulation of the
LDA classification rule explained above. We write 𝐾 for the total number of target classes. Since in LDA we assume
that all classes have the same estimated covariance Σ, we can rescale the data so that this covariance is the identity:

𝑋* = 𝐷−1/2𝑈 𝑡𝑋 with Σ = 𝑈𝐷𝑈 𝑡

Then one can show that to classify a data point after scaling is equivalent to finding the estimated class mean 𝜇*
𝑘 which

is closest to the data point in the Euclidean distance. But this can be done just as well after projecting on the 𝐾 − 1

6 “The Elements of Statistical Learning”, Hastie T., Tibshirani R., Friedman J., Section 4.3, p.106-119, 2008.
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affine subspace 𝐻𝐾 generated by all the 𝜇*
𝑘 for all classes. This shows that, implicit in the LDA classifier, there is a

dimensionality reduction by linear projection onto a 𝐾 − 1 dimensional space.

We can reduce the dimension even more, to a chosen 𝐿, by projecting onto the linear subspace 𝐻𝐿

which maximize the variance of the 𝜇*
𝑘 after projection (in effect, we are doing a form of PCA for

the transformed class means 𝜇*
𝑘). This 𝐿 corresponds to the n_components parameter used in the

discriminant_analysis.LinearDiscriminantAnalysis.transform method. See 3 for more de-
tails.

Shrinkage

Shrinkage is a tool to improve estimation of covariance matrices in situations where the number of train-
ing samples is small compared to the number of features. In this scenario, the empirical sample co-
variance is a poor estimator. Shrinkage LDA can be used by setting the shrinkage parameter of the
discriminant_analysis.LinearDiscriminantAnalysis class to ‘auto’. This automatically deter-
mines the optimal shrinkage parameter in an analytic way following the lemma introduced by Ledoit and Wolf 7.
Note that currently shrinkage only works when setting the solver parameter to ‘lsqr’ or ‘eigen’.

The shrinkage parameter can also be manually set between 0 and 1. In particular, a value of 0 corresponds to
no shrinkage (which means the empirical covariance matrix will be used) and a value of 1 corresponds to complete
shrinkage (which means that the diagonal matrix of variances will be used as an estimate for the covariance matrix).
Setting this parameter to a value between these two extrema will estimate a shrunk version of the covariance matrix.

Estimation algorithms

The default solver is ‘svd’. It can perform both classification and transform, and it does not rely on the calculation
of the covariance matrix. This can be an advantage in situations where the number of features is large. However, the
‘svd’ solver cannot be used with shrinkage.

The ‘lsqr’ solver is an efficient algorithm that only works for classification. It supports shrinkage.

7 Ledoit O, Wolf M. Honey, I Shrunk the Sample Covariance Matrix. The Journal of Portfolio Management 30(4), 110-119, 2004.
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The ‘eigen’ solver is based on the optimization of the between class scatter to within class scatter ratio. It can be used
for both classification and transform, and it supports shrinkage. However, the ‘eigen’ solver needs to compute the
covariance matrix, so it might not be suitable for situations with a high number of features.

Examples:

Normal and Shrinkage Linear Discriminant Analysis for classification: Comparison of LDA classifiers with and
without shrinkage.

References:

3.1.3 Kernel ridge regression

Kernel ridge regression (KRR) [M2012] combines Ridge Regression (linear least squares with l2-norm regularization)
with the kernel trick. It thus learns a linear function in the space induced by the respective kernel and the data. For
non-linear kernels, this corresponds to a non-linear function in the original space.

The form of the model learned by KernelRidge is identical to support vector regression (SVR). However, different
loss functions are used: KRR uses squared error loss while support vector regression uses 𝜖-insensitive loss, both
combined with l2 regularization. In contrast to SVR, fitting KernelRidge can be done in closed-form and is typically
faster for medium-sized datasets. On the other hand, the learned model is non-sparse and thus slower than SVR, which
learns a sparse model for 𝜖 > 0, at prediction-time.

The following figure compares KernelRidge and SVR on an artificial dataset, which consists of a sinusoidal target
function and strong noise added to every fifth datapoint. The learned model of KernelRidge and SVR is plotted,
where both complexity/regularization and bandwidth of the RBF kernel have been optimized using grid-search. The
learned functions are very similar; however, fitting KernelRidge is approx. seven times faster than fitting SVR
(both with grid-search). However, prediction of 100000 target values is more than three times faster with SVR since it
has learned a sparse model using only approx. 1/3 of the 100 training datapoints as support vectors.

The next figure compares the time for fitting and prediction of KernelRidge and SVR for different sizes of the
training set. Fitting KernelRidge is faster than SVR for medium-sized training sets (less than 1000 samples);
however, for larger training sets SVR scales better. With regard to prediction time, SVR is faster than KernelRidge
for all sizes of the training set because of the learned sparse solution. Note that the degree of sparsity and thus the
prediction time depends on the parameters 𝜖 and 𝐶 of the SVR; 𝜖 = 0 would correspond to a dense model.

References:

3.1.4 Support Vector Machines

Support vector machines (SVMs) are a set of supervised learning methods used for classification, regression and
outliers detection.

The advantages of support vector machines are:

• Effective in high dimensional spaces.

• Still effective in cases where number of dimensions is greater than the number of samples.

• Uses a subset of training points in the decision function (called support vectors), so it is also memory efficient.
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• Versatile: different Kernel functions can be specified for the decision function. Common kernels are provided,
but it is also possible to specify custom kernels.

The disadvantages of support vector machines include:

• If the number of features is much greater than the number of samples, the method is likely to give poor perfor-
mances.

• SVMs do not directly provide probability estimates, these are calculated using an expensive five-fold cross-
validation (see Scores and probabilities, below).

The support vector machines in scikit-learn support both dense (numpy.ndarray and convertible to that by
numpy.asarray) and sparse (any scipy.sparse) sample vectors as input. However, to use an SVM to make pre-
dictions for sparse data, it must have been fit on such data. For optimal performance, use C-ordered numpy.ndarray
(dense) or scipy.sparse.csr_matrix (sparse) with dtype=float64.

Classification

SVC, NuSVC and LinearSVC are classes capable of performing multi-class classification on a dataset.

SVC and NuSVC are similar methods, but accept slightly different sets of parameters and have different mathematical
formulations (see section Mathematical formulation). On the other hand, LinearSVC is another implementation of
Support Vector Classification for the case of a linear kernel. Note that LinearSVC does not accept keyword kernel,
as this is assumed to be linear. It also lacks some of the members of SVC and NuSVC, like support_.
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As other classifiers, SVC, NuSVC and LinearSVC take as input two arrays: an array X of size [n_samples,
n_features] holding the training samples, and an array y of class labels (strings or integers), size [n_samples]:

>>> from sklearn import svm
>>> X = [[0, 0], [1, 1]]
>>> y = [0, 1]
>>> clf = svm.SVC()
>>> clf.fit(X, y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

After being fitted, the model can then be used to predict new values:

>>> clf.predict([[2., 2.]])
array([1])

SVMs decision function depends on some subset of the training data, called the support vectors. Some properties of
these support vectors can be found in members support_vectors_, support_ and n_support:

>>> # get support vectors
>>> clf.support_vectors_
array([[ 0., 0.],

[ 1., 1.]])
>>> # get indices of support vectors
>>> clf.support_
array([0, 1]...)
>>> # get number of support vectors for each class
>>> clf.n_support_
array([1, 1]...)

Multi-class classification

SVC and NuSVC implement the “one-against-one” approach (Knerr et al., 1990) for multi- class classifica-
tion. If n_class is the number of classes, then n_class * (n_class - 1) / 2 classifiers are con-
structed and each one trains data from two classes. To provide a consistent interface with other classifiers, the
decision_function_shape option allows to aggregate the results of the “one-against-one” classifiers to a deci-
sion function of shape (n_samples, n_classes):

>>> X = [[0], [1], [2], [3]]
>>> Y = [0, 1, 2, 3]
>>> clf = svm.SVC(decision_function_shape='ovo')
>>> clf.fit(X, Y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape='ovo', degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

>>> dec = clf.decision_function([[1]])
>>> dec.shape[1] # 4 classes: 4*3/2 = 6
6
>>> clf.decision_function_shape = "ovr"
>>> dec = clf.decision_function([[1]])
>>> dec.shape[1] # 4 classes
4

On the other hand, LinearSVC implements “one-vs-the-rest” multi-class strategy, thus training n_class models. If
there are only two classes, only one model is trained:
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>>> lin_clf = svm.LinearSVC()
>>> lin_clf.fit(X, Y)
LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,

intercept_scaling=1, loss='squared_hinge', max_iter=1000,
multi_class='ovr', penalty='l2', random_state=None, tol=0.0001,
verbose=0)

>>> dec = lin_clf.decision_function([[1]])
>>> dec.shape[1]
4

See Mathematical formulation for a complete description of the decision function.

Note that the LinearSVC also implements an alternative multi-class strategy, the so-called multi-class SVM formu-
lated by Crammer and Singer, by using the option multi_class=’crammer_singer’. This method is consis-
tent, which is not true for one-vs-rest classification. In practice, one-vs-rest classification is usually preferred, since
the results are mostly similar, but the runtime is significantly less.

For “one-vs-rest” LinearSVC the attributes coef_ and intercept_ have the shape [n_class,
n_features] and [n_class] respectively. Each row of the coefficients corresponds to one of the n_class
many “one-vs-rest” classifiers and similar for the intercepts, in the order of the “one” class.

In the case of “one-vs-one” SVC, the layout of the attributes is a little more involved. In the case of having a linear
kernel, The layout of coef_ and intercept_ is similar to the one described for LinearSVC described above,
except that the shape of coef_ is [n_class * (n_class - 1) / 2, n_features], corresponding to as
many binary classifiers. The order for classes 0 to n is “0 vs 1”, “0 vs 2” , ... “0 vs n”, “1 vs 2”, “1 vs 3”, “1 vs n”, . . .
“n-1 vs n”.

The shape of dual_coef_ is [n_class-1, n_SV] with a somewhat hard to grasp layout. The columns corre-
spond to the support vectors involved in any of the n_class * (n_class - 1) / 2 “one-vs-one” classifiers.
Each of the support vectors is used in n_class - 1 classifiers. The n_class - 1 entries in each row correspond
to the dual coefficients for these classifiers.

This might be made more clear by an example:

Consider a three class problem with with class 0 having three support vectors 𝑣00 , 𝑣
1
0 , 𝑣

2
0 and class 1 and 2 having two

support vectors 𝑣01 , 𝑣
1
1 and 𝑣02 , 𝑣

1
2 respectively. For each support vector 𝑣𝑗𝑖 , there are two dual coefficients. Let’s call

the coefficient of support vector 𝑣𝑗𝑖 in the classifier between classes 𝑖 and 𝑘 𝛼𝑗
𝑖,𝑘. Then dual_coef_ looks like this:

𝛼0
0,1 𝛼0

0,2

Coefficients for SVs of class 0𝛼1
0,1 𝛼1

0,2

𝛼2
0,1 𝛼2

0,2

𝛼0
1,0 𝛼0

1,2 Coefficients for SVs of class 1
𝛼1
1,0 𝛼1

1,2

𝛼0
2,0 𝛼0

2,1 Coefficients for SVs of class 2
𝛼1
2,0 𝛼1

2,1

Scores and probabilities

The SVC method decision_function gives per-class scores for each sample (or a single score per sample in the
binary case). When the constructor option probability is set to True, class membership probability estimates
(from the methods predict_proba and predict_log_proba) are enabled. In the binary case, the probabilities
are calibrated using Platt scaling: logistic regression on the SVM’s scores, fit by an additional cross-validation on the
training data. In the multiclass case, this is extended as per Wu et al. (2004).

Needless to say, the cross-validation involved in Platt scaling is an expensive operation for large datasets. In addition,
the probability estimates may be inconsistent with the scores, in the sense that the “argmax” of the scores may not be
the argmax of the probabilities. (E.g., in binary classification, a sample may be labeled by predict as belonging

142 Chapter 3. User Guide



scikit-learn user guide, Release 0.17

to a class that has probability <½ according to predict_proba.) Platt’s method is also known to have theoret-
ical issues. If confidence scores are required, but these do not have to be probabilities, then it is advisable to set
probability=False and use decision_function instead of predict_proba.

References:

• Wu, Lin and Weng, “Probability estimates for multi-class classification by pairwise coupling”. JMLR
5:975-1005, 2004.

Unbalanced problems

In problems where it is desired to give more importance to certain classes or certain individual samples keywords
class_weight and sample_weight can be used.

SVC (but not NuSVC) implement a keyword class_weight in the fit method. It’s a dictionary of the form
{class_label : value}, where value is a floating point number > 0 that sets the parameter C of class
class_label to C * value.

SVC, NuSVC, SVR, NuSVR and OneClassSVM implement also weights for individual samples in method fit
through keyword sample_weight. Similar to class_weight, these set the parameter C for the i-th example to
C * sample_weight[i].
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Examples:

• Plot different SVM classifiers in the iris dataset,
• SVM: Maximum margin separating hyperplane,
• SVM: Separating hyperplane for unbalanced classes
• SVM-Anova: SVM with univariate feature selection,
• Non-linear SVM
• SVM: Weighted samples,

Regression

The method of Support Vector Classification can be extended to solve regression problems. This method is called
Support Vector Regression.

The model produced by support vector classification (as described above) depends only on a subset of the training
data, because the cost function for building the model does not care about training points that lie beyond the margin.
Analogously, the model produced by Support Vector Regression depends only on a subset of the training data, because
the cost function for building the model ignores any training data close to the model prediction.

There are three different implementations of Support Vector Regression: SVR, NuSVR and LinearSVR.
LinearSVR provides a faster implementation than SVR but only considers linear kernels, while NuSVR implements
a slightly different formulation than SVR and LinearSVR. See Implementation details for further details.

As with classification classes, the fit method will take as argument vectors X, y, only that in this case y is expected to
have floating point values instead of integer values:

>>> from sklearn import svm
>>> X = [[0, 0], [2, 2]]
>>> y = [0.5, 2.5]
>>> clf = svm.SVR()
>>> clf.fit(X, y)
SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1, gamma='auto',

kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)
>>> clf.predict([[1, 1]])
array([ 1.5])

Examples:

• Support Vector Regression (SVR) using linear and non-linear kernels
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Density estimation, novelty detection

One-class SVM is used for novelty detection, that is, given a set of samples, it will detect the soft boundary of that set
so as to classify new points as belonging to that set or not. The class that implements this is called OneClassSVM.

In this case, as it is a type of unsupervised learning, the fit method will only take as input an array X, as there are no
class labels.

See, section Novelty and Outlier Detection for more details on this usage.

Examples:

• One-class SVM with non-linear kernel (RBF)
• Species distribution modeling

Complexity

Support Vector Machines are powerful tools, but their compute and storage requirements increase rapidly with the
number of training vectors. The core of an SVM is a quadratic programming problem (QP), separating support
vectors from the rest of the training data. The QP solver used by this libsvm-based implementation scales between
𝑂(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 × 𝑛2𝑠𝑎𝑚𝑝𝑙𝑒𝑠) and 𝑂(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 × 𝑛3𝑠𝑎𝑚𝑝𝑙𝑒𝑠) depending on how efficiently the libsvm cache is used in
practice (dataset dependent). If the data is very sparse 𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 should be replaced by the average number of non-
zero features in a sample vector.

Also note that for the linear case, the algorithm used in LinearSVC by the liblinear implementation is much more
efficient than its libsvm-based SVC counterpart and can scale almost linearly to millions of samples and/or features.
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Tips on Practical Use

• Avoiding data copy: For SVC, SVR, NuSVC and NuSVR, if the data passed to certain methods is not C-ordered
contiguous, and double precision, it will be copied before calling the underlying C implementation. You can
check whether a give numpy array is C-contiguous by inspecting its flags attribute.

For LinearSVC (and LogisticRegression) any input passed as a numpy array will be copied and con-
verted to the liblinear internal sparse data representation (double precision floats and int32 indices of non-zero
components). If you want to fit a large-scale linear classifier without copying a dense numpy C-contiguous
double precision array as input we suggest to use the SGDClassifier class instead. The objective function
can be configured to be almost the same as the LinearSVC model.

• Kernel cache size: For SVC, SVR, nuSVC and NuSVR, the size of the kernel cache has a strong impact on run
times for larger problems. If you have enough RAM available, it is recommended to set cache_size to a
higher value than the default of 200(MB), such as 500(MB) or 1000(MB).

• Setting C: C is 1 by default and it’s a reasonable default choice. If you have a lot of noisy observations you
should decrease it. It corresponds to regularize more the estimation.

• Support Vector Machine algorithms are not scale invariant, so it is highly recommended to scale your data.
For example, scale each attribute on the input vector X to [0,1] or [-1,+1], or standardize it to have mean 0
and variance 1. Note that the same scaling must be applied to the test vector to obtain meaningful results. See
section Preprocessing data for more details on scaling and normalization.

• Parameter nu in NuSVC/OneClassSVM/NuSVR approximates the fraction of training errors and support vec-
tors.

• In SVC, if data for classification are unbalanced (e.g. many positive and few negative), set
class_weight=’balanced’ and/or try different penalty parameters C.

• The underlying LinearSVC implementation uses a random number generator to select features when fitting
the model. It is thus not uncommon, to have slightly different results for the same input data. If that happens,
try with a smaller tol parameter.

• Using L1 penalization as provided by LinearSVC(loss=’l2’, penalty=’l1’, dual=False)
yields a sparse solution, i.e. only a subset of feature weights is different from zero and contribute to the de-
cision function. Increasing C yields a more complex model (more feature are selected). The C value that yields
a “null” model (all weights equal to zero) can be calculated using l1_min_c.

Kernel functions

The kernel function can be any of the following:

• linear: ⟨𝑥, 𝑥′⟩.

• polynomial: (𝛾⟨𝑥, 𝑥′⟩+ 𝑟)𝑑. 𝑑 is specified by keyword degree, 𝑟 by coef0.

• rbf: exp(−𝛾|𝑥− 𝑥′|2). 𝛾 is specified by keyword gamma, must be greater than 0.

• sigmoid (tanh(𝛾⟨𝑥, 𝑥′⟩+ 𝑟)), where 𝑟 is specified by coef0.

Different kernels are specified by keyword kernel at initialization:

>>> linear_svc = svm.SVC(kernel='linear')
>>> linear_svc.kernel
'linear'
>>> rbf_svc = svm.SVC(kernel='rbf')
>>> rbf_svc.kernel
'rbf'
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Custom Kernels

You can define your own kernels by either giving the kernel as a python function or by precomputing the Gram matrix.

Classifiers with custom kernels behave the same way as any other classifiers, except that:

• Field support_vectors_ is now empty, only indices of support vectors are stored in support_

• A reference (and not a copy) of the first argument in the fit() method is stored for future reference. If that
array changes between the use of fit() and predict() you will have unexpected results.

Using Python functions as kernels You can also use your own defined kernels by passing a function to the keyword
kernel in the constructor.

Your kernel must take as arguments two matrices of shape (n_samples_1, n_features), (n_samples_2,
n_features) and return a kernel matrix of shape (n_samples_1, n_samples_2).

The following code defines a linear kernel and creates a classifier instance that will use that kernel:

>>> import numpy as np
>>> from sklearn import svm
>>> def my_kernel(X, Y):
... return np.dot(X, Y.T)
...
>>> clf = svm.SVC(kernel=my_kernel)

Examples:

• SVM with custom kernel.

Using the Gram matrix Set kernel=’precomputed’ and pass the Gram matrix instead of X in the fit method.
At the moment, the kernel values between all training vectors and the test vectors must be provided.

>>> import numpy as np
>>> from sklearn import svm
>>> X = np.array([[0, 0], [1, 1]])
>>> y = [0, 1]
>>> clf = svm.SVC(kernel='precomputed')
>>> # linear kernel computation
>>> gram = np.dot(X, X.T)
>>> clf.fit(gram, y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape=None, degree=3, gamma='auto',
kernel='precomputed', max_iter=-1, probability=False,
random_state=None, shrinking=True, tol=0.001, verbose=False)

>>> # predict on training examples
>>> clf.predict(gram)
array([0, 1])

Parameters of the RBF Kernel When training an SVM with the Radial Basis Function (RBF) kernel, two parame-
ters must be considered: C and gamma. The parameter C, common to all SVM kernels, trades off misclassification of
training examples against simplicity of the decision surface. A low C makes the decision surface smooth, while a high
C aims at classifying all training examples correctly. gamma defines how much influence a single training example
has. The larger gamma is, the closer other examples must be to be affected.
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Proper choice of C and gamma is critical to the SVM’s performance. One is advised to use
sklearn.grid_search.GridSearchCV with C and gamma spaced exponentially far apart to choose good
values.

Examples:

• RBF SVM parameters

Mathematical formulation

A support vector machine constructs a hyper-plane or set of hyper-planes in a high or infinite dimensional space, which
can be used for classification, regression or other tasks. Intuitively, a good separation is achieved by the hyper-plane
that has the largest distance to the nearest training data points of any class (so-called functional margin), since in
general the larger the margin the lower the generalization error of the classifier.

SVC

Given training vectors 𝑥𝑖 ∈ R𝑝, i=1,..., n, in two classes, and a vector 𝑦 ∈ {1,−1}𝑛, SVC solves the following primal
problem:

min
𝑤,𝑏,𝜁

1

2
𝑤𝑇𝑤 + 𝐶

𝑛∑︁
𝑖=1

𝜁𝑖

subject to 𝑦𝑖(𝑤𝑇𝜑(𝑥𝑖) + 𝑏) ≥ 1− 𝜁𝑖,
𝜁𝑖 ≥ 0, 𝑖 = 1, ..., 𝑛
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Its dual is

min
𝛼

1

2
𝛼𝑇𝑄𝛼− 𝑒𝑇𝛼

subject to 𝑦𝑇𝛼 = 0

0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, ..., 𝑛

where 𝑒 is the vector of all ones, 𝐶 > 0 is the upper bound, 𝑄 is an 𝑛 by 𝑛 positive semidefinite matrix, 𝑄𝑖𝑗 ≡
𝑦𝑖𝑦𝑗𝐾(𝑥𝑖, 𝑥𝑗) Where 𝐾(𝑥𝑖, 𝑥𝑗) = 𝜑(𝑥𝑖)

𝑇𝜑(𝑥𝑗) is the kernel. Here training vectors are implicitly mapped into a
higher (maybe infinite) dimensional space by the function 𝜑.

The decision function is:

sgn(

𝑛∑︁
𝑖=1

𝑦𝑖𝛼𝑖𝐾(𝑥𝑖, 𝑥) + 𝜌)

Note: While SVM models derived from libsvm and liblinear use C as regularization parameter, most other estimators
use alpha. The relation between both is 𝐶 = 𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑎𝑙𝑝ℎ𝑎 .

This parameters can be accessed through the members dual_coef_ which holds the product 𝑦𝑖𝛼𝑖,
support_vectors_ which holds the support vectors, and intercept_ which holds the independent term 𝜌
:

References:

• “Automatic Capacity Tuning of Very Large VC-dimension Classifiers” I Guyon, B Boser, V Vapnik -
Advances in neural information processing 1993,

• “Support-vector networks” C. Cortes, V. Vapnik, Machine Leaming, 20, 273-297 (1995)

NuSVC

We introduce a new parameter 𝜈 which controls the number of support vectors and training errors. The parameter
𝜈 ∈ (0, 1] is an upper bound on the fraction of training errors and a lower bound of the fraction of support vectors.

It can be shown that the 𝜈-SVC formulation is a reparametrization of the 𝐶-SVC and therefore mathematically equiv-
alent.

SVR

Given training vectors 𝑥𝑖 ∈ R𝑝, i=1,..., n, and a vector 𝑦 ∈ R𝑛 𝜀-SVR solves the following primal problem:

min
𝑤,𝑏,𝜁,𝜁*

1

2
𝑤𝑇𝑤 + 𝐶

𝑛∑︁
𝑖=1

(𝜁𝑖 + 𝜁*𝑖 )

subject to 𝑦𝑖 − 𝑤𝑇𝜑(𝑥𝑖)− 𝑏 ≤ 𝜀+ 𝜁𝑖,

𝑤𝑇𝜑(𝑥𝑖) + 𝑏− 𝑦𝑖 ≤ 𝜀+ 𝜁*𝑖 ,

𝜁𝑖, 𝜁
*
𝑖 ≥ 0, 𝑖 = 1, ..., 𝑛

Its dual is

min
𝛼,𝛼*

1

2
(𝛼− 𝛼*)𝑇𝑄(𝛼− 𝛼*) + 𝜀𝑒𝑇 (𝛼+ 𝛼*)− 𝑦𝑇 (𝛼− 𝛼*)

subject to 𝑒𝑇 (𝛼− 𝛼*) = 0

0 ≤ 𝛼𝑖, 𝛼
*
𝑖 ≤ 𝐶, 𝑖 = 1, ..., 𝑛
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where 𝑒 is the vector of all ones, 𝐶 > 0 is the upper bound, 𝑄 is an 𝑛 by 𝑛 positive semidefinite matrix, 𝑄𝑖𝑗 ≡
𝐾(𝑥𝑖, 𝑥𝑗) = 𝜑(𝑥𝑖)

𝑇𝜑(𝑥𝑗) is the kernel. Here training vectors are implicitly mapped into a higher (maybe infinite)
dimensional space by the function 𝜑.

The decision function is:

𝑛∑︁
𝑖=1

(𝛼𝑖 − 𝛼*
𝑖 )𝐾(𝑥𝑖, 𝑥) + 𝜌

These parameters can be accessed through the members dual_coef_ which holds the difference 𝛼𝑖 − 𝛼*
𝑖 ,

support_vectors_ which holds the support vectors, and intercept_ which holds the independent term 𝜌

References:

• “A Tutorial on Support Vector Regression” Alex J. Smola, Bernhard Schölkopf -Statistics and Computing
archive Volume 14 Issue 3, August 2004, p. 199-222

Implementation details

Internally, we use libsvm and liblinear to handle all computations. These libraries are wrapped using C and Cython.

References:

For a description of the implementation and details of the algorithms used, please refer to
• LIBSVM: a library for Support Vector Machines
• LIBLINEAR – A Library for Large Linear Classification

3.1.5 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a simple yet very efficient approach to discriminative learning of linear clas-
sifiers under convex loss functions such as (linear) Support Vector Machines and Logistic Regression. Even though
SGD has been around in the machine learning community for a long time, it has received a considerable amount of
attention just recently in the context of large-scale learning.

SGD has been successfully applied to large-scale and sparse machine learning problems often encountered in text
classification and natural language processing. Given that the data is sparse, the classifiers in this module easily scale
to problems with more than 10^5 training examples and more than 10^5 features.

The advantages of Stochastic Gradient Descent are:

• Efficiency.

• Ease of implementation (lots of opportunities for code tuning).

The disadvantages of Stochastic Gradient Descent include:

• SGD requires a number of hyperparameters such as the regularization parameter and the number of iterations.

• SGD is sensitive to feature scaling.
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Classification

Warning: Make sure you permute (shuffle) your training data before fitting the model or use shuffle=True
to shuffle after each iterations.

The class SGDClassifier implements a plain stochastic gradient descent learning routine which supports different
loss functions and penalties for classification.

As other classifiers, SGD has to be fitted with two arrays: an array X of size [n_samples, n_features] holding the
training samples, and an array Y of size [n_samples] holding the target values (class labels) for the training samples:

>>> from sklearn.linear_model import SGDClassifier
>>> X = [[0., 0.], [1., 1.]]
>>> y = [0, 1]
>>> clf = SGDClassifier(loss="hinge", penalty="l2")
>>> clf.fit(X, y)
SGDClassifier(alpha=0.0001, average=False, class_weight=None, epsilon=0.1,

eta0=0.0, fit_intercept=True, l1_ratio=0.15,
learning_rate='optimal', loss='hinge', n_iter=5, n_jobs=1,
penalty='l2', power_t=0.5, random_state=None, shuffle=True,
verbose=0, warm_start=False)

After being fitted, the model can then be used to predict new values:

>>> clf.predict([[2., 2.]])
array([1])

SGD fits a linear model to the training data. The member coef_ holds the model parameters:

>>> clf.coef_
array([[ 9.9..., 9.9...]])

Member intercept_ holds the intercept (aka offset or bias):
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>>> clf.intercept_
array([-9.9...])

Whether or not the model should use an intercept, i.e. a biased hyperplane, is controlled by the parameter
fit_intercept.

To get the signed distance to the hyperplane use SGDClassifier.decision_function:

>>> clf.decision_function([[2., 2.]])
array([ 29.6...])

The concrete loss function can be set via the loss parameter. SGDClassifier supports the following loss func-
tions:

• loss="hinge": (soft-margin) linear Support Vector Machine,

• loss="modified_huber": smoothed hinge loss,

• loss="log": logistic regression,

• and all regression losses below.

The first two loss functions are lazy, they only update the model parameters if an example violates the margin con-
straint, which makes training very efficient and may result in sparser models, even when L2 penalty is used.

Using loss="log" or loss="modified_huber" enables the predict_proba method, which gives a vector
of probability estimates 𝑃 (𝑦|𝑥) per sample 𝑥:

>>> clf = SGDClassifier(loss="log").fit(X, y)
>>> clf.predict_proba([[1., 1.]])
array([[ 0.00..., 0.99...]])

The concrete penalty can be set via the penalty parameter. SGD supports the following penalties:

• penalty="l2": L2 norm penalty on coef_.

• penalty="l1": L1 norm penalty on coef_.

• penalty="elasticnet": Convex combination of L2 and L1; (1 - l1_ratio) * L2 +
l1_ratio * L1.

The default setting is penalty="l2". The L1 penalty leads to sparse solutions, driving most coefficients to zero.
The Elastic Net solves some deficiencies of the L1 penalty in the presence of highly correlated attributes. The param-
eter l1_ratio controls the convex combination of L1 and L2 penalty.

SGDClassifier supports multi-class classification by combining multiple binary classifiers in a “one versus all”
(OVA) scheme. For each of the 𝐾 classes, a binary classifier is learned that discriminates between that and all other
𝐾 − 1 classes. At testing time, we compute the confidence score (i.e. the signed distances to the hyperplane) for each
classifier and choose the class with the highest confidence. The Figure below illustrates the OVA approach on the iris
dataset. The dashed lines represent the three OVA classifiers; the background colors show the decision surface induced
by the three classifiers.

In the case of multi-class classification coef_ is a two-dimensionally array of shape=[n_classes,
n_features] and intercept_ is a one dimensional array of shape=[n_classes]. The i-th row of coef_
holds the weight vector of the OVA classifier for the i-th class; classes are indexed in ascending order (see at-
tribute classes_). Note that, in principle, since they allow to create a probability model, loss="log" and
loss="modified_huber" are more suitable for one-vs-all classification.

SGDClassifier supports both weighted classes and weighted instances via the fit parameters class_weight and
sample_weight. See the examples below and the doc string of SGDClassifier.fit for further information.
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Examples:

• SGD: Maximum margin separating hyperplane,
• Plot multi-class SGD on the iris dataset
• SGD: Weighted samples
• Comparing various online solvers
• SVM: Separating hyperplane for unbalanced classes (See the Note)

SGDClassifier supports averaged SGD (ASGD). Averaging can be enabled by setting ‘average=True‘.
ASGD works by averaging the coefficients of the plain SGD over each iteration over a sample. When using ASGD
the learning rate can be larger and even constant leading on some datasets to a speed up in training time.

For classification with a logistic loss, another variant of SGD with an averaging strategy is available with Stochastic
Average Gradient (SAG) algorithm, available as a solver in LogisticRegression.

Regression

The class SGDRegressor implements a plain stochastic gradient descent learning routine which supports different
loss functions and penalties to fit linear regression models. SGDRegressor is well suited for regression prob-
lems with a large number of training samples (> 10.000), for other problems we recommend Ridge, Lasso, or
ElasticNet.

The concrete loss function can be set via the loss parameter. SGDRegressor supports the following loss functions:

• loss="squared_loss": Ordinary least squares,

• loss="huber": Huber loss for robust regression,

• loss="epsilon_insensitive": linear Support Vector Regression.
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The Huber and epsilon-insensitive loss functions can be used for robust regression. The width of the insensitive region
has to be specified via the parameter epsilon. This parameter depends on the scale of the target variables.

SGDRegressor supports averaged SGD as SGDClassifier. Averaging can be enabled by setting
‘average=True‘.

For regression with a squared loss and a l2 penalty, another variant of SGD with an averaging strategy is available with
Stochastic Average Gradient (SAG) algorithm, available as a solver in Ridge.

Stochastic Gradient Descent for sparse data

Note: The sparse implementation produces slightly different results than the dense implementation due to a shrunk
learning rate for the intercept.

There is built-in support for sparse data given in any matrix in a format supported by scipy.sparse. For maximum
efficiency, however, use the CSR matrix format as defined in scipy.sparse.csr_matrix.

Examples:

• Classification of text documents using sparse features

Complexity

The major advantage of SGD is its efficiency, which is basically linear in the number of training examples. If X is a
matrix of size (n, p) training has a cost of 𝑂(𝑘𝑛𝑝), where k is the number of iterations (epochs) and 𝑝 is the average
number of non-zero attributes per sample.

Recent theoretical results, however, show that the runtime to get some desired optimization accuracy does not increase
as the training set size increases.

Tips on Practical Use

• Stochastic Gradient Descent is sensitive to feature scaling, so it is highly recommended to scale your data. For
example, scale each attribute on the input vector X to [0,1] or [-1,+1], or standardize it to have mean 0 and
variance 1. Note that the same scaling must be applied to the test vector to obtain meaningful results. This can
be easily done using StandardScaler:

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train) # Don't cheat - fit only on training data
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test) # apply same transformation to test data

If your attributes have an intrinsic scale (e.g. word frequencies or indicator features) scaling is not needed.

• Finding a reasonable regularization term 𝛼 is best done using GridSearchCV, usually in the range
10.0**-np.arange(1,7).

• Empirically, we found that SGD converges after observing approx. 10^6 training samples. Thus, a reasonable
first guess for the number of iterations is n_iter = np.ceil(10**6 / n), where n is the size of the
training set.

• If you apply SGD to features extracted using PCA we found that it is often wise to scale the feature values by
some constant c such that the average L2 norm of the training data equals one.
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• We found that Averaged SGD works best with a larger number of features and a higher eta0

References:

• “Efficient BackProp” Y. LeCun, L. Bottou, G. Orr, K. Müller - In Neural Networks: Tricks of the Trade
1998.

Mathematical formulation

Given a set of training examples (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) where 𝑥𝑖 ∈ R𝑛 and 𝑦𝑖 ∈ {−1, 1}, our goal is to learn a linear
scoring function 𝑓(𝑥) = 𝑤𝑇𝑥+ 𝑏 with model parameters 𝑤 ∈ R𝑚 and intercept 𝑏 ∈ R. In order to make predictions,
we simply look at the sign of 𝑓(𝑥). A common choice to find the model parameters is by minimizing the regularized
training error given by

𝐸(𝑤, 𝑏) =
1

𝑛

𝑛∑︁
𝑖=1

𝐿(𝑦𝑖, 𝑓(𝑥𝑖)) + 𝛼𝑅(𝑤)

where 𝐿 is a loss function that measures model (mis)fit and 𝑅 is a regularization term (aka penalty) that penalizes
model complexity; 𝛼 > 0 is a non-negative hyperparameter.

Different choices for 𝐿 entail different classifiers such as

• Hinge: (soft-margin) Support Vector Machines.

• Log: Logistic Regression.

• Least-Squares: Ridge Regression.

• Epsilon-Insensitive: (soft-margin) Support Vector Regression.

All of the above loss functions can be regarded as an upper bound on the misclassification error (Zero-one loss) as
shown in the Figure below.
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Popular choices for the regularization term 𝑅 include:

• L2 norm: 𝑅(𝑤) := 1
2

∑︀𝑛
𝑖=1 𝑤

2
𝑖 ,

• L1 norm: 𝑅(𝑤) :=
∑︀𝑛

𝑖=1 |𝑤𝑖|, which leads to sparse solutions.

• Elastic Net: 𝑅(𝑤) := 𝜌
2

∑︀𝑛
𝑖=1 𝑤

2
𝑖 + (1 − 𝜌)

∑︀𝑛
𝑖=1 |𝑤𝑖|, a convex combination of L2 and L1, where 𝜌 is given

by 1 - l1_ratio.

The Figure below shows the contours of the different regularization terms in the parameter space when 𝑅(𝑤) = 1.

SGD

Stochastic gradient descent is an optimization method for unconstrained optimization problems. In contrast to (batch)
gradient descent, SGD approximates the true gradient of 𝐸(𝑤, 𝑏) by considering a single training example at a time.

The class SGDClassifier implements a first-order SGD learning routine. The algorithm iterates over the training
examples and for each example updates the model parameters according to the update rule given by

𝑤 ← 𝑤 − 𝜂(𝛼
𝜕𝑅(𝑤)

𝜕𝑤
+
𝜕𝐿(𝑤𝑇𝑥𝑖 + 𝑏, 𝑦𝑖)

𝜕𝑤
)

where 𝜂 is the learning rate which controls the step-size in the parameter space. The intercept 𝑏 is updated similarly
but without regularization.

The learning rate 𝜂 can be either constant or gradually decaying. For classification, the default learning rate schedule
(learning_rate=’optimal’) is given by

𝜂(𝑡) =
1

𝛼(𝑡0 + 𝑡)

where 𝑡 is the time step (there are a total of n_samples * n_iter time steps), 𝑡0 is determined based on a heuristic
proposed by Léon Bottou such that the expected initial updates are comparable with the expected size of the weights
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(this assuming that the norm of the training samples is approx. 1). The exact definition can be found in _init_t in
BaseSGD.

For regression the default learning rate schedule is inverse scaling (learning_rate=’invscaling’), given by

𝜂(𝑡) =
𝑒𝑡𝑎0

𝑡𝑝𝑜𝑤𝑒𝑟_𝑡

where 𝑒𝑡𝑎0 and 𝑝𝑜𝑤𝑒𝑟_𝑡 are hyperparameters chosen by the user via eta0 and power_t, resp.

For a constant learning rate use learning_rate=’constant’ and use eta0 to specify the learning rate.

The model parameters can be accessed through the members coef_ and intercept_:

• Member coef_ holds the weights 𝑤

• Member intercept_ holds 𝑏

References:

• “Solving large scale linear prediction problems using stochastic gradient descent algorithms” T. Zhang -
In Proceedings of ICML ‘04.

• “Regularization and variable selection via the elastic net” H. Zou, T. Hastie - Journal of the Royal Statis-
tical Society Series B, 67 (2), 301-320.

• “Towards Optimal One Pass Large Scale Learning with Averaged Stochastic Gradient Descent” Xu, Wei

Implementation details

The implementation of SGD is influenced by the Stochastic Gradient SVM of Léon Bottou. Similar to SvmSGD,
the weight vector is represented as the product of a scalar and a vector which allows an efficient weight update in
the case of L2 regularization. In the case of sparse feature vectors, the intercept is updated with a smaller learning
rate (multiplied by 0.01) to account for the fact that it is updated more frequently. Training examples are picked up
sequentially and the learning rate is lowered after each observed example. We adopted the learning rate schedule from
Shalev-Shwartz et al. 2007. For multi-class classification, a “one versus all” approach is used. We use the truncated
gradient algorithm proposed by Tsuruoka et al. 2009 for L1 regularization (and the Elastic Net). The code is written
in Cython.

References:

• “Stochastic Gradient Descent” L. Bottou - Website, 2010.
• “The Tradeoffs of Large Scale Machine Learning” L. Bottou - Website, 2011.
• “Pegasos: Primal estimated sub-gradient solver for svm” S. Shalev-Shwartz, Y. Singer, N. Srebro - In

Proceedings of ICML ‘07.
• “Stochastic gradient descent training for l1-regularized log-linear models with cumulative penalty” Y.

Tsuruoka, J. Tsujii, S. Ananiadou - In Proceedings of the AFNLP/ACL ‘09.

3.1.6 Nearest Neighbors

sklearn.neighbors provides functionality for unsupervised and supervised neighbors-based learning methods.
Unsupervised nearest neighbors is the foundation of many other learning methods, notably manifold learning and
spectral clustering. Supervised neighbors-based learning comes in two flavors: classification for data with discrete
labels, and regression for data with continuous labels.

The principle behind nearest neighbor methods is to find a predefined number of training samples closest in distance
to the new point, and predict the label from these. The number of samples can be a user-defined constant (k-nearest
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neighbor learning), or vary based on the local density of points (radius-based neighbor learning). The distance can,
in general, be any metric measure: standard Euclidean distance is the most common choice. Neighbors-based meth-
ods are known as non-generalizing machine learning methods, since they simply “remember” all of its training data
(possibly transformed into a fast indexing structure such as a Ball Tree or KD Tree.).

Despite its simplicity, nearest neighbors has been successful in a large number of classification and regression prob-
lems, including handwritten digits or satellite image scenes. Being a non-parametric method, it is often successful in
classification situations where the decision boundary is very irregular.

The classes in sklearn.neighbors can handle either Numpy arrays or scipy.sparse matrices as input. For dense
matrices, a large number of possible distance metrics are supported. For sparse matrices, arbitrary Minkowski metrics
are supported for searches.

There are many learning routines which rely on nearest neighbors at their core. One example is kernel density estima-
tion, discussed in the density estimation section.

Unsupervised Nearest Neighbors

NearestNeighbors implements unsupervised nearest neighbors learning. It acts as a uniform interface to three
different nearest neighbors algorithms: BallTree, KDTree, and a brute-force algorithm based on routines in
sklearn.metrics.pairwise. The choice of neighbors search algorithm is controlled through the keyword
’algorithm’, which must be one of [’auto’, ’ball_tree’, ’kd_tree’, ’brute’]. When the de-
fault value ’auto’ is passed, the algorithm attempts to determine the best approach from the training data. For a
discussion of the strengths and weaknesses of each option, see Nearest Neighbor Algorithms.

Warning: Regarding the Nearest Neighbors algorithms, if two neighbors, neighbor 𝑘+1 and 𝑘, have
identical distances but different labels, the results will depend on the ordering of the training data.

Finding the Nearest Neighbors

For the simple task of finding the nearest neighbors between two sets of data, the unsupervised algorithms within
sklearn.neighbors can be used:

>>> from sklearn.neighbors import NearestNeighbors
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> nbrs = NearestNeighbors(n_neighbors=2, algorithm='ball_tree').fit(X)
>>> distances, indices = nbrs.kneighbors(X)
>>> indices
array([[0, 1],

[1, 0],
[2, 1],
[3, 4],
[4, 3],
[5, 4]]...)

>>> distances
array([[ 0. , 1. ],

[ 0. , 1. ],
[ 0. , 1.41421356],
[ 0. , 1. ],
[ 0. , 1. ],
[ 0. , 1.41421356]])

Because the query set matches the training set, the nearest neighbor of each point is the point itself, at a distance of
zero.
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It is also possible to efficiently produce a sparse graph showing the connections between neighboring points:

>>> nbrs.kneighbors_graph(X).toarray()
array([[ 1., 1., 0., 0., 0., 0.],

[ 1., 1., 0., 0., 0., 0.],
[ 0., 1., 1., 0., 0., 0.],
[ 0., 0., 0., 1., 1., 0.],
[ 0., 0., 0., 1., 1., 0.],
[ 0., 0., 0., 0., 1., 1.]])

Our dataset is structured such that points nearby in index order are nearby in parameter space, leading to
an approximately block-diagonal matrix of K-nearest neighbors. Such a sparse graph is useful in a vari-
ety of circumstances which make use of spatial relationships between points for unsupervised learning: in
particular, see sklearn.manifold.Isomap, sklearn.manifold.LocallyLinearEmbedding, and
sklearn.cluster.SpectralClustering.

KDTree and BallTree Classes

Alternatively, one can use the KDTree or BallTree classes directly to find nearest neighbors. This is the function-
ality wrapped by the NearestNeighbors class used above. The Ball Tree and KD Tree have the same interface;
we’ll show an example of using the KD Tree here:

>>> from sklearn.neighbors import KDTree
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> kdt = KDTree(X, leaf_size=30, metric='euclidean')
>>> kdt.query(X, k=2, return_distance=False)
array([[0, 1],

[1, 0],
[2, 1],
[3, 4],
[4, 3],
[5, 4]]...)

Refer to the KDTree and BallTree class documentation for more information on the options available for neighbors
searches, including specification of query strategies, of various distance metrics, etc. For a list of available metrics,
see the documentation of the DistanceMetric class.

Nearest Neighbors Classification

Neighbors-based classification is a type of instance-based learning or non-generalizing learning: it does not attempt
to construct a general internal model, but simply stores instances of the training data. Classification is computed from
a simple majority vote of the nearest neighbors of each point: a query point is assigned the data class which has the
most representatives within the nearest neighbors of the point.

scikit-learn implements two different nearest neighbors classifiers: KNeighborsClassifier implements learn-
ing based on the 𝑘 nearest neighbors of each query point, where 𝑘 is an integer value specified by the user.
RadiusNeighborsClassifier implements learning based on the number of neighbors within a fixed radius
𝑟 of each training point, where 𝑟 is a floating-point value specified by the user.

The 𝑘-neighbors classification in KNeighborsClassifier is the more commonly used of the two techniques.
The optimal choice of the value 𝑘 is highly data-dependent: in general a larger 𝑘 suppresses the effects of noise, but
makes the classification boundaries less distinct.

In cases where the data is not uniformly sampled, radius-based neighbors classification in
RadiusNeighborsClassifier can be a better choice. The user specifies a fixed radius 𝑟, such that
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points in sparser neighborhoods use fewer nearest neighbors for the classification. For high-dimensional parameter
spaces, this method becomes less effective due to the so-called “curse of dimensionality”.

The basic nearest neighbors classification uses uniform weights: that is, the value assigned to a query point is computed
from a simple majority vote of the nearest neighbors. Under some circumstances, it is better to weight the neighbors
such that nearer neighbors contribute more to the fit. This can be accomplished through the weights keyword. The
default value, weights = ’uniform’, assigns uniform weights to each neighbor. weights = ’distance’
assigns weights proportional to the inverse of the distance from the query point. Alternatively, a user-defined function
of the distance can be supplied which is used to compute the weights.

Examples:

• Nearest Neighbors Classification: an example of classification using nearest neighbors.

Nearest Neighbors Regression

Neighbors-based regression can be used in cases where the data labels are continuous rather than discrete variables.
The label assigned to a query point is computed based the mean of the labels of its nearest neighbors.

scikit-learn implements two different neighbors regressors: KNeighborsRegressor implements learning
based on the 𝑘 nearest neighbors of each query point, where 𝑘 is an integer value specified by the user.
RadiusNeighborsRegressor implements learning based on the neighbors within a fixed radius 𝑟 of the query
point, where 𝑟 is a floating-point value specified by the user.
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The basic nearest neighbors regression uses uniform weights: that is, each point in the local neighborhood contributes
uniformly to the classification of a query point. Under some circumstances, it can be advantageous to weight points
such that nearby points contribute more to the regression than faraway points. This can be accomplished through the
weights keyword. The default value, weights = ’uniform’, assigns equal weights to all points. weights
= ’distance’ assigns weights proportional to the inverse of the distance from the query point. Alternatively, a
user-defined function of the distance can be supplied, which will be used to compute the weights.

The use of multi-output nearest neighbors for regression is demonstrated in Face completion with a multi-output
estimators. In this example, the inputs X are the pixels of the upper half of faces and the outputs Y are the pixels of
the lower half of those faces.

Examples:

• Nearest Neighbors regression: an example of regression using nearest neighbors.
• Face completion with a multi-output estimators: an example of multi-output regression using nearest

neighbors.

Nearest Neighbor Algorithms

Brute Force

Fast computation of nearest neighbors is an active area of research in machine learning. The most naive neighbor
search implementation involves the brute-force computation of distances between all pairs of points in the dataset:
for 𝑁 samples in 𝐷 dimensions, this approach scales as 𝑂[𝐷𝑁2]. Efficient brute-force neighbors searches can
be very competitive for small data samples. However, as the number of samples 𝑁 grows, the brute-force ap-
proach quickly becomes infeasible. In the classes within sklearn.neighbors, brute-force neighbors searches
are specified using the keyword algorithm = ’brute’, and are computed using the routines available in
sklearn.metrics.pairwise.
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K-D Tree

To address the computational inefficiencies of the brute-force approach, a variety of tree-based data structures have
been invented. In general, these structures attempt to reduce the required number of distance calculations by efficiently
encoding aggregate distance information for the sample. The basic idea is that if point 𝐴 is very distant from point
𝐵, and point 𝐵 is very close to point 𝐶, then we know that points 𝐴 and 𝐶 are very distant, without having to
explicitly calculate their distance. In this way, the computational cost of a nearest neighbors search can be reduced to
𝑂[𝐷𝑁 log(𝑁)] or better. This is a significant improvement over brute-force for large 𝑁 .

An early approach to taking advantage of this aggregate information was the KD tree data structure (short for K-
dimensional tree), which generalizes two-dimensional Quad-trees and 3-dimensional Oct-trees to an arbitrary number
of dimensions. The KD tree is a binary tree structure which recursively partitions the parameter space along the data
axes, dividing it into nested orthotopic regions into which data points are filed. The construction of a KD tree is very
fast: because partitioning is performed only along the data axes, no 𝐷-dimensional distances need to be computed.
Once constructed, the nearest neighbor of a query point can be determined with only𝑂[log(𝑁)] distance computations.
Though the KD tree approach is very fast for low-dimensional (𝐷 < 20) neighbors searches, it becomes inefficient
as 𝐷 grows very large: this is one manifestation of the so-called “curse of dimensionality”. In scikit-learn, KD tree
neighbors searches are specified using the keyword algorithm = ’kd_tree’, and are computed using the class
KDTree.

References:

• “Multidimensional binary search trees used for associative searching”, Bentley, J.L., Communications of
the ACM (1975)

Ball Tree

To address the inefficiencies of KD Trees in higher dimensions, the ball tree data structure was developed. Where
KD trees partition data along Cartesian axes, ball trees partition data in a series of nesting hyper-spheres. This makes
tree construction more costly than that of the KD tree, but results in a data structure which can be very efficient on
highly-structured data, even in very high dimensions.

A ball tree recursively divides the data into nodes defined by a centroid 𝐶 and radius 𝑟, such that each point in the
node lies within the hyper-sphere defined by 𝑟 and 𝐶. The number of candidate points for a neighbor search is reduced
through use of the triangle inequality:

|𝑥+ 𝑦| ≤ |𝑥|+ |𝑦|

With this setup, a single distance calculation between a test point and the centroid is sufficient to determine a lower
and upper bound on the distance to all points within the node. Because of the spherical geometry of the ball tree nodes,
it can out-perform a KD-tree in high dimensions, though the actual performance is highly dependent on the structure
of the training data. In scikit-learn, ball-tree-based neighbors searches are specified using the keyword algorithm
= ’ball_tree’, and are computed using the class sklearn.neighbors.BallTree. Alternatively, the user
can work with the BallTree class directly.

References:

• “Five balltree construction algorithms”, Omohundro, S.M., International Computer Science Institute Tech-
nical Report (1989)
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Choice of Nearest Neighbors Algorithm

The optimal algorithm for a given dataset is a complicated choice, and depends on a number of factors:

• number of samples 𝑁 (i.e. n_samples) and dimensionality 𝐷 (i.e. n_features).

– Brute force query time grows as 𝑂[𝐷𝑁 ]

– Ball tree query time grows as approximately 𝑂[𝐷 log(𝑁)]

– KD tree query time changes with 𝐷 in a way that is difficult to precisely characterise. For small 𝐷 (less
than 20 or so) the cost is approximately 𝑂[𝐷 log(𝑁)], and the KD tree query can be very efficient. For
larger𝐷, the cost increases to nearly𝑂[𝐷𝑁 ], and the overhead due to the tree structure can lead to queries
which are slower than brute force.

For small data sets (𝑁 less than 30 or so), log(𝑁) is comparable to 𝑁 , and brute force algorithms can be more
efficient than a tree-based approach. Both KDTree and BallTree address this through providing a leaf size
parameter: this controls the number of samples at which a query switches to brute-force. This allows both
algorithms to approach the efficiency of a brute-force computation for small 𝑁 .

• data structure: intrinsic dimensionality of the data and/or sparsity of the data. Intrinsic dimensionality refers
to the dimension 𝑑 ≤ 𝐷 of a manifold on which the data lies, which can be linearly or non-linearly embedded
in the parameter space. Sparsity refers to the degree to which the data fills the parameter space (this is to be
distinguished from the concept as used in “sparse” matrices. The data matrix may have no zero entries, but the
structure can still be “sparse” in this sense).

– Brute force query time is unchanged by data structure.

– Ball tree and KD tree query times can be greatly influenced by data structure. In general, sparser data with a
smaller intrinsic dimensionality leads to faster query times. Because the KD tree internal representation is
aligned with the parameter axes, it will not generally show as much improvement as ball tree for arbitrarily
structured data.

Datasets used in machine learning tend to be very structured, and are very well-suited for tree-based queries.

• number of neighbors 𝑘 requested for a query point.

– Brute force query time is largely unaffected by the value of 𝑘

– Ball tree and KD tree query time will become slower as 𝑘 increases. This is due to two effects: first, a
larger 𝑘 leads to the necessity to search a larger portion of the parameter space. Second, using 𝑘 > 1
requires internal queueing of results as the tree is traversed.

As 𝑘 becomes large compared to 𝑁 , the ability to prune branches in a tree-based query is reduced. In this
situation, Brute force queries can be more efficient.

• number of query points. Both the ball tree and the KD Tree require a construction phase. The cost of this
construction becomes negligible when amortized over many queries. If only a small number of queries will
be performed, however, the construction can make up a significant fraction of the total cost. If very few query
points will be required, brute force is better than a tree-based method.

Currently, algorithm = ’auto’ selects ’kd_tree’ if 𝑘 < 𝑁/2 and the ’effective_metric_’
is in the ’VALID_METRICS’ list of ’kd_tree’. It selects ’ball_tree’ if 𝑘 < 𝑁/2 and the
’effective_metric_’ is not in the ’VALID_METRICS’ list of ’kd_tree’. It selects ’brute’ if 𝑘 >=
𝑁/2. This choice is based on the assumption that the number of query points is at least the same order as the number
of training points, and that leaf_size is close to its default value of 30.
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Effect of leaf_size

As noted above, for small sample sizes a brute force search can be more efficient than a tree-based query. This fact is
accounted for in the ball tree and KD tree by internally switching to brute force searches within leaf nodes. The level
of this switch can be specified with the parameter leaf_size. This parameter choice has many effects:

construction time A larger leaf_size leads to a faster tree construction time, because fewer nodes need to be
created

query time Both a large or small leaf_size can lead to suboptimal query cost. For leaf_size approaching
1, the overhead involved in traversing nodes can significantly slow query times. For leaf_size approach-
ing the size of the training set, queries become essentially brute force. A good compromise between these is
leaf_size = 30, the default value of the parameter.

memory As leaf_size increases, the memory required to store a tree structure decreases. This is especially
important in the case of ball tree, which stores a 𝐷-dimensional centroid for each node. The required storage
space for BallTree is approximately 1 / leaf_size times the size of the training set.

leaf_size is not referenced for brute force queries.

Nearest Centroid Classifier

The NearestCentroid classifier is a simple algorithm that represents each class by the centroid of its members.
In effect, this makes it similar to the label updating phase of the sklearn.KMeans algorithm. It also has no param-
eters to choose, making it a good baseline classifier. It does, however, suffer on non-convex classes, as well as when
classes have drastically different variances, as equal variance in all dimensions is assumed. See Linear Discrim-
inant Analysis (sklearn.discriminant_analysis.LinearDiscriminantAnalysis) and Quadratic
Discriminant Analysis (sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis) for
more complex methods that do not make this assumption. Usage of the default NearestCentroid is simple:

>>> from sklearn.neighbors.nearest_centroid import NearestCentroid
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> clf = NearestCentroid()
>>> clf.fit(X, y)
NearestCentroid(metric='euclidean', shrink_threshold=None)
>>> print(clf.predict([[-0.8, -1]]))
[1]

Nearest Shrunken Centroid

The NearestCentroid classifier has a shrink_threshold parameter, which implements the nearest shrunken
centroid classifier. In effect, the value of each feature for each centroid is divided by the within-class variance of that
feature. The feature values are then reduced by shrink_threshold. Most notably, if a particular feature value
crosses zero, it is set to zero. In effect, this removes the feature from affecting the classification. This is useful, for
example, for removing noisy features.

In the example below, using a small shrink threshold increases the accuracy of the model from 0.81 to 0.82.
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Examples:

• Nearest Centroid Classification: an example of classification using nearest centroid with different shrink
thresholds.

Approximate Nearest Neighbors

There are many efficient exact nearest neighbor search algorithms for low dimensions 𝑑 (approximately 50). However
these algorithms perform poorly with respect to space and query time when 𝑑 increases. These algorithms are not any
better than comparing query point to each point from the database in a high dimension (see Brute Force). This is a
well-known consequence of the phenomenon called “The Curse of Dimensionality”.

There are certain applications where we do not need the exact nearest neighbors but having a “good guess” would
suffice. When answers do not have to be exact, the LSHForest class implements an approximate nearest neigh-
bor search. Approximate nearest neighbor search methods have been designed to try to speedup query time with
high dimensional data. These techniques are useful when the aim is to characterize the neighborhood rather than
identifying the exact neighbors themselves (eg: k-nearest neighbors classification and regression). Some of the most
popular approximate nearest neighbor search techniques are locality sensitive hashing, best bin fit and balanced box-
decomposition tree based search.
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Locality Sensitive Hashing Forest

The vanilla implementation of locality sensitive hashing has a hyper-parameter that is hard to tune in practice, therefore
scikit-learn implements a variant called LSHForest that has more reasonable hyperparameters. Both methods use
internally random hyperplanes to index the samples into buckets and actual cosine similarities are only computed
for samples that collide with the query hence achieving sublinear scaling. (see Mathematical description of Locality
Sensitive Hashing).

LSHForest has two main hyper-parameters: n_estimators and n_candidates. The accuracy of queries can
be controlled using these parameters as demonstrated in the following plots:

As a rule of thumb, a user can set n_estimators to a large enough value (e.g. between 10 and 50) and then adjust
n_candidates to trade off accuracy for query time.

For small data sets, the brute force method for exact nearest neighbor search can be faster than LSH Forest. However
LSH Forest has a sub-linear query time scalability with the index size. The exact break even point where LSH
Forest queries become faster than brute force depends on the dimensionality, structure of the dataset, required level
of precision, characteristics of the runtime environment such as availability of BLAS optimizations, number of CPU
cores and size of the CPU caches. Following graphs depict scalability of LSHForest queries with index size.

For fixed LSHForest parameters, the accuracy of queries tends to slowly decrease with larger datasets. The error
bars on the previous plots represent standard deviation across different queries.
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Examples:

• Hyper-parameters of Approximate Nearest Neighbors: an example of the behavior of hyperparameters of
approximate nearest neighbor search using LSH Forest.

• Scalability of Approximate Nearest Neighbors: an example of scalability of approximate nearest neighbor
search using LSH Forest.

Mathematical description of Locality Sensitive Hashing

Locality sensitive hashing (LSH) techniques have been used in many areas where nearest neighbor search is performed
in high dimensions. The main concept behind LSH is to hash each data point in the database using multiple (often
simple) hash functions to form a digest (also called a hash). At this point the probability of collision - where two
objects have similar digests - is much higher for the points which are close to each other than that of the distant points.
We describe the requirements for a hash function family to be locality sensitive as follows.

A family 𝐻 of functions from a domain 𝑆 to a range 𝑈 is called (𝑟, 𝑒, 𝑝1, 𝑝2)-sensitive, with 𝑟, 𝑒 > 0, 𝑝1 > 𝑝2 > 0, if
for any 𝑝, 𝑞 ∈ 𝑆, the following conditions hold (𝐷 is the distance function):

• If 𝐷(𝑝, 𝑞) <= 𝑟 then 𝑃𝐻 [ℎ(𝑝) = ℎ(𝑞)] >= 𝑝1,

• If 𝐷(𝑝, 𝑞) > 𝑟(1 + 𝑒) then 𝑃𝐻 [ℎ(𝑝) = ℎ(𝑞)] <= 𝑝2.

As defined, nearby points within a distance of 𝑟 to each other are likely to collide with probability 𝑝1. In contrast,
distant points which are located with the distance more than 𝑟(1 + 𝑒) have a small probability of 𝑝2 of collision.
Suppose there is a family of LSH function 𝐻 . An LSH index is built as follows:

1. Choose 𝑘 functions ℎ1, ℎ2, . . . ℎ𝑘 uniformly at random (with replacement) from 𝐻 . For any 𝑝 ∈ 𝑆, place 𝑝 in
the bucket with label 𝑔(𝑝) = (ℎ1(𝑝), ℎ2(𝑝), . . . ℎ𝑘(𝑝)). Observe that if each ℎ𝑖 outputs one “digit”, each bucket
has a k-digit label.

2. Independently perform step 1 𝑙 times to construct 𝑙 separate estimators, with hash functions 𝑔1, 𝑔2, . . . 𝑔𝑙.

The reason to concatenate hash functions in the step 1 is to decrease the probability of the collision of distant points
as much as possible. The probability drops from 𝑝2 to 𝑝𝑘2 which is negligibly small for large 𝑘. The choice of 𝑘 is
strongly dependent on the data set size and structure and is therefore hard to tune in practice. There is a side effect of
having a large 𝑘; it has the potential of decreasing the chance of nearby points getting collided. To address this issue,
multiple estimators are constructed in step 2.

The requirement to tune 𝑘 for a given dataset makes classical LSH cumbersome to use in practice. The LSH Forest
variant has benn designed to alleviate this requirement by automatically adjusting the number of digits used to hash
the samples.

LSH Forest is formulated with prefix trees with each leaf of a tree corresponding to an actual data point in the database.
There are 𝑙 such trees which compose the forest and they are constructed using independently drawn random sequence
of hash functions from 𝐻 . In this implementation, “Random Projections” is being used as the LSH technique which is
an approximation for the cosine distance. The length of the sequence of hash functions is kept fixed at 32. Moreover,
a prefix tree is implemented using sorted arrays and binary search.

There are two phases of tree traversals used in order to answer a query to find the 𝑚 nearest neighbors of a point
𝑞. First, a top-down traversal is performed using a binary search to identify the leaf having the longest prefix match
(maximum depth) with 𝑞‘s label after subjecting 𝑞 to the same hash functions. 𝑀 >> 𝑚 points (total candidates)
are extracted from the forest, moving up from the previously found maximum depth towards the root synchronously
across all trees in the bottom-up traversal. M is set to 𝑐𝑙 where 𝑐, the number of candidates extracted from each tree,
is a constant. Finally, the similarity of each of these 𝑀 points against point 𝑞 is calculated and the top 𝑚 points are
returned as the nearest neighbors of 𝑞. Since most of the time in these queries is spent calculating the distances to
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candidates, the speedup compared to brute force search is approximately 𝑁/𝑀 , where 𝑁 is the number of points in
database.

References:

• “Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions”, Alexandr,
A., Indyk, P., Foundations of Computer Science, 2006. FOCS ‘06. 47th Annual IEEE Symposium

• “LSH Forest: Self-Tuning Indexes for Similarity Search”, Bawa, M., Condie, T., Ganesan, P., WWW ‘05
Proceedings of the 14th international conference on World Wide Web Pages 651-660

3.1.7 Gaussian Processes

Gaussian Processes for Machine Learning (GPML) is a generic supervised learning method primarily designed to
solve regression problems. It has also been extended to probabilistic classification, but in the present implementation,
this is only a post-processing of the regression exercise.

The advantages of Gaussian Processes for Machine Learning are:

• The prediction interpolates the observations (at least for regular correlation models).

• The prediction is probabilistic (Gaussian) so that one can compute empirical confidence intervals and ex-
ceedance probabilities that might be used to refit (online fitting, adaptive fitting) the prediction in some region
of interest.

• Versatile: different linear regression models and correlation models can be specified. Common models are
provided, but it is also possible to specify custom models provided they are stationary.

The disadvantages of Gaussian Processes for Machine Learning include:

• It is not sparse. It uses the whole samples/features information to perform the prediction.

• It loses efficiency in high dimensional spaces – namely when the number of features exceeds a few dozens. It
might indeed give poor performance and it loses computational efficiency.

• Classification is only a post-processing, meaning that one first need to solve a regression problem by providing
the complete scalar float precision output 𝑦 of the experiment one attempt to model.

Thanks to the Gaussian property of the prediction, it has been given varied applications: e.g. for global optimization,
probabilistic classification.

Examples

An introductory regression example

Say we want to surrogate the function 𝑔(𝑥) = 𝑥 sin(𝑥). To do so, the function is evaluated onto a design of experi-
ments. Then, we define a GaussianProcess model whose regression and correlation models might be specified using
additional kwargs, and ask for the model to be fitted to the data. Depending on the number of parameters provided at
instantiation, the fitting procedure may recourse to maximum likelihood estimation for the parameters or alternatively
it uses the given parameters.

>>> import numpy as np
>>> from sklearn import gaussian_process
>>> def f(x):
... return x * np.sin(x)
>>> X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T
>>> y = f(X).ravel()
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>>> x = np.atleast_2d(np.linspace(0, 10, 1000)).T
>>> gp = gaussian_process.GaussianProcess(theta0=1e-2, thetaL=1e-4, thetaU=1e-1)
>>> gp.fit(X, y)
GaussianProcess(beta0=None, corr=<function squared_exponential at 0x...>,

normalize=True, nugget=array(2.22...-15),
optimizer='fmin_cobyla', random_start=1, random_state=...
regr=<function constant at 0x...>, storage_mode='full',
theta0=array([[ 0.01]]), thetaL=array([[ 0.0001]]),
thetaU=array([[ 0.1]]), verbose=False)

>>> y_pred, sigma2_pred = gp.predict(x, eval_MSE=True)

Fitting Noisy Data

When the data to be fit includes noise, the Gaussian process model can be used by specifying the variance of the noise
for each point. GaussianProcess takes a parameter nugget which is added to the diagonal of the correlation
matrix between training points: in general this is a type of Tikhonov regularization. In the special case of a squared-
exponential correlation function, this normalization is equivalent to specifying a fractional variance in the input. That
is

nugget𝑖 =

[︂
𝜎𝑖
𝑦𝑖

]︂2
With nugget and corr properly set, Gaussian Processes can be used to robustly recover an underlying function
from noisy data:

Other examples

• Gaussian Processes classification example: exploiting the probabilistic output

Mathematical formulation

The initial assumption

Suppose one wants to model the output of a computer experiment, say a mathematical function:

𝑔 :R𝑛features → R
𝑋 ↦→ 𝑦 = 𝑔(𝑋)

GPML starts with the assumption that this function is a conditional sample path of a Gaussian process 𝐺 which is
additionally assumed to read as follows:

𝐺(𝑋) = 𝑓(𝑋)𝑇𝛽 + 𝑍(𝑋)

where 𝑓(𝑋)𝑇𝛽 is a linear regression model and 𝑍(𝑋) is a zero-mean Gaussian process with a fully stationary covari-
ance function:

𝐶(𝑋,𝑋 ′) = 𝜎2𝑅(|𝑋 −𝑋 ′|)

𝜎2 being its variance and 𝑅 being the correlation function which solely depends on the absolute relative distance
between each sample, possibly featurewise (this is the stationarity assumption).

From this basic formulation, note that GPML is nothing but an extension of a basic least squares linear regression
problem:

𝑔(𝑋) ≈ 𝑓(𝑋)𝑇𝛽
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Except we additionally assume some spatial coherence (correlation) between the samples dictated by the correlation
function. Indeed, ordinary least squares assumes the correlation model 𝑅(|𝑋 −𝑋 ′|) is one when 𝑋 = 𝑋 ′ and zero
otherwise : a dirac correlation model – sometimes referred to as a nugget correlation model in the kriging literature.

The best linear unbiased prediction (BLUP)

We now derive the best linear unbiased prediction of the sample path 𝑔 conditioned on the observations:

�̂�(𝑋) = 𝐺(𝑋|𝑦1 = 𝑔(𝑋1), ..., 𝑦𝑛samples
= 𝑔(𝑋𝑛samples

))

It is derived from its given properties:

• It is linear (a linear combination of the observations)

�̂�(𝑋) ≡ 𝑎(𝑋)𝑇 𝑦

• It is unbiased

E[𝐺(𝑋)− �̂�(𝑋)] = 0

• It is the best (in the Mean Squared Error sense)

�̂�(𝑋)* = arg min
�̂�(𝑋)

E[(𝐺(𝑋)− �̂�(𝑋))2]

So that the optimal weight vector 𝑎(𝑋) is solution of the following equality constrained optimization problem:

𝑎(𝑋)* = arg min
𝑎(𝑋)

E[(𝐺(𝑋)− 𝑎(𝑋)𝑇 𝑦)2]

s.t. E[𝐺(𝑋)− 𝑎(𝑋)𝑇 𝑦] = 0

Rewriting this constrained optimization problem in the form of a Lagrangian and looking further for the first order
optimality conditions to be satisfied, one ends up with a closed form expression for the sought predictor – see references
for the complete proof.

In the end, the BLUP is shown to be a Gaussian random variate with mean:

𝜇𝑌 (𝑋) = 𝑓(𝑋)𝑇 𝛽 + 𝑟(𝑋)𝑇 𝛾

and variance:

𝜎2
𝑌

(𝑋) = 𝜎2
𝑌 (1− 𝑟(𝑋)𝑇 𝑅−1 𝑟(𝑋) + 𝑢(𝑋)𝑇 (𝐹𝑇 𝑅−1 𝐹 )−1 𝑢(𝑋))

where we have introduced:

• the correlation matrix whose terms are defined wrt the autocorrelation function and its built-in parameters 𝜃:

𝑅𝑖 𝑗 = 𝑅(|𝑋𝑖 −𝑋𝑗 |, 𝜃), 𝑖, 𝑗 = 1, ...,𝑚

• the vector of cross-correlations between the point where the prediction is made and the points in the DOE:

𝑟𝑖 = 𝑅(|𝑋 −𝑋𝑖|, 𝜃), 𝑖 = 1, ...,𝑚

• the regression matrix (eg the Vandermonde matrix if 𝑓 is a polynomial basis):

𝐹𝑖 𝑗 = 𝑓𝑖(𝑋𝑗), 𝑖 = 1, ..., 𝑝, 𝑗 = 1, ...,𝑚
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• the generalized least square regression weights:

𝛽 = (𝐹𝑇 𝑅−1 𝐹 )−1 𝐹𝑇 𝑅−1 𝑌

• and the vectors:

𝛾 = 𝑅−1(𝑌 − 𝐹 𝛽)

𝑢(𝑋) = 𝐹𝑇 𝑅−1 𝑟(𝑋)− 𝑓(𝑋)

It is important to notice that the probabilistic response of a Gaussian Process predictor is fully analytic and mostly relies
on basic linear algebra operations. More precisely the mean prediction is the sum of two simple linear combinations
(dot products), and the variance requires two matrix inversions, but the correlation matrix can be decomposed only
once using a Cholesky decomposition algorithm.

The empirical best linear unbiased predictor (EBLUP)

Until now, both the autocorrelation and regression models were assumed given. In practice however they are never
known in advance so that one has to make (motivated) empirical choices for these models Correlation Models.

Provided these choices are made, one should estimate the remaining unknown parameters involved in the BLUP. To
do so, one uses the set of provided observations in conjunction with some inference technique. The present implemen-
tation, which is based on the DACE’s Matlab toolbox uses the maximum likelihood estimation technique – see DACE
manual in references for the complete equations. This maximum likelihood estimation problem is turned into a global
optimization problem onto the autocorrelation parameters. In the present implementation, this global optimization is
solved by means of the fmin_cobyla optimization function from scipy.optimize. In the case of anisotropy however, we
provide an implementation of Welch’s componentwise optimization algorithm – see references.

For a more comprehensive description of the theoretical aspects of Gaussian Processes for Machine Learning, please
refer to the references below:

References:

• DACE, A Matlab Kriging Toolbox S Lophaven, HB Nielsen, J Sondergaard 2002
• Screening, predicting, and computer experiments WJ Welch, RJ Buck, J Sacks, HP Wynn, TJ Mitchell,

and MD Morris Technometrics 34(1) 15–25, 1992
• Gaussian Processes for Machine Learning CE Rasmussen, CKI Williams MIT Press, 2006 (Ed. T Diet-

trich)
• The design and analysis of computer experiments TJ Santner, BJ Williams, W Notz Springer, 2003

Correlation Models

Common correlation models matches some famous SVM’s kernels because they are mostly built on equivalent as-
sumptions. They must fulfill Mercer’s conditions and should additionally remain stationary. Note however, that the
choice of the correlation model should be made in agreement with the known properties of the original experiment
from which the observations come. For instance:

• If the original experiment is known to be infinitely differentiable (smooth), then one should use the squared-
exponential correlation model.

• If it’s not, then one should rather use the exponential correlation model.

• Note also that there exists a correlation model that takes the degree of derivability as input: this is the Matern
correlation model, but it’s not implemented here (TODO).
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For a more detailed discussion on the selection of appropriate correlation models, see the book by Rasmussen &
Williams in references.

Regression Models

Common linear regression models involve zero- (constant), first- and second-order polynomials. But one may specify
its own in the form of a Python function that takes the features X as input and that returns a vector containing the
values of the functional set. The only constraint is that the number of functions must not exceed the number of
available observations so that the underlying regression problem is not underdetermined.

Implementation details

The present implementation is based on a translation of the DACE Matlab toolbox.

References:

• DACE, A Matlab Kriging Toolbox S Lophaven, HB Nielsen, J Sondergaard 2002,
• W.J. Welch, R.J. Buck, J. Sacks, H.P. Wynn, T.J. Mitchell, and M.D. Morris (1992). Screening, predicting,

and computer experiments. Technometrics, 34(1) 15–25.

3.1.8 Cross decomposition

The cross decomposition module contains two main families of algorithms: the partial least squares (PLS) and the
canonical correlation analysis (CCA).

These families of algorithms are useful to find linear relations between two multivariate datasets: the X and Y argu-
ments of the fit method are 2D arrays.

Cross decomposition algorithms find the fundamental relations between two matrices (X and Y). They are latent
variable approaches to modeling the covariance structures in these two spaces. They will try to find the multidi-
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mensional direction in the X space that explains the maximum multidimensional variance direction in the Y space.
PLS-regression is particularly suited when the matrix of predictors has more variables than observations, and when
there is multicollinearity among X values. By contrast, standard regression will fail in these cases.

Classes included in this module are PLSRegression PLSCanonical, CCA and PLSSVD

Reference:

• JA Wegelin A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case

Examples:

• Compare cross decomposition methods

3.1.9 Naive Bayes

Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes’ theorem with the “naive”
assumption of independence between every pair of features. Given a class variable 𝑦 and a dependent feature vector
𝑥1 through 𝑥𝑛, Bayes’ theorem states the following relationship:

𝑃 (𝑦 | 𝑥1, . . . , 𝑥𝑛) =
𝑃 (𝑦)𝑃 (𝑥1, . . . 𝑥𝑛 | 𝑦)

𝑃 (𝑥1, . . . , 𝑥𝑛)

Using the naive independence assumption that

𝑃 (𝑥𝑖|𝑦, 𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖+1, . . . , 𝑥𝑛) = 𝑃 (𝑥𝑖|𝑦),

for all 𝑖, this relationship is simplified to

𝑃 (𝑦 | 𝑥1, . . . , 𝑥𝑛) =
𝑃 (𝑦)

∏︀𝑛
𝑖=1 𝑃 (𝑥𝑖 | 𝑦)

𝑃 (𝑥1, . . . , 𝑥𝑛)

Since 𝑃 (𝑥1, . . . , 𝑥𝑛) is constant given the input, we can use the following classification rule:

𝑃 (𝑦 | 𝑥1, . . . , 𝑥𝑛) ∝ 𝑃 (𝑦)

𝑛∏︁
𝑖=1

𝑃 (𝑥𝑖 | 𝑦)

⇓

𝑦 = arg max
𝑦

𝑃 (𝑦)

𝑛∏︁
𝑖=1

𝑃 (𝑥𝑖 | 𝑦),

and we can use Maximum A Posteriori (MAP) estimation to estimate 𝑃 (𝑦) and 𝑃 (𝑥𝑖 | 𝑦); the former is then the
relative frequency of class 𝑦 in the training set.

The different naive Bayes classifiers differ mainly by the assumptions they make regarding the distribution of 𝑃 (𝑥𝑖 |
𝑦).

In spite of their apparently over-simplified assumptions, naive Bayes classifiers have worked quite well in many real-
world situations, famously document classification and spam filtering. They require a small amount of training data to
estimate the necessary parameters. (For theoretical reasons why naive Bayes works well, and on which types of data
it does, see the references below.)

Naive Bayes learners and classifiers can be extremely fast compared to more sophisticated methods. The decoupling
of the class conditional feature distributions means that each distribution can be independently estimated as a one
dimensional distribution. This in turn helps to alleviate problems stemming from the curse of dimensionality.
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On the flip side, although naive Bayes is known as a decent classifier, it is known to be a bad estimator, so the
probability outputs from predict_proba are not to be taken too seriously.

References:

• H. Zhang (2004). The optimality of Naive Bayes. Proc. FLAIRS.

Gaussian Naive Bayes

GaussianNB implements the Gaussian Naive Bayes algorithm for classification. The likelihood of the features is
assumed to be Gaussian:

𝑃 (𝑥𝑖 | 𝑦) =
1√︁

2𝜋𝜎2
𝑦

exp

(︂
− (𝑥𝑖 − 𝜇𝑦)2

2𝜎2
𝑦

)︂

The parameters 𝜎𝑦 and 𝜇𝑦 are estimated using maximum likelihood.

>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> from sklearn.naive_bayes import GaussianNB
>>> gnb = GaussianNB()
>>> y_pred = gnb.fit(iris.data, iris.target).predict(iris.data)
>>> print("Number of mislabeled points out of a total %d points : %d"
... % (iris.data.shape[0],(iris.target != y_pred).sum()))
Number of mislabeled points out of a total 150 points : 6

Multinomial Naive Bayes

MultinomialNB implements the naive Bayes algorithm for multinomially distributed data, and is one of the two
classic naive Bayes variants used in text classification (where the data are typically represented as word vector counts,
although tf-idf vectors are also known to work well in practice). The distribution is parametrized by vectors 𝜃𝑦 =
(𝜃𝑦1, . . . , 𝜃𝑦𝑛) for each class 𝑦, where 𝑛 is the number of features (in text classification, the size of the vocabulary)
and 𝜃𝑦𝑖 is the probability 𝑃 (𝑥𝑖 | 𝑦) of feature 𝑖 appearing in a sample belonging to class 𝑦.

The parameters 𝜃𝑦 is estimated by a smoothed version of maximum likelihood, i.e. relative frequency counting:

𝜃𝑦𝑖 =
𝑁𝑦𝑖 + 𝛼

𝑁𝑦 + 𝛼𝑛

where 𝑁𝑦𝑖 =
∑︀

𝑥∈𝑇 𝑥𝑖 is the number of times feature 𝑖 appears in a sample of class 𝑦 in the training set 𝑇 , and
𝑁𝑦 =

∑︀|𝑇 |
𝑖=1𝑁𝑦𝑖 is the total count of all features for class 𝑦.

The smoothing priors 𝛼 ≥ 0 accounts for features not present in the learning samples and prevents zero probabilities
in further computations. Setting 𝛼 = 1 is called Laplace smoothing, while 𝛼 < 1 is called Lidstone smoothing.

Bernoulli Naive Bayes

BernoulliNB implements the naive Bayes training and classification algorithms for data that is distributed ac-
cording to multivariate Bernoulli distributions; i.e., there may be multiple features but each one is assumed to be a
binary-valued (Bernoulli, boolean) variable. Therefore, this class requires samples to be represented as binary-valued
feature vectors; if handed any other kind of data, a BernoulliNB instance may binarize its input (depending on the
binarize parameter).
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The decision rule for Bernoulli naive Bayes is based on

𝑃 (𝑥𝑖 | 𝑦) = 𝑃 (𝑖 | 𝑦)𝑥𝑖 + (1− 𝑃 (𝑖 | 𝑦))(1− 𝑥𝑖)

which differs from multinomial NB’s rule in that it explicitly penalizes the non-occurrence of a feature 𝑖 that is an
indicator for class 𝑦, where the multinomial variant would simply ignore a non-occurring feature.

In the case of text classification, word occurrence vectors (rather than word count vectors) may be used to train and
use this classifier. BernoulliNB might perform better on some datasets, especially those with shorter documents.
It is advisable to evaluate both models, if time permits.

References:

• C.D. Manning, P. Raghavan and H. Schütze (2008). Introduction to Information Retrieval. Cambridge
University Press, pp. 234-265.

• A. McCallum and K. Nigam (1998). A comparison of event models for Naive Bayes text classification.
Proc. AAAI/ICML-98 Workshop on Learning for Text Categorization, pp. 41-48.

• V. Metsis, I. Androutsopoulos and G. Paliouras (2006). Spam filtering with Naive Bayes – Which Naive
Bayes? 3rd Conf. on Email and Anti-Spam (CEAS).

Out-of-core naive Bayes model fitting

Naive Bayes models can be used to tackle large scale classification problems for which the full training set might not fit
in memory. To handle this case, MultinomialNB, BernoulliNB, and GaussianNB expose a partial_fit
method that can be used incrementally as done with other classifiers as demonstrated in Out-of-core classification of
text documents. Both discrete classifiers support sample weighting; GaussianNB does not.

Contrary to the fit method, the first call to partial_fit needs to be passed the list of all the expected class labels.

For an overview of available strategies in scikit-learn, see also the out-of-core learning documentation.

Note: The partial_fit method call of naive Bayes models introduces some computational overhead. It is
recommended to use data chunk sizes that are as large as possible, that is as the available RAM allows.

3.1.10 Decision Trees

Decision Trees (DTs) are a non-parametric supervised learning method used for classification and regression. The
goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the
data features.

For instance, in the example below, decision trees learn from data to approximate a sine curve with a set of if-then-else
decision rules. The deeper the tree, the more complex the decision rules and the fitter the model.

Some advantages of decision trees are:

• Simple to understand and to interpret. Trees can be visualised.

• Requires little data preparation. Other techniques often require data normalisation, dummy variables need to be
created and blank values to be removed. Note however that this module does not support missing values.

• The cost of using the tree (i.e., predicting data) is logarithmic in the number of data points used to train the tree.

• Able to handle both numerical and categorical data. Other techniques are usually specialised in analysing
datasets that have only one type of variable. See algorithms for more information.

• Able to handle multi-output problems.
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• Uses a white box model. If a given situation is observable in a model, the explanation for the condition is easily
explained by boolean logic. By contrast, in a black box model (e.g., in an artificial neural network), results may
be more difficult to interpret.

• Possible to validate a model using statistical tests. That makes it possible to account for the reliability of the
model.

• Performs well even if its assumptions are somewhat violated by the true model from which the data were
generated.

The disadvantages of decision trees include:

• Decision-tree learners can create over-complex trees that do not generalise the data well. This is called overfit-
ting. Mechanisms such as pruning (not currently supported), setting the minimum number of samples required
at a leaf node or setting the maximum depth of the tree are necessary to avoid this problem.

• Decision trees can be unstable because small variations in the data might result in a completely different tree
being generated. This problem is mitigated by using decision trees within an ensemble.

• The problem of learning an optimal decision tree is known to be NP-complete under several aspects of optimality
and even for simple concepts. Consequently, practical decision-tree learning algorithms are based on heuristic
algorithms such as the greedy algorithm where locally optimal decisions are made at each node. Such algorithms
cannot guarantee to return the globally optimal decision tree. This can be mitigated by training multiple trees in
an ensemble learner, where the features and samples are randomly sampled with replacement.

• There are concepts that are hard to learn because decision trees do not express them easily, such as XOR, parity
or multiplexer problems.

• Decision tree learners create biased trees if some classes dominate. It is therefore recommended to balance the
dataset prior to fitting with the decision tree.

Classification

DecisionTreeClassifier is a class capable of performing multi-class classification on a dataset.
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As with other classifiers, DecisionTreeClassifier takes as input two arrays: an array X, sparse or dense,
of size [n_samples, n_features] holding the training samples, and an array Y of integer values, size
[n_samples], holding the class labels for the training samples:

>>> from sklearn import tree
>>> X = [[0, 0], [1, 1]]
>>> Y = [0, 1]
>>> clf = tree.DecisionTreeClassifier()
>>> clf = clf.fit(X, Y)

After being fitted, the model can then be used to predict the class of samples:

>>> clf.predict([[2., 2.]])
array([1])

Alternatively, the probability of each class can be predicted, which is the fraction of training samples of the same class
in a leaf:

>>> clf.predict_proba([[2., 2.]])
array([[ 0., 1.]])

DecisionTreeClassifier is capable of both binary (where the labels are [-1, 1]) classification and multiclass
(where the labels are [0, ..., K-1]) classification.

Using the Iris dataset, we can construct a tree as follows:

>>> from sklearn.datasets import load_iris
>>> from sklearn import tree
>>> iris = load_iris()
>>> clf = tree.DecisionTreeClassifier()
>>> clf = clf.fit(iris.data, iris.target)

Once trained, we can export the tree in Graphviz format using the export_graphviz exporter. Below is an example
export of a tree trained on the entire iris dataset:

>>> from sklearn.externals.six import StringIO
>>> with open("iris.dot", 'w') as f:
... f = tree.export_graphviz(clf, out_file=f)

Then we can use Graphviz’s dot tool to create a PDF file (or any other supported file type): dot -Tpdf iris.dot
-o iris.pdf.

>>> import os
>>> os.unlink('iris.dot')

Alternatively, if we have Python module pydot installed, we can generate a PDF file (or any other supported file
type) directly in Python:

>>> from sklearn.externals.six import StringIO
>>> import pydot
>>> dot_data = StringIO()
>>> tree.export_graphviz(clf, out_file=dot_data)
>>> graph = pydot.graph_from_dot_data(dot_data.getvalue())
>>> graph.write_pdf("iris.pdf")

The export_graphviz exporter also supports a variety of aesthetic options, including coloring nodes by their
class (or value for regression) and using explicit variable and class names if desired. IPython notebooks can also
render these plots inline using the Image() function:
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>>> from IPython.display import Image
>>> dot_data = StringIO()
>>> tree.export_graphviz(clf, out_file=dot_data,

feature_names=iris.feature_names,
class_names=iris.target_names,
filled=True, rounded=True,
special_characters=True)

>>> graph = pydot.graph_from_dot_data(dot_data.getvalue())
>>> Image(graph.create_png())

petal length (cm) ≤ 2.45
gini = 0.6667

samples = 150
value = [50, 50, 50]

class = setosa

gini = 0.0
samples = 50

value = [50, 0, 0]
class = setosa

True

petal width (cm) ≤ 1.75
gini = 0.5

samples = 100
value = [0, 50, 50]
class = versicolor

False

petal length (cm) ≤ 4.95
gini = 0.168

samples = 54
value = [0, 49, 5]
class = versicolor

petal length (cm) ≤ 4.85
gini = 0.0425
samples = 46

value = [0, 1, 45]
class = virginica

petal width (cm) ≤ 1.65
gini = 0.0408
samples = 48

value = [0, 47, 1]
class = versicolor

petal width (cm) ≤ 1.55
gini = 0.4444
samples = 6

value = [0, 2, 4]
class = virginica

gini = 0.0
samples = 47

value = [0, 47, 0]
class = versicolor

gini = 0.0
samples = 1

value = [0, 0, 1]
class = virginica

gini = 0.0
samples = 3

value = [0, 0, 3]
class = virginica

sepal length (cm) ≤ 6.95
gini = 0.4444
samples = 3

value = [0, 2, 1]
class = versicolor

gini = 0.0
samples = 2

value = [0, 2, 0]
class = versicolor

gini = 0.0
samples = 1

value = [0, 0, 1]
class = virginica

sepal length (cm) ≤ 5.95
gini = 0.4444
samples = 3

value = [0, 1, 2]
class = virginica

gini = 0.0
samples = 43

value = [0, 0, 43]
class = virginica

gini = 0.0
samples = 1

value = [0, 1, 0]
class = versicolor

gini = 0.0
samples = 2

value = [0, 0, 2]
class = virginica

After being fitted, the model can then be used to predict the class of samples:

>>> clf.predict(iris.data[:1, :])
array([0])

Alternatively, the probability of each class can be predicted, which is the fraction of training samples of the same class
in a leaf:

>>> clf.predict_proba(iris.data[:1, :])
array([[ 1., 0., 0.]])
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Examples:

• Plot the decision surface of a decision tree on the iris dataset

Regression

Decision trees can also be applied to regression problems, using the DecisionTreeRegressor class.

As in the classification setting, the fit method will take as argument arrays X and y, only that in this case y is expected
to have floating point values instead of integer values:

>>> from sklearn import tree
>>> X = [[0, 0], [2, 2]]
>>> y = [0.5, 2.5]
>>> clf = tree.DecisionTreeRegressor()
>>> clf = clf.fit(X, y)
>>> clf.predict([[1, 1]])
array([ 0.5])

Examples:

• Decision Tree Regression

Multi-output problems

A multi-output problem is a supervised learning problem with several outputs to predict, that is when Y is a 2d array
of size [n_samples, n_outputs].
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When there is no correlation between the outputs, a very simple way to solve this kind of problem is to build n
independent models, i.e. one for each output, and then to use those models to independently predict each one of the
n outputs. However, because it is likely that the output values related to the same input are themselves correlated, an
often better way is to build a single model capable of predicting simultaneously all n outputs. First, it requires lower
training time since only a single estimator is built. Second, the generalization accuracy of the resulting estimator may
often be increased.

With regard to decision trees, this strategy can readily be used to support multi-output problems. This requires the
following changes:

• Store n output values in leaves, instead of 1;

• Use splitting criteria that compute the average reduction across all n outputs.

This module offers support for multi-output problems by implementing this strategy in both
DecisionTreeClassifier and DecisionTreeRegressor. If a decision tree is fit on an output ar-
ray Y of size [n_samples, n_outputs] then the resulting estimator will:

• Output n_output values upon predict;

• Output a list of n_output arrays of class probabilities upon predict_proba.

The use of multi-output trees for regression is demonstrated in Multi-output Decision Tree Regression. In this example,
the input X is a single real value and the outputs Y are the sine and cosine of X.

The use of multi-output trees for classification is demonstrated in Face completion with a multi-output estimators. In
this example, the inputs X are the pixels of the upper half of faces and the outputs Y are the pixels of the lower half of
those faces.

Examples:

• Multi-output Decision Tree Regression
• Face completion with a multi-output estimators
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References:

• M. Dumont et al, Fast multi-class image annotation with random subwindows and multiple output ran-
domized trees, International Conference on Computer Vision Theory and Applications 2009

Complexity

In general, the run time cost to construct a balanced binary tree is 𝑂(𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 log(𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠)) and query
time 𝑂(log(𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠)). Although the tree construction algorithm attempts to generate balanced trees, they will not
always be balanced. Assuming that the subtrees remain approximately balanced, the cost at each node consists of
searching through 𝑂(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) to find the feature that offers the largest reduction in entropy. This has a cost of
𝑂(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 log(𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠)) at each node, leading to a total cost over the entire trees (by summing the cost at
each node) of 𝑂(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑛

2
𝑠𝑎𝑚𝑝𝑙𝑒𝑠 log(𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠)).

Scikit-learn offers a more efficient implementation for the construction of decision trees. A naive implementation
(as above) would recompute the class label histograms (for classification) or the means (for regression) at for each
new split point along a given feature. Presorting the feature over all relevant samples, and retaining a running la-
bel count, will reduce the complexity at each node to 𝑂(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 log(𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠)), which results in a total cost of
𝑂(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 log(𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠)). This is an option for all tree based algorithms. By default it is turned on for
gradient boosting, where in general it makes training faster, but turned off for all other algorithms as it tends to slow
down training when training deep trees.

Tips on practical use

• Decision trees tend to overfit on data with a large number of features. Getting the right ratio of samples to
number of features is important, since a tree with few samples in high dimensional space is very likely to
overfit.
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• Consider performing dimensionality reduction (PCA, ICA, or Feature selection) beforehand to give your tree a
better chance of finding features that are discriminative.

• Visualise your tree as you are training by using the export function. Use max_depth=3 as an initial tree
depth to get a feel for how the tree is fitting to your data, and then increase the depth.

• Remember that the number of samples required to populate the tree doubles for each additional level the tree
grows to. Use max_depth to control the size of the tree to prevent overfitting.

• Use min_samples_split or min_samples_leaf to control the number of samples at a leaf node. A
very small number will usually mean the tree will overfit, whereas a large number will prevent the tree from
learning the data. Try min_samples_leaf=5 as an initial value. The main difference between the two is that
min_samples_leaf guarantees a minimum number of samples in a leaf, while min_samples_split can
create arbitrary small leaves, though min_samples_split is more common in the literature.

• Balance your dataset before training to prevent the tree from being biased toward the classes that are dominant.
Class balancing can be done by sampling an equal number of samples from each class, or preferably by nor-
malizing the sum of the sample weights (sample_weight) for each class to the same value. Also note that
weight-based pre-pruning criteria, such as min_weight_fraction_leaf, will then be less biased toward
dominant classes than criteria that are not aware of the sample weights, like min_samples_leaf.

• If the samples are weighted, it will be easier to optimize the tree structure using weight-based pre-pruning
criterion such as min_weight_fraction_leaf, which ensure that leaf nodes contain at least a fraction of
the overall sum of the sample weights.

• All decision trees use np.float32 arrays internally. If training data is not in this format, a copy of the dataset
will be made.

• If the input matrix X is very sparse, it is recommended to convert to sparse csc_matrix‘ before
calling fit and sparse ‘‘csr_matrix before calling predict. Training time can be orders of mag-
nitude faster for a sparse matrix input compared to a dense matrix when features have zero values in most of the
samples.

Tree algorithms: ID3, C4.5, C5.0 and CART

What are all the various decision tree algorithms and how do they differ from each other? Which one is implemented
in scikit-learn?

ID3 (Iterative Dichotomiser 3) was developed in 1986 by Ross Quinlan. The algorithm creates a multiway tree, finding
for each node (i.e. in a greedy manner) the categorical feature that will yield the largest information gain for categorical
targets. Trees are grown to their maximum size and then a pruning step is usually applied to improve the ability of the
tree to generalise to unseen data.

C4.5 is the successor to ID3 and removed the restriction that features must be categorical by dynamically defining
a discrete attribute (based on numerical variables) that partitions the continuous attribute value into a discrete set of
intervals. C4.5 converts the trained trees (i.e. the output of the ID3 algorithm) into sets of if-then rules. These accuracy
of each rule is then evaluated to determine the order in which they should be applied. Pruning is done by removing a
rule’s precondition if the accuracy of the rule improves without it.

C5.0 is Quinlan’s latest version release under a proprietary license. It uses less memory and builds smaller rulesets
than C4.5 while being more accurate.

CART (Classification and Regression Trees) is very similar to C4.5, but it differs in that it supports numerical target
variables (regression) and does not compute rule sets. CART constructs binary trees using the feature and threshold
that yield the largest information gain at each node.

scikit-learn uses an optimised version of the CART algorithm.

3.1. Supervised learning 187

http://en.wikipedia.org/wiki/ID3_algorithm
http://en.wikipedia.org/wiki/Predictive_analytics#Classification_and_regression_trees


scikit-learn user guide, Release 0.17

Mathematical formulation

Given training vectors 𝑥𝑖 ∈ 𝑅𝑛, i=1,..., l and a label vector 𝑦 ∈ 𝑅𝑙, a decision tree recursively partitions the space
such that the samples with the same labels are grouped together.

Let the data at node𝑚 be represented by𝑄. For each candidate split 𝜃 = (𝑗, 𝑡𝑚) consisting of a feature 𝑗 and threshold
𝑡𝑚, partition the data into 𝑄𝑙𝑒𝑓𝑡(𝜃) and 𝑄𝑟𝑖𝑔ℎ𝑡(𝜃) subsets

𝑄𝑙𝑒𝑓𝑡(𝜃) = (𝑥, 𝑦)|𝑥𝑗 <= 𝑡𝑚

𝑄𝑟𝑖𝑔ℎ𝑡(𝜃) = 𝑄 ∖𝑄𝑙𝑒𝑓𝑡(𝜃)

The impurity at 𝑚 is computed using an impurity function 𝐻(), the choice of which depends on the task being solved
(classification or regression)

𝐺(𝑄, 𝜃) =
𝑛𝑙𝑒𝑓𝑡
𝑁𝑚

𝐻(𝑄𝑙𝑒𝑓𝑡(𝜃)) +
𝑛𝑟𝑖𝑔ℎ𝑡
𝑁𝑚

𝐻(𝑄𝑟𝑖𝑔ℎ𝑡(𝜃))

Select the parameters that minimises the impurity

𝜃* = argmin𝜃 𝐺(𝑄, 𝜃)

Recurse for subsets 𝑄𝑙𝑒𝑓𝑡(𝜃
*) and 𝑄𝑟𝑖𝑔ℎ𝑡(𝜃

*) until the maximum allowable depth is reached, 𝑁𝑚 < min𝑠𝑎𝑚𝑝𝑙𝑒𝑠 or
𝑁𝑚 = 1.

Classification criteria

If a target is a classification outcome taking on values 0,1,...,K-1, for node 𝑚, representing a region 𝑅𝑚 with 𝑁𝑚

observations, let

𝑝𝑚𝑘 = 1/𝑁𝑚

∑︁
𝑥𝑖∈𝑅𝑚

𝐼(𝑦𝑖 = 𝑘)

be the proportion of class k observations in node 𝑚

Common measures of impurity are Gini

𝐻(𝑋𝑚) =
∑︁
𝑘

𝑝𝑚𝑘(1− 𝑝𝑚𝑘)

Cross-Entropy

𝐻(𝑋𝑚) = −
∑︁
𝑘

𝑝𝑚𝑘 log(𝑝𝑚𝑘)

and Misclassification

𝐻(𝑋𝑚) = 1−max(𝑝𝑚𝑘)

Regression criteria

If the target is a continuous value, then for node 𝑚, representing a region 𝑅𝑚 with 𝑁𝑚 observations, a common
criterion to minimise is the Mean Squared Error

𝑐𝑚 =
1

𝑁𝑚

∑︁
𝑖∈𝑁𝑚

𝑦𝑖

𝐻(𝑋𝑚) =
1

𝑁𝑚

∑︁
𝑖∈𝑁𝑚

(𝑦𝑖 − 𝑐𝑚)2
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References:

• http://en.wikipedia.org/wiki/Decision_tree_learning
• http://en.wikipedia.org/wiki/Predictive_analytics
• L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth,

Belmont, CA, 1984.
• J.R. Quinlan. C4. 5: programs for machine learning. Morgan Kaufmann, 1993.
• T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical Learning, Springer, 2009.

3.1.11 Ensemble methods

The goal of ensemble methods is to combine the predictions of several base estimators built with a given learning
algorithm in order to improve generalizability / robustness over a single estimator.

Two families of ensemble methods are usually distinguished:

• In averaging methods, the driving principle is to build several estimators independently and then to average
their predictions. On average, the combined estimator is usually better than any of the single base estimator
because its variance is reduced.

Examples: Bagging methods, Forests of randomized trees, ...

• By contrast, in boosting methods, base estimators are built sequentially and one tries to reduce the bias of the
combined estimator. The motivation is to combine several weak models to produce a powerful ensemble.

Examples: AdaBoost, Gradient Tree Boosting, ...

Bagging meta-estimator

In ensemble algorithms, bagging methods form a class of algorithms which build several instances of a black-box
estimator on random subsets of the original training set and then aggregate their individual predictions to form a final
prediction. These methods are used as a way to reduce the variance of a base estimator (e.g., a decision tree), by
introducing randomization into its construction procedure and then making an ensemble out of it. In many cases,
bagging methods constitute a very simple way to improve with respect to a single model, without making it necessary
to adapt the underlying base algorithm. As they provide a way to reduce overfitting, bagging methods work best with
strong and complex models (e.g., fully developed decision trees), in contrast with boosting methods which usually
work best with weak models (e.g., shallow decision trees).

Bagging methods come in many flavours but mostly differ from each other by the way they draw random subsets of
the training set:

• When random subsets of the dataset are drawn as random subsets of the samples, then this algorithm is known
as Pasting [B1999].

• When samples are drawn with replacement, then the method is known as Bagging [B1996].

• When random subsets of the dataset are drawn as random subsets of the features, then the method is known as
Random Subspaces [H1998].

• Finally, when base estimators are built on subsets of both samples and features, then the method is known as
Random Patches [LG2012].

In scikit-learn, bagging methods are offered as a unified BaggingClassifier meta-estimator (resp.
BaggingRegressor), taking as input a user-specified base estimator along with parameters specifying the strategy
to draw random subsets. In particular, max_samples and max_features control the size of the subsets (in terms
of samples and features), while bootstrap and bootstrap_features control whether samples and features
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are drawn with or without replacement. When using a subset of the available samples the generalization error can be
estimated with the out-of-bag samples by setting oob_score=True. As an example, the snippet below illustrates
how to instantiate a bagging ensemble of KNeighborsClassifier base estimators, each built on random subsets
of 50% of the samples and 50% of the features.

>>> from sklearn.ensemble import BaggingClassifier
>>> from sklearn.neighbors import KNeighborsClassifier
>>> bagging = BaggingClassifier(KNeighborsClassifier(),
... max_samples=0.5, max_features=0.5)

Examples:

• Single estimator versus bagging: bias-variance decomposition

References

Forests of randomized trees

The sklearn.ensemble module includes two averaging algorithms based on randomized decision trees: the Ran-
domForest algorithm and the Extra-Trees method. Both algorithms are perturb-and-combine techniques [B1998]
specifically designed for trees. This means a diverse set of classifiers is created by introducing randomness in the
classifier construction. The prediction of the ensemble is given as the averaged prediction of the individual classifiers.

As other classifiers, forest classifiers have to be fitted with two arrays: a sparse or dense array X of size [n_samples,
n_features] holding the training samples, and an array Y of size [n_samples] holding the target values (class
labels) for the training samples:

>>> from sklearn.ensemble import RandomForestClassifier
>>> X = [[0, 0], [1, 1]]
>>> Y = [0, 1]
>>> clf = RandomForestClassifier(n_estimators=10)
>>> clf = clf.fit(X, Y)

Like decision trees, forests of trees also extend to multi-output problems (if Y is an array of size [n_samples,
n_outputs]).

Random Forests

In random forests (see RandomForestClassifier and RandomForestRegressor classes), each tree in the
ensemble is built from a sample drawn with replacement (i.e., a bootstrap sample) from the training set. In addition,
when splitting a node during the construction of the tree, the split that is chosen is no longer the best split among all
features. Instead, the split that is picked is the best split among a random subset of the features. As a result of this
randomness, the bias of the forest usually slightly increases (with respect to the bias of a single non-random tree) but,
due to averaging, its variance also decreases, usually more than compensating for the increase in bias, hence yielding
an overall better model.

In contrast to the original publication [B2001], the scikit-learn implementation combines classifiers by averaging their
probabilistic prediction, instead of letting each classifier vote for a single class.
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Extremely Randomized Trees

In extremely randomized trees (see ExtraTreesClassifier and ExtraTreesRegressor classes), random-
ness goes one step further in the way splits are computed. As in random forests, a random subset of candidate features
is used, but instead of looking for the most discriminative thresholds, thresholds are drawn at random for each candi-
date feature and the best of these randomly-generated thresholds is picked as the splitting rule. This usually allows to
reduce the variance of the model a bit more, at the expense of a slightly greater increase in bias:

>>> from sklearn.cross_validation import cross_val_score
>>> from sklearn.datasets import make_blobs
>>> from sklearn.ensemble import RandomForestClassifier
>>> from sklearn.ensemble import ExtraTreesClassifier
>>> from sklearn.tree import DecisionTreeClassifier

>>> X, y = make_blobs(n_samples=10000, n_features=10, centers=100,
... random_state=0)

>>> clf = DecisionTreeClassifier(max_depth=None, min_samples_split=1,
... random_state=0)
>>> scores = cross_val_score(clf, X, y)
>>> scores.mean()
0.97...

>>> clf = RandomForestClassifier(n_estimators=10, max_depth=None,
... min_samples_split=1, random_state=0)
>>> scores = cross_val_score(clf, X, y)
>>> scores.mean()
0.999...

>>> clf = ExtraTreesClassifier(n_estimators=10, max_depth=None,
... min_samples_split=1, random_state=0)
>>> scores = cross_val_score(clf, X, y)
>>> scores.mean() > 0.999
True

Parameters

The main parameters to adjust when using these methods is n_estimators and max_features. The former
is the number of trees in the forest. The larger the better, but also the longer it will take to compute. In addition,
note that results will stop getting significantly better beyond a critical number of trees. The latter is the size of
the random subsets of features to consider when splitting a node. The lower the greater the reduction of variance,
but also the greater the increase in bias. Empirical good default values are max_features=n_features for
regression problems, and max_features=sqrt(n_features) for classification tasks (where n_features is
the number of features in the data). Good results are often achieved when setting max_depth=None in combination
with min_samples_split=1 (i.e., when fully developing the trees). Bear in mind though that these values are
usually not optimal, and might result in models that consume a lot of ram. The best parameter values should always be
cross-validated. In addition, note that in random forests, bootstrap samples are used by default (bootstrap=True)
while the default strategy for extra-trees is to use the whole dataset (bootstrap=False). When using bootstrap
sampling the generalization error can be estimated on the left out or out-of-bag samples. This can be enabled by setting
oob_score=True.
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Parallelization

Finally, this module also features the parallel construction of the trees and the parallel computation of the predictions
through the n_jobs parameter. If n_jobs=k then computations are partitioned into k jobs, and run on k cores of
the machine. If n_jobs=-1 then all cores available on the machine are used. Note that because of inter-process
communication overhead, the speedup might not be linear (i.e., using k jobs will unfortunately not be k times as fast).
Significant speedup can still be achieved though when building a large number of trees, or when building a single tree
requires a fair amount of time (e.g., on large datasets).

Examples:

• Plot the decision surfaces of ensembles of trees on the iris dataset
• Pixel importances with a parallel forest of trees
• Face completion with a multi-output estimators

References

Feature importance evaluation

The relative rank (i.e. depth) of a feature used as a decision node in a tree can be used to assess the relative importance
of that feature with respect to the predictability of the target variable. Features used at the top of the tree are used
contribute to the final prediction decision of a larger fraction of the input samples. The expected fraction of the
samples they contribute to can thus be used as an estimate of the relative importance of the features.

By averaging those expected activity rates over several randomized trees one can reduce the variance of such an
estimate and use it for feature selection.
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The following example shows a color-coded representation of the relative importances of each individual pixel for a
face recognition task using a ExtraTreesClassifier model.

In practice those estimates are stored as an attribute named feature_importances_ on the fitted model. This
is an array with shape (n_features,) whose values are positive and sum to 1.0. The higher the value, the more
important is the contribution of the matching feature to the prediction function.

Examples:

• Pixel importances with a parallel forest of trees
• Feature importances with forests of trees

Totally Random Trees Embedding

RandomTreesEmbedding implements an unsupervised transformation of the data. Using a forest of completely
random trees, RandomTreesEmbedding encodes the data by the indices of the leaves a data point ends up in. This
index is then encoded in a one-of-K manner, leading to a high dimensional, sparse binary coding. This coding can be
computed very efficiently and can then be used as a basis for other learning tasks. The size and sparsity of the code
can be influenced by choosing the number of trees and the maximum depth per tree. For each tree in the ensemble, the
coding contains one entry of one. The size of the coding is at most n_estimators * 2 ** max_depth, the
maximum number of leaves in the forest.

As neighboring data points are more likely to lie within the same leaf of a tree, the transformation performs an implicit,
non-parametric density estimation.

3.1. Supervised learning 193



scikit-learn user guide, Release 0.17

Examples:

• Hashing feature transformation using Totally Random Trees
• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap... compares non-linear

dimensionality reduction techniques on handwritten digits.
• Feature transformations with ensembles of trees compares supervised and unsupervised tree based feature

transformations.

See also:

Manifold learning techniques can also be useful to derive non-linear representations of feature space, also these ap-
proaches focus also on dimensionality reduction.

AdaBoost

The module sklearn.ensemble includes the popular boosting algorithm AdaBoost, introduced in 1995 by Freund
and Schapire [FS1995].

The core principle of AdaBoost is to fit a sequence of weak learners (i.e., models that are only slightly better than
random guessing, such as small decision trees) on repeatedly modified versions of the data. The predictions from
all of them are then combined through a weighted majority vote (or sum) to produce the final prediction. The data
modifications at each so-called boosting iteration consist of applying weights 𝑤1, 𝑤2, ..., 𝑤𝑁 to each of the training
samples. Initially, those weights are all set to 𝑤𝑖 = 1/𝑁 , so that the first step simply trains a weak learner on the
original data. For each successive iteration, the sample weights are individually modified and the learning algorithm is
reapplied to the reweighted data. At a given step, those training examples that were incorrectly predicted by the boosted
model induced at the previous step have their weights increased, whereas the weights are decreased for those that were
predicted correctly. As iterations proceed, examples that are difficult to predict receive ever-increasing influence. Each
subsequent weak learner is thereby forced to concentrate on the examples that are missed by the previous ones in the
sequence [HTF].
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AdaBoost can be used both for classification and regression problems:

• For multi-class classification, AdaBoostClassifier implements AdaBoost-SAMME and AdaBoost-
SAMME.R [ZZRH2009].

• For regression, AdaBoostRegressor implements AdaBoost.R2 [D1997].

Usage

The following example shows how to fit an AdaBoost classifier with 100 weak learners:

>>> from sklearn.cross_validation import cross_val_score
>>> from sklearn.datasets import load_iris
>>> from sklearn.ensemble import AdaBoostClassifier

>>> iris = load_iris()
>>> clf = AdaBoostClassifier(n_estimators=100)
>>> scores = cross_val_score(clf, iris.data, iris.target)
>>> scores.mean()
0.9...

The number of weak learners is controlled by the parameter n_estimators. The learning_rate parameter
controls the contribution of the weak learners in the final combination. By default, weak learners are decision stumps.
Different weak learners can be specified through the base_estimator parameter. The main parameters to tune to
obtain good results are n_estimators and the complexity of the base estimators (e.g., its depth max_depth or
minimum required number of samples at a leaf min_samples_leaf in case of decision trees).

Examples:

• Discrete versus Real AdaBoost compares the classification error of a decision stump, decision tree, and a
boosted decision stump using AdaBoost-SAMME and AdaBoost-SAMME.R.

• Multi-class AdaBoosted Decision Trees shows the performance of AdaBoost-SAMME and AdaBoost-
SAMME.R on a multi-class problem.

• Two-class AdaBoost shows the decision boundary and decision function values for a non-linearly separable
two-class problem using AdaBoost-SAMME.

• Decision Tree Regression with AdaBoost demonstrates regression with the AdaBoost.R2 algorithm.

References

Gradient Tree Boosting

Gradient Tree Boosting or Gradient Boosted Regression Trees (GBRT) is a generalization of boosting to arbitrary
differentiable loss functions. GBRT is an accurate and effective off-the-shelf procedure that can be used for both
regression and classification problems. Gradient Tree Boosting models are used in a variety of areas including Web
search ranking and ecology.

The advantages of GBRT are:

• Natural handling of data of mixed type (= heterogeneous features)

• Predictive power

• Robustness to outliers in output space (via robust loss functions)
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The disadvantages of GBRT are:

• Scalability, due to the sequential nature of boosting it can hardly be parallelized.

The module sklearn.ensemble provides methods for both classification and regression via gradient boosted
regression trees.

Classification

GradientBoostingClassifier supports both binary and multi-class classification. The following example
shows how to fit a gradient boosting classifier with 100 decision stumps as weak learners:

>>> from sklearn.datasets import make_hastie_10_2
>>> from sklearn.ensemble import GradientBoostingClassifier

>>> X, y = make_hastie_10_2(random_state=0)
>>> X_train, X_test = X[:2000], X[2000:]
>>> y_train, y_test = y[:2000], y[2000:]

>>> clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0,
... max_depth=1, random_state=0).fit(X_train, y_train)
>>> clf.score(X_test, y_test)
0.913...

The number of weak learners (i.e. regression trees) is controlled by the parameter n_estimators; The size of each
tree can be controlled either by setting the tree depth via max_depth or by setting the number of leaf nodes via
max_leaf_nodes. The learning_rate is a hyper-parameter in the range (0.0, 1.0] that controls overfitting via
shrinkage .

Note: Classification with more than 2 classes requires the induction of n_classes regression trees at each
at each iteration, thus, the total number of induced trees equals n_classes * n_estimators. For datasets
with a large number of classes we strongly recommend to use RandomForestClassifier as an alternative to
GradientBoostingClassifier .

Regression

GradientBoostingRegressor supports a number of different loss functions for regression which can be speci-
fied via the argument loss; the default loss function for regression is least squares (’ls’).

>>> import numpy as np
>>> from sklearn.metrics import mean_squared_error
>>> from sklearn.datasets import make_friedman1
>>> from sklearn.ensemble import GradientBoostingRegressor

>>> X, y = make_friedman1(n_samples=1200, random_state=0, noise=1.0)
>>> X_train, X_test = X[:200], X[200:]
>>> y_train, y_test = y[:200], y[200:]
>>> est = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1,
... max_depth=1, random_state=0, loss='ls').fit(X_train, y_train)
>>> mean_squared_error(y_test, est.predict(X_test))
5.00...

The figure below shows the results of applying GradientBoostingRegressor with least squares loss and 500
base learners to the Boston house price dataset (sklearn.datasets.load_boston). The plot on the left shows
the train and test error at each iteration. The train error at each iteration is stored in the train_score_ attribute
of the gradient boosting model. The test error at each iterations can be obtained via the staged_predict method
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which returns a generator that yields the predictions at each stage. Plots like these can be used to determine the optimal
number of trees (i.e. n_estimators) by early stopping. The plot on the right shows the feature importances which
can be obtained via the feature_importances_ property.

Examples:

• Gradient Boosting regression
• Gradient Boosting Out-of-Bag estimates

Fitting additional weak-learners

Both GradientBoostingRegressor and GradientBoostingClassifier support warm_start=True
which allows you to add more estimators to an already fitted model.

>>> _ = est.set_params(n_estimators=200, warm_start=True) # set warm_start and new nr of trees
>>> _ = est.fit(X_train, y_train) # fit additional 100 trees to est
>>> mean_squared_error(y_test, est.predict(X_test))
3.84...

Controlling the tree size

The size of the regression tree base learners defines the level of variable interactions that can be captured by the
gradient boosting model. In general, a tree of depth h can capture interactions of order h . There are two ways in
which the size of the individual regression trees can be controlled.

If you specify max_depth=h then complete binary trees of depth h will be grown. Such trees will have (at most)
2**h leaf nodes and 2**h - 1 split nodes.

Alternatively, you can control the tree size by specifying the number of leaf nodes via the parameter
max_leaf_nodes. In this case, trees will be grown using best-first search where nodes with the highest improve-
ment in impurity will be expanded first. A tree with max_leaf_nodes=k has k - 1 split nodes and thus can
model interactions of up to order max_leaf_nodes - 1 .

We found that max_leaf_nodes=k gives comparable results to max_depth=k-1 but is significantly faster to
train at the expense of a slightly higher training error. The parameter max_leaf_nodes corresponds to the variable
J in the chapter on gradient boosting in [F2001] and is related to the parameter interaction.depth in R’s gbm
package where max_leaf_nodes == interaction.depth + 1 .
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Mathematical formulation

GBRT considers additive models of the following form:

𝐹 (𝑥) =

𝑀∑︁
𝑚=1

𝛾𝑚ℎ𝑚(𝑥)

where ℎ𝑚(𝑥) are the basis functions which are usually called weak learners in the context of boosting. Gradient Tree
Boosting uses decision trees of fixed size as weak learners. Decision trees have a number of abilities that make them
valuable for boosting, namely the ability to handle data of mixed type and the ability to model complex functions.

Similar to other boosting algorithms GBRT builds the additive model in a forward stagewise fashion:

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛾𝑚ℎ𝑚(𝑥)

At each stage the decision tree ℎ𝑚(𝑥) is chosen to minimize the loss function 𝐿 given the current model 𝐹𝑚−1 and its
fit 𝐹𝑚−1(𝑥𝑖)

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + arg min
ℎ

𝑛∑︁
𝑖=1

𝐿(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖)− ℎ(𝑥))

The initial model 𝐹0 is problem specific, for least-squares regression one usually chooses the mean of the target values.

Note: The initial model can also be specified via the init argument. The passed object has to implement fit and
predict.

Gradient Boosting attempts to solve this minimization problem numerically via steepest descent: The steepest descent
direction is the negative gradient of the loss function evaluated at the current model 𝐹𝑚−1 which can be calculated for
any differentiable loss function:

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛾𝑚

𝑛∑︁
𝑖=1

∇𝐹𝐿(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖))

Where the step length 𝛾𝑚 is chosen using line search:

𝛾𝑚 = arg min
𝛾

𝑛∑︁
𝑖=1

𝐿(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖)− 𝛾
𝜕𝐿(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖))

𝜕𝐹𝑚−1(𝑥𝑖)
)

The algorithms for regression and classification only differ in the concrete loss function used.

Loss Functions The following loss functions are supported and can be specified using the parameter loss:

• Regression

– Least squares (’ls’): The natural choice for regression due to its superior computational properties. The
initial model is given by the mean of the target values.
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– Least absolute deviation (’lad’): A robust loss function for regression. The initial model is given by the
median of the target values.

– Huber (’huber’): Another robust loss function that combines least squares and least absolute deviation;
use alpha to control the sensitivity with regards to outliers (see [F2001] for more details).

– Quantile (’quantile’): A loss function for quantile regression. Use 0 < alpha < 1 to specify the
quantile. This loss function can be used to create prediction intervals (see Prediction Intervals for Gradient
Boosting Regression).

• Classification

– Binomial deviance (’deviance’): The negative binomial log-likelihood loss function for binary classi-
fication (provides probability estimates). The initial model is given by the log odds-ratio.

– Multinomial deviance (’deviance’): The negative multinomial log-likelihood loss function for multi-
class classification with n_classes mutually exclusive classes. It provides probability estimates. The
initial model is given by the prior probability of each class. At each iteration n_classes regression trees
have to be constructed which makes GBRT rather inefficient for data sets with a large number of classes.

– Exponential loss (’exponential’): The same loss function as AdaBoostClassifier. Less robust
to mislabeled examples than ’deviance’; can only be used for binary classification.

Regularization

Shrinkage [F2001] proposed a simple regularization strategy that scales the contribution of each weak learner by a
factor 𝜈:

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜈𝛾𝑚ℎ𝑚(𝑥)

The parameter 𝜈 is also called the learning rate because it scales the step length the the gradient descent procedure; it
can be set via the learning_rate parameter.

The parameter learning_rate strongly interacts with the parameter n_estimators, the number of weak learn-
ers to fit. Smaller values of learning_rate require larger numbers of weak learners to maintain a constant training
error. Empirical evidence suggests that small values of learning_rate favor better test error. [HTF2009] recom-
mend to set the learning rate to a small constant (e.g. learning_rate <= 0.1) and choose n_estimators by
early stopping. For a more detailed discussion of the interaction between learning_rate and n_estimators
see [R2007].

Subsampling [F1999] proposed stochastic gradient boosting, which combines gradient boosting with bootstrap av-
eraging (bagging). At each iteration the base classifier is trained on a fraction subsample of the available training
data. The subsample is drawn without replacement. A typical value of subsample is 0.5.

The figure below illustrates the effect of shrinkage and subsampling on the goodness-of-fit of the model. We can
clearly see that shrinkage outperforms no-shrinkage. Subsampling with shrinkage can further increase the accuracy of
the model. Subsampling without shrinkage, on the other hand, does poorly.

Another strategy to reduce the variance is by subsampling the features analogous to the random splits in
RandomForestClassifier . The number of subsampled features can be controlled via the max_features
parameter.

Note: Using a small max_features value can significantly decrease the runtime.

Stochastic gradient boosting allows to compute out-of-bag estimates of the test deviance by computing the improve-
ment in deviance on the examples that are not included in the bootstrap sample (i.e. the out-of-bag examples). The
improvements are stored in the attribute oob_improvement_. oob_improvement_[i] holds the improvement
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in terms of the loss on the OOB samples if you add the i-th stage to the current predictions. Out-of-bag estimates can
be used for model selection, for example to determine the optimal number of iterations. OOB estimates are usually
very pessimistic thus we recommend to use cross-validation instead and only use OOB if cross-validation is too time
consuming.

Examples:

• Gradient Boosting regularization
• Gradient Boosting Out-of-Bag estimates
• OOB Errors for Random Forests

Interpretation

Individual decision trees can be interpreted easily by simply visualizing the tree structure. Gradient boosting models,
however, comprise hundreds of regression trees thus they cannot be easily interpreted by visual inspection of the
individual trees. Fortunately, a number of techniques have been proposed to summarize and interpret gradient boosting
models.

Feature importance Often features do not contribute equally to predict the target response; in many situations the
majority of the features are in fact irrelevant. When interpreting a model, the first question usually is: what are those
important features and how do they contributing in predicting the target response?

Individual decision trees intrinsically perform feature selection by selecting appropriate split points. This information
can be used to measure the importance of each feature; the basic idea is: the more often a feature is used in the split
points of a tree the more important that feature is. This notion of importance can be extended to decision tree ensembles
by simply averaging the feature importance of each tree (see Feature importance evaluation for more details).

The feature importance scores of a fit gradient boosting model can be accessed via the feature_importances_
property:
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>>> from sklearn.datasets import make_hastie_10_2
>>> from sklearn.ensemble import GradientBoostingClassifier

>>> X, y = make_hastie_10_2(random_state=0)
>>> clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0,
... max_depth=1, random_state=0).fit(X, y)
>>> clf.feature_importances_
array([ 0.11, 0.1 , 0.11, ...

Examples:

• Gradient Boosting regression

Partial dependence Partial dependence plots (PDP) show the dependence between the target response and a set of
‘target’ features, marginalizing over the values of all other features (the ‘complement’ features). Intuitively, we can
interpret the partial dependence as the expected target response 8 as a function of the ‘target’ features 9.

Due to the limits of human perception the size of the target feature set must be small (usually, one or two) thus the
target features are usually chosen among the most important features.

The Figure below shows four one-way and one two-way partial dependence plots for the California housing dataset:

One-way PDPs tell us about the interaction between the target response and the target feature (e.g. linear, non-linear).
The upper left plot in the above Figure shows the effect of the median income in a district on the median house price;
we can clearly see a linear relationship among them.

PDPs with two target features show the interactions among the two features. For example, the two-variable PDP in
the above Figure shows the dependence of median house price on joint values of house age and avg. occupants per
household. We can clearly see an interaction between the two features: For an avg. occupancy greater than two, the

8 For classification with loss=’deviance’ the target response is logit(p).
9 More precisely its the expectation of the target response after accounting for the initial model; partial dependence plots do not include the

init model.
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house price is nearly independent of the house age, whereas for values less than two there is a strong dependence on
age.

The module partial_dependence provides a convenience function plot_partial_dependence to cre-
ate one-way and two-way partial dependence plots. In the below example we show how to create a grid of partial
dependence plots: two one-way PDPs for the features 0 and 1 and a two-way PDP between the two features:

>>> from sklearn.datasets import make_hastie_10_2
>>> from sklearn.ensemble import GradientBoostingClassifier
>>> from sklearn.ensemble.partial_dependence import plot_partial_dependence

>>> X, y = make_hastie_10_2(random_state=0)
>>> clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0,
... max_depth=1, random_state=0).fit(X, y)
>>> features = [0, 1, (0, 1)]
>>> fig, axs = plot_partial_dependence(clf, X, features)

For multi-class models, you need to set the class label for which the PDPs should be created via the label argument:

>>> from sklearn.datasets import load_iris
>>> iris = load_iris()
>>> mc_clf = GradientBoostingClassifier(n_estimators=10,
... max_depth=1).fit(iris.data, iris.target)
>>> features = [3, 2, (3, 2)]
>>> fig, axs = plot_partial_dependence(mc_clf, X, features, label=0)

If you need the raw values of the partial dependence function rather than the plots you can use the
partial_dependence function:

>>> from sklearn.ensemble.partial_dependence import partial_dependence

>>> pdp, axes = partial_dependence(clf, [0], X=X)
>>> pdp
array([[ 2.46643157, 2.46643157, ...
>>> axes
[array([-1.62497054, -1.59201391, ...

The function requires either the argument grid which specifies the values of the target features on which the partial
dependence function should be evaluated or the argument X which is a convenience mode for automatically creating
grid from the training data. If X is given, the axes value returned by the function gives the axis for each target
feature.

For each value of the ‘target’ features in the grid the partial dependence function need to marginalize the predictions
of a tree over all possible values of the ‘complement’ features. In decision trees this function can be evaluated effi-
ciently without reference to the training data. For each grid point a weighted tree traversal is performed: if a split node
involves a ‘target’ feature, the corresponding left or right branch is followed, otherwise both branches are followed,
each branch is weighted by the fraction of training samples that entered that branch. Finally, the partial dependence
is given by a weighted average of all visited leaves. For tree ensembles the results of each individual tree are again
averaged.

Examples:

• Partial Dependence Plots

References
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VotingClassifier

The idea behind the voting classifier implementation is to combine conceptually different machine learning classifiers
and use a majority vote or the average predicted probabilities (soft vote) to predict the class labels. Such a classifier
can be useful for a set of equally well performing model in order to balance out their individual weaknesses.

Majority Class Labels (Majority/Hard Voting)

In majority voting, the predicted class label for a particular sample is the class label that represents the majority (mode)
of the class labels predicted by each individual classifier.

E.g., if the prediction for a given sample is

• classifier 1 -> class 1

• classifier 2 -> class 1

• classifier 3 -> class 2

the VotingClassifier (with voting=’hard’) would classify the sample as “class 1” based on the majority class label.

In the cases of a tie, the VotingClassifier will select the class based on the ascending sort order. E.g., in the following
scenario

• classifier 1 -> class 2

• classifier 2 -> class 1

the class label 1 will be assigned to the sample.

Usage The following example shows how to fit the majority rule classifier:

>>> from sklearn import datasets
>>> from sklearn import cross_validation
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.naive_bayes import GaussianNB
>>> from sklearn.ensemble import RandomForestClassifier
>>> from sklearn.ensemble import VotingClassifier

>>> iris = datasets.load_iris()
>>> X, y = iris.data[:, 1:3], iris.target

>>> clf1 = LogisticRegression(random_state=1)
>>> clf2 = RandomForestClassifier(random_state=1)
>>> clf3 = GaussianNB()

>>> eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard')

>>> for clf, label in zip([clf1, clf2, clf3, eclf], ['Logistic Regression', 'Random Forest', 'naive Bayes', 'Ensemble']):
... scores = cross_validation.cross_val_score(clf, X, y, cv=5, scoring='accuracy')
... print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))
Accuracy: 0.90 (+/- 0.05) [Logistic Regression]
Accuracy: 0.93 (+/- 0.05) [Random Forest]
Accuracy: 0.91 (+/- 0.04) [naive Bayes]
Accuracy: 0.95 (+/- 0.05) [Ensemble]
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Weighted Average Probabilities (Soft Voting)

In contrast to majority voting (hard voting), soft voting returns the class label as argmax of the sum of predicted
probabilities.

Specific weights can be assigned to each classifier via the weights parameter. When weights are provided, the
predicted class probabilities for each classifier are collected, multiplied by the classifier weight, and averaged. The
final class label is then derived from the class label with the highest average probability.

To illustrate this with a simple example, let’s assume we have 3 classifiers and a 3-class classification problems where
we assign equal weights to all classifiers: w1=1, w2=1, w3=1.

The weighted average probabilities for a sample would then be calculated as follows:

classifier class 1 class 2 class 3
classifier 1 w1 * 0.2 w1 * 0.5 w1 * 0.3
classifier 2 w2 * 0.6 w2 * 0.3 w2 * 0.1
classifier 3 w3 * 0.3 w3 * 0.4 w3 * 0.3
weighted average 0.37 0.4 0.3

Here, the predicted class label is 2, since it has the highest average probability.

The following example illustrates how the decision regions may change when a soft VotingClassifier is used based on
an linear Support Vector Machine, a Decision Tree, and a K-nearest neighbor classifier:

>>> from sklearn import datasets
>>> from sklearn.tree import DecisionTreeClassifier
>>> from sklearn.neighbors import KNeighborsClassifier
>>> from sklearn.svm import SVC
>>> from itertools import product
>>> from sklearn.ensemble import VotingClassifier

>>> # Loading some example data
>>> iris = datasets.load_iris()
>>> X = iris.data[:, [0,2]]
>>> y = iris.target

>>> # Training classifiers
>>> clf1 = DecisionTreeClassifier(max_depth=4)
>>> clf2 = KNeighborsClassifier(n_neighbors=7)
>>> clf3 = SVC(kernel='rbf', probability=True)
>>> eclf = VotingClassifier(estimators=[('dt', clf1), ('knn', clf2), ('svc', clf3)], voting='soft', weights=[2,1,2])

>>> clf1 = clf1.fit(X,y)
>>> clf2 = clf2.fit(X,y)
>>> clf3 = clf3.fit(X,y)
>>> eclf = eclf.fit(X,y)

Using the VotingClassifier with GridSearch

The VotingClassifier can also be used together with GridSearch in order to tune the hyperparameters of the individual
estimators:

>>> from sklearn.grid_search import GridSearchCV
>>> clf1 = LogisticRegression(random_state=1)
>>> clf2 = RandomForestClassifier(random_state=1)
>>> clf3 = GaussianNB()
>>> eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft')
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>>> params = {'lr__C': [1.0, 100.0], 'rf__n_estimators': [20, 200],}

>>> grid = GridSearchCV(estimator=eclf, param_grid=params, cv=5)
>>> grid = grid.fit(iris.data, iris.target)

Usage In order to predict the class labels based on the predicted class-probabilities (scikit-learn estimators in the
VotingClassifier must support predict_proba method):

>>> eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft')

Optionally, weights can be provided for the individual classifiers:

>>> eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[2,5,1])

3.1.12 Multiclass and multilabel algorithms

Warning: All classifiers in scikit-learn do multiclass classification out-of-the-box. You don’t need to use the
sklearn.multiclass module unless you want to experiment with different multiclass strategies.

The sklearn.multiclass module implements meta-estimators to solve multiclass and multilabel clas-
sification problems by decomposing such problems into binary classification problems.

• Multiclass classification means a classification task with more than two classes; e.g., classify a set of images of
fruits which may be oranges, apples, or pears. Multiclass classification makes the assumption that each sample
is assigned to one and only one label: a fruit can be either an apple or a pear but not both at the same time.
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• Multilabel classification assigns to each sample a set of target labels. This can be thought as predicting proper-
ties of a data-point that are not mutually exclusive, such as topics that are relevant for a document. A text might
be about any of religion, politics, finance or education at the same time or none of these.

• Multioutput-multiclass classification and multi-task classification means that a single estimator has to handle
several joint classification tasks. This is a generalization of the multi-label classification task, where the set of
classification problem is restricted to binary classification, and of the multi-class classification task. The output
format is a 2d numpy array or sparse matrix.

The set of labels can be different for each output variable. For instance a sample could be assigned “pear” for an
output variable that takes possible values in a finite set of species such as “pear”, “apple”, “orange” and “green”
for a second output variable that takes possible values in a finite set of colors such as “green”, “red”, “orange”,
“yellow”...

This means that any classifiers handling multi-output multiclass or multi-task classification task supports the
multi-label classification task as a special case. Multi-task classification is similar to the multi-output classifica-
tion task with different model formulations. For more information, see the relevant estimator documentation.

All scikit-learn classifiers are capable of multiclass classification, but the meta-estimators offered by
sklearn.multiclass permit changing the way they handle more than two classes because this may have an
effect on classifier performance (either in terms of generalization error or required computational resources).

Below is a summary of the classifiers supported by scikit-learn grouped by strategy; you don’t need the meta-estimators
in this class if you’re using one of these unless you want custom multiclass behavior:

• Inherently multiclass: Naive Bayes, LDA and QDA, Decision Trees, Random Forests, Nearest Neighbors, setting
multi_class=’multinomial’ in sklearn.linear_model.LogisticRegression.

• Support multilabel: Decision Trees, Random Forests, Nearest Neighbors, Ridge Regression.

• One-Vs-One: sklearn.svm.SVC.

• One-Vs-All: all linear models except sklearn.svm.SVC.

Some estimators also support multioutput-multiclass classification tasks Decision Trees, Random Forests, Nearest
Neighbors.

Warning: At present, no metric in sklearn.metrics supports the multioutput-multiclass classification task.

Multilabel classification format

In multilabel learning, the joint set of binary classification tasks is expressed with label binary indicator array: each
sample is one row of a 2d array of shape (n_samples, n_classes) with binary values: the one, i.e. the non zero elements,
corresponds to the subset of labels. An array such as np.array([[1, 0, 0], [0, 1, 1], [0, 0, 0]])
represents label 0 in the first sample, labels 1 and 2 in the second sample, and no labels in the third sample.

Producing multilabel data as a list of sets of labels may be more intuitive. The MultiLabelBinarizer transformer
can be used to convert between a collection of collections of labels and the indicator format.

>>> from sklearn.preprocessing import MultiLabelBinarizer
>>> y = [[2, 3, 4], [2], [0, 1, 3], [0, 1, 2, 3, 4], [0, 1, 2]]
>>> MultiLabelBinarizer().fit_transform(y)
array([[0, 0, 1, 1, 1],

[0, 0, 1, 0, 0],
[1, 1, 0, 1, 0],
[1, 1, 1, 1, 1],
[1, 1, 1, 0, 0]])
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One-Vs-The-Rest

This strategy, also known as one-vs-all, is implemented in OneVsRestClassifier. The strategy consists in
fitting one classifier per class. For each classifier, the class is fitted against all the other classes. In addition to its
computational efficiency (only n_classes classifiers are needed), one advantage of this approach is its interpretability.
Since each class is represented by one and one classifier only, it is possible to gain knowledge about the class by
inspecting its corresponding classifier. This is the most commonly used strategy and is a fair default choice.

Multiclass learning

Below is an example of multiclass learning using OvR:

>>> from sklearn import datasets
>>> from sklearn.multiclass import OneVsRestClassifier
>>> from sklearn.svm import LinearSVC
>>> iris = datasets.load_iris()
>>> X, y = iris.data, iris.target
>>> OneVsRestClassifier(LinearSVC(random_state=0)).fit(X, y).predict(X)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

Multilabel learning

OneVsRestClassifier also supports multilabel classification. To use this feature, feed the classifier an indicator
matrix, in which cell [i, j] indicates the presence of label j in sample i.
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Examples:

• Multilabel classification

One-Vs-One

OneVsOneClassifier constructs one classifier per pair of classes. At prediction time, the class which received
the most votes is selected. In the event of a tie (among two classes with an equal number of votes), it selects the class
with the highest aggregate classification confidence by summing over the pair-wise classification confidence levels
computed by the underlying binary classifiers.

Since it requires to fit n_classes * (n_classes - 1) / 2 classifiers, this method is usually slower than
one-vs-the-rest, due to its O(n_classes^2) complexity. However, this method may be advantageous for algorithms
such as kernel algorithms which don’t scale well with n_samples. This is because each individual learning problem
only involves a small subset of the data whereas, with one-vs-the-rest, the complete dataset is used n_classes times.

Multiclass learning

Below is an example of multiclass learning using OvO:

>>> from sklearn import datasets
>>> from sklearn.multiclass import OneVsOneClassifier
>>> from sklearn.svm import LinearSVC
>>> iris = datasets.load_iris()
>>> X, y = iris.data, iris.target
>>> OneVsOneClassifier(LinearSVC(random_state=0)).fit(X, y).predict(X)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

References:

Error-Correcting Output-Codes

Output-code based strategies are fairly different from one-vs-the-rest and one-vs-one. With these strategies, each class
is represented in a euclidean space, where each dimension can only be 0 or 1. Another way to put it is that each class
is represented by a binary code (an array of 0 and 1). The matrix which keeps track of the location/code of each class
is called the code book. The code size is the dimensionality of the aforementioned space. Intuitively, each class should
be represented by a code as unique as possible and a good code book should be designed to optimize classification
accuracy. In this implementation, we simply use a randomly-generated code book as advocated in 10 although more
elaborate methods may be added in the future.

At fitting time, one binary classifier per bit in the code book is fitted. At prediction time, the classifiers are used to
project new points in the class space and the class closest to the points is chosen.

10 “The error coding method and PICTs”, James G., Hastie T., Journal of Computational and Graphical statistics 7, 1998.
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In OutputCodeClassifier, the code_size attribute allows the user to control the number of classifiers which
will be used. It is a percentage of the total number of classes.

A number between 0 and 1 will require fewer classifiers than one-vs-the-rest. In theory, log2(n_classes) /
n_classes is sufficient to represent each class unambiguously. However, in practice, it may not lead to good
accuracy since log2(n_classes) is much smaller than n_classes.

A number greater than than 1 will require more classifiers than one-vs-the-rest. In this case, some classifiers will in
theory correct for the mistakes made by other classifiers, hence the name “error-correcting”. In practice, however, this
may not happen as classifier mistakes will typically be correlated. The error-correcting output codes have a similar
effect to bagging.

Multiclass learning

Below is an example of multiclass learning using Output-Codes:

>>> from sklearn import datasets
>>> from sklearn.multiclass import OutputCodeClassifier
>>> from sklearn.svm import LinearSVC
>>> iris = datasets.load_iris()
>>> X, y = iris.data, iris.target
>>> clf = OutputCodeClassifier(LinearSVC(random_state=0),
... code_size=2, random_state=0)
>>> clf.fit(X, y).predict(X)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1,
1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

References:

3.1.13 Feature selection

The classes in the sklearn.feature_selection module can be used for feature selection/dimensionality re-
duction on sample sets, either to improve estimators’ accuracy scores or to boost their performance on very high-
dimensional datasets.

Removing features with low variance

VarianceThreshold is a simple baseline approach to feature selection. It removes all features whose variance
doesn’t meet some threshold. By default, it removes all zero-variance features, i.e. features that have the same value
in all samples.

As an example, suppose that we have a dataset with boolean features, and we want to remove all features that are
either one or zero (on or off) in more than 80% of the samples. Boolean features are Bernoulli random variables, and
the variance of such variables is given by

Var[𝑋] = 𝑝(1− 𝑝)

so we can select using the threshold .8 * (1 - .8):
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>>> from sklearn.feature_selection import VarianceThreshold
>>> X = [[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 1, 1], [0, 1, 0], [0, 1, 1]]
>>> sel = VarianceThreshold(threshold=(.8 * (1 - .8)))
>>> sel.fit_transform(X)
array([[0, 1],

[1, 0],
[0, 0],
[1, 1],
[1, 0],
[1, 1]])

As expected, VarianceThreshold has removed the first column, which has a probability 𝑝 = 5/6 > .8 of
containing a zero.

Univariate feature selection

Univariate feature selection works by selecting the best features based on univariate statistical tests. It can be seen
as a preprocessing step to an estimator. Scikit-learn exposes feature selection routines as objects that implement the
transform method:

• SelectKBest removes all but the 𝑘 highest scoring features

• SelectPercentile removes all but a user-specified highest scoring percentage of features

• using common univariate statistical tests for each feature: false positive rate SelectFpr, false discovery rate
SelectFdr, or family wise error SelectFwe.

• GenericUnivariateSelect allows to perform univariate feature selection with a configurable strat-
egy. This allows to select the best univariate selection strategy with hyper-parameter search estimator.

For instance, we can perform a 𝜒2 test to the samples to retrieve only the two best features as follows:

>>> from sklearn.datasets import load_iris
>>> from sklearn.feature_selection import SelectKBest
>>> from sklearn.feature_selection import chi2
>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> X.shape
(150, 4)
>>> X_new = SelectKBest(chi2, k=2).fit_transform(X, y)
>>> X_new.shape
(150, 2)

These objects take as input a scoring function that returns univariate p-values:

• For regression: f_regression

• For classification: chi2 or f_classif

Feature selection with sparse data

If you use sparse data (i.e. data represented as sparse matrices), only chi2 will deal with the data without
making it dense.

Warning: Beware not to use a regression scoring function with a classification problem, you will get useless
results.
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Examples:

Univariate Feature Selection

Recursive feature elimination

Given an external estimator that assigns weights to features (e.g., the coefficients of a linear model), recursive feature
elimination (RFE) is to select features by recursively considering smaller and smaller sets of features. First, the
estimator is trained on the initial set of features and weights are assigned to each one of them. Then, features whose
absolute weights are the smallest are pruned from the current set features. That procedure is recursively repeated on
the pruned set until the desired number of features to select is eventually reached.

RFECV performs RFE in a cross-validation loop to find the optimal number of features.

Examples:

• Recursive feature elimination: A recursive feature elimination example showing the relevance of pixels in
a digit classification task.

• Recursive feature elimination with cross-validation: A recursive feature elimination example with auto-
matic tuning of the number of features selected with cross-validation.

Feature selection using SelectFromModel

SelectFromModel is a meta-transformer that can be used along with any estimator that has a coef_ or
feature_importances_ attribute after fitting. The features are considered unimportant and removed, if the
corresponding coef_ or feature_importances_ values are below the provided threshold parameter. Apart
from specifying the threshold numerically, there are build-in heuristics for finding a threshold using a string argument.
Available heuristics are “mean”, “median” and float multiples of these like “0.1*mean”.

For examples on how it is to be used refer to the sections below.

Examples

• Feature selection using SelectFromModel and LassoCV: Selecting the two most important features from
the Boston dataset without knowing the threshold beforehand.

L1-based feature selection

Linear models penalized with the L1 norm have sparse solutions: many of their estimated coefficients are
zero. When the goal is to reduce the dimensionality of the data to use with another classifier, they can
be used along with feature_selection.SelectFromModel to select the non-zero coefficients. In
particular, sparse estimators useful for this purpose are the linear_model.Lasso for regression, and of
linear_model.LogisticRegression and svm.LinearSVC for classification:

>>> from sklearn.svm import LinearSVC
>>> from sklearn.datasets import load_iris
>>> from sklearn.feature_selection import SelectFromModel
>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> X.shape
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(150, 4)
>>> lsvc = LinearSVC(C=0.01, penalty="l1", dual=False).fit(X, y)
>>> model = SelectFromModel(lsvc, prefit=True)
>>> X_new = model.transform(X)
>>> X_new.shape
(150, 3)

With SVMs and logistic-regression, the parameter C controls the sparsity: the smaller C the fewer features selected.
With Lasso, the higher the alpha parameter, the fewer features selected.

Examples:

• Classification of text documents using sparse features: Comparison of different algorithms for document
classification including L1-based feature selection.

L1-recovery and compressive sensing

For a good choice of alpha, the Lasso can fully recover the exact set of non-zero variables using only few obser-
vations, provided certain specific conditions are met. In particular, the number of samples should be “sufficiently
large”, or L1 models will perform at random, where “sufficiently large” depends on the number of non-zero co-
efficients, the logarithm of the number of features, the amount of noise, the smallest absolute value of non-zero
coefficients, and the structure of the design matrix X. In addition, the design matrix must display certain specific
properties, such as not being too correlated.
There is no general rule to select an alpha parameter for recovery of non-zero coefficients. It can by set by
cross-validation (LassoCV or LassoLarsCV), though this may lead to under-penalized models: including a
small number of non-relevant variables is not detrimental to prediction score. BIC (LassoLarsIC) tends, on
the opposite, to set high values of alpha.
Reference Richard G. Baraniuk “Compressive Sensing”, IEEE Signal Processing Magazine [120] July 2007
http://dsp.rice.edu/files/cs/baraniukCSlecture07.pdf

Randomized sparse models

The limitation of L1-based sparse models is that faced with a group of very correlated features, they will select only
one. To mitigate this problem, it is possible to use randomization techniques, reestimating the sparse model many
times perturbing the design matrix or sub-sampling data and counting how many times a given regressor is selected.

RandomizedLasso implements this strategy for regression settings, using the Lasso, while
RandomizedLogisticRegression uses the logistic regression and is suitable for classification tasks. To
get a full path of stability scores you can use lasso_stability_path.

Note that for randomized sparse models to be more powerful than standard F statistics at detecting non-zero features,
the ground truth model should be sparse, in other words, there should be only a small fraction of features non zero.

Examples:

• Sparse recovery: feature selection for sparse linear models: An example comparing different feature
selection approaches and discussing in which situation each approach is to be favored.
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References:

• N. Meinshausen, P. Buhlmann, “Stability selection”, Journal of the Royal Statistical Society, 72 (2010)
http://arxiv.org/pdf/0809.2932

• F. Bach, “Model-Consistent Sparse Estimation through the Bootstrap” http://hal.inria.fr/hal-00354771/

Tree-based feature selection

Tree-based estimators (see the sklearn.tree module and forest of trees in the sklearn.ensemble module)
can be used to compute feature importances, which in turn can be used to discard irrelevant features (when coupled
with the sklearn.feature_selection.SelectFromModel meta-transformer):

>>> from sklearn.ensemble import ExtraTreesClassifier
>>> from sklearn.datasets import load_iris
>>> from sklearn.feature_selection import SelectFromModel
>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> X.shape
(150, 4)
>>> clf = ExtraTreesClassifier()
>>> clf = clf.fit(X, y)
>>> clf.feature_importances_
array([ 0.04..., 0.05..., 0.4..., 0.4...])
>>> model = SelectFromModel(clf, prefit=True)
>>> X_new = model.transform(X)
>>> X_new.shape
(150, 2)

Examples:

• Feature importances with forests of trees: example on synthetic data showing the recovery of the actually
meaningful features.

• Pixel importances with a parallel forest of trees: example on face recognition data.
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Feature selection as part of a pipeline

Feature selection is usually used as a pre-processing step before doing the actual learning. The recommended way to
do this in scikit-learn is to use a sklearn.pipeline.Pipeline:

clf = Pipeline([
('feature_selection', SelectFromModel(LinearSVC(penalty="l1"))),
('classification', RandomForestClassifier())

])
clf.fit(X, y)

In this snippet we make use of a sklearn.svm.LinearSVC coupled with
sklearn.feature_selection.SelectFromModel to evaluate feature importances and select the most rele-
vant features. Then, a sklearn.ensemble.RandomForestClassifier is trained on the transformed output,
i.e. using only relevant features. You can perform similar operations with the other feature selection methods and also
classifiers that provide a way to evaluate feature importances of course. See the sklearn.pipeline.Pipeline
examples for more details.

3.1.14 Semi-Supervised

Semi-supervised learning is a situation in which in your training data some of the samples are not labeled. The semi-
supervised estimators in sklearn.semi_supervised are able to make use of this additional unlabeled data to
better capture the shape of the underlying data distribution and generalize better to new samples. These algorithms
can perform well when we have a very small amount of labeled points and a large amount of unlabeled points.

Unlabeled entries in y

It is important to assign an identifier to unlabeled points along with the labeled data when training the model
with the fit method. The identifier that this implementation uses is the integer value −1.

Label Propagation

Label propagation denotes a few variations of semi-supervised graph inference algorithms.

A few features available in this model:

• Can be used for classification and regression tasks

• Kernel methods to project data into alternate dimensional spaces

scikit-learn provides two label propagation models: LabelPropagation and LabelSpreading. Both work by
constructing a similarity graph over all items in the input dataset.

LabelPropagation and LabelSpreading differ in modifications to the similarity matrix that graph and the
clamping effect on the label distributions. Clamping allows the algorithm to change the weight of the true ground
labeled data to some degree. The LabelPropagation algorithm performs hard clamping of input labels, which
means 𝛼 = 1. This clamping factor can be relaxed, to say 𝛼 = 0.8, which means that we will always retain 80 percent
of our original label distribution, but the algorithm gets to change it’s confidence of the distribution within 20 percent.

LabelPropagation uses the raw similarity matrix constructed from the data with no modifications. In contrast,
LabelSpreading minimizes a loss function that has regularization properties, as such it is often more robust to
noise. The algorithm iterates on a modified version of the original graph and normalizes the edge weights by computing
the normalized graph Laplacian matrix. This procedure is also used in Spectral clustering.

Label propagation models have two built-in kernel methods. Choice of kernel effects both scalability and performance
of the algorithms. The following are available:
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Figure 3.1: An illustration of label-propagation: the structure of unlabeled observations is consistent with the class
structure, and thus the class label can be propagated to the unlabeled observations of the training set.

• rbf (exp(−𝛾|𝑥− 𝑦|2), 𝛾 > 0). 𝛾 is specified by keyword gamma.

• knn (1[𝑥′ ∈ 𝑘𝑁𝑁(𝑥)]). 𝑘 is specified by keyword n_neighbors.

The RBF kernel will produce a fully connected graph which is represented in memory by a dense matrix. This matrix
may be very large and combined with the cost of performing a full matrix multiplication calculation for each iteration
of the algorithm can lead to prohibitively long running times. On the other hand, the KNN kernel will produce a much
more memory-friendly sparse matrix which can drastically reduce running times.

Examples

• Decision boundary of label propagation versus SVM on the Iris dataset
• Label Propagation learning a complex structure
• Label Propagation digits active learning

References

[1] Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux. In Semi-Supervised Learning (2006), pp. 193-216
[2] Olivier Delalleau, Yoshua Bengio, Nicolas Le Roux. Efficient Non-Parametric Function Induction in Semi-
Supervised Learning. AISTAT 2005 http://research.microsoft.com/en-us/people/nicolasl/efficient_ssl.pdf

3.1.15 Isotonic regression

The class IsotonicRegression fits a non-decreasing function to data. It solves the following problem:

minimize
∑︀

𝑖 𝑤𝑖(𝑦𝑖 − 𝑦𝑖)2

subject to 𝑦𝑚𝑖𝑛 = 𝑦1 ≤ 𝑦2... ≤ 𝑦𝑛 = 𝑦𝑚𝑎𝑥

where each 𝑤𝑖 is strictly positive and each 𝑦𝑖 is an arbitrary real number. It yields the vector which is composed of
non-decreasing elements the closest in terms of mean squared error. In practice this list of elements forms a function
that is piecewise linear.

3.1.16 Probability calibration

When performing classification you often want not only to predict the class label, but also obtain a probability of the
respective label. This probability gives you some kind of confidence on the prediction. Some models can give you
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poor estimates of the class probabilities and some even do not support probability prediction. The calibration module
allows you to better calibrate the probabilities of a given model, or to add support for probability prediction.

Well calibrated classifiers are probabilistic classifiers for which the output of the predict_proba method can be directly
interpreted as a confidence level. For instance, a well calibrated (binary) classifier should classify the samples such
that among the samples to which it gave a predict_proba value close to 0.8, approximately 80% actually belong to the
positive class. The following plot compares how well the probabilistic predictions of different classifiers are calibrated:

LogisticRegression returns well calibrated predictions by default as it directly optimizes log-loss. In contrast,
the other methods return biased probabilities; with different biases per method:

• GaussianNB tends to push probabilties to 0 or 1 (note the counts in the histograms). This is mainly because
it makes the assumption that features are conditionally independent given the class, which is not the case in this
dataset which contains 2 redundant features.
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• RandomForestClassifier shows the opposite behavior: the histograms show peaks at approximately
0.2 and 0.9 probability, while probabilities close to 0 or 1 are very rare. An explanation for this is given by
Niculescu-Mizil and Caruana [4]: “Methods such as bagging and random forests that average predictions from
a base set of models can have difficulty making predictions near 0 and 1 because variance in the underlying base
models will bias predictions that should be near zero or one away from these values. Because predictions are
restricted to the interval [0,1], errors caused by variance tend to be one-sided near zero and one. For example,
if a model should predict p = 0 for a case, the only way bagging can achieve this is if all bagged trees predict
zero. If we add noise to the trees that bagging is averaging over, this noise will cause some trees to predict
values larger than 0 for this case, thus moving the average prediction of the bagged ensemble away from 0. We
observe this effect most strongly with random forests because the base-level trees trained with random forests
have relatively high variance due to feature subseting.” As a result, the calibration curve shows a characteristic
sigmoid shape, indicating that the classifier could trust its “intuition” more and return probabilties closer to 0 or
1 typically.

• Linear Support Vector Classification (LinearSVC) shows an even more sigmoid curve as the RandomForest-
Classifier, which is typical for maximum-margin methods (compare Niculescu-Mizil and Caruana [4]), which
focus on hard samples that are close to the decision boundary (the support vectors).

Two approaches for performing calibration of probabilistic predictions are provided: a parametric approach based on
Platt’s sigmoid model and a non-parametric approach based on isotonic regression (sklearn.isotonic). Proba-
bility calibration should be done on new data not used for model fitting. The class CalibratedClassifierCV
uses a cross-validation generator and estimates for each split the model parameter on the train samples and the cali-
bration of the test samples. The probabilities predicted for the folds are then averaged. Already fitted classifiers can
be calibrated by CalibratedClassifierCV via the paramter cv=”prefit”. In this case, the user has to take care
manually that data for model fitting and calibration are disjoint.

The following images demonstrate the benefit of probability calibration. The first image present a dataset with 2
classes and 3 blobs of data. The blob in the middle contains random samples of each class. The probability for the
samples in this blob should be 0.5.

The following image shows on the data above the estimated probability using a Gaussian naive Bayes classifier without
calibration, with a sigmoid calibration and with a non-parametric isotonic calibration. One can observe that the non-
parametric model provides the most accurate probability estimates for samples in the middle, i.e., 0.5.

The following experiment is performed on an artificial dataset for binary classification with 100.000 samples (1.000
of them are used for model fitting) with 20 features. Of the 20 features, only 2 are informative and 10 are redundant.
The figure shows the estimated probabilities obtained with logistic regression, a linear support-vector classifier (SVC),
and linear SVC with both isotonic calibration and sigmoid calibration. The calibration performance is evaluated with
Brier score brier_score_loss, reported in the legend (the smaller the better).

One can observe here that logistic regression is well calibrated as its curve is nearly diagonal. Linear SVC’s calibration
curve has a sigmoid curve, which is typical for an under-confident classifier. In the case of LinearSVC, this is caused
by the margin property of the hinge loss, which lets the model focus on hard samples that are close to the decision
boundary (the support vectors). Both kinds of calibration can fix this issue and yield nearly identical results. The next
figure shows the calibration curve of Gaussian naive Bayes on the same data, with both kinds of calibration and also
without calibration.

One can see that Gaussian naive Bayes performs very badly but does so in an other way than linear SVC: While linear
SVC exhibited a sigmoid calibration curve, Gaussian naive Bayes’ calibration curve has a transposed-sigmoid shape.
This is typical for an over-confident classifier. In this case, the classifier’s overconfidence is caused by the redundant
features which violate the naive Bayes assumption of feature-independence.

Calibration of the probabilities of Gaussian naive Bayes with isotonic regression can fix this issue as can be seen from
the nearly diagonal calibration curve. Sigmoid calibration also improves the brier score slightly, albeit not as strongly
as the non-parametric isotonic calibration. This is an intrinsic limitation of sigmoid calibration, whose parametric form
assumes a sigmoid rather than a transposed-sigmoid curve. The non-parametric isotonic calibration model, however,
makes no such strong assumptions and can deal with either shape, provided that there is sufficient calibration data.
In general, sigmoid calibration is preferable if the calibration curve is sigmoid and when there is few calibration data
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while isotonic calibration is preferable for non- sigmoid calibration curves and in situations where many additional
data can be used for calibration.

CalibratedClassifierCV can also deal with classification tasks that involve more than two classes if the base
estimator can do so. In this case, the classifier is calibrated first for each class separately in an one-vs-rest fashion.
When predicting probabilities for unseen data, the calibrated probabilities for each class are predicted separately. As
those probabilities do not necessarily sum to one, a postprocessing is performed to normalize them.

The next image illustrates how sigmoid calibration changes predicted probabilities for a 3-class classification problem.
Illustrated is the standard 2-simplex, where the three corners correspond to the three classes. Arrows point from the
probability vectors predicted by an uncalibrated classifier to the probability vectors predicted by the same classifier
after sigmoid calibration on a hold-out validation set. Colors indicate the true class of an instance (red: class 1, green:
class 2, blue: class 3).

The base classifier is a random forest classifier with 25 base estimators (trees). If this classifier is trained on all 800
training datapoints, it is overly confident in its predictions and thus incurs a large log-loss. Calibrating an identical
classifier, which was trained on 600 datapoints, with method=’sigmoid’ on the remaining 200 datapoints reduces the
confidence of the predictions, i.e., moves the probability vectors from the edges of the simplex towards the center:

This calibration results in a lower log-loss. Note that an alternative would have been to increase the number of base
estimators which would have resulted in a similar decrease in log-loss.

References:
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3.2 Unsupervised learning

3.2.1 Gaussian mixture models

sklearn.mixture is a package which enables one to learn Gaussian Mixture Models (diagonal, spherical, tied and full
covariance matrices supported), sample them, and estimate them from data. Facilities to help determine the appropriate
number of components are also provided.

Figure 3.2: Two-component Gaussian mixture model: data points, and equi-probability surfaces of the model.

A Gaussian mixture model is a probabilistic model that assumes all the data points are generated from a mixture of a
finite number of Gaussian distributions with unknown parameters. One can think of mixture models as generalizing
k-means clustering to incorporate information about the covariance structure of the data as well as the centers of the
latent Gaussians.

Scikit-learn implements different classes to estimate Gaussian mixture models, that correspond to different estimation
strategies, detailed below.

GMM classifier

The GMM object implements the expectation-maximization (EM) algorithm for fitting mixture-of-Gaussian models. It
can also draw confidence ellipsoids for multivariate models, and compute the Bayesian Information Criterion to assess
the number of clusters in the data. A GMM.fit method is provided that learns a Gaussian Mixture Model from train
data. Given test data, it can assign to each sample the class of the Gaussian it mostly probably belong to using the
GMM.predict method.

The GMM comes with different options to constrain the covariance of the difference classes estimated: spherical,
diagonal, tied or full covariance.

Examples:

• See GMM classification for an example of using a GMM as a classifier on the iris dataset.
• See Density Estimation for a mixture of Gaussians for an example on plotting the density estimation.
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Pros and cons of class GMM: expectation-maximization inference

Pros

Speed it is the fastest algorithm for learning mixture models

Agnostic as this algorithm maximizes only the likelihood, it will not bias the means towards zero, or bias
the cluster sizes to have specific structures that might or might not apply.

Cons

Singularities when one has insufficiently many points per mixture, estimating the covariance matrices
becomes difficult, and the algorithm is known to diverge and find solutions with infinite likelihood
unless one regularizes the covariances artificially.

Number of components this algorithm will always use all the components it has access to, needing held-
out data or information theoretical criteria to decide how many components to use in the absence of
external cues.

Selecting the number of components in a classical GMM

The BIC criterion can be used to select the number of components in a GMM in an efficient way. In theory, it recovers
the true number of components only in the asymptotic regime (i.e. if much data is available). Note that using a
DPGMM avoids the specification of the number of components for a Gaussian mixture model.
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Examples:

• See Gaussian Mixture Model Selection for an example of model selection performed with classical GMM.

Estimation algorithm Expectation-maximization

The main difficulty in learning Gaussian mixture models from unlabeled data is that it is one usually doesn’t know
which points came from which latent component (if one has access to this information it gets very easy to fit a separate
Gaussian distribution to each set of points). Expectation-maximization is a well-founded statistical algorithm to get
around this problem by an iterative process. First one assumes random components (randomly centered on data points,
learned from k-means, or even just normally distributed around the origin) and computes for each point a probability
of being generated by each component of the model. Then, one tweaks the parameters to maximize the likelihood of
the data given those assignments. Repeating this process is guaranteed to always converge to a local optimum.

VBGMM classifier: variational Gaussian mixtures

The VBGMM object implements a variant of the Gaussian mixture model with variational inference algorithms. The
API is identical to GMM. It is essentially a middle-ground between GMM and DPGMM, as it has some of the properties of
the Dirichlet process.

Pros and cons of class VBGMM: variational inference

Pros

Regularization due to the incorporation of prior information, variational solutions have less pathological
special cases than expectation-maximization solutions. One can then use full covariance matrices
in high dimensions or in cases where some components might be centered around a single point
without risking divergence.

Cons

Bias to regularize a model one has to add biases. The variational algorithm will bias all the means
towards the origin (part of the prior information adds a “ghost point” in the origin to every mixture
component) and it will bias the covariances to be more spherical. It will also, depending on the
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concentration parameter, bias the cluster structure either towards uniformity or towards a rich-get-
richer scenario.

Hyperparameters this algorithm needs an extra hyperparameter that might need experimental tuning via
cross-validation.

Estimation algorithm: variational inference

Variational inference is an extension of expectation-maximization that maximizes a lower bound on model evidence
(including priors) instead of data likelihood. The principle behind variational methods is the same as expectation-
maximization (that is both are iterative algorithms that alternate between finding the probabilities for each point to
be generated by each mixture and fitting the mixtures to these assigned points), but variational methods add regular-
ization by integrating information from prior distributions. This avoids the singularities often found in expectation-
maximization solutions but introduces some subtle biases to the model. Inference is often notably slower, but not
usually as much so as to render usage unpractical.

Due to its Bayesian nature, the variational algorithm needs more hyper-parameters than expectation-maximization,
the most important of these being the concentration parameter alpha. Specifying a high value of alpha leads more
often to uniformly-sized mixture components, while specifying small (between 0 and 1) values will lead to some
mixture components getting almost all the points while most mixture components will be centered on just a few of the
remaining points.

DPGMM classifier: Infinite Gaussian mixtures

The DPGMM object implements a variant of the Gaussian mixture model with a variable (but bounded) number of
components using the Dirichlet Process. The API is identical to GMM. This class doesn’t require the user to choose the
number of components, and at the expense of extra computational time the user only needs to specify a loose upper
bound on this number and a concentration parameter.

The examples above compare Gaussian mixture models with fixed number of components, to DPGMM models. On
the left the GMM is fitted with 5 components on a dataset composed of 2 clusters. We can see that the DPGMM
is able to limit itself to only 2 components whereas the GMM fits the data fit too many components. Note that with
very little observations, the DPGMM can take a conservative stand, and fit only one component. On the right we are
fitting a dataset not well-depicted by a mixture of Gaussian. Adjusting the alpha parameter of the DPGMM controls
the number of components used to fit this data.
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Examples:

• See Gaussian Mixture Model Ellipsoids for an example on plotting the confidence ellipsoids for both GMM
and DPGMM.

• Gaussian Mixture Model Sine Curve shows using GMM and DPGMM to fit a sine wave

Pros and cons of class DPGMM: Dirichlet process mixture model

Pros

Less sensitivity to the number of parameters unlike finite models, which will almost always use all
components as much as they can, and hence will produce wildly different solutions for different
numbers of components, the Dirichlet process solution won’t change much with changes to the
parameters, leading to more stability and less tuning.

No need to specify the number of components only an upper bound of this number needs to be pro-
vided. Note however that the DPMM is not a formal model selection procedure, and thus provides
no guarantee on the result.

Cons

Speed the extra parametrization necessary for variational inference and for the structure of the Dirichlet
process can and will make inference slower, although not by much.

Bias as in variational techniques, but only more so, there are many implicit biases in the Dirichlet process
and the inference algorithms, and whenever there is a mismatch between these biases and the data it
might be possible to fit better models using a finite mixture.

The Dirichlet Process

Here we describe variational inference algorithms on Dirichlet process mixtures. The Dirichlet process is a prior
probability distribution on clusterings with an infinite, unbounded, number of partitions. Variational techniques let us
incorporate this prior structure on Gaussian mixture models at almost no penalty in inference time, comparing with a
finite Gaussian mixture model.

An important question is how can the Dirichlet process use an infinite, unbounded number of clusters and still be
consistent. While a full explanation doesn’t fit this manual, one can think of its chinese restaurant process analogy to
help understanding it. The chinese restaurant process is a generative story for the Dirichlet process. Imagine a chinese
restaurant with an infinite number of tables, at first all empty. When the first customer of the day arrives, he sits at
the first table. Every following customer will then either sit on an occupied table with probability proportional to the
number of customers in that table or sit in an entirely new table with probability proportional to the concentration
parameter alpha. After a finite number of customers has sat, it is easy to see that only finitely many of the infinite
tables will ever be used, and the higher the value of alpha the more total tables will be used. So the Dirichlet process
does clustering with an unbounded number of mixture components by assuming a very asymmetrical prior structure
over the assignments of points to components that is very concentrated (this property is known as rich-get-richer, as
the full tables in the Chinese restaurant process only tend to get fuller as the simulation progresses).

Variational inference techniques for the Dirichlet process still work with a finite approximation to this infinite mixture
model, but instead of having to specify a priori how many components one wants to use, one just specifies the concen-
tration parameter and an upper bound on the number of mixture components (this upper bound, assuming it is higher
than the “true” number of components, affects only algorithmic complexity, not the actual number of components
used).
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Derivation:

• See here the full derivation of this algorithm.

Variational Gaussian Mixture Models The API is identical to that of the GMM class, the main difference being that
it offers access to precision matrices as well as covariance matrices.

The inference algorithm is the one from the following paper:

• Variational Inference for Dirichlet Process Mixtures David Blei, Michael Jordan. Bayesian Analysis, 2006

While this paper presents the parts of the inference algorithm that are concerned with the structure of the dirichlet pro-
cess, it does not go into detail in the mixture modeling part, which can be just as complex, or even more. For this reason
we present here a full derivation of the inference algorithm and all the update and lower-bound equations. If you’re
not interested in learning how to derive similar algorithms yourself and you’re not interested in changing/debugging
the implementation in the scikit this document is not for you.

The complexity of this implementation is linear in the number of mixture components and data points. With regards
to the dimensionality, it is linear when using spherical or diag and quadratic/cubic when using tied or full.
For spherical or diag it is O(n_states * n_points * dimension) and for tied or full it is O(n_states * n_points
* dimension^2 + n_states * dimension^3) (it is necessary to invert the covariance/precision matrices and compute its
determinant, hence the cubic term).

This implementation is expected to scale at least as well as EM for the mixture of Gaussians.

Update rules for VB inference Here the full mathematical derivation of the Variational Bayes update rules for
Gaussian Mixture Models is given. The main parameters of the model, defined for any class 𝑘 ∈ [1..𝐾] are the class
proportion 𝜑𝑘, the mean parameters 𝜇𝑘, the covariance parameters Σ𝑘, which is characterized by variational Wishart
density,𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝑎𝑘,Bk), where 𝑎 is the degrees of freedom, and𝐵 is the scale matrix. Depending on the covariance
parametrization, 𝐵𝑘 can be a positive scalar, a positive vector or a Symmetric Positive Definite matrix.

The spherical model The model then is

𝜑𝑘 ∼ 𝐵𝑒𝑡𝑎(1, 𝛼1)
𝜇𝑘 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, I)
𝜎𝑘 ∼ 𝐺𝑎𝑚𝑚𝑎(1, 1)
𝑧𝑖 ∼ 𝑆𝐵𝑃 (𝜑)
𝑋𝑡 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑧𝑖 ,

1
𝜎𝑧𝑖

I)

The variational distribution we’ll use is

𝜑𝑘 ∼ 𝐵𝑒𝑡𝑎(𝛾𝑘,1, 𝛾𝑘,2)
𝜇𝑘 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜈𝜇𝑘

, I)
𝜎𝑘 ∼ 𝐺𝑎𝑚𝑚𝑎(𝑎𝑘, 𝑏𝑘)
𝑧𝑖 ∼ 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒(𝜈𝑧𝑖)

The bound The variational bound is

log𝑃 (𝑋) ≥
∑︀

𝑘(𝐸𝑞[log𝑃 (𝜑𝑘)]− 𝐸𝑞[log𝑄(𝜑𝑘)])
+
∑︀

𝑘 (𝐸𝑞[log𝑃 (𝜇𝑘)]− 𝐸𝑞[log𝑄(𝜇𝑘)])
+
∑︀

𝑘 (𝐸𝑞[log𝑃 (𝜎𝑘)]− 𝐸𝑞[log𝑄(𝜎𝑘)])
+
∑︀

𝑖 (𝐸𝑞[log𝑃 (𝑧𝑖)]− 𝐸𝑞[log𝑄(𝑧𝑖)])
+
∑︀

𝑖𝐸𝑞[log𝑃 (𝑋𝑡)]
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The bound for 𝜑𝑘

𝐸𝑞[log𝐵𝑒𝑡𝑎(1, 𝛼)]− 𝐸[log𝐵𝑒𝑡𝑎(𝛾𝑘,1, 𝛾𝑘,2)] = log Γ(1 + 𝛼)− log Γ(𝛼)
+(𝛼− 1)(Ψ(𝛾𝑘,2)−Ψ(𝛾𝑘,1 + 𝛾𝑘,2))
− log Γ(𝛾𝑘,1 + 𝛾𝑘,2) + log Γ(𝛾𝑘,1) + log Γ(𝛾𝑘,2)
−(𝛾𝑘,1 − 1)(Ψ(𝛾𝑘,1)−Ψ(𝛾𝑘,1 + 𝛾𝑘,2))
−(𝛾𝑘,2 − 1)(Ψ(𝛾𝑘,2)−Ψ(𝛾𝑘,1 + 𝛾𝑘,2))

The bound for 𝜇𝑘

𝐸𝑞[log𝑃 (𝜇𝑘)]− 𝐸𝑞[log𝑄(𝜇𝑘)]
=

∫︀
𝑑𝜇𝑓𝑞(𝜇𝑓 ) log𝑃 (𝜇𝑓 )−

∫︀
𝑑𝜇𝑓𝑞(𝜇𝑓 ) log𝑄(𝜇𝑓 )

= −𝐷
2 log 2𝜋 − 1

2 ||𝜈𝜇𝑘
||2 − 𝐷

2 + 𝐷
2 log 2𝜋𝑒

The bound for 𝜎𝑘

Here I’ll use the inverse scale parametrization of the gamma distribution.

𝐸𝑞[log𝑃 (𝜎𝑘)]− 𝐸𝑞[log𝑄(𝜎𝑘)]
= log Γ(𝑎𝑘)− (𝑎𝑘 − 1)Ψ(𝑎𝑘)− log 𝑏𝑘 + 𝑎𝑘 − 𝑎𝑘

𝑏𝑘

The bound for z

𝐸𝑞[log𝑃 (𝑧)]− 𝐸𝑞[log𝑄(𝑧)]

=
∑︀

𝑘

(︁(︁∑︀𝐾
𝑗=𝑘+1 𝜈𝑧𝑖,𝑗

)︁
(Ψ(𝛾𝑘,2)−Ψ(𝛾𝑘,1 + 𝛾𝑘,2)) + 𝜈𝑧𝑖,𝑘(Ψ(𝛾𝑘,1)−Ψ(𝛾𝑘,1 + 𝛾𝑘,2))− log 𝜈𝑧𝑖,𝑘

)︁
The bound for 𝑋

Recall that there is no need for a 𝑄(𝑋) so this bound is just

𝐸𝑞[log𝑃 (𝑋𝑖)] =
∑︀

𝑘 𝜈𝑧𝑘

(︁
−𝐷

2 log 2𝜋 + 𝐷
2 (Ψ(𝑎𝑘)− log(𝑏𝑘))− 𝑎𝑘

2𝑏𝑘
(||𝑋𝑖 − 𝜈𝜇𝑘

||2 +𝐷)− log 2𝜋𝑒
)︁

For simplicity I’ll later call the term inside the parenthesis 𝐸𝑞[log𝑃 (𝑋𝑖|𝑧𝑖 = 𝑘)]

The updates Updating 𝛾

𝛾𝑘,1 = 1 +
∑︀

𝑖 𝜈𝑧𝑖,𝑘
𝛾𝑘,2 = 𝛼+

∑︀
𝑖

∑︀
𝑗>𝑘 𝜈𝑧𝑖,𝑗 .

Updating 𝜇

The updates for mu essentially are just weighted expectations of 𝑋 regularized by the prior. We can see this by taking
the gradient of the bound with regards to 𝜈𝜇 and setting it to zero. The gradient is

∇𝐿 = −𝜈𝜇𝑘
+
∑︁
𝑖

𝜈𝑧𝑖,𝑘𝑏𝑘

𝑎𝑘
(𝑋𝑖 +−𝜈𝜇)

so the update is

𝜈𝜇𝑘
=

∑︀
𝑖

𝜈𝑧𝑖,𝑘
𝑏𝑘

𝑎𝑘
𝑋𝑖

1 +
∑︀

𝑖

𝜈𝑧𝑖,𝑘
𝑏𝑘

𝑎𝑘

Updating 𝑎 and 𝑏

For some odd reason it doesn’t really work when you derive the updates for a and b using the gradients of the lower
bound (terms involving the Ψ′ function show up and 𝑎 is hard to isolate). However, we can use the other formula,

log𝑄(𝜎𝑘) = 𝐸𝑣 ̸=𝜎𝑘
[log𝑃 ] + 𝑐𝑜𝑛𝑠𝑡
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All the terms not involving 𝜎𝑘 get folded over into the constant and we get two terms: the prior and the probability of
𝑋 . This gives us

log𝑄(𝜎𝑘) = −𝜎𝑘 +
𝐷

2

∑︁
𝑖

𝜈𝑧𝑖,𝑘 log 𝜎𝑘 −
𝜎𝑘
2

∑︁
𝑖

𝜈𝑧𝑖,𝑘(||𝑋𝑖 − 𝜇𝑘||2 +𝐷)

This is the log of a gamma distribution, with 𝑎𝑘 = 1 + 𝐷
2

∑︀
𝑖 𝜈𝑧𝑖,𝑘 and

𝑏𝑘 = 1 +
1

2

∑︁
𝑖

𝜈𝑧𝑖,𝑘(||𝑋𝑖 − 𝜇𝑘||2 +𝐷).

You can verify this by normalizing the previous term.

Updating 𝑧

log 𝜈𝑧𝑖,𝑘 ∝ Ψ(𝛾𝑘,1)−Ψ(𝛾𝑘,1 + 𝛾𝑘,2) + 𝐸𝑞[log𝑃 (𝑋𝑖|𝑧𝑖 = 𝑘)] +
∑︁
𝑗<𝑘

(Ψ(𝛾𝑗,2)−Ψ(𝛾𝑗,1 + 𝛾𝑗,2)) .

The diagonal model The model then is

𝜑𝑘 ∼ 𝐵𝑒𝑡𝑎(1, 𝛼1)
𝜇𝑘 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, I)
𝜎𝑘,𝑑 ∼ 𝐺𝑎𝑚𝑚𝑎(1, 1)
𝑧𝑖 ∼ 𝑆𝐵𝑃 (𝜑)
𝑋𝑡 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑧𝑖 ,𝜎

−1
𝑧𝑖

)

Tha variational distribution we’ll use is

𝜑𝑘 ∼ 𝐵𝑒𝑡𝑎(𝛾𝑘,1, 𝛾𝑘,2)
𝜇𝑘 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜈𝜇𝑘

, I)
𝜎𝑘,𝑑 ∼ 𝐺𝑎𝑚𝑚𝑎(𝑎𝑘,𝑑, 𝑏𝑘,𝑑)
𝑧𝑖 ∼ 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒(𝜈𝑧𝑖)

The lower bound The changes in this lower bound from the previous model are in the distributions of 𝜎 (as there
are a lot more 𝜎 s now) and 𝑋 .

The bound for 𝜎𝑘,𝑑 is the same bound for 𝜎𝑘 and can be safely omitted.

The bound for 𝑋 :

The main difference here is that the precision matrix 𝜎𝑘 scales the norm, so we have an extra term after computing the
expectation of 𝜇𝑇

𝑘𝜎𝑘𝜇𝑘, which is 𝜈𝑇𝜇𝑘
𝜎𝑘𝜈𝜇𝑘

+
∑︀

𝑑 𝜎𝑘,𝑑. We then have

𝐸𝑞[log𝑃 (𝑋𝑖)] =
∑︀

𝑘 𝜈𝑧𝑘

(︁
− 𝐷

2 log 2𝜋 + 1
2

∑︀
𝑑(Ψ(𝑎𝑘,𝑑)− log(𝑏𝑘,𝑑))

− 1
2 ((𝑋𝑖 − 𝜈𝜇𝑘

)𝑇 𝑎𝑘

𝑏𝑘
(𝑋𝑖 − 𝜈𝜇𝑘

) +
∑︀

𝑑 𝜎𝑘,𝑑)− log 2𝜋𝑒
)︁

The updates The updates only chance for 𝜇 (to weight them with the new 𝜎), 𝑧 (but the change is all folded into the
𝐸𝑞[𝑃 (𝑋𝑖|𝑧𝑖 = 𝑘)] term), and the 𝑎 and 𝑏 variables themselves.

The update for 𝜇

𝜈𝜇𝑘
=

(︃
I +

∑︁
𝑖

𝜈𝑧𝑖,𝑘bk

ak

)︃−1(︃∑︁
𝑖

𝜈𝑧𝑖,𝑘𝑏𝑘

𝑎𝑘
𝑋𝑖

)︃

The updates for a and b

232 Chapter 3. User Guide



scikit-learn user guide, Release 0.17

Here we’ll do something very similar to the spheric model. The main difference is that now each 𝜎𝑘,𝑑 controls only
one dimension of the bound:

log𝑄(𝜎𝑘,𝑑) = −𝜎𝑘,𝑑 +
∑︁
𝑖

𝜈𝑧𝑖,𝑘
1

2
log 𝜎𝑘,𝑑 −

𝜎𝑘,𝑑
2

∑︁
𝑖

𝜈𝑧𝑖,𝑘((𝑋𝑖,𝑑 − 𝜇𝑘,𝑑)2 + 1)

Hence

𝑎𝑘,𝑑 = 1 +
1

2

∑︁
𝑖

𝜈𝑧𝑖,𝑘

𝑏𝑘,𝑑 = 1 +
1

2

∑︁
𝑖

𝜈𝑧𝑖,𝑘((𝑋𝑖,𝑑 − 𝜇𝑘,𝑑)2 + 1)

The tied model The model then is

𝜑𝑘 ∼ 𝐵𝑒𝑡𝑎(1, 𝛼1)
𝜇𝑘 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, I)
Σ ∼ 𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝐷, I)
𝑧𝑖 ∼ 𝑆𝐵𝑃 (𝜑)
𝑋𝑡 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑧𝑖 ,Σ

−1)

Tha variational distribution we’ll use is

𝜑𝑘 ∼ 𝐵𝑒𝑡𝑎(𝛾𝑘,1, 𝛾𝑘,2)
𝜇𝑘 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜈𝜇𝑘

, I)
Σ ∼ 𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝑎,B)
𝑧𝑖 ∼ 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒(𝜈𝑧𝑖)

The lower bound There are two changes in the lower-bound: for Σ and for 𝑋 .

The bound for Σ

𝐷2

2 log 2 +
∑︀

𝑑 log Γ(𝐷+1−𝑑
2 )

−𝑎𝐷
2 log 2 + 𝑎

2 log |B|+
∑︀

𝑑 log Γ(𝑎+1−𝑑
2 )

+𝑎−𝐷
2

(︀∑︀
𝑑 Ψ
(︀
𝑎+1−𝑑

2

)︀
+𝐷 log 2 + log |B|

)︀
+ 1

2𝑎tr[B− I]

The bound for X

𝐸𝑞[log𝑃 (𝑋𝑖)] =
∑︀

𝑘 𝜈𝑧𝑘

(︁
− 𝐷

2 log 2𝜋 + 1
2

(︀∑︀
𝑑 Ψ
(︀
𝑎+1−𝑑

2

)︀
+𝐷 log 2 + log |B|

)︀
− 1

2 ((𝑋𝑖 − 𝜈𝜇𝑘
)𝑎B(𝑋𝑖 − 𝜈𝜇𝑘

) + 𝑎tr(B))− log 2𝜋𝑒
)︁

The updates As in the last setting, what changes are the trivial update for 𝑧, the update for 𝜇 and the update for 𝑎
and B.

The update for 𝜇

𝜈𝜇𝑘
=

(︃
I + 𝑎B

∑︁
𝑖

𝜈𝑧𝑖,𝑘

)︃−1(︃
𝑎B
∑︁
𝑖

𝜈𝑧𝑖,𝑘𝑋𝑖

)︃

The update for 𝑎 and 𝐵
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As this distribution is far too complicated I’m not even going to try going at it the gradient way.

log𝑄(Σ) = +
1

2
log |Σ| − 1

2
tr[Σ] +

∑︁
𝑖

∑︁
𝑘

𝜈𝑧𝑖,𝑘

(︂
+

1

2
log |Σ| − 1

2
((𝑋𝑖 − 𝜈𝜇𝑘

)𝑇 Σ(𝑋𝑖 − 𝜈𝜇𝑘
) + tr[Σ])

)︂
which non-trivially (seeing that the quadratic form with Σ in the middle can be expressed as the trace of something)
reduces to

log𝑄(Σ) = +
1

2
log |Σ| − 1

2
tr[Σ] +

∑︁
𝑖

∑︁
𝑘

𝜈𝑧𝑖,𝑘

(︂
+

1

2
log |Σ| − 1

2
(tr[(𝑋𝑖 − 𝜈𝜇𝑘

)(𝑋𝑖 − 𝜈𝜇𝑘
)𝑇 Σ] + tr[𝐼Σ])

)︂
hence this (with a bit of squinting) looks like a wishart with parameters

𝑎 = 2 +𝐷 + 𝑇

and

B =

(︃
I +

∑︁
𝑖

∑︁
𝑘

𝜈𝑧𝑖,𝑘(𝑋𝑖 − 𝜈𝜇𝑘
)(𝑋𝑖 − 𝜈𝜇𝑘

)𝑇

)︃−1

The full model

The model then is

𝜑𝑘 ∼ 𝐵𝑒𝑡𝑎(1, 𝛼1)
𝜇𝑘 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, I)
Σ𝑘 ∼ 𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝐷, I)
𝑧𝑖 ∼ 𝑆𝐵𝑃 (𝜑)
𝑋𝑡 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑧𝑖 ,Σ

−1
𝑧,𝑖 )

The variational distribution we’ll use is

𝜑𝑘 ∼ 𝐵𝑒𝑡𝑎(𝛾𝑘,1, 𝛾𝑘,2)
𝜇𝑘 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜈𝜇𝑘

, I)
Σ𝑘 ∼ 𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝑎𝑘,Bk)
𝑧𝑖 ∼ 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒(𝜈𝑧𝑖)

The lower bound All that changes in this lower bound in comparison to the previous one is that there are K priors
on different Σ precision matrices and there are the correct indices on the bound for X.

The updates All that changes in the updates is that the update for mu uses only the proper sigma and the updates
for a and B don’t have a sum over K, so

𝜈𝜇𝑘
=

(︃
I + 𝑎𝑘Bk

∑︁
𝑖

𝜈𝑧𝑖,𝑘

)︃−1(︃
𝑎𝑘Bk

∑︁
𝑖

𝜈𝑧𝑖,𝑘𝑋𝑖

)︃

𝑎𝑘 = 2 +𝐷 +
∑︁
𝑖

𝜈𝑧𝑖,𝑘

and

B =

(︃(︃∑︁
𝑖

𝜈𝑧𝑖,𝑘 + 1

)︃
I +

∑︁
𝑖

𝜈𝑧𝑖,𝑘(𝑋𝑖 − 𝜈𝜇𝑘
)(𝑋𝑖 − 𝜈𝜇𝑘

)𝑇

)︃−1
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3.2.2 Manifold learning

Look for the bare necessities
The simple bare necessities
Forget about your worries and your strife
I mean the bare necessities
Old Mother Nature’s recipes
That bring the bare necessities of life

– Baloo’s song [The Jungle Book]

Manifold learning is an approach to non-linear dimensionality reduction. Algorithms for this task are based on the
idea that the dimensionality of many data sets is only artificially high.

Introduction

High-dimensional datasets can be very difficult to visualize. While data in two or three dimensions can be plotted to
show the inherent structure of the data, equivalent high-dimensional plots are much less intuitive. To aid visualization
of the structure of a dataset, the dimension must be reduced in some way.

The simplest way to accomplish this dimensionality reduction is by taking a random projection of the data. Though
this allows some degree of visualization of the data structure, the randomness of the choice leaves much to be desired.
In a random projection, it is likely that the more interesting structure within the data will be lost.
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To address this concern, a number of supervised and unsupervised linear dimensionality reduction frameworks have
been designed, such as Principal Component Analysis (PCA), Independent Component Analysis, Linear Discriminant
Analysis, and others. These algorithms define specific rubrics to choose an “interesting” linear projection of the data.
These methods can be powerful, but often miss important non-linear structure in the data.

Manifold Learning can be thought of as an attempt to generalize linear frameworks like PCA to be sensitive to non-
linear structure in data. Though supervised variants exist, the typical manifold learning problem is unsupervised: it
learns the high-dimensional structure of the data from the data itself, without the use of predetermined classifications.
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Examples:

• See Manifold learning on handwritten digits: Locally Linear Embedding, Isomap... for an example of
dimensionality reduction on handwritten digits.

• See Comparison of Manifold Learning methods for an example of dimensionality reduction on a toy “S-
curve” dataset.

The manifold learning implementations available in sklearn are summarized below

Isomap

One of the earliest approaches to manifold learning is the Isomap algorithm, short for Isometric Mapping. Isomap can
be viewed as an extension of Multi-dimensional Scaling (MDS) or Kernel PCA. Isomap seeks a lower-dimensional
embedding which maintains geodesic distances between all points. Isomap can be performed with the object Isomap.

Complexity

The Isomap algorithm comprises three stages:

1. Nearest neighbor search. Isomap uses sklearn.neighbors.BallTree for efficient neighbor search.
The cost is approximately 𝑂[𝐷 log(𝑘)𝑁 log(𝑁)], for 𝑘 nearest neighbors of 𝑁 points in 𝐷 dimensions.

2. Shortest-path graph search. The most efficient known algorithms for this are Dijkstra’s Algorithm, which is
approximately 𝑂[𝑁2(𝑘 + log(𝑁))], or the Floyd-Warshall algorithm, which is 𝑂[𝑁3]. The algorithm can be
selected by the user with the path_method keyword of Isomap. If unspecified, the code attempts to choose
the best algorithm for the input data.

3. Partial eigenvalue decomposition. The embedding is encoded in the eigenvectors corresponding to the 𝑑
largest eigenvalues of the 𝑁 × 𝑁 isomap kernel. For a dense solver, the cost is approximately 𝑂[𝑑𝑁2]. This
cost can often be improved using the ARPACK solver. The eigensolver can be specified by the user with the
path_method keyword of Isomap. If unspecified, the code attempts to choose the best algorithm for the
input data.

The overall complexity of Isomap is 𝑂[𝐷 log(𝑘)𝑁 log(𝑁)] +𝑂[𝑁2(𝑘 + log(𝑁))] +𝑂[𝑑𝑁2].

• 𝑁 : number of training data points
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• 𝐷 : input dimension

• 𝑘 : number of nearest neighbors

• 𝑑 : output dimension

References:

• “A global geometric framework for nonlinear dimensionality reduction” Tenenbaum, J.B.; De Silva, V.; &
Langford, J.C. Science 290 (5500)

Locally Linear Embedding

Locally linear embedding (LLE) seeks a lower-dimensional projection of the data which preserves distances within
local neighborhoods. It can be thought of as a series of local Principal Component Analyses which are globally
compared to find the best non-linear embedding.

Locally linear embedding can be performed with function locally_linear_embedding or its object-oriented
counterpart LocallyLinearEmbedding.

Complexity

The standard LLE algorithm comprises three stages:

1. Nearest Neighbors Search. See discussion under Isomap above.

2. Weight Matrix Construction. 𝑂[𝐷𝑁𝑘3]. The construction of the LLE weight matrix involves the solution of
a 𝑘 × 𝑘 linear equation for each of the 𝑁 local neighborhoods

3. Partial Eigenvalue Decomposition. See discussion under Isomap above.

The overall complexity of standard LLE is 𝑂[𝐷 log(𝑘)𝑁 log(𝑁)] +𝑂[𝐷𝑁𝑘3] +𝑂[𝑑𝑁2].

• 𝑁 : number of training data points

• 𝐷 : input dimension

• 𝑘 : number of nearest neighbors

• 𝑑 : output dimension

238 Chapter 3. User Guide

http://www.sciencemag.org/content/290/5500/2319.full


scikit-learn user guide, Release 0.17

References:

• “Nonlinear dimensionality reduction by locally linear embedding” Roweis, S. & Saul, L. Science
290:2323 (2000)

Modified Locally Linear Embedding

One well-known issue with LLE is the regularization problem. When the number of neighbors is greater than the
number of input dimensions, the matrix defining each local neighborhood is rank-deficient. To address this, standard
LLE applies an arbitrary regularization parameter 𝑟, which is chosen relative to the trace of the local weight matrix.
Though it can be shown formally that as 𝑟 → 0, the solution converges to the desired embedding, there is no guarantee
that the optimal solution will be found for 𝑟 > 0. This problem manifests itself in embeddings which distort the
underlying geometry of the manifold.

One method to address the regularization problem is to use multiple weight vectors in each neighborhood.
This is the essence of modified locally linear embedding (MLLE). MLLE can be performed with function
locally_linear_embedding or its object-oriented counterpart LocallyLinearEmbedding, with the key-
word method = ’modified’. It requires n_neighbors > n_components.

Complexity

The MLLE algorithm comprises three stages:

1. Nearest Neighbors Search. Same as standard LLE

2. Weight Matrix Construction. Approximately𝑂[𝐷𝑁𝑘3]+𝑂[𝑁(𝑘−𝐷)𝑘2]. The first term is exactly equivalent
to that of standard LLE. The second term has to do with constructing the weight matrix from multiple weights.
In practice, the added cost of constructing the MLLE weight matrix is relatively small compared to the cost of
steps 1 and 3.

3. Partial Eigenvalue Decomposition. Same as standard LLE

The overall complexity of MLLE is 𝑂[𝐷 log(𝑘)𝑁 log(𝑁)] +𝑂[𝐷𝑁𝑘3] +𝑂[𝑁(𝑘 −𝐷)𝑘2] +𝑂[𝑑𝑁2].

• 𝑁 : number of training data points

• 𝐷 : input dimension
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• 𝑘 : number of nearest neighbors

• 𝑑 : output dimension

References:

• “MLLE: Modified Locally Linear Embedding Using Multiple Weights” Zhang, Z. & Wang, J.

Hessian Eigenmapping

Hessian Eigenmapping (also known as Hessian-based LLE: HLLE) is another method of solving the regularization
problem of LLE. It revolves around a hessian-based quadratic form at each neighborhood which is used to recover
the locally linear structure. Though other implementations note its poor scaling with data size, sklearn imple-
ments some algorithmic improvements which make its cost comparable to that of other LLE variants for small output
dimension. HLLE can be performed with function locally_linear_embedding or its object-oriented counter-
part LocallyLinearEmbedding, with the keyword method = ’hessian’. It requires n_neighbors >
n_components * (n_components + 3) / 2.

Complexity

The HLLE algorithm comprises three stages:

1. Nearest Neighbors Search. Same as standard LLE

2. Weight Matrix Construction. Approximately 𝑂[𝐷𝑁𝑘3] + 𝑂[𝑁𝑑6]. The first term reflects a similar cost to
that of standard LLE. The second term comes from a QR decomposition of the local hessian estimator.

3. Partial Eigenvalue Decomposition. Same as standard LLE

The overall complexity of standard HLLE is 𝑂[𝐷 log(𝑘)𝑁 log(𝑁)] +𝑂[𝐷𝑁𝑘3] +𝑂[𝑁𝑑6] +𝑂[𝑑𝑁2].

• 𝑁 : number of training data points

• 𝐷 : input dimension

• 𝑘 : number of nearest neighbors

• 𝑑 : output dimension
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References:

• “Hessian Eigenmaps: Locally linear embedding techniques for high-dimensional data” Donoho, D. &
Grimes, C. Proc Natl Acad Sci USA. 100:5591 (2003)

Spectral Embedding

Spectral Embedding (also known as Laplacian Eigenmaps) is one method to calculate non-linear embedding. It finds
a low dimensional representation of the data using a spectral decomposition of the graph Laplacian. The graph gen-
erated can be considered as a discrete approximation of the low dimensional manifold in the high dimensional space.
Minimization of a cost function based on the graph ensures that points close to each other on the manifold are mapped
close to each other in the low dimensional space, preserving local distances. Spectral embedding can be performed
with the function spectral_embedding or its object-oriented counterpart SpectralEmbedding.

Complexity

The Spectral Embedding algorithm comprises three stages:

1. Weighted Graph Construction. Transform the raw input data into graph representation using affinity (adja-
cency) matrix representation.

2. Graph Laplacian Construction. unnormalized Graph Laplacian is constructed as 𝐿 = 𝐷−𝐴 for and normal-
ized one as 𝐿 = 𝐷− 1

2 (𝐷 −𝐴)𝐷− 1
2 .

3. Partial Eigenvalue Decomposition. Eigenvalue decomposition is done on graph Laplacian

The overall complexity of spectral embedding is 𝑂[𝐷 log(𝑘)𝑁 log(𝑁)] +𝑂[𝐷𝑁𝑘3] +𝑂[𝑑𝑁2].

• 𝑁 : number of training data points

• 𝐷 : input dimension

• 𝑘 : number of nearest neighbors

• 𝑑 : output dimension

References:

• “Laplacian Eigenmaps for Dimensionality Reduction and Data Representation” M. Belkin, P. Niyogi,
Neural Computation, June 2003; 15 (6):1373-1396

Local Tangent Space Alignment

Though not technically a variant of LLE, Local tangent space alignment (LTSA) is algorithmically similar enough
to LLE that it can be put in this category. Rather than focusing on preserving neighborhood distances as in LLE,
LTSA seeks to characterize the local geometry at each neighborhood via its tangent space, and performs a global
optimization to align these local tangent spaces to learn the embedding. LTSA can be performed with function
locally_linear_embedding or its object-oriented counterpart LocallyLinearEmbedding, with the key-
word method = ’ltsa’.
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Complexity

The LTSA algorithm comprises three stages:

1. Nearest Neighbors Search. Same as standard LLE

2. Weight Matrix Construction. Approximately 𝑂[𝐷𝑁𝑘3] +𝑂[𝑘2𝑑]. The first term reflects a similar cost to that
of standard LLE.

3. Partial Eigenvalue Decomposition. Same as standard LLE

The overall complexity of standard LTSA is 𝑂[𝐷 log(𝑘)𝑁 log(𝑁)] +𝑂[𝐷𝑁𝑘3] +𝑂[𝑘2𝑑] +𝑂[𝑑𝑁2].

• 𝑁 : number of training data points

• 𝐷 : input dimension

• 𝑘 : number of nearest neighbors

• 𝑑 : output dimension

References:

• “Principal manifolds and nonlinear dimensionality reduction via tangent space alignment” Zhang, Z. &
Zha, H. Journal of Shanghai Univ. 8:406 (2004)

Multi-dimensional Scaling (MDS)

Multidimensional scaling (MDS) seeks a low-dimensional representation of the data in which the distances respect well
the distances in the original high-dimensional space.

In general, is a technique used for analyzing similarity or dissimilarity data. MDS attempts to model similarity or
dissimilarity data as distances in a geometric spaces. The data can be ratings of similarity between objects, interaction
frequencies of molecules, or trade indices between countries.

There exists two types of MDS algorithm: metric and non metric. In the scikit-learn, the class MDS implements
both. In Metric MDS, the input similarity matrix arises from a metric (and thus respects the triangular inequality), the
distances between output two points are then set to be as close as possible to the similarity or dissimilarity data. In
the non-metric version, the algorithms will try to preserve the order of the distances, and hence seek for a monotonic
relationship between the distances in the embedded space and the similarities/dissimilarities.
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Let 𝑆 be the similarity matrix, and 𝑋 the coordinates of the 𝑛 input points. Disparities 𝑑𝑖𝑗 are transformation of the
similarities chosen in some optimal ways. The objective, called the stress, is then defined by 𝑠𝑢𝑚𝑖<𝑗𝑑𝑖𝑗(𝑋)−𝑑𝑖𝑗(𝑋)

Metric MDS

The simplest metric MDS model, called absolute MDS, disparities are defined by 𝑑𝑖𝑗 = 𝑆𝑖𝑗 . With absolute MDS, the
value 𝑆𝑖𝑗 should then correspond exactly to the distance between point 𝑖 and 𝑗 in the embedding point.

Most commonly, disparities are set to 𝑑𝑖𝑗 = 𝑏𝑆𝑖𝑗 .

Nonmetric MDS

Non metric MDS focuses on the ordination of the data. If 𝑆𝑖𝑗 < 𝑆𝑘𝑙, then the embedding should enforce 𝑑𝑖𝑗 < 𝑑𝑗𝑘.
A simple algorithm to enforce that is to use a monotonic regression of 𝑑𝑖𝑗 on 𝑆𝑖𝑗 , yielding disparities 𝑑𝑖𝑗 in the same
order as 𝑆𝑖𝑗 .

A trivial solution to this problem is to set all the points on the origin. In order to avoid that, the disparities 𝑑𝑖𝑗 are
normalized.

References:

• “Modern Multidimensional Scaling - Theory and Applications” Borg, I.; Groenen P. Springer Series in
Statistics (1997)

• “Nonmetric multidimensional scaling: a numerical method” Kruskal, J. Psychometrika, 29 (1964)
• “Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis” Kruskal, J. Psychome-

trika, 29, (1964)

t-distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE (TSNE) converts affinities of data points to probabilities. The affinities in the original space are represented by
Gaussian joint probabilities and the affinities in the embedded space are represented by Student’s t-distributions. This
allows t-SNE to be particularly sensitive to local structure and has a few other advantages over existing techniques:

• Revealing the structure at many scales on a single map
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• Revealing data that lie in multiple, different, manifolds or clusters

• Reducing the tendency to crowd points together at the center

While Isomap, LLE and variants are best suited to unfold a single continuous low dimensional manifold, t-SNE will
focus on the local structure of the data and will tend to extract clustered local groups of samples as highlighted on the
S-curve example. This ability to group samples based on the local structure might be beneficial to visually disentangle
a dataset that comprises several manifolds at once as is the case in the digits dataset.

The Kullback-Leibler (KL) divergence of the joint probabilities in the original space and the embedded space will
be minimized by gradient descent. Note that the KL divergence is not convex, i.e. multiple restarts with different
initializations will end up in local minima of the KL divergence. Hence, it is sometimes useful to try different seeds
and select the embedding with the lowest KL divergence.

The disadvantages to using t-SNE are roughly:

• t-SNE is computationally expensive, and can take several hours on million-sample datasets where PCA will
finish in seconds or minutes

• The Barnes-Hut t-SNE method is limited to two or three dimensional embeddings.

• The algorithm is stochastic and multiple restarts with different seeds can yield different embeddings. However,
it is perfectly legitimate to pick the the embedding with the least error.

• Global structure is not explicitly preserved. This is problem is mitigated by initializing points with PCA (using
init=’pca’).

Optimizing t-SNE

The main purpose of t-SNE is visualization of high-dimensional data. Hence, it works best when the data will be
embedded on two or three dimensions.

Optimizing the KL divergence can be a little bit tricky sometimes. There are five parameters that control the optimiza-
tion of t-SNE and therefore possibly the quality of the resulting embedding:

• perplexity

• early exaggeration factor

• learning rate
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• maximum number of iterations

• angle (not used in the exact method)

The perplexity is defined as 𝑘 = 2(𝑆) where 𝑆 is the Shannon entropy of the conditional probability distribution.
The perplexity of a 𝑘-sided die is 𝑘, so that 𝑘 is effectively the number of nearest neighbors t-SNE considers when
generating the conditional probabilities. Larger perplexities lead to more nearest neighbors and less sensitive to small
structure. Larger datasets tend to require larger perplexities. The maximum number of iterations is usually high
enough and does not need any tuning. The optimization consists of two phases: the early exaggeration phase and the
final optimization. During early exaggeration the joint probabilities in the original space will be artificially increased
by multiplication with a given factor. Larger factors result in larger gaps between natural clusters in the data. If the
factor is too high, the KL divergence could increase during this phase. Usually it does not have to be tuned. A critical
parameter is the learning rate. If it is too low gradient descent will get stuck in a bad local minimum. If it is too high
the KL divergence will increase during optimization. More tips can be found in Laurens van der Maaten’s FAQ (see
references). The last parameter, angle, is a tradeoff between performance and accuracy. Larger angles imply that we
can approximate larger regions by a single point,leading to better speed but less accurate results.

Barnes-Hut t-SNE

The Barnes-Hut t-SNE that has been implemented here is usually much slower than other manifold learning algo-
rithms. The optimization is quite difficult and the computation of the gradient is𝑂[𝑑𝑁𝑙𝑜𝑔(𝑁)], where 𝑑 is the number
of output dimensions and 𝑁 is the number of samples. The Barnes-Hut method improves on the exact method where
t-SNE complexity is 𝑂[𝑑𝑁2], but has several other notable differences:

• The Barnes-Hut implementation only works when the target dimensionality is 3 or less. The 2D case is typical
when building visualizations.

• Barnes-Hut only works with dense input data. Sparse data matrices can only be embedded with
the exact method or can be approximated by a dense low rank projection for instance using
sklearn.decomposition.TruncatedSVD

• Barnes-Hut is an approximation of the exact method. The approximation is parameterized with the angle pa-
rameter, therefore the angle parameter is unused when method=”exact”

• Barnes-Hut is significantly more scalable. Barnes-Hut can be used to embed hundred of thousands of data points
while the exact method can handle thousands of samples before becoming computationally intractable

For visualization purpose (which is the main use case of t-SNE), using the Barnes-Hut method is strongly recom-
mended. The exact t-SNE method is useful for checking the theoretically properties of the embedding possibly in
higher dimensional space but limit to small datasets due to computational constraints.

3.2. Unsupervised learning 245



scikit-learn user guide, Release 0.17

Also note that the digits labels roughly match the natural grouping found by t-SNE while the linear 2D projection of
the PCA model yields a representation where label regions largely overlap. This is a strong clue that this data can be
well separated by non linear methods that focus on the local structure (e.g. an SVM with a Gaussian RBF kernel).
However, failing to visualize well separated homogeneously labeled groups with t-SNE in 2D does not necessarily
implie that the data cannot be correctly classified by a supervised model. It might be the case that 2 dimensions are
not enough low to accurately represents the internal structure of the data.

References:

• “Visualizing High-Dimensional Data Using t-SNE” van der Maaten, L.J.P.; Hinton, G. Journal of Machine
Learning Research (2008)

• “t-Distributed Stochastic Neighbor Embedding” van der Maaten, L.J.P.
• “Accelerating t-SNE using Tree-Based Algorithms.” L.J.P. van der Maaten. Journal of Machine Learning

Research 15(Oct):3221-3245, 2014.

Tips on practical use

• Make sure the same scale is used over all features. Because manifold learning methods are based on a nearest-
neighbor search, the algorithm may perform poorly otherwise. See StandardScaler for convenient ways of
scaling heterogeneous data.

• The reconstruction error computed by each routine can be used to choose the optimal output dimension. For a
𝑑-dimensional manifold embedded in a 𝐷-dimensional parameter space, the reconstruction error will decrease
as n_components is increased until n_components == d.

• Note that noisy data can “short-circuit” the manifold, in essence acting as a bridge between parts of the manifold
that would otherwise be well-separated. Manifold learning on noisy and/or incomplete data is an active area of
research.

• Certain input configurations can lead to singular weight matrices, for example when more than two points in the
dataset are identical, or when the data is split into disjointed groups. In this case, solver=’arpack’ will
fail to find the null space. The easiest way to address this is to use solver=’dense’ which will work on a
singular matrix, though it may be very slow depending on the number of input points. Alternatively, one can
attempt to understand the source of the singularity: if it is due to disjoint sets, increasing n_neighbors may
help. If it is due to identical points in the dataset, removing these points may help.

See also:

Totally Random Trees Embedding can also be useful to derive non-linear representations of feature space, also it does
not perform dimensionality reduction.

3.2.3 Clustering

Clustering of unlabeled data can be performed with the module sklearn.cluster.

Each clustering algorithm comes in two variants: a class, that implements the fit method to learn the clusters on train
data, and a function, that, given train data, returns an array of integer labels corresponding to the different clusters. For
the class, the labels over the training data can be found in the labels_ attribute.
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Input data

One important thing to note is that the algorithms implemented in this module take different kinds of ma-
trix as input. On one hand, MeanShift and KMeans take data matrices of shape [n_samples, n_features].
These can be obtained from the classes in the sklearn.feature_extraction module. On the
other hand, AffinityPropagation and SpectralClustering take similarity matrices of shape
[n_samples, n_samples]. These can be obtained from the functions in the sklearn.metrics.pairwise
module. In other words, MeanShift and KMeans work with points in a vector space, whereas
AffinityPropagation and SpectralClustering can work with arbitrary objects, as long as a simi-
larity measure exists for such objects.

Overview of clustering methods

Figure 3.3: A comparison of the clustering algorithms in scikit-learn
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Method
name

Parameters Scalability Usecase Geometry
(metric used)

K-Means number of clusters Very large n_samples,
medium n_clusters
with MiniBatch code

General-purpose, even
cluster size, flat geometry,
not too many clusters

Distances
between points

Affinity
propaga-
tion

damping, sample
preference

Not scalable with
n_samples

Many clusters, uneven
cluster size, non-flat
geometry

Graph distance
(e.g.
nearest-neighbor
graph)

Mean-
shift

bandwidth Not scalable with
n_samples

Many clusters, uneven
cluster size, non-flat
geometry

Distances
between points

Spectral
clustering

number of clusters Medium n_samples,
small n_clusters

Few clusters, even cluster
size, non-flat geometry

Graph distance
(e.g.
nearest-neighbor
graph)

Ward hier-
archical
clustering

number of clusters Large n_samples and
n_clusters

Many clusters, possibly
connectivity constraints

Distances
between points

Agglomer-
ative
clustering

number of clusters,
linkage type,
distance

Large n_samples and
n_clusters

Many clusters, possibly
connectivity constraints,
non Euclidean distances

Any pairwise
distance

DBSCAN neighborhood size Very large n_samples,
medium n_clusters

Non-flat geometry, uneven
cluster sizes

Distances
between nearest
points

Gaussian
mixtures

many Not scalable Flat geometry, good for
density estimation

Mahalanobis
distances to
centers

Birch branching factor,
threshold, optional
global clusterer.

Large n_clusters and
n_samples

Large dataset, outlier
removal, data reduction.

Euclidean
distance
between points

Non-flat geometry clustering is useful when the clusters have a specific shape, i.e. a non-flat manifold, and the standard
euclidean distance is not the right metric. This case arises in the two top rows of the figure above.

Gaussian mixture models, useful for clustering, are described in another chapter of the documentation dedicated
to mixture models. KMeans can be seen as a special case of Gaussian mixture model with equal covariance per
component.

K-means

The KMeans algorithm clusters data by trying to separate samples in n groups of equal variance, minimizing a criterion
known as the inertia or within-cluster sum-of-squares. This algorithm requires the number of clusters to be specified.
It scales well to large number of samples and has been used across a large range of application areas in many different
fields.

The k-means algorithm divides a set of 𝑁 samples 𝑋 into 𝐾 disjoint clusters 𝐶, each described by the mean 𝜇𝑗 of
the samples in the cluster. The means are commonly called the cluster “centroids”; note that they are not, in general,
points from 𝑋 , although they live in the same space. The K-means algorithm aims to choose centroids that minimise
the inertia, or within-cluster sum of squared criterion:

𝑛∑︁
𝑖=0

min
𝜇𝑗∈𝐶

(||𝑥𝑗 − 𝜇𝑖||2)

Inertia, or the within-cluster sum of squares criterion, can be recognized as a measure of how internally coherent
clusters are. It suffers from various drawbacks:
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• Inertia makes the assumption that clusters are convex and isotropic, which is not always the case. It responds
poorly to elongated clusters, or manifolds with irregular shapes.

• Inertia is not a normalized metric: we just know that lower values are better and zero is optimal. But in very
high-dimensional spaces, Euclidean distances tend to become inflated (this is an instance of the so-called “curse
of dimensionality”). Running a dimensionality reduction algorithm such as PCA prior to k-means clustering
can alleviate this problem and speed up the computations.

K-means is often referred to as Lloyd’s algorithm. In basic
terms, the algorithm has three steps. The first step chooses the initial centroids, with the most basic method being to
choose 𝑘 samples from the dataset 𝑋 . After initialization, K-means consists of looping between the two other steps.
The first step assigns each sample to its nearest centroid. The second step creates new centroids by taking the mean
value of all of the samples assigned to each previous centroid. The difference between the old and the new centroids
are computed and the algorithm repeats these last two steps until this value is less than a threshold. In other words, it

repeats until the centroids do not move significantly. K-means is equivalent
to the expectation-maximization algorithm with a small, all-equal, diagonal covariance matrix.

The algorithm can also be understood through the concept of Voronoi diagrams. First the Voronoi diagram of the points
is calculated using the current centroids. Each segment in the Voronoi diagram becomes a separate cluster. Secondly,
the centroids are updated to the mean of each segment. The algorithm then repeats this until a stopping criterion is
fulfilled. Usually, the algorithm stops when the relative decrease in the objective function between iterations is less
than the given tolerance value. This is not the case in this implementation: iteration stops when centroids move less
than the tolerance.

Given enough time, K-means will always converge, however this may be to a local minimum. This is highly dependent
on the initialization of the centroids. As a result, the computation is often done several times, with different initializa-
tions of the centroids. One method to help address this issue is the k-means++ initialization scheme, which has been
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implemented in scikit-learn (use the init=’kmeans++’ parameter). This initializes the centroids to be (generally)
distant from each other, leading to provably better results than random initialization, as shown in the reference.

A parameter can be given to allow K-means to be run in parallel, called n_jobs. Giving this parameter a positive
value uses that many processors (default: 1). A value of -1 uses all available processors, with -2 using one less, and so
on. Parallelization generally speeds up computation at the cost of memory (in this case, multiple copies of centroids
need to be stored, one for each job).

Warning: The parallel version of K-Means is broken on OS X when numpy uses the Accelerate Framework. This
is expected behavior: Accelerate can be called after a fork but you need to execv the subprocess with the Python
binary (which multiprocessing does not do under posix).

K-means can be used for vector quantization. This is achieved using the transform method of a trained model of
KMeans.

Examples:

• Demonstration of k-means assumptions: Demonstrating when k-means performs intuitively and when it
does not

• A demo of K-Means clustering on the handwritten digits data: Clustering handwritten digits

References:

• “k-means++: The advantages of careful seeding” Arthur, David, and Sergei Vassilvitskii, Proceedings of
the eighteenth annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and Applied
Mathematics (2007)

Mini Batch K-Means

The MiniBatchKMeans is a variant of the KMeans algorithm which uses mini-batches to reduce the computation
time, while still attempting to optimise the same objective function. Mini-batches are subsets of the input data, ran-
domly sampled in each training iteration. These mini-batches drastically reduce the amount of computation required
to converge to a local solution. In contrast to other algorithms that reduce the convergence time of k-means, mini-batch
k-means produces results that are generally only slightly worse than the standard algorithm.

The algorithm iterates between two major steps, similar to vanilla k-means. In the first step, 𝑏 samples are drawn
randomly from the dataset, to form a mini-batch. These are then assigned to the nearest centroid. In the second step,
the centroids are updated. In contrast to k-means, this is done on a per-sample basis. For each sample in the mini-batch,
the assigned centroid is updated by taking the streaming average of the sample and all previous samples assigned to
that centroid. This has the effect of decreasing the rate of change for a centroid over time. These steps are performed
until convergence or a predetermined number of iterations is reached.

MiniBatchKMeans converges faster than KMeans, but the quality of the results is reduced. In practice this differ-
ence in quality can be quite small, as shown in the example and cited reference.

Examples:

• Comparison of the K-Means and MiniBatchKMeans clustering algorithms: Comparison of KMeans and
MiniBatchKMeans

• Clustering text documents using k-means: Document clustering using sparse MiniBatchKMeans
• Online learning of a dictionary of parts of faces
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References:

• “Web Scale K-Means clustering” D. Sculley, Proceedings of the 19th international conference on World
wide web (2010)

Affinity Propagation

AffinityPropagation creates clusters by sending messages between pairs of samples until convergence. A
dataset is then described using a small number of exemplars, which are identified as those most representative of other
samples. The messages sent between pairs represent the suitability for one sample to be the exemplar of the other,
which is updated in response to the values from other pairs. This updating happens iteratively until convergence, at
which point the final exemplars are chosen, and hence the final clustering is given.

Affinity Propagation can be interesting as it chooses the number of clusters based on the data provided. For this
purpose, the two important parameters are the preference, which controls how many exemplars are used, and the
damping factor.

The main drawback of Affinity Propagation is its complexity. The algorithm has a time complexity of the order
𝑂(𝑁2𝑇 ), where𝑁 is the number of samples and 𝑇 is the number of iterations until convergence. Further, the memory
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complexity is of the order 𝑂(𝑁2) if a dense similarity matrix is used, but reducible if a sparse similarity matrix is
used. This makes Affinity Propagation most appropriate for small to medium sized datasets.

Examples:

• Demo of affinity propagation clustering algorithm: Affinity Propagation on a synthetic 2D datasets with 3
classes.

• Visualizing the stock market structure Affinity Propagation on Financial time series to find groups of
companies

Algorithm description: The messages sent between points belong to one of two categories. The first is the responsi-
bility 𝑟(𝑖, 𝑘), which is the accumulated evidence that sample 𝑘 should be the exemplar for sample 𝑖. The second is the
availability 𝑎(𝑖, 𝑘) which is the accumulated evidence that sample 𝑖 should choose sample 𝑘 to be its exemplar, and
considers the values for all other samples that 𝑘 should be an exemplar. In this way, exemplars are chosen by samples
if they are (1) similar enough to many samples and (2) chosen by many samples to be representative of themselves.

More formally, the responsibility of a sample 𝑘 to be the exemplar of sample 𝑖 is given by:

𝑟(𝑖, 𝑘)← 𝑠(𝑖, 𝑘)−𝑚𝑎𝑥[𝑎(𝑖, 𝑘) + 𝑠(𝑖, 𝑘)∀𝑘 ̸= 𝑘]

Where 𝑠(𝑖, 𝑘) is the similarity between samples 𝑖 and 𝑘. The availability of sample 𝑘 to be the exemplar of sample 𝑖 is
given by:

𝑎(𝑖, 𝑘)← 𝑚𝑖𝑛[0, 𝑟(𝑘, 𝑘) +
∑︁

�́� 𝑠.𝑡. �́�/∈{𝑖,𝑘}

𝑟(́𝑖, 𝑘)]

To begin with, all values for 𝑟 and 𝑎 are set to zero, and the calculation of each iterates until convergence.

Mean Shift

MeanShift clustering aims to discover blobs in a smooth density of samples. It is a centroid based algorithm, which
works by updating candidates for centroids to be the mean of the points within a given region. These candidates are
then filtered in a post-processing stage to eliminate near-duplicates to form the final set of centroids.

Given a candidate centroid 𝑥𝑖 for iteration 𝑡, the candidate is updated according to the following equation:

𝑥𝑡+1
𝑖 = 𝑥𝑡𝑖 +𝑚(𝑥𝑡𝑖)

Where 𝑁(𝑥𝑖) is the neighborhood of samples within a given distance around 𝑥𝑖 and 𝑚 is the mean shift vector that
is computed for each centroid that points towards a region of the maximum increase in the density of points. This
is computed using the following equation, effectively updating a centroid to be the mean of the samples within its
neighborhood:

𝑚(𝑥𝑖) =

∑︀
𝑥𝑗∈𝑁(𝑥𝑖)

𝐾(𝑥𝑗 − 𝑥𝑖)𝑥𝑗∑︀
𝑥𝑗∈𝑁(𝑥𝑖)

𝐾(𝑥𝑗 − 𝑥𝑖)

The algorithm automatically sets the number of clusters, instead of relying on a parameter bandwidth, which dictates
the size of the region to search through. This parameter can be set manually, but can be estimated using the provided
estimate_bandwidth function, which is called if the bandwidth is not set.

The algorithm is not highly scalable, as it requires multiple nearest neighbor searches during the execution of the
algorithm. The algorithm is guaranteed to converge, however the algorithm will stop iterating when the change in
centroids is small.

Labelling a new sample is performed by finding the nearest centroid for a given sample.
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Examples:

• A demo of the mean-shift clustering algorithm: Mean Shift clustering on a synthetic 2D datasets with 3
classes.

References:

• “Mean shift: A robust approach toward feature space analysis.” D. Comaniciu and P. Meer, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (2002)

Spectral clustering

SpectralClustering does a low-dimension embedding of the affinity matrix between samples, followed by a
KMeans in the low dimensional space. It is especially efficient if the affinity matrix is sparse and the pyamg module
is installed. SpectralClustering requires the number of clusters to be specified. It works well for a small number of
clusters but is not advised when using many clusters.

For two clusters, it solves a convex relaxation of the normalised cuts problem on the similarity graph: cutting the
graph in two so that the weight of the edges cut is small compared to the weights of the edges inside each cluster. This
criteria is especially interesting when working on images: graph vertices are pixels, and edges of the similarity graph
are a function of the gradient of the image.
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Warning: Transforming distance to well-behaved similarities
Note that if the values of your similarity matrix are not well distributed, e.g. with negative values or with a distance
matrix rather than a similarity, the spectral problem will be singular and the problem not solvable. In which case
it is advised to apply a transformation to the entries of the matrix. For instance, in the case of a signed distance
matrix, is common to apply a heat kernel:

similarity = np.exp(-beta * distance / distance.std())

See the examples for such an application.

Examples:

• Spectral clustering for image segmentation: Segmenting objects from a noisy background using spectral
clustering.

• Segmenting the picture of Lena in regions: Spectral clustering to split the image of lena in regions.

Different label assignment strategies

Different label assignment strategies can be used, corresponding to the assign_labels parameter of
SpectralClustering. The "kmeans" strategy can match finer details of the data, but it can be more unsta-
ble. In particular, unless you control the random_state, it may not be reproducible from run-to-run, as it depends
on a random initialization. On the other hand, the "discretize" strategy is 100% reproducible, but it tends to
create parcels of fairly even and geometrical shape.
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assign_labels="kmeans" assign_labels="discretize"

References:

• “A Tutorial on Spectral Clustering” Ulrike von Luxburg, 2007
• “Normalized cuts and image segmentation” Jianbo Shi, Jitendra Malik, 2000
• “A Random Walks View of Spectral Segmentation” Marina Meila, Jianbo Shi, 2001
• “On Spectral Clustering: Analysis and an algorithm” Andrew Y. Ng, Michael I. Jordan, Yair Weiss, 2001

Hierarchical clustering

Hierarchical clustering is a general family of clustering algorithms that build nested clusters by merging or splitting
them successively. This hierarchy of clusters is represented as a tree (or dendrogram). The root of the tree is the unique
cluster that gathers all the samples, the leaves being the clusters with only one sample. See the Wikipedia page for
more details.

The AgglomerativeClustering object performs a hierarchical clustering using a bottom up approach: each
observation starts in its own cluster, and clusters are successively merged together. The linkage criteria determines the
metric used for the merge strategy:

• Ward minimizes the sum of squared differences within all clusters. It is a variance-minimizing approach and in
this sense is similar to the k-means objective function but tackled with an agglomerative hierarchical approach.

• Maximum or complete linkage minimizes the maximum distance between observations of pairs of clusters.

• Average linkage minimizes the average of the distances between all observations of pairs of clusters.

AgglomerativeClustering can also scale to large number of samples when it is used jointly with a connectivity
matrix, but is computationally expensive when no connectivity constraints are added between samples: it considers at
each step all the possible merges.

FeatureAgglomeration

The FeatureAgglomeration uses agglomerative clustering to group together features that look very simi-
lar, thus decreasing the number of features. It is a dimensionality reduction tool, see Unsupervised dimensionality
reduction.

Different linkage type: Ward, complete and average linkage

AgglomerativeClustering supports Ward, average, and complete linkage strategies.
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Agglomerative cluster has a “rich get richer” behavior that leads to uneven cluster sizes. In this regard, complete
linkage is the worst strategy, and Ward gives the most regular sizes. However, the affinity (or distance used in
clustering) cannot be varied with Ward, thus for non Euclidean metrics, average linkage is a good alternative.

Examples:

• Various Agglomerative Clustering on a 2D embedding of digits: exploration of the different linkage strate-
gies in a real dataset.

Adding connectivity constraints

An interesting aspect of AgglomerativeClustering is that connectivity constraints can be added to this al-
gorithm (only adjacent clusters can be merged together), through a connectivity matrix that defines for each sample
the neighboring samples following a given structure of the data. For instance, in the swiss-roll example below, the
connectivity constraints forbid the merging of points that are not adjacent on the swiss roll, and thus avoid forming
clusters that extend across overlapping folds of the roll.

These constraint are useful to impose a certain local structure, but they also make the algorithm faster, especially when
the number of the samples is high.

The connectivity constraints are imposed via an connectivity matrix: a scipy sparse matrix that has elements only
at the intersection of a row and a column with indices of the dataset that should be connected. This matrix
can be constructed from a-priori information: for instance, you may wish to cluster web pages by only merg-
ing pages with a link pointing from one to another. It can also be learned from the data, for instance using
sklearn.neighbors.kneighbors_graph to restrict merging to nearest neighbors as in this example, or using
sklearn.feature_extraction.image.grid_to_graph to enable only merging of neighboring pixels on
an image, as in the Lena example.
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Examples:

• A demo of structured Ward hierarchical clustering on Lena image: Ward clustering to split the image of
lena in regions.

• Hierarchical clustering: structured vs unstructured ward: Example of Ward algorithm on a swiss-roll,
comparison of structured approaches versus unstructured approaches.

• Feature agglomeration vs. univariate selection: Example of dimensionality reduction with feature ag-
glomeration based on Ward hierarchical clustering.

• Agglomerative clustering with and without structure

Warning: Connectivity constraints with average and complete linkage
Connectivity constraints and complete or average linkage can enhance the ‘rich getting richer’ aspect of agglom-
erative clustering, particularly so if they are built with sklearn.neighbors.kneighbors_graph. In the
limit of a small number of clusters, they tend to give a few macroscopically occupied clusters and almost empty
ones. (see the discussion in Agglomerative clustering with and without structure).

Varying the metric

Average and complete linkage can be used with a variety of distances (or affinities), in particular Euclidean distance
(l2), Manhattan distance (or Cityblock, or l1), cosine distance, or any precomputed affinity matrix.

• l1 distance is often good for sparse features, or sparse noise: ie many of the features are zero, as in text mining
using occurences of rare words.

• cosine distance is interesting because it is invariant to global scalings of the signal.

The guidelines for choosing a metric is to use one that maximizes the dis-
tance between samples in different classes, and minimizes that within each class.

Examples:

• Agglomerative clustering with different metrics
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DBSCAN

The DBSCAN algorithm views clusters as areas of high density separated by areas of low density. Due to this rather
generic view, clusters found by DBSCAN can be any shape, as opposed to k-means which assumes that clusters are
convex shaped. The central component to the DBSCAN is the concept of core samples, which are samples that are in
areas of high density. A cluster is therefore a set of core samples, each close to each other (measured by some distance
measure) and a set of non-core samples that are close to a core sample (but are not themselves core samples). There
are two parameters to the algorithm, min_samples and eps, which define formally what we mean when we say
dense. Higher min_samples or lower eps indicate higher density necessary to form a cluster.

More formally, we define a core sample as being a sample in the dataset such that there exist min_samples other
samples within a distance of eps, which are defined as neighbors of the core sample. This tells us that the core sample
is in a dense area of the vector space. A cluster is a set of core samples, that can be built by recursively by taking
a core sample, finding all of its neighbors that are core samples, finding all of their neighbors that are core samples,
and so on. A cluster also has a set of non-core samples, which are samples that are neighbors of a core sample in the
cluster but are not themselves core samples. Intuitively, these samples are on the fringes of a cluster.

Any core sample is part of a cluster, by definition. Further, any cluster has at least min_samples points in it,
following the definition of a core sample. For any sample that is not a core sample, and does have a distance higher
than eps to any core sample, it is considered an outlier by the algorithm.

In the figure below, the color indicates cluster membership, with large circles indicating core samples found by the
algorithm. Smaller circles are non-core samples that are still part of a cluster. Moreover, the outliers are indicated by
black points below.

Examples:

• Demo of DBSCAN clustering algorithm
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Implementation

The algorithm is non-deterministic, but the core samples will always belong to the same clusters (although
the labels may be different). The non-determinism comes from deciding to which cluster a non-core sample
belongs. A non-core sample can have a distance lower than eps to two core samples in different clusters. By
the triangular inequality, those two core samples must be more distant than eps from each other, or they would
be in the same cluster. The non-core sample is assigned to whichever cluster is generated first, where the order
is determined randomly. Other than the ordering of the dataset, the algorithm is deterministic, making the results
relatively stable between runs on the same data.
The current implementation uses ball trees and kd-trees to determine the neighborhood of points, which avoids
calculating the full distance matrix (as was done in scikit-learn versions before 0.14). The possibility to use
custom metrics is retained; for details, see NearestNeighbors.

References:

• “A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise” Ester, M.,
H. P. Kriegel, J. Sander, and X. Xu, In Proceedings of the 2nd International Conference on Knowledge
Discovery and Data Mining, Portland, OR, AAAI Press, pp. 226–231. 1996

Birch

The Birch builds a tree called the Characteristic Feature Tree (CFT) for the given data. The data is essentially lossy
compressed to a set of Characteristic Feature nodes (CF Nodes). The CF Nodes have a number of subclusters called
Characteristic Feature subclusters (CF Subclusters) and these CF Subclusters located in the non-terminal CF Nodes
can have CF Nodes as children.

The CF Subclusters hold the necessary information for clustering which prevents the need to hold the entire input data
in memory. This information includes:

• Number of samples in a subcluster.

• Linear Sum - A n-dimensional vector holding the sum of all samples

• Squared Sum - Sum of the squared L2 norm of all samples.

• Centroids - To avoid recalculation linear sum / n_samples.

• Squared norm of the centroids.

The Birch algorithm has two parameters, the threshold and the branching factor. The branching factor limits the
number of subclusters in a node and the threshold limits the distance between the entering sample and the existing
subclusters.

This algorithm can be viewed as an instance or data reduction method, since it reduces the input data to a set of
subclusters which are obtained directly from the leaves of the CFT. This reduced data can be further processed by
feeding it into a global clusterer. This global clusterer can be set by n_clusters. If n_clusters is set to None,
the subclusters from the leaves are directly read off, otherwise a global clustering step labels these subclusters into
global clusters (labels) and the samples are mapped to the global label of the nearest subcluster.

Algorithm description:

• A new sample is inserted into the root of the CF Tree which is a CF Node. It is then merged with the subcluster of
the root, that has the smallest radius after merging, constrained by the threshold and branching factor conditions.
If the subcluster has any child node, then this is done repeatedly till it reaches a leaf. After finding the nearest
subcluster in the leaf, the properties of this subcluster and the parent subclusters are recursively updated.
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• If the radius of the subcluster obtained by merging the new sample and the nearest subcluster is greater than
the square of the threshold and if the number of subclusters is greater than the branching factor, then a space is
temporarily allocated to this new sample. The two farthest subclusters are taken and the subclusters are divided
into two groups on the basis of the distance between these subclusters.

• If this split node has a parent subcluster and there is room for a new subcluster, then the parent is split into two.
If there is no room, then this node is again split into two and the process is continued recursively, till it reaches
the root.

Birch or MiniBatchKMeans?

• Birch does not scale very well to high dimensional data. As a rule of thumb if n_features is greater than
twenty, it is generally better to use MiniBatchKMeans.

• If the number of instances of data needs to be reduced, or if one wants a large number of subclusters either as a
preprocessing step or otherwise, Birch is more useful than MiniBatchKMeans.

How to use partial_fit?

To avoid the computation of global clustering, for every call of partial_fit the user is advised

1. To set n_clusters=None initially

2. Train all data by multiple calls to partial_fit.

3. Set n_clusters to a required value using brc.set_params(n_clusters=n_clusters).

4. Call partial_fit finally with no arguments, i.e brc.partial_fit() which performs the global clus-
tering.

References:

• Tian Zhang, Raghu Ramakrishnan, Maron Livny BIRCH: An efficient data clustering method for large
databases. http://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf

• Roberto Perdisci JBirch - Java implementation of BIRCH clustering algorithm
https://code.google.com/p/jbirch/

Clustering performance evaluation

Evaluating the performance of a clustering algorithm is not as trivial as counting the number of errors or the precision
and recall of a supervised classification algorithm. In particular any evaluation metric should not take the absolute
values of the cluster labels into account but rather if this clustering define separations of the data similar to some
ground truth set of classes or satisfying some assumption such that members belong to the same class are more similar
that members of different classes according to some similarity metric.
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Adjusted Rand index

Given the knowledge of the ground truth class assignments labels_true and our clustering algorithm assignments
of the same samples labels_pred, the adjusted Rand index is a function that measures the similarity of the two
assignments, ignoring permutations and with chance normalization:

>>> from sklearn import metrics
>>> labels_true = [0, 0, 0, 1, 1, 1]
>>> labels_pred = [0, 0, 1, 1, 2, 2]

>>> metrics.adjusted_rand_score(labels_true, labels_pred)
0.24...

One can permute 0 and 1 in the predicted labels, rename 2 to 3, and get the same score:

>>> labels_pred = [1, 1, 0, 0, 3, 3]
>>> metrics.adjusted_rand_score(labels_true, labels_pred)
0.24...

Furthermore, adjusted_rand_score is symmetric: swapping the argument does not change the score. It can
thus be used as a consensus measure:

>>> metrics.adjusted_rand_score(labels_pred, labels_true)
0.24...

Perfect labeling is scored 1.0:

>>> labels_pred = labels_true[:]
>>> metrics.adjusted_rand_score(labels_true, labels_pred)
1.0

Bad (e.g. independent labelings) have negative or close to 0.0 scores:

>>> labels_true = [0, 1, 2, 0, 3, 4, 5, 1]
>>> labels_pred = [1, 1, 0, 0, 2, 2, 2, 2]
>>> metrics.adjusted_rand_score(labels_true, labels_pred)
-0.12...

Advantages

• Random (uniform) label assignments have a ARI score close to 0.0 for any value of n_clusters and
n_samples (which is not the case for raw Rand index or the V-measure for instance).

• Bounded range [-1, 1]: negative values are bad (independent labelings), similar clusterings have a positive ARI,
1.0 is the perfect match score.

• No assumption is made on the cluster structure: can be used to compare clustering algorithms such as k-
means which assumes isotropic blob shapes with results of spectral clustering algorithms which can find cluster
with “folded” shapes.

Drawbacks

• Contrary to inertia, ARI requires knowledge of the ground truth classes while is almost never available in
practice or requires manual assignment by human annotators (as in the supervised learning setting).

However ARI can also be useful in a purely unsupervised setting as a building block for a Consensus Index that
can be used for clustering model selection (TODO).
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Examples:

• Adjustment for chance in clustering performance evaluation: Analysis of the impact of the dataset size on
the value of clustering measures for random assignments.

Mathematical formulation If C is a ground truth class assignment and K the clustering, let us define 𝑎 and 𝑏 as:

• 𝑎, the number of pairs of elements that are in the same set in C and in the same set in K

• 𝑏, the number of pairs of elements that are in different sets in C and in different sets in K

The raw (unadjusted) Rand index is then given by:

RI =
𝑎+ 𝑏

𝐶
𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

2

Where 𝐶𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

2 is the total number of possible pairs in the dataset (without ordering).

However the RI score does not guarantee that random label assignments will get a value close to zero (esp. if the
number of clusters is in the same order of magnitude as the number of samples).

To counter this effect we can discount the expected RI 𝐸[RI] of random labelings by defining the adjusted Rand index
as follows:

ARI =
RI− 𝐸[RI]

max(RI)− 𝐸[RI]

References

• Comparing Partitions L. Hubert and P. Arabie, Journal of Classification 1985
• Wikipedia entry for the adjusted Rand index

Mutual Information based scores

Given the knowledge of the ground truth class assignments labels_true and our clustering algorithm assignments
of the same samples labels_pred, the Mutual Information is a function that measures the agreement of the two
assignments, ignoring permutations. Two different normalized versions of this measure are available, Normalized
Mutual Information(NMI) and Adjusted Mutual Information(AMI). NMI is often used in the literature while
AMI was proposed more recently and is normalized against chance:

>>> from sklearn import metrics
>>> labels_true = [0, 0, 0, 1, 1, 1]
>>> labels_pred = [0, 0, 1, 1, 2, 2]

>>> metrics.adjusted_mutual_info_score(labels_true, labels_pred)
0.22504...

One can permute 0 and 1 in the predicted labels, rename 2 to 3 and get the same score:

>>> labels_pred = [1, 1, 0, 0, 3, 3]
>>> metrics.adjusted_mutual_info_score(labels_true, labels_pred)
0.22504...

All, mutual_info_score, adjusted_mutual_info_score and normalized_mutual_info_score
are symmetric: swapping the argument does not change the score. Thus they can be used as a consensus measure:
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>>> metrics.adjusted_mutual_info_score(labels_pred, labels_true)
0.22504...

Perfect labeling is scored 1.0:

>>> labels_pred = labels_true[:]
>>> metrics.adjusted_mutual_info_score(labels_true, labels_pred)
1.0

>>> metrics.normalized_mutual_info_score(labels_true, labels_pred)
1.0

This is not true for mutual_info_score, which is therefore harder to judge:

>>> metrics.mutual_info_score(labels_true, labels_pred)
0.69...

Bad (e.g. independent labelings) have non-positive scores:

>>> labels_true = [0, 1, 2, 0, 3, 4, 5, 1]
>>> labels_pred = [1, 1, 0, 0, 2, 2, 2, 2]
>>> metrics.adjusted_mutual_info_score(labels_true, labels_pred)
-0.10526...

Advantages

• Random (uniform) label assignments have a AMI score close to 0.0 for any value of n_clusters and
n_samples (which is not the case for raw Mutual Information or the V-measure for instance).

• Bounded range [0, 1]: Values close to zero indicate two label assignments that are largely independent, while
values close to one indicate significant agreement. Further, values of exactly 0 indicate purely independent
label assignments and a AMI of exactly 1 indicates that the two label assignments are equal (with or without
permutation).

• No assumption is made on the cluster structure: can be used to compare clustering algorithms such as k-
means which assumes isotropic blob shapes with results of spectral clustering algorithms which can find cluster
with “folded” shapes.

Drawbacks

• Contrary to inertia, MI-based measures require the knowledge of the ground truth classes while almost
never available in practice or requires manual assignment by human annotators (as in the supervised learning
setting).

However MI-based measures can also be useful in purely unsupervised setting as a building block for a Consen-
sus Index that can be used for clustering model selection.

• NMI and MI are not adjusted against chance.

Examples:

• Adjustment for chance in clustering performance evaluation: Analysis of the impact of the dataset size on
the value of clustering measures for random assignments. This example also includes the Adjusted Rand
Index.
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Mathematical formulation Assume two label assignments (of the same N objects), 𝑈 and 𝑉 . Their entropy is the
amount of uncertainty for a partition set, defined by:

𝐻(𝑈) =

|𝑈 |∑︁
𝑖=1

𝑃 (𝑖) log(𝑃 (𝑖))

where 𝑃 (𝑖) = |𝑈𝑖|/𝑁 is the probability that an object picked at random from 𝑈 falls into class 𝑈𝑖. Likewise for 𝑉 :

𝐻(𝑉 ) =

|𝑉 |∑︁
𝑗=1

𝑃 ′(𝑗) log(𝑃 ′(𝑗))

With 𝑃 ′(𝑗) = |𝑉𝑗 |/𝑁 . The mutual information (MI) between 𝑈 and 𝑉 is calculated by:

MI(𝑈, 𝑉 ) =

|𝑈 |∑︁
𝑖=1

|𝑉 |∑︁
𝑗=1

𝑃 (𝑖, 𝑗) log

(︂
𝑃 (𝑖, 𝑗)

𝑃 (𝑖)𝑃 ′(𝑗)

)︂

where 𝑃 (𝑖, 𝑗) = |𝑈𝑖 ∩ 𝑉𝑗 |/𝑁 is the probability that an object picked at random falls into both classes 𝑈𝑖 and 𝑉𝑗 .

The normalized mutual information is defined as

NMI(𝑈, 𝑉 ) =
MI(𝑈, 𝑉 )√︀
𝐻(𝑈)𝐻(𝑉 )

This value of the mutual information and also the normalized variant is not adjusted for chance and will tend to increase
as the number of different labels (clusters) increases, regardless of the actual amount of “mutual information” between
the label assignments.

The expected value for the mutual information can be calculated using the following equation, from Vinh, Epps, and
Bailey, (2009). In this equation, 𝑎𝑖 = |𝑈𝑖| (the number of elements in 𝑈𝑖) and 𝑏𝑗 = |𝑉𝑗 | (the number of elements in
𝑉𝑗).

𝐸[MI(𝑈, 𝑉 )] =

|∑︁
𝑖=1

𝑈 |
|∑︁

𝑗=1

𝑉 |
min(𝑎𝑖,𝑏𝑗)∑︁

𝑛𝑖𝑗=(𝑎𝑖+𝑏𝑗−𝑁)+

𝑛𝑖𝑗
𝑁

log

(︂
𝑁.𝑛𝑖𝑗

𝑎𝑖𝑏𝑗

)︂
𝑎𝑖!𝑏𝑗 !(𝑁 − 𝑎𝑖)!(𝑁 − 𝑏𝑗)!

𝑁 !𝑛𝑖𝑗 !(𝑎𝑖 − 𝑛𝑖𝑗)!(𝑏𝑗 − 𝑛𝑖𝑗)!(𝑁 − 𝑎𝑖 − 𝑏𝑗 + 𝑛𝑖𝑗)!

Using the expected value, the adjusted mutual information can then be calculated using a similar form to that of the
adjusted Rand index:

AMI =
MI− 𝐸[MI]

max(𝐻(𝑈), 𝐻(𝑉 ))− 𝐸[MI]

References

• Strehl, Alexander, and Joydeep Ghosh (2002). “Cluster ensembles – a knowledge reuse frame-
work for combining multiple partitions”. Journal of Machine Learning Research 3: 583–617.
doi:10.1162/153244303321897735.

• Vinh, Epps, and Bailey, (2009). “Information theoretic measures for clusterings comparison”.
Proceedings of the 26th Annual International Conference on Machine Learning - ICML ‘09.
doi:10.1145/1553374.1553511. ISBN 9781605585161.

• Vinh, Epps, and Bailey, (2010). Information Theoretic Measures for Clusterings
Comparison: Variants, Properties, Normalization and Correction for Chance, JMLR
http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf

• Wikipedia entry for the (normalized) Mutual Information
• Wikipedia entry for the Adjusted Mutual Information
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Homogeneity, completeness and V-measure

Given the knowledge of the ground truth class assignments of the samples, it is possible to define some intuitive metric
using conditional entropy analysis.

In particular Rosenberg and Hirschberg (2007) define the following two desirable objectives for any cluster assign-
ment:

• homogeneity: each cluster contains only members of a single class.

• completeness: all members of a given class are assigned to the same cluster.

We can turn those concept as scores homogeneity_score and completeness_score. Both are bounded
below by 0.0 and above by 1.0 (higher is better):

>>> from sklearn import metrics
>>> labels_true = [0, 0, 0, 1, 1, 1]
>>> labels_pred = [0, 0, 1, 1, 2, 2]

>>> metrics.homogeneity_score(labels_true, labels_pred)
0.66...

>>> metrics.completeness_score(labels_true, labels_pred)
0.42...

Their harmonic mean called V-measure is computed by v_measure_score:

>>> metrics.v_measure_score(labels_true, labels_pred)
0.51...

The V-measure is actually equivalent to the mutual information (NMI) discussed above normalized by the sum of the
label entropies [B2011].

Homogeneity, completeness and V-measure can be computed at once using
homogeneity_completeness_v_measure as follows:

>>> metrics.homogeneity_completeness_v_measure(labels_true, labels_pred)
...
(0.66..., 0.42..., 0.51...)

The following clustering assignment is slightly better, since it is homogeneous but not complete:

>>> labels_pred = [0, 0, 0, 1, 2, 2]
>>> metrics.homogeneity_completeness_v_measure(labels_true, labels_pred)
...
(1.0, 0.68..., 0.81...)

Note: v_measure_score is symmetric: it can be used to evaluate the agreement of two independent assignments
on the same dataset.

This is not the case for completeness_score and homogeneity_score: both are bound by the relationship:

homogeneity_score(a, b) == completeness_score(b, a)

Advantages

• Bounded scores: 0.0 is as bad as it can be, 1.0 is a perfect score.

• Intuitive interpretation: clustering with bad V-measure can be qualitatively analyzed in terms of homogeneity
and completeness to better feel what ‘kind’ of mistakes is done by the assignment.
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• No assumption is made on the cluster structure: can be used to compare clustering algorithms such as k-
means which assumes isotropic blob shapes with results of spectral clustering algorithms which can find cluster
with “folded” shapes.

Drawbacks

• The previously introduced metrics are not normalized with regards to random labeling: this means that
depending on the number of samples, clusters and ground truth classes, a completely random labeling will
not always yield the same values for homogeneity, completeness and hence v-measure. In particular random
labeling won’t yield zero scores especially when the number of clusters is large.

This problem can safely be ignored when the number of samples is more than a thousand and the number of
clusters is less than 10. For smaller sample sizes or larger number of clusters it is safer to use an adjusted
index such as the Adjusted Rand Index (ARI).

• These metrics require the knowledge of the ground truth classes while almost never available in practice or
requires manual assignment by human annotators (as in the supervised learning setting).

Examples:

• Adjustment for chance in clustering performance evaluation: Analysis of the impact of the dataset size on
the value of clustering measures for random assignments.
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Mathematical formulation Homogeneity and completeness scores are formally given by:

ℎ = 1− 𝐻(𝐶|𝐾)

𝐻(𝐶)

𝑐 = 1− 𝐻(𝐾|𝐶)

𝐻(𝐾)

where 𝐻(𝐶|𝐾) is the conditional entropy of the classes given the cluster assignments and is given by:

𝐻(𝐶|𝐾) = −
|𝐶|∑︁
𝑐=1

|𝐾|∑︁
𝑘=1

𝑛𝑐,𝑘
𝑛
· log

(︂
𝑛𝑐,𝑘
𝑛𝑘

)︂
and 𝐻(𝐶) is the entropy of the classes and is given by:

𝐻(𝐶) = −
|𝐶|∑︁
𝑐=1

𝑛𝑐
𝑛
· log

(︁𝑛𝑐
𝑛

)︁
with 𝑛 the total number of samples, 𝑛𝑐 and 𝑛𝑘 the number of samples respectively belonging to class 𝑐 and cluster 𝑘,
and finally 𝑛𝑐,𝑘 the number of samples from class 𝑐 assigned to cluster 𝑘.

The conditional entropy of clusters given class 𝐻(𝐾|𝐶) and the entropy of clusters 𝐻(𝐾) are defined in a sym-
metric manner.

Rosenberg and Hirschberg further define V-measure as the harmonic mean of homogeneity and completeness:

𝑣 = 2 · ℎ · 𝑐
ℎ+ 𝑐

References

Silhouette Coefficient

If the ground truth labels are not known, evaluation must be performed using the model itself. The Silhouette Coeffi-
cient (sklearn.metrics.silhouette_score) is an example of such an evaluation, where a higher Silhouette
Coefficient score relates to a model with better defined clusters. The Silhouette Coefficient is defined for each sample
and is composed of two scores:

• a: The mean distance between a sample and all other points in the same class.

• b: The mean distance between a sample and all other points in the next nearest cluster.

The Silhouette Coefficient s for a single sample is then given as:

𝑠 =
𝑏− 𝑎

𝑚𝑎𝑥(𝑎, 𝑏)

The Silhouette Coefficient for a set of samples is given as the mean of the Silhouette Coefficient for each sample.

>>> from sklearn import metrics
>>> from sklearn.metrics import pairwise_distances
>>> from sklearn import datasets
>>> dataset = datasets.load_iris()
>>> X = dataset.data
>>> y = dataset.target

In normal usage, the Silhouette Coefficient is applied to the results of a cluster analysis.
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>>> import numpy as np
>>> from sklearn.cluster import KMeans
>>> kmeans_model = KMeans(n_clusters=3, random_state=1).fit(X)
>>> labels = kmeans_model.labels_
>>> metrics.silhouette_score(X, labels, metric='euclidean')
...
0.55...

References

• Peter J. Rousseeuw (1987). “Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster
Analysis”. Computational and Applied Mathematics 20: 53–65. doi:10.1016/0377-0427(87)90125-7.

Advantages

• The score is bounded between -1 for incorrect clustering and +1 for highly dense clustering. Scores around zero
indicate overlapping clusters.

• The score is higher when clusters are dense and well separated, which relates to a standard concept of a cluster.

Drawbacks

• The Silhouette Coefficient is generally higher for convex clusters than other concepts of clusters, such as density
based clusters like those obtained through DBSCAN.

Examples:

• Selecting the number of clusters with silhouette analysis on KMeans clustering : In this example the
silhouette analysis is used to choose an optimal value for n_clusters.

3.2.4 Biclustering

Biclustering can be performed with the module sklearn.cluster.bicluster. Biclustering algorithms simul-
taneously cluster rows and columns of a data matrix. These clusters of rows and columns are known as biclusters.
Each determines a submatrix of the original data matrix with some desired properties.

For instance, given a matrix of shape (10, 10), one possible bicluster with three rows and two columns induces a
submatrix of shape (3, 2):

>>> import numpy as np
>>> data = np.arange(100).reshape(10, 10)
>>> rows = np.array([0, 2, 3])[:, np.newaxis]
>>> columns = np.array([1, 2])
>>> data[rows, columns]
array([[ 1, 2],

[21, 22],
[31, 32]])

For visualization purposes, given a bicluster, the rows and columns of the data matrix may be rearranged to make the
bicluster contiguous.

Algorithms differ in how they define biclusters. Some of the common types include:

• constant values, constant rows, or constant columns
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• unusually high or low values

• submatrices with low variance

• correlated rows or columns

Algorithms also differ in how rows and columns may be assigned to biclusters, which leads to different bicluster
structures. Block diagonal or checkerboard structures occur when rows and columns are divided into partitions.

If each row and each column belongs to exactly one bicluster, then rearranging the rows and columns of the data matrix
reveals the biclusters on the diagonal. Here is an example of this structure where biclusters have higher average values
than the other rows and columns:

Figure 3.4: An example of biclusters formed by partitioning rows and columns.

In the checkerboard case, each row belongs to all column clusters, and each column belongs to all row clusters. Here
is an example of this structure where the variance of the values within each bicluster is small:

After fitting a model, row and column cluster membership can be found in the rows_ and columns_ attributes.
rows_[i] is a binary vector with nonzero entries corresponding to rows that belong to bicluster i. Similarly,
columns_[i] indicates which columns belong to bicluster i.

Some models also have row_labels_ and column_labels_ attributes. These models partition the rows and
columns, such as in the block diagonal and checkerboard bicluster structures.

Note: Biclustering has many other names in different fields including co-clustering, two-mode clustering, two-way
clustering, block clustering, coupled two-way clustering, etc. The names of some algorithms, such as the Spectral
Co-Clustering algorithm, reflect these alternate names.

Spectral Co-Clustering

The SpectralCoclustering algorithm finds biclusters with values higher than those in the corresponding other
rows and columns. Each row and each column belongs to exactly one bicluster, so rearranging the rows and columns
to make partitions contiguous reveals these high values along the diagonal:

Note: The algorithm treats the input data matrix as a bipartite graph: the rows and columns of the matrix correspond
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Figure 3.5: An example of checkerboard biclusters.

to the two sets of vertices, and each entry corresponds to an edge between a row and a column. The algorithm
approximates the normalized cut of this graph to find heavy subgraphs.

Mathematical formulation

An approximate solution to the optimal normalized cut may be found via the generalized eigenvalue decomposition of
the Laplacian of the graph. Usually this would mean working directly with the Laplacian matrix. If the original data
matrix 𝐴 has shape 𝑚× 𝑛, the Laplacian matrix for the corresponding bipartite graph has shape (𝑚+ 𝑛)× (𝑚+ 𝑛).
However, in this case it is possible to work directly with 𝐴, which is smaller and more efficient.

The input matrix 𝐴 is preprocessed as follows:

𝐴𝑛 = 𝑅−1/2𝐴𝐶−1/2

Where 𝑅 is the diagonal matrix with entry 𝑖 equal to
∑︀

𝑗 𝐴𝑖𝑗 and 𝐶 is the diagonal matrix with entry 𝑗 equal to∑︀
𝑖𝐴𝑖𝑗 .

The singular value decomposition, 𝐴𝑛 = 𝑈Σ𝑉 ⊤, provides the partitions of the rows and columns of 𝐴. A subset of
the left singular vectors gives the row partitions, and a subset of the right singular vectors gives the column partitions.

The ℓ = ⌈log2 𝑘⌉ singular vectors, starting from the second, provide the desired partitioning information. They are
used to form the matrix 𝑍:

𝑍 =

⎡⎣𝑅−1/2𝑈

𝐶−1/2𝑉

⎤⎦
where the the columns of 𝑈 are 𝑢2, . . . , 𝑢ℓ+1, and similarly for 𝑉 .

Then the rows of 𝑍 are clustered using k-means. The first n_rows labels provide the row partitioning, and the
remaining n_columns labels provide the column partitioning.

270 Chapter 3. User Guide



scikit-learn user guide, Release 0.17

Examples:

• A demo of the Spectral Co-Clustering algorithm: A simple example showing how to generate a data matrix
with biclusters and apply this method to it.

• Biclustering documents with the Spectral Co-clustering algorithm: An example of finding biclusters in
the twenty newsgroup dataset.

References:

• Dhillon, Inderjit S, 2001. Co-clustering documents and words using bipartite spectral graph partitioning.

Spectral Biclustering

The SpectralBiclustering algorithm assumes that the input data matrix has a hidden checkerboard structure.
The rows and columns of a matrix with this structure may be partitioned so that the entries of any bicluster in the
Cartesian product of row clusters and column clusters is are approximately constant. For instance, if there are two row
partitions and three column partitions, each row will belong to three biclusters, and each column will belong to two
biclusters.

The algorithm partitions the rows and columns of a matrix so that a corresponding blockwise-constant checkerboard
matrix provides a good approximation to the original matrix.

Mathematical formulation

The input matrix 𝐴 is first normalized to make the checkerboard pattern more obvious. There are three possible
methods:

1. Independent row and column normalization, as in Spectral Co-Clustering. This method makes the rows sum to
a constant and the columns sum to a different constant.

2. Bistochastization: repeated row and column normalization until convergence. This method makes both rows
and columns sum to the same constant.

3. Log normalization: the log of the data matrix is computed: 𝐿 = log𝐴. Then the column mean 𝐿𝑖·, row mean
𝐿·𝑗 , and overall mean 𝐿·· of 𝐿 are computed. The final matrix is computed according to the formula

𝐾𝑖𝑗 = 𝐿𝑖𝑗 − 𝐿𝑖· − 𝐿·𝑗 + 𝐿··

After normalizing, the first few singular vectors are computed, just as in the Spectral Co-Clustering algorithm.

If log normalization was used, all the singular vectors are meaningful. However, if independent normalization or
bistochastization were used, the first singular vectors, 𝑢1 and 𝑣1. are discarded. From now on, the “first” singular
vectors refers to 𝑢2 . . . 𝑢𝑝+1 and 𝑣2 . . . 𝑣𝑝+1 except in the case of log normalization.

Given these singular vectors, they are ranked according to which can be best approximated by a piecewise-constant
vector. The approximations for each vector are found using one-dimensional k-means and scored using the Euclidean
distance. Some subset of the best left and right singular vector are selected. Next, the data is projected to this best
subset of singular vectors and clustered.

For instance, if 𝑝 singular vectors were calculated, the 𝑞 best are found as described, where 𝑞 < 𝑝. Let 𝑈 be the matrix
with columns the 𝑞 best left singular vectors, and similarly 𝑉 for the right. To partition the rows, the rows of 𝐴 are
projected to a 𝑞 dimensional space: 𝐴 * 𝑉 . Treating the 𝑚 rows of this 𝑚× 𝑞 matrix as samples and clustering using
k-means yields the row labels. Similarly, projecting the columns to 𝐴⊤ *𝑈 and clustering this 𝑛× 𝑞 matrix yields the
column labels.
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Examples:

• A demo of the Spectral Biclustering algorithm: a simple example showing how to generate a checkerboard
matrix and bicluster it.

References:

• Kluger, Yuval, et. al., 2003. Spectral biclustering of microarray data: coclustering genes and conditions.

Biclustering evaluation

There are two ways of evaluating a biclustering result: internal and external. Internal measures, such as cluster
stability, rely only on the data and the result themselves. Currently there are no internal bicluster measures in scikit-
learn. External measures refer to an external source of information, such as the true solution. When working with
real data the true solution is usually unknown, but biclustering artificial data may be useful for evaluating algorithms
precisely because the true solution is known.

To compare a set of found biclusters to the set of true biclusters, two similarity measures are needed: a similarity
measure for individual biclusters, and a way to combine these individual similarities into an overall score.

To compare individual biclusters, several measures have been used. For now, only the Jaccard index is implemented:

𝐽(𝐴,𝐵) =
|𝐴 ∩𝐵|

|𝐴|+ |𝐵| − |𝐴 ∩𝐵|

where 𝐴 and 𝐵 are biclusters, |𝐴 ∩ 𝐵| is the number of elements in their intersection. The Jaccard index achieves its
minimum of 0 when the biclusters to not overlap at all and its maximum of 1 when they are identical.

Several methods have been developed to compare two sets of biclusters. For now, only consensus_score (Hochre-
iter et. al., 2010) is available:

1. Compute bicluster similarities for pairs of biclusters, one in each set, using the Jaccard index or a similar
measure.

2. Assign biclusters from one set to another in a one-to-one fashion to maximize the sum of their similarities. This
step is performed using the Hungarian algorithm.

3. The final sum of similarities is divided by the size of the larger set.

The minimum consensus score, 0, occurs when all pairs of biclusters are totally dissimilar. The maximum score, 1,
occurs when both sets are identical.

References:

• Hochreiter, Bodenhofer, et. al., 2010. FABIA: factor analysis for bicluster acquisition.
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3.2.5 Decomposing signals in components (matrix factorization problems)

Principal component analysis (PCA)

Exact PCA and probabilistic interpretation

PCA is used to decompose a multivariate dataset in a set of successive orthogonal components that explain a maximum
amount of the variance. In scikit-learn, PCA is implemented as a transformer object that learns 𝑛 components in its
fit method, and can be used on new data to project it on these components.

The optional parameter whiten=True parameter make it possible to project the data onto the singular space while
scaling each component to unit variance. This is often useful if the models down-stream make strong assumptions
on the isotropy of the signal: this is for example the case for Support Vector Machines with the RBF kernel and the
K-Means clustering algorithm.

Below is an example of the iris dataset, which is comprised of 4 features, projected on the 2 dimensions that explain
most variance:

The PCA object also provides a probabilistic interpretation of the PCA that can give a likelihood of data based on the
amount of variance it explains. As such it implements a score method that can be used in cross-validation:

Examples:

• Comparison of LDA and PCA 2D projection of Iris dataset
• Model selection with Probabilistic PCA and Factor Analysis (FA)
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Incremental PCA

The PCA object is very useful, but has certain limitations for large datasets. The biggest limitation is that PCA only sup-
ports batch processing, which means all of the data to be processed must fit in main memory. The IncrementalPCA
object uses a different form of processing and allows for partial computations which almost exactly match the results
of PCA while processing the data in a minibatch fashion. IncrementalPCA makes it possible to implement out-of-
core Principal Component Analysis either by:

• Using its partial_fit method on chunks of data fetched sequentially from the local hard drive or a network
database.

• Calling its fit method on a memory mapped file using numpy.memmap.

IncrementalPCA only stores estimates of component and noise variances, in order update
explained_variance_ratio_ incrementally. This is why memory usage depends on the number of
samples per batch, rather than the number of samples to be processed in the dataset.

Examples:

• Incremental PCA

Approximate PCA

It is often interesting to project data to a lower-dimensional space that preserves most of the variance, by dropping the
singular vector of components associated with lower singular values.

For instance, if we work with 64x64 pixel gray-level pictures for face recognition, the dimensionality of the data is
4096 and it is slow to train an RBF support vector machine on such wide data. Furthermore we know that the intrinsic
dimensionality of the data is much lower than 4096 since all pictures of human faces look somewhat alike. The
samples lie on a manifold of much lower dimension (say around 200 for instance). The PCA algorithm can be used to
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linearly transform the data while both reducing the dimensionality and preserve most of the explained variance at the
same time.

The class RandomizedPCA is very useful in that case: since we are going to drop most of the singular vectors it
is much more efficient to limit the computation to an approximated estimate of the singular vectors we will keep to
actually perform the transform.

For instance, the following shows 16 sample portraits (centered around 0.0) from the Olivetti dataset. On the right
hand side are the first 16 singular vectors reshaped as portraits. Since we only require the top 16 singular vectors of a
dataset with size 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 400 and 𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 64× 64 = 4096, the computation time it less than 1s:

RandomizedPCA can hence be used as a drop in replacement for PCA with the exception that we need to give it the
size of the lower-dimensional space n_components as a mandatory input parameter.

If we note 𝑛𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) and 𝑛𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠), the time complexity of
RandomizedPCA is 𝑂(𝑛2𝑚𝑎𝑥 · 𝑛𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠) instead of 𝑂(𝑛2𝑚𝑎𝑥 · 𝑛𝑚𝑖𝑛) for the exact method implemented in PCA.

The memory footprint of RandomizedPCA is also proportional to 2 · 𝑛𝑚𝑎𝑥 · 𝑛𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 instead of 𝑛𝑚𝑎𝑥 · 𝑛𝑚𝑖𝑛 for
the exact method.

Note: the implementation of inverse_transform in RandomizedPCA is not the exact inverse transform of
transform even when whiten=False (default).
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Examples:

• Faces recognition example using eigenfaces and SVMs
• Faces dataset decompositions

References:

• “Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decom-
positions” Halko, et al., 2009

Kernel PCA

KernelPCA is an extension of PCA which achieves non-linear dimensionality reduction through the use of
kernels (see Pairwise metrics, Affinities and Kernels). It has many applications including denoising, compres-
sion and structured prediction (kernel dependency estimation). KernelPCA supports both transform and
inverse_transform.

Examples:

• Kernel PCA

Sparse principal components analysis (SparsePCA and MiniBatchSparsePCA)

SparsePCA is a variant of PCA, with the goal of extracting the set of sparse components that best reconstruct the
data.
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Mini-batch sparse PCA (MiniBatchSparsePCA) is a variant of SparsePCA that is faster but less accurate. The
increased speed is reached by iterating over small chunks of the set of features, for a given number of iterations.

Principal component analysis (PCA) has the disadvantage that the components extracted by this method have exclu-
sively dense expressions, i.e. they have non-zero coefficients when expressed as linear combinations of the original
variables. This can make interpretation difficult. In many cases, the real underlying components can be more naturally
imagined as sparse vectors; for example in face recognition, components might naturally map to parts of faces.

Sparse principal components yields a more parsimonious, interpretable representation, clearly emphasizing which of
the original features contribute to the differences between samples.

The following example illustrates 16 components extracted using sparse PCA from the Olivetti faces dataset. It can
be seen how the regularization term induces many zeros. Furthermore, the natural structure of the data causes the
non-zero coefficients to be vertically adjacent. The model does not enforce this mathematically: each component is
a vector ℎ ∈ R4096, and there is no notion of vertical adjacency except during the human-friendly visualization as
64x64 pixel images. The fact that the components shown below appear local is the effect of the inherent structure of
the data, which makes such local patterns minimize reconstruction error. There exist sparsity-inducing norms that take
into account adjacency and different kinds of structure; see [Jen09] for a review of such methods. For more details on
how to use Sparse PCA, see the Examples section, below.

Note that there are many different formulations for the Sparse PCA problem. The one implemented here is based
on [Mrl09] . The optimization problem solved is a PCA problem (dictionary learning) with an ℓ1 penalty on the
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components:

(𝑈*, 𝑉 *) = arg min
𝑈,𝑉

1

2
||𝑋 − 𝑈𝑉 ||22 + 𝛼||𝑉 ||1

subject to ||𝑈𝑘||2 = 1 for all 0 ≤ 𝑘 < 𝑛𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

The sparsity-inducing ℓ1 norm also prevents learning components from noise when few training samples are available.
The degree of penalization (and thus sparsity) can be adjusted through the hyperparameter alpha. Small values lead
to a gently regularized factorization, while larger values shrink many coefficients to zero.

Note: While in the spirit of an online algorithm, the class MiniBatchSparsePCA does not implement
partial_fit because the algorithm is online along the features direction, not the samples direction.

Examples:

• Faces dataset decompositions

References:

Truncated singular value decomposition and latent semantic analysis

TruncatedSVD implements a variant of singular value decomposition (SVD) that only computes the 𝑘 largest sin-
gular values, where 𝑘 is a user-specified parameter.

When truncated SVD is applied to term-document matrices (as returned by CountVectorizer or
TfidfVectorizer), this transformation is known as latent semantic analysis (LSA), because it transforms such
matrices to a “semantic” space of low dimensionality. In particular, LSA is known to combat the effects of synonymy
and polysemy (both of which roughly mean there are multiple meanings per word), which cause term-document ma-
trices to be overly sparse and exhibit poor similarity under measures such as cosine similarity.

Note: LSA is also known as latent semantic indexing, LSI, though strictly that refers to its use in persistent indexes
for information retrieval purposes.

Mathematically, truncated SVD applied to training samples 𝑋 produces a low-rank approximation 𝑋:

𝑋 ≈ 𝑋𝑘 = 𝑈𝑘Σ𝑘𝑉
⊤
𝑘

After this operation, 𝑈𝑘Σ⊤
𝑘 is the transformed training set with 𝑘 features (called n_components in the API).

To also transform a test set 𝑋 , we multiply it with 𝑉𝑘:

𝑋 ′ = 𝑋𝑉𝑘

Note: Most treatments of LSA in the natural language processing (NLP) and information retrieval (IR) literature
swap the axes of the matrix 𝑋 so that it has shape n_features × n_samples. We present LSA in a different way
that matches the scikit-learn API better, but the singular values found are the same.

TruncatedSVD is very similar to PCA, but differs in that it works on sample matrices 𝑋 directly instead of their
covariance matrices. When the columnwise (per-feature) means of 𝑋 are subtracted from the feature values, truncated
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SVD on the resulting matrix is equivalent to PCA. In practical terms, this means that the TruncatedSVD transformer
accepts scipy.sparse matrices without the need to densify them, as densifying may fill up memory even for
medium-sized document collections.

While the TruncatedSVD transformer works with any (sparse) feature matrix, using it on tf–idf matrices is recom-
mended over raw frequency counts in an LSA/document processing setting. In particular, sublinear scaling and inverse
document frequency should be turned on (sublinear_tf=True, use_idf=True) to bring the feature values
closer to a Gaussian distribution, compensating for LSA’s erroneous assumptions about textual data.

Examples:

• Clustering text documents using k-means

References:

• Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze (2008), Introduction to Information
Retrieval, Cambridge University Press, chapter 18: Matrix decompositions & latent semantic indexing

Dictionary Learning

Sparse coding with a precomputed dictionary

The SparseCoder object is an estimator that can be used to transform signals into sparse linear combination of
atoms from a fixed, precomputed dictionary such as a discrete wavelet basis. This object therefore does not implement
a fit method. The transformation amounts to a sparse coding problem: finding a representation of the data as a linear
combination of as few dictionary atoms as possible. All variations of dictionary learning implement the following
transform methods, controllable via the transform_method initialization parameter:

• Orthogonal matching pursuit (Orthogonal Matching Pursuit (OMP))

• Least-angle regression (Least Angle Regression)

• Lasso computed by least-angle regression

• Lasso using coordinate descent (Lasso)

• Thresholding

Thresholding is very fast but it does not yield accurate reconstructions. They have been shown useful in literature for
classification tasks. For image reconstruction tasks, orthogonal matching pursuit yields the most accurate, unbiased
reconstruction.

The dictionary learning objects offer, via the split_code parameter, the possibility to separate the positive and
negative values in the results of sparse coding. This is useful when dictionary learning is used for extracting features
that will be used for supervised learning, because it allows the learning algorithm to assign different weights to negative
loadings of a particular atom, from to the corresponding positive loading.

The split code for a single sample has length 2 * n_components and is constructed using the following rule:
First, the regular code of length n_components is computed. Then, the first n_components entries of the
split_code are filled with the positive part of the regular code vector. The second half of the split code is filled
with the negative part of the code vector, only with a positive sign. Therefore, the split_code is non-negative.
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Examples:

• Sparse coding with a precomputed dictionary

Generic dictionary learning

Dictionary learning (DictionaryLearning) is a matrix factorization problem that amounts to finding a (usually
overcomplete) dictionary that will perform good at sparsely encoding the fitted data.

Representing data as sparse combinations of atoms from an overcomplete dictionary is suggested to be the way the
mammal primary visual cortex works. Consequently, dictionary learning applied on image patches has been shown
to give good results in image processing tasks such as image completion, inpainting and denoising, as well as for
supervised recognition tasks.

Dictionary learning is an optimization problem solved by alternatively updating the sparse code, as a solution to
multiple Lasso problems, considering the dictionary fixed, and then updating the dictionary to best fit the sparse code.

(𝑈*, 𝑉 *) = arg min
𝑈,𝑉

1

2
||𝑋 − 𝑈𝑉 ||22 + 𝛼||𝑈 ||1

subject to ||𝑉𝑘||2 = 1 for all 0 ≤ 𝑘 < 𝑛𝑎𝑡𝑜𝑚𝑠
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After using such a procedure to fit the dictionary, the transform is simply a sparse coding step that shares the same
implementation with all dictionary learning objects (see Sparse coding with a precomputed dictionary).

The following image shows how a dictionary learned from 4x4 pixel image patches extracted from part of the image
of Lena looks like.

Examples:

• Image denoising using dictionary learning

References:

• “Online dictionary learning for sparse coding” J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009

Mini-batch dictionary learning

MiniBatchDictionaryLearning implements a faster, but less accurate version of the dictionary learning algo-
rithm that is better suited for large datasets.

By default, MiniBatchDictionaryLearning divides the data into mini-batches and optimizes in an online
manner by cycling over the mini-batches for the specified number of iterations. However, at the moment it does not
implement a stopping condition.

The estimator also implements partial_fit, which updates the dictionary by iterating only once over a mini-batch.
This can be used for online learning when the data is not readily available from the start, or for when the data does not

fit into the memory.
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Clustering for dictionary learning

Note that when using dictionary learning to extract a representation (e.g. for sparse coding) clustering can be a
good proxy to learn the dictionary. For instance the MiniBatchKMeans estimator is computationally efficient
and implements on-line learning with a partial_fit method.

Example: Online learning of a dictionary of parts of faces

Factor Analysis

In unsupervised learning we only have a dataset 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}. How can this dataset be described mathemat-
ically? A very simple continuous latent variabel model for 𝑋 is

𝑥𝑖 = 𝑊ℎ𝑖 + 𝜇+ 𝜖

The vector ℎ𝑖 is called “latent” because it is unobserved. 𝜖 is considered a noise term distributed according to a
Gaussian with mean 0 and covariance Ψ (i.e. 𝜖 ∼ 𝒩 (0,Ψ)), 𝜇 is some arbitrary offset vector. Such a model is called
“generative” as it describes how 𝑥𝑖 is generated from ℎ𝑖. If we use all the 𝑥𝑖‘s as columns to form a matrix X and all
the ℎ𝑖‘s as columns of a matrix H then we can write (with suitably defined M and E):

X = 𝑊H + M + E

In other words, we decomposed matrix X.

If ℎ𝑖 is given, the above equation automatically implies the following probabilistic interpretation:

𝑝(𝑥𝑖|ℎ𝑖) = 𝒩 (𝑊ℎ𝑖 + 𝜇,Ψ)

For a complete probabilistic model we also need a prior distribution for the latent variable ℎ. The most straightforward
assumption (based on the nice properties of the Gaussian distribution) is ℎ ∼ 𝒩 (0, I). This yields a Gaussian as the
marginal distribution of 𝑥:

𝑝(𝑥) = 𝒩 (𝜇,𝑊𝑊𝑇 + Ψ)

Now, without any further assumptions the idea of having a latent variable ℎ would be superfluous – 𝑥 can be com-
pletely modelled with a mean and a covariance. We need to impose some more specific structure on one of these two
parameters. A simple additional assumption regards the structure of the error covariance Ψ:

• Ψ = 𝜎2I: This assumption leads to the probabilistic model of PCA.

• Ψ = 𝑑𝑖𝑎𝑔(𝜓1, 𝜓2, . . . , 𝜓𝑛): This model is called FactorAnalysis, a classical statistical model. The matrix
W is sometimes called the “factor loading matrix”.

Both model essentially estimate a Gaussian with a low-rank covariance matrix. Because both models are probabilistic
they can be integrated in more complex models, e.g. Mixture of Factor Analysers. One gets very different models (e.g.
FastICA) if non-Gaussian priors on the latent variables are assumed.

Factor analysis can produce similar components (the columns of its loading matrix) to PCA. However, one can not
make any general statements about these components (e.g. whether they are orthogonal):
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The main advantage for Factor Analysis (over PCA is that it can model the variance in every direction of the input
space independently (heteroscedastic noise):

This allows better model selection than probabilistic PCA in the presence of heteroscedastic noise:

Examples:

• Model selection with Probabilistic PCA and Factor Analysis (FA)
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Independent component analysis (ICA)

Independent component analysis separates a multivariate signal into additive subcomponents that are maximally in-
dependent. It is implemented in scikit-learn using the Fast ICA algorithm. Typically, ICA is not used for reducing
dimensionality but for separating superimposed signals. Since the ICA model does not include a noise term, for the
model to be correct, whitening must be applied. This can be done internally using the whiten argument or manually
using one of the PCA variants.

It is classically used to separate mixed signals (a problem known as blind source separation), as in the example below:

ICA can also be used as yet another non linear decomposition that finds components with some sparsity:
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Examples:

• Blind source separation using FastICA
• FastICA on 2D point clouds
• Faces dataset decompositions

Non-negative matrix factorization (NMF or NNMF)

NMF is an alternative approach to decomposition that assumes that the data and the components are non-negative. NMF
can be plugged in instead of PCA or its variants, in the cases where the data matrix does not contain negative values.
It finds a decomposition of samples 𝑋 into two matrices 𝑊 and 𝐻 of non-negative elements, by optimizing for the
squared Frobenius norm:

arg min
𝑊,𝐻

1

2
||𝑋 −𝑊𝐻||2𝐹𝑟𝑜 =

1

2

∑︁
𝑖,𝑗

(𝑋𝑖𝑗 −𝑊𝐻𝑖𝑗)
2

This norm is an obvious extension of the Euclidean norm to matrices. (Other optimization objectives have been
suggested in the NMF literature, in particular Kullback-Leibler divergence, but these are not currently implemented.)
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Unlike PCA, the representation of a vector is obtained in an additive fashion, by superimposing the components,
without subtracting. Such additive models are efficient for representing images and text.

It has been observed in [Hoyer, 04] that, when carefully constrained, NMF can produce a parts-based representation of
the dataset, resulting in interpretable models. The following example displays 16 sparse components found by NMF
from the images in the Olivetti faces dataset, in comparison with the PCA eigenfaces.

The init attribute determines the initialization method applied, which has a great impact on the performance of the
method. NMF implements the method Nonnegative Double Singular Value Decomposition. NNDSVD is based on two
SVD processes, one approximating the data matrix, the other approximating positive sections of the resulting partial
SVD factors utilizing an algebraic property of unit rank matrices. The basic NNDSVD algorithm is better fit for sparse
factorization. Its variants NNDSVDa (in which all zeros are set equal to the mean of all elements of the data), and
NNDSVDar (in which the zeros are set to random perturbations less than the mean of the data divided by 100) are
recommended in the dense case.

NMF can also be initialized with correctly scaled random non-negative matrices by setting init="random". An
integer seed or a RandomState can also be passed to random_state to control reproducibility.

In NMF, L1 and L2 priors can be added to the loss function in order to regularize the model. The L2 prior uses the
Frobenius norm, while the L1 prior uses an elementwise L1 norm. As in ElasticNet, we control the combination
of L1 and L2 with the l1_ratio (𝜌) parameter, and the intensity of the regularization with the alpha (𝛼) parameter.
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Then the priors terms are:

𝛼𝜌||𝑊 ||1 + 𝛼𝜌||𝐻||1 +
𝛼(1− 𝜌)

2
||𝑊 ||2𝐹𝑟𝑜 +

𝛼(1− 𝜌)

2
||𝐻||2𝐹𝑟𝑜

and the regularized objective function is:

1

2
||𝑋 −𝑊𝐻||2𝐹𝑟𝑜 + 𝛼𝜌||𝑊 ||1 + 𝛼𝜌||𝐻||1 +

𝛼(1− 𝜌)

2
||𝑊 ||2𝐹𝑟𝑜 +

𝛼(1− 𝜌)

2
||𝐻||2𝐹𝑟𝑜

NMF regularizes both W and H. The public function non_negative_factorization allows a finer control
through the regularization attribute, and may regularize only W, only H, or both.

Examples:

• Faces dataset decompositions
• Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation

References:

• “Learning the parts of objects by non-negative matrix factorization” D. Lee, S. Seung, 1999
• “Non-negative Matrix Factorization with Sparseness Constraints” P. Hoyer, 2004
• “Projected gradient methods for non-negative matrix factorization” C.-J. Lin, 2007
• “SVD based initialization: A head start for nonnegative matrix factorization” C. Boutsidis, E. Gallopoulos,

2008
• “Fast local algorithms for large scale nonnegative matrix and tensor factorizations.” A. Cichocki, P. Anh-

Huy, 2009

Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation is a generative probabilistic model for collections of discrete dataset such as text corpora.
It is also a topic model that is used for discovering abstract topics from a collection of documents.

The graphical model of LDA is a three-level Bayesian model:
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When modeling text corpora, the model assumes the following generative process for a corpus with 𝐷 documents and
𝐾 topics:

1. For each topic 𝑘, draw 𝛽𝑘 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝜂), 𝑘 = 1...𝐾

2. For each document 𝑑, draw 𝜃𝑑 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼), 𝑑 = 1...𝐷

3. For each word 𝑖 in document 𝑑:

1. Draw a topic index 𝑧𝑑𝑖 ∼𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜃𝑑)

2. Draw the observed word 𝑤𝑖𝑗 ∼𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑏𝑒𝑡𝑎𝑧𝑑𝑖 .)

For parameter estimation, the posterior distribution is:

𝑝(𝑧, 𝜃, 𝛽|𝑤,𝛼, 𝜂) =
𝑝(𝑧, 𝜃, 𝛽|𝛼, 𝜂)

𝑝(𝑤|𝛼, 𝜂)

Since the posterior is intractable, variational Bayesian method uses a simpler distribution 𝑞(𝑧, 𝜃, 𝛽|𝜆, 𝜑, 𝛾) to approx-
imate it, and those variational parameters 𝜆, 𝜑, 𝛾 are optimized to maximize the Evidence Lower Bound (ELBO):

𝑙𝑜𝑔 𝑃 (𝑤|𝛼, 𝜂) ≥ 𝐿(𝑤, 𝜑, 𝛾, 𝜆)
△
= 𝐸𝑞[𝑙𝑜𝑔 𝑝(𝑤, 𝑧, 𝜃, 𝛽|𝛼, 𝜂)]− 𝐸𝑞[𝑙𝑜𝑔 𝑞(𝑧, 𝜃, 𝛽)]

Maximizing ELBO is equivalent to minimizing the Kullback-Leibler(KL) divergence between 𝑞(𝑧, 𝜃, 𝛽) and the true
posterior 𝑝(𝑧, 𝜃, 𝛽|𝑤,𝛼, 𝜂).

LatentDirichletAllocation implements online variational Bayes algorithm and supports both online and
batch update method. While batch method updates variational variables after each full pass through the data, online
method updates variational variables from mini-batch data points. Therefore, online method usually converges faster
than batch method.

Note: Although online method is guaranteed to converge to a local optimum point, the quality of the optimum point
and the speed of convergence may depend on mini-batch size and attributes related to learning rate setting.

When LatentDirichletAllocation is applied on a “document-term” matrix, the matrix will be decomposed
into a “topic-term” matrix and a “document-topic” matrix. While “topic-term” matrix is stored as components_ in
the model, “document-topic” matrix can be calculated from transform method.

LatentDirichletAllocation also implements partial_fitmethod. This is used when data can be fetched
sequentially.

Examples:

• Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation

References:

• “Latent Dirichlet Allocation” D. Blei, A. Ng, M. Jordan, 2003
• “Online Learning for Latent Dirichlet Allocation” M. Hoffman, D. Blei, F. Bach, 2010
• “Stochastic Variational Inference” M. Hoffman, D. Blei, C. Wang, J. Paisley, 2013

3.2.6 Covariance estimation

Many statistical problems require at some point the estimation of a population’s covariance matrix, which can be seen
as an estimation of data set scatter plot shape. Most of the time, such an estimation has to be done on a sample whose
properties (size, structure, homogeneity) has a large influence on the estimation’s quality. The sklearn.covariance
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package aims at providing tools affording an accurate estimation of a population’s covariance matrix under various
settings.

We assume that the observations are independent and identically distributed (i.i.d.).

Empirical covariance

The covariance matrix of a data set is known to be well approximated with the classical maximum likelihood estimator
(or “empirical covariance”), provided the number of observations is large enough compared to the number of features
(the variables describing the observations). More precisely, the Maximum Likelihood Estimator of a sample is an
unbiased estimator of the corresponding population covariance matrix.

The empirical covariance matrix of a sample can be computed using the empirical_covariance func-
tion of the package, or by fitting an EmpiricalCovariance object to the data sample with the
EmpiricalCovariance.fit method. Be careful that depending whether the data are centered or not, the re-
sult will be different, so one may want to use the assume_centered parameter accurately. More precisely if one
uses assume_centered=False, then the test set is supposed to have the same mean vector as the training set. If
not so, both should be centered by the user, and assume_centered=True should be used.

Examples:

• See Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood for an example on how to
fit an EmpiricalCovariance object to data.

Shrunk Covariance

Basic shrinkage

Despite being an unbiased estimator of the covariance matrix, the Maximum Likelihood Estimator is not a good esti-
mator of the eigenvalues of the covariance matrix, so the precision matrix obtained from its inversion is not accurate.
Sometimes, it even occurs that the empirical covariance matrix cannot be inverted for numerical reasons. To avoid
such an inversion problem, a transformation of the empirical covariance matrix has been introduced: the shrinkage.

In the scikit-learn, this transformation (with a user-defined shrinkage coefficient) can be directly applied to a pre-
computed covariance with the shrunk_covariance method. Also, a shrunk estimator of the covariance can be
fitted to data with a ShrunkCovariance object and its ShrunkCovariance.fit method. Again, depending
whether the data are centered or not, the result will be different, so one may want to use the assume_centered
parameter accurately.

Mathematically, this shrinkage consists in reducing the ratio between the smallest and the largest eigenvalue of the
empirical covariance matrix. It can be done by simply shifting every eigenvalue according to a given offset, which is
equivalent of finding the l2-penalized Maximum Likelihood Estimator of the covariance matrix. In practice, shrinkage
boils down to a simple a convex transformation : Σshrunk = (1− 𝛼)Σ̂ + 𝛼TrΣ̂

𝑝 Id.

Choosing the amount of shrinkage, 𝛼 amounts to setting a bias/variance trade-off, and is discussed below.

Examples:

• See Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood for an example on how to
fit a ShrunkCovariance object to data.
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Ledoit-Wolf shrinkage

In their 2004 paper [1], O. Ledoit and M. Wolf propose a formula so as to compute the optimal shrinkage coefficient
𝛼 that minimizes the Mean Squared Error between the estimated and the real covariance matrix.

The Ledoit-Wolf estimator of the covariance matrix can be computed on a sample with the ledoit_wolf function of
the sklearn.covariance package, or it can be otherwise obtained by fitting a LedoitWolf object to the same sample.

Examples:

• See Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood for an example on how to fit
a LedoitWolf object to data and for visualizing the performances of the Ledoit-Wolf estimator in terms
of likelihood.

[1] O. Ledoit and M. Wolf, “A Well-Conditioned Estimator for Large-Dimensional Covariance Matrices”, Jour-
nal of Multivariate Analysis, Volume 88, Issue 2, February 2004, pages 365-411.

Oracle Approximating Shrinkage

Under the assumption that the data are Gaussian distributed, Chen et al. [2] derived a formula aimed at choosing a
shrinkage coefficient that yields a smaller Mean Squared Error than the one given by Ledoit and Wolf’s formula. The
resulting estimator is known as the Oracle Shrinkage Approximating estimator of the covariance.

The OAS estimator of the covariance matrix can be computed on a sample with the oas function of the
sklearn.covariance package, or it can be otherwise obtained by fitting an OAS object to the same sample.

Figure 3.6: Bias-variance trade-off when setting the shrinkage: comparing the choices of Ledoit-Wolf and OAS
estimators

[2] Chen et al., “Shrinkage Algorithms for MMSE Covariance Estimation”, IEEE Trans. on Sign. Proc., Volume
58, Issue 10, October 2010.
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Examples:

• See Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood for an example on how to
fit an OAS object to data.

• See Ledoit-Wolf vs OAS estimation to visualize the Mean Squared Error difference between a
LedoitWolf and an OAS estimator of the covariance.

Sparse inverse covariance

The matrix inverse of the covariance matrix, often called the precision matrix, is proportional to the partial correlation
matrix. It gives the partial independence relationship. In other words, if two features are independent conditionally on
the others, the corresponding coefficient in the precision matrix will be zero. This is why it makes sense to estimate a
sparse precision matrix: by learning independence relations from the data, the estimation of the covariance matrix is
better conditioned. This is known as covariance selection.

In the small-samples situation, in which n_samples is on the order of n_features or smaller, sparse inverse
covariance estimators tend to work better than shrunk covariance estimators. However, in the opposite situation, or for
very correlated data, they can be numerically unstable. In addition, unlike shrinkage estimators, sparse estimators are
able to recover off-diagonal structure.

The GraphLasso estimator uses an l1 penalty to enforce sparsity on the precision matrix: the higher its alpha
parameter, the more sparse the precision matrix. The corresponding GraphLassoCV object uses cross-validation to
automatically set the alpha parameter.

Note: Structure recovery
Recovering a graphical structure from correlations in the data is a challenging thing. If you are interested in such
recovery keep in mind that:

• Recovery is easier from a correlation matrix than a covariance matrix: standardize your observations before
running GraphLasso
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Figure 3.7: A comparison of maximum likelihood, shrinkage and sparse estimates of the covariance and precision
matrix in the very small samples settings.

• If the underlying graph has nodes with much more connections than the average node, the algorithm will miss
some of these connections.

• If your number of observations is not large compared to the number of edges in your underlying graph, you will
not recover it.

• Even if you are in favorable recovery conditions, the alpha parameter chosen by cross-validation (e.g. using the
GraphLassoCV object) will lead to selecting too many edges. However, the relevant edges will have heavier
weights than the irrelevant ones.

The mathematical formulation is the following:

�̂� = argmin𝐾

(︀
tr𝑆𝐾 − logdet𝐾 + 𝛼‖𝐾‖1

)︀
Where 𝐾 is the precision matrix to be estimated, and 𝑆 is the sample covariance matrix. ‖𝐾‖1 is the sum of the abso-
lute values of off-diagonal coefficients of 𝐾. The algorithm employed to solve this problem is the GLasso algorithm,
from the Friedman 2008 Biostatistics paper. It is the same algorithm as in the R glasso package.

Examples:

• Sparse inverse covariance estimation: example on synthetic data showing some recovery of a structure,
and comparing to other covariance estimators.

• Visualizing the stock market structure: example on real stock market data, finding which symbols are most
linked.

References:

• Friedman et al, “Sparse inverse covariance estimation with the graphical lasso”, Biostatistics 9, pp 432,
2008

Robust Covariance Estimation

Real data set are often subjects to measurement or recording errors. Regular but uncommon observations may also
appear for a variety of reason. Every observation which is very uncommon is called an outlier. The empirical covari-
ance estimator and the shrunk covariance estimators presented above are very sensitive to the presence of outlying
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observations in the data. Therefore, one should use robust covariance estimators to estimate the covariance of its real
data sets. Alternatively, robust covariance estimators can be used to perform outlier detection and discard/downweight
some observations according to further processing of the data.

The sklearn.covariance package implements a robust estimator of covariance, the Minimum Covariance De-
terminant [3].

Minimum Covariance Determinant

The Minimum Covariance Determinant estimator is a robust estimator of a data set’s covariance introduced by P.J.
Rousseeuw in [3]. The idea is to find a given proportion (h) of “good” observations which are not outliers and
compute their empirical covariance matrix. This empirical covariance matrix is then rescaled to compensate the
performed selection of observations (“consistency step”). Having computed the Minimum Covariance Determinant
estimator, one can give weights to observations according to their Mahalanobis distance, leading the a reweighted
estimate of the covariance matrix of the data set (“reweighting step”).

Rousseeuw and Van Driessen [4] developed the FastMCD algorithm in order to compute the Minimum Covariance
Determinant. This algorithm is used in scikit-learn when fitting an MCD object to data. The FastMCD algorithm also
computes a robust estimate of the data set location at the same time.

Raw estimates can be accessed as raw_location_ and raw_covariance_ attributes of a MinCovDet robust
covariance estimator object.

[3] P. J. Rousseeuw. Least median of squares regression.

10. Am Stat Ass, 79:871, 1984.

[4] A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Associa-
tion and the American Society for Quality, TECHNOMETRICS.

Examples:

• See Robust vs Empirical covariance estimate for an example on how to fit a MinCovDet object to data
and see how the estimate remains accurate despite the presence of outliers.

• See Robust covariance estimation and Mahalanobis distances relevance to visualize the difference be-
tween EmpiricalCovariance and MinCovDet covariance estimators in terms of Mahalanobis dis-
tance (so we get a better estimate of the precision matrix too).

Influence of outliers on location and covariance
estimates

Separating inliers from outliers using a
Mahalanobis distance

3.2.7 Novelty and Outlier Detection

Many applications require being able to decide whether a new observation belongs to the same distribution as existing
observations (it is an inlier), or should be considered as different (it is an outlier). Often, this ability is used to clean
real data sets. Two important distinction must be made:
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novelty detection The training data is not polluted by outliers, and we are interested in detecting anoma-
lies in new observations.

outlier detection The training data contains outliers, and we need to fit the central mode of the training
data, ignoring the deviant observations.

The scikit-learn project provides a set of machine learning tools that can be used both for novelty or outliers detection.
This strategy is implemented with objects learning in an unsupervised way from the data:

estimator.fit(X_train)

new observations can then be sorted as inliers or outliers with a predict method:

estimator.predict(X_test)

Inliers are labeled 1, while outliers are labeled -1.

Novelty Detection

Consider a data set of 𝑛 observations from the same distribution described by 𝑝 features. Consider now that we add one
more observation to that data set. Is the new observation so different from the others that we can doubt it is regular?
(i.e. does it come from the same distribution?) Or on the contrary, is it so similar to the other that we cannot distinguish
it from the original observations? This is the question addressed by the novelty detection tools and methods.

In general, it is about to learn a rough, close frontier delimiting the contour of the initial observations distribution,
plotted in embedding 𝑝-dimensional space. Then, if further observations lay within the frontier-delimited subspace,
they are considered as coming from the same population than the initial observations. Otherwise, if they lay outside
the frontier, we can say that they are abnormal with a given confidence in our assessment.

The One-Class SVM has been introduced by Schölkopf et al. for that purpose and implemented in the Support Vector
Machines module in the svm.OneClassSVM object. It requires the choice of a kernel and a scalar parameter to
define a frontier. The RBF kernel is usually chosen although there exists no exact formula or algorithm to set its
bandwidth parameter. This is the default in the scikit-learn implementation. The 𝜈 parameter, also known as the
margin of the One-Class SVM, corresponds to the probability of finding a new, but regular, observation outside the
frontier.

References:

• Estimating the support of a high-dimensional distribution Schölkopf, Bernhard, et al. Neural computation
13.7 (2001): 1443-1471.

Examples:

• See One-class SVM with non-linear kernel (RBF) for visualizing the frontier learned around some data by
a svm.OneClassSVM object.

Outlier Detection

Outlier detection is similar to novelty detection in the sense that the goal is to separate a core of regular observations
from some polluting ones, called “outliers”. Yet, in the case of outlier detection, we don’t have a clean data set
representing the population of regular observations that can be used to train any tool.
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Fitting an elliptic envelope

One common way of performing outlier detection is to assume that the regular data come from a known distribution
(e.g. data are Gaussian distributed). From this assumption, we generally try to define the “shape” of the data, and can
define outlying observations as observations which stand far enough from the fit shape.

The scikit-learn provides an object covariance.EllipticEnvelope that fits a robust covariance estimate to
the data, and thus fits an ellipse to the central data points, ignoring points outside the central mode.

For instance, assuming that the inlier data are Gaussian distributed, it will estimate the inlier location and covariance
in a robust way (i.e. whithout being influenced by outliers). The Mahalanobis distances obtained from this estimate is
used to derive a measure of outlyingness. This strategy is illustrated below.

Examples:

• See Robust covariance estimation and Mahalanobis distances relevance for an illustration of the dif-
ference between using a standard (covariance.EmpiricalCovariance) or a robust estimate
(covariance.MinCovDet) of location and covariance to assess the degree of outlyingness of an ob-
servation.

References:

One-class SVM versus elliptic envelope

Strictly-speaking, the One-class SVM is not an outlier-detection method, but a novelty-detection method: its training
set should not be contaminated by outliers as it may fit them. That said, outlier detection in high-dimension, or without
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any assumptions on the distribution of the inlying data is very challenging, and a One-class SVM gives useful results
in these situations.

The examples below illustrate how the performance of the covariance.EllipticEnvelope degrades as the
data is less and less unimodal. svm.OneClassSVM works better on data with multiple modes.

Table 3.1: Comparing One-class SVM approach, and elliptic envelope

For a inlier mode well-centered and elliptic, the svm.OneClassSVM is not able
to benefit from the rotational symmetry of the inlier population. In addition, it fits
a bit the outliers present in the training set. On the opposite, the decision rule
based on fitting an covariance.EllipticEnvelope learns an ellipse,
which fits well the inlier distribution.

As the inlier distribution becomes bimodal, the
covariance.EllipticEnvelope does not fit well the inliers. However, we
can see that the svm.OneClassSVM tends to overfit: because it has not model of
inliers, it interprets a region where, by chance some outliers are clustered, as
inliers.

If the inlier distribution is strongly non Gaussian, the svm.OneClassSVM is
able to recover a reasonable approximation, whereas the
covariance.EllipticEnvelope completely fails.
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Examples:

• See Outlier detection with several methods. for a comparison of the svm.OneClassSVM
(tuned to perform like an outlier detection method) and a covariance-based outlier detection with
covariance.MinCovDet.

3.2.8 Density Estimation

Density estimation walks the line between unsupervised learning, feature engineering, and data modeling.
Some of the most popular and useful density estimation techniques are mixture models such as Gaussian
Mixtures (sklearn.mixture.GMM), and neighbor-based approaches such as the kernel density estimate
(sklearn.neighbors.KernelDensity). Gaussian Mixtures are discussed more fully in the context of clus-
tering, because the technique is also useful as an unsupervised clustering scheme.

Density estimation is a very simple concept, and most people are already familiar with one common density estimation
technique: the histogram.

Density Estimation: Histograms

A histogram is a simple visualization of data where bins are defined, and the number of data points within each bin is
tallied. An example of a histogram can be seen in the upper-left panel of the following figure:

A major problem with histograms, however, is that the choice of binning can have a disproportionate effect on the
resulting visualization. Consider the upper-right panel of the above figure. It shows a histogram over the same data,
with the bins shifted right. The results of the two visualizations look entirely different, and might lead to different
interpretations of the data.

Intuitively, one can also think of a histogram as a stack of blocks, one block per point. By stacking the blocks in the
appropriate grid space, we recover the histogram. But what if, instead of stacking the blocks on a regular grid, we
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center each block on the point it represents, and sum the total height at each location? This idea leads to the lower-left
visualization. It is perhaps not as clean as a histogram, but the fact that the data drive the block locations mean that it
is a much better representation of the underlying data.

This visualization is an example of a kernel density estimation, in this case with a top-hat kernel (i.e. a square block
at each point). We can recover a smoother distribution by using a smoother kernel. The bottom-right plot shows a
Gaussian kernel density estimate, in which each point contributes a Gaussian curve to the total. The result is a smooth
density estimate which is derived from the data, and functions as a powerful non-parametric model of the distribution
of points.

Kernel Density Estimation

Kernel density estimation in scikit-learn is implemented in the sklearn.neighbors.KernelDensity esti-
mator, which uses the Ball Tree or KD Tree for efficient queries (see Nearest Neighbors for a discussion of these).
Though the above example uses a 1D data set for simplicity, kernel density estimation can be performed in any number
of dimensions, though in practice the curse of dimensionality causes its performance to degrade in high dimensions.

In the following figure, 100 points are drawn from a bimodal distribution, and the kernel density estimates are shown
for three choices of kernels:

It’s clear how the kernel shape affects the smoothness of the resulting distribution. The scikit-learn kernel density
estimator can be used as follows:

>>> from sklearn.neighbors.kde import KernelDensity
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> kde = KernelDensity(kernel='gaussian', bandwidth=0.2).fit(X)
>>> kde.score_samples(X)
array([-0.41075698, -0.41075698, -0.41076071, -0.41075698, -0.41075698,

-0.41076071])

300 Chapter 3. User Guide



scikit-learn user guide, Release 0.17

Here we have used kernel=’gaussian’, as seen above. Mathematically, a kernel is a positive function 𝐾(𝑥;ℎ)
which is controlled by the bandwidth parameter ℎ. Given this kernel form, the density estimate at a point 𝑦 within a
group of points 𝑥𝑖; 𝑖 = 1 · · ·𝑁 is given by:

𝜌𝐾(𝑦) =

𝑁∑︁
𝑖=1

𝐾((𝑦 − 𝑥𝑖)/ℎ)

The bandwidth here acts as a smoothing parameter, controlling the tradeoff between bias and variance in the result. A
large bandwidth leads to a very smooth (i.e. high-bias) density distribution. A small bandwidth leads to an unsmooth
(i.e. high-variance) density distribution.

sklearn.neighbors.KernelDensity implements several common kernel forms, which are shown in the fol-
lowing figure:

The form of these kernels is as follows:

• Gaussian kernel (kernel = ’gaussian’)

𝐾(𝑥;ℎ) ∝ exp(− 𝑥2

2ℎ2 )

• Tophat kernel (kernel = ’tophat’)

𝐾(𝑥;ℎ) ∝ 1 if 𝑥 < ℎ

• Epanechnikov kernel (kernel = ’epanechnikov’)

𝐾(𝑥;ℎ) ∝ 1− 𝑥2

ℎ2

• Exponential kernel (kernel = ’exponential’)

𝐾(𝑥;ℎ) ∝ exp(−𝑥/ℎ)

• Linear kernel (kernel = ’linear’)

𝐾(𝑥;ℎ) ∝ 1− 𝑥/ℎ if 𝑥 < ℎ
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• Cosine kernel (kernel = ’cosine’)

𝐾(𝑥;ℎ) ∝ cos(𝜋𝑥
2ℎ ) if 𝑥 < ℎ

The kernel density estimator can be used with any of the valid distance metrics (see
sklearn.neighbors.DistanceMetric for a list of available metrics), though the results are properly
normalized only for the Euclidean metric. One particularly useful metric is the Haversine distance which measures the
angular distance between points on a sphere. Here is an example of using a kernel density estimate for a visualization
of geospatial data, in this case the distribution of observations of two different species on the South American
continent:

One other useful application of kernel density estimation is to learn a non-parametric generative model of a dataset in
order to efficiently draw new samples from this generative model. Here is an example of using this process to create a
new set of hand-written digits, using a Gaussian kernel learned on a PCA projection of the data:
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The “new” data consists of linear combinations of the input data, with weights probabilistically drawn given the KDE
model.

Examples:

• Simple 1D Kernel Density Estimation: computation of simple kernel density estimates in one dimension.
• Kernel Density Estimation: an example of using Kernel Density estimation to learn a generative model of

the hand-written digits data, and drawing new samples from this model.
• Kernel Density Estimate of Species Distributions: an example of Kernel Density estimation using the

Haversine distance metric to visualize geospatial data

3.2.9 Neural network models (unsupervised)

Restricted Boltzmann machines

Restricted Boltzmann machines (RBM) are unsupervised nonlinear feature learners based on a probabilistic model.
The features extracted by an RBM or a hierarchy of RBMs often give good results when fed into a linear classifier
such as a linear SVM or a perceptron.

The model makes assumptions regarding the distribution of inputs. At the moment, scikit-learn only provides
BernoulliRBM, which assumes the inputs are either binary values or values between 0 and 1, each encoding the
probability that the specific feature would be turned on.

The RBM tries to maximize the likelihood of the data using a particular graphical model. The parameter learning
algorithm used (Stochastic Maximum Likelihood) prevents the representations from straying far from the input data,
which makes them capture interesting regularities, but makes the model less useful for small datasets, and usually not
useful for density estimation.
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The method gained popularity for initializing deep neural networks with the weights of independent RBMs. This
method is known as unsupervised pre-training.

Examples:

• Restricted Boltzmann Machine features for digit classification

Graphical model and parametrization

The graphical model of an RBM is a fully-connected bipartite graph.
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The nodes are random variables whose states depend on the state of the other nodes they are connected to. The model
is therefore parameterized by the weights of the connections, as well as one intercept (bias) term for each visible and
hidden unit, ommited from the image for simplicity.

The energy function measures the quality of a joint assignment:

𝐸(v,h) =
∑︁
𝑖

∑︁
𝑗

𝑤𝑖𝑗𝑣𝑖ℎ𝑗 +
∑︁
𝑖

𝑏𝑖𝑣𝑖 +
∑︁
𝑗

𝑐𝑗ℎ𝑗

In the formula above, b and c are the intercept vectors for the visible and hidden layers, respectively. The joint
probability of the model is defined in terms of the energy:

𝑃 (v,h) =
𝑒−𝐸(v,h)

𝑍

The word restricted refers to the bipartite structure of the model, which prohibits direct interaction between hidden
units, or between visible units. This means that the following conditional independencies are assumed:

ℎ𝑖⊥ℎ𝑗 |v
𝑣𝑖⊥𝑣𝑗 |h

The bipartite structure allows for the use of efficient block Gibbs sampling for inference.

Bernoulli Restricted Boltzmann machines

In the BernoulliRBM, all units are binary stochastic units. This means that the input data should either be binary, or
real-valued between 0 and 1 signifying the probability that the visible unit would turn on or off. This is a good model
for character recognition, where the interest is on which pixels are active and which aren’t. For images of natural
scenes it no longer fits because of background, depth and the tendency of neighbouring pixels to take the same values.

The conditional probability distribution of each unit is given by the logistic sigmoid activation function of the input it
receives:

𝑃 (𝑣𝑖 = 1|h) = 𝜎(
∑︁
𝑗

𝑤𝑖𝑗ℎ𝑗 + 𝑏𝑖)

𝑃 (ℎ𝑖 = 1|v) = 𝜎(
∑︁
𝑖

𝑤𝑖𝑗𝑣𝑖 + 𝑐𝑗)
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where 𝜎 is the logistic sigmoid function:

𝜎(𝑥) =
1

1 + 𝑒−𝑥

Stochastic Maximum Likelihood learning

The training algorithm implemented in BernoulliRBM is known as Stochastic Maximum Likelihood (SML) or
Persistent Contrastive Divergence (PCD). Optimizing maximum likelihood directly is infeasible because of the form
of the data likelihood:

log𝑃 (𝑣) = log
∑︁
ℎ

𝑒−𝐸(𝑣,ℎ) − log
∑︁
𝑥,𝑦

𝑒−𝐸(𝑥,𝑦)

For simplicity the equation above is written for a single training example. The gradient with respect to the weights is
formed of two terms corresponding to the ones above. They are usually known as the positive gradient and the negative
gradient, because of their respective signs. In this implementation, the gradients are estimated over mini-batches of
samples.

In maximizing the log-likelihood, the positive gradient makes the model prefer hidden states that are compatible with
the observed training data. Because of the bipartite structure of RBMs, it can be computed efficiently. The negative
gradient, however, is intractable. Its goal is to lower the energy of joint states that the model prefers, therefore making
it stay true to the data. It can be approximated by Markov chain Monte Carlo using block Gibbs sampling by iteratively
sampling each of 𝑣 and ℎ given the other, until the chain mixes. Samples generated in this way are sometimes refered
as fantasy particles. This is inefficient and it is difficult to determine whether the Markov chain mixes.

The Contrastive Divergence method suggests to stop the chain after a small number of iterations, 𝑘, usually even 1.
This method is fast and has low variance, but the samples are far from the model distribution.

Persistent Contrastive Divergence addresses this. Instead of starting a new chain each time the gradient is needed, and
performing only one Gibbs sampling step, in PCD we keep a number of chains (fantasy particles) that are updated 𝑘
Gibbs steps after each weight update. This allows the particles to explore the space more thoroughly.

References:

• “A fast learning algorithm for deep belief nets” G. Hinton, S. Osindero, Y.-W. Teh, 2006
• “Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient” T. Tieleman,

2008

3.3 Model selection and evaluation

3.3.1 Cross-validation: evaluating estimator performance

Learning the parameters of a prediction function and testing it on the same data is a methodological mistake: a model
that would just repeat the labels of the samples that it has just seen would have a perfect score but would fail to predict
anything useful on yet-unseen data. This situation is called overfitting. To avoid it, it is common practice when
performing a (supervised) machine learning experiment to hold out part of the available data as a test set X_test,
y_test. Note that the word “experiment” is not intended to denote academic use only, because even in commercial
settings machine learning usually starts out experimentally.

In scikit-learn a random split into training and test sets can be quickly computed with the train_test_split
helper function. Let’s load the iris data set to fit a linear support vector machine on it:

306 Chapter 3. User Guide

http://www.cs.toronto.edu/~hinton/absps/fastnc.pdf
http://www.cs.toronto.edu/~tijmen/pcd/pcd.pdf


scikit-learn user guide, Release 0.17

>>> import numpy as np
>>> from sklearn import cross_validation
>>> from sklearn import datasets
>>> from sklearn import svm

>>> iris = datasets.load_iris()
>>> iris.data.shape, iris.target.shape
((150, 4), (150,))

We can now quickly sample a training set while holding out 40% of the data for testing (evaluating) our classifier:

>>> X_train, X_test, y_train, y_test = cross_validation.train_test_split(
... iris.data, iris.target, test_size=0.4, random_state=0)

>>> X_train.shape, y_train.shape
((90, 4), (90,))
>>> X_test.shape, y_test.shape
((60, 4), (60,))

>>> clf = svm.SVC(kernel='linear', C=1).fit(X_train, y_train)
>>> clf.score(X_test, y_test)
0.96...

When evaluating different settings (“hyperparameters”) for estimators, such as the C setting that must be manually set
for an SVM, there is still a risk of overfitting on the test set because the parameters can be tweaked until the estimator
performs optimally. This way, knowledge about the test set can “leak” into the model and evaluation metrics no longer
report on generalization performance. To solve this problem, yet another part of the dataset can be held out as a so-
called “validation set”: training proceeds on the training set, after which evaluation is done on the validation set, and
when the experiment seems to be successful, final evaluation can be done on the test set.

However, by partitioning the available data into three sets, we drastically reduce the number of samples which can be
used for learning the model, and the results can depend on a particular random choice for the pair of (train, validation)
sets.

A solution to this problem is a procedure called cross-validation (CV for short). A test set should still be held out for
final evaluation, but the validation set is no longer needed when doing CV. In the basic approach, called k-fold CV, the
training set is split into k smaller sets (other approaches are described below, but generally follow the same principles).
The following procedure is followed for each of the k “folds”:

• A model is trained using 𝑘 − 1 of the folds as training data;

• the resulting model is validated on the remaining part of the data (i.e., it is used as a test set to compute a
performance measure such as accuracy).

The performance measure reported by k-fold cross-validation is then the average of the values computed in the loop.
This approach can be computationally expensive, but does not waste too much data (as it is the case when fixing an
arbitrary test set), which is a major advantage in problem such as inverse inference where the number of samples is
very small.

Computing cross-validated metrics

The simplest way to use cross-validation is to call the cross_val_score helper function on the estimator and the
dataset.

The following example demonstrates how to estimate the accuracy of a linear kernel support vector machine on the
iris dataset by splitting the data, fitting a model and computing the score 5 consecutive times (with different splits each
time):
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>>> clf = svm.SVC(kernel='linear', C=1)
>>> scores = cross_validation.cross_val_score(
... clf, iris.data, iris.target, cv=5)
...
>>> scores
array([ 0.96..., 1. ..., 0.96..., 0.96..., 1. ])

The mean score and the 95% confidence interval of the score estimate are hence given by:

>>> print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
Accuracy: 0.98 (+/- 0.03)

By default, the score computed at each CV iteration is the score method of the estimator. It is possible to change
this by using the scoring parameter:

>>> from sklearn import metrics
>>> scores = cross_validation.cross_val_score(clf, iris.data, iris.target,
... cv=5, scoring='f1_weighted')
>>> scores
array([ 0.96..., 1. ..., 0.96..., 0.96..., 1. ])

See The scoring parameter: defining model evaluation rules for details. In the case of the Iris dataset, the samples are
balanced across target classes hence the accuracy and the F1-score are almost equal.

When the cv argument is an integer, cross_val_score uses the KFold or StratifiedKFold strategies by
default, the latter being used if the estimator derives from ClassifierMixin.

It is also possible to use other cross validation strategies by passing a cross validation iterator instead, for instance:

>>> n_samples = iris.data.shape[0]
>>> cv = cross_validation.ShuffleSplit(n_samples, n_iter=3,
... test_size=0.3, random_state=0)

>>> cross_validation.cross_val_score(clf, iris.data, iris.target, cv=cv)
...
array([ 0.97..., 0.97..., 1. ])
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Data transformation with held out data

Just as it is important to test a predictor on data held-out from training, preprocessing (such as standardization,
feature selection, etc.) and similar data transformations similarly should be learnt from a training set and applied
to held-out data for prediction:

>>> from sklearn import preprocessing
>>> X_train, X_test, y_train, y_test = cross_validation.train_test_split(
... iris.data, iris.target, test_size=0.4, random_state=0)
>>> scaler = preprocessing.StandardScaler().fit(X_train)
>>> X_train_transformed = scaler.transform(X_train)
>>> clf = svm.SVC(C=1).fit(X_train_transformed, y_train)
>>> X_test_transformed = scaler.transform(X_test)
>>> clf.score(X_test_transformed, y_test)
0.9333...

A Pipeline makes it easier to compose estimators, providing this behavior under cross-validation:

>>> from sklearn.pipeline import make_pipeline
>>> clf = make_pipeline(preprocessing.StandardScaler(), svm.SVC(C=1))
>>> cross_validation.cross_val_score(clf, iris.data, iris.target, cv=cv)
...
array([ 0.97..., 0.93..., 0.95...])

See Pipeline and FeatureUnion: combining estimators.

Obtaining predictions by cross-validation

The function cross_val_predict has a similar interface to cross_val_score, but returns, for each element
in the input, the prediction that was obtained for that element when it was in the test set. Only cross-validation
strategies that assign all elements to a test set exactly once can be used (otherwise, an exception is raised).

These prediction can then be used to evaluate the classifier:

>>> predicted = cross_validation.cross_val_predict(clf, iris.data,
... iris.target, cv=10)
>>> metrics.accuracy_score(iris.target, predicted)
0.966...

Note that the result of this computation may be slightly different from those obtained using cross_val_score as
the elements are grouped in different ways.

The available cross validation iterators are introduced in the following section.

Examples

• Receiver Operating Characteristic (ROC) with cross validation,
• Recursive feature elimination with cross-validation,
• Parameter estimation using grid search with cross-validation,
• Sample pipeline for text feature extraction and evaluation,
• Plotting Cross-Validated Predictions,

Cross validation iterators

The following sections list utilities to generate indices that can be used to generate dataset splits according to different
cross validation strategies.
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K-fold

KFold divides all the samples in 𝑘 groups of samples, called folds (if 𝑘 = 𝑛, this is equivalent to the Leave One Out
strategy), of equal sizes (if possible). The prediction function is learned using 𝑘− 1 folds, and the fold left out is used
for test.

Example of 2-fold cross-validation on a dataset with 4 samples:

>>> import numpy as np
>>> from sklearn.cross_validation import KFold

>>> kf = KFold(4, n_folds=2)
>>> for train, test in kf:
... print("%s %s" % (train, test))
[2 3] [0 1]
[0 1] [2 3]

Each fold is constituted by two arrays: the first one is related to the training set, and the second one to the test set.
Thus, one can create the training/test sets using numpy indexing:

>>> X = np.array([[0., 0.], [1., 1.], [-1., -1.], [2., 2.]])
>>> y = np.array([0, 1, 0, 1])
>>> X_train, X_test, y_train, y_test = X[train], X[test], y[train], y[test]

Stratified k-fold

StratifiedKFold is a variation of k-fold which returns stratified folds: each set contains approximately the same
percentage of samples of each target class as the complete set.

Example of stratified 3-fold cross-validation on a dataset with 10 samples from two slightly unbalanced classes:

>>> from sklearn.cross_validation import StratifiedKFold

>>> labels = [0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
>>> skf = StratifiedKFold(labels, 3)
>>> for train, test in skf:
... print("%s %s" % (train, test))
[2 3 6 7 8 9] [0 1 4 5]
[0 1 3 4 5 8 9] [2 6 7]
[0 1 2 4 5 6 7] [3 8 9]

Label k-fold

LabelKFold is a variation of k-fold which ensures that the same label is not in both testing and training sets. This
is necessary for example if you obtained data from different subjects and you want to avoid over-fitting (i.e., learning
person specific features) by testing and training on different subjects.

Imagine you have three subjects, each with an associated number from 1 to 3:

>>> from sklearn.cross_validation import LabelKFold

>>> labels = [1, 1, 1, 2, 2, 2, 3, 3, 3, 3]

>>> lkf = LabelKFold(labels, n_folds=3)
>>> for train, test in lkf:
... print("%s %s" % (train, test))
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[0 1 2 3 4 5] [6 7 8 9]
[0 1 2 6 7 8 9] [3 4 5]
[3 4 5 6 7 8 9] [0 1 2]

Each subject is in a different testing fold, and the same subject is never in both testing and training. Notice that the
folds do not have exactly the same size due to the imbalance in the data.

Leave-One-Out - LOO

LeaveOneOut (or LOO) is a simple cross-validation. Each learning set is created by taking all the samples except
one, the test set being the sample left out. Thus, for 𝑛 samples, we have 𝑛 different training sets and 𝑛 different tests
set. This cross-validation procedure does not waste much data as only one sample is removed from the training set:

>>> from sklearn.cross_validation import LeaveOneOut

>>> loo = LeaveOneOut(4)
>>> for train, test in loo:
... print("%s %s" % (train, test))
[1 2 3] [0]
[0 2 3] [1]
[0 1 3] [2]
[0 1 2] [3]

Potential users of LOO for model selection should weigh a few known caveats. When compared with 𝑘-fold cross
validation, one builds 𝑛 models from 𝑛 samples instead of 𝑘 models, where 𝑛 > 𝑘. Moreover, each is trained on 𝑛− 1
samples rather than (𝑘 − 1)𝑛/𝑘. In both ways, assuming 𝑘 is not too large and 𝑘 < 𝑛, LOO is more computationally
expensive than 𝑘-fold cross validation.

In terms of accuracy, LOO often results in high variance as an estimator for the test error. Intuitively, since 𝑛 − 1 of
the 𝑛 samples are used to build each model, models constructed from folds are virtually identical to each other and to
the model built from the entire training set.

However, if the learning curve is steep for the training size in question, then 5- or 10- fold cross validation can
overestimate the generalization error.

As a general rule, most authors, and empirical evidence, suggest that 5- or 10- fold cross validation should be preferred
to LOO.

References:

• http://www.faqs.org/faqs/ai-faq/neural-nets/part3/section-12.html
• T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Springer 2009
• L. Breiman, P. Spector Submodel selection and evaluation in regression: The X-random case, International

Statistical Review 1992
• R. Kohavi, A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection, Intl.

Jnt. Conf. AI
• R. Bharat Rao, G. Fung, R. Rosales, On the Dangers of Cross-Validation. An Experimental Evaluation,

SIAM 2008
• G. James, D. Witten, T. Hastie, R Tibshirani, An Introduction to Statistical Learning, Springer 2013

Leave-P-Out - LPO

LeavePOut is very similar to LeaveOneOut as it creates all the possible training/test sets by removing 𝑝 samples
from the complete set. For 𝑛 samples, this produces

(︀
𝑛
𝑝

)︀
train-test pairs. Unlike LeaveOneOut and KFold, the test
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sets will overlap for 𝑝 > 1.

Example of Leave-2-Out on a dataset with 4 samples:

>>> from sklearn.cross_validation import LeavePOut

>>> lpo = LeavePOut(4, p=2)
>>> for train, test in lpo:
... print("%s %s" % (train, test))
[2 3] [0 1]
[1 3] [0 2]
[1 2] [0 3]
[0 3] [1 2]
[0 2] [1 3]
[0 1] [2 3]

Leave-One-Label-Out - LOLO

LeaveOneLabelOut (LOLO) is a cross-validation scheme which holds out the samples according to a third-party
provided array of integer labels. This label information can be used to encode arbitrary domain specific pre-defined
cross-validation folds.

Each training set is thus constituted by all the samples except the ones related to a specific label.

For example, in the cases of multiple experiments, LOLO can be used to create a cross-validation based on the different
experiments: we create a training set using the samples of all the experiments except one:

>>> from sklearn.cross_validation import LeaveOneLabelOut

>>> labels = [1, 1, 2, 2]
>>> lolo = LeaveOneLabelOut(labels)
>>> for train, test in lolo:
... print("%s %s" % (train, test))
[2 3] [0 1]
[0 1] [2 3]

Another common application is to use time information: for instance the labels could be the year of collection of the
samples and thus allow for cross-validation against time-based splits.

Warning: Contrary to StratifiedKFold, the ‘‘labels‘‘ of :class:‘LeaveOneLabelOut‘ should not encode
the target class to predict: the goal of StratifiedKFold is to rebalance dataset classes across the train / test
split to ensure that the train and test folds have approximately the same percentage of samples of each class while
LeaveOneLabelOut will do the opposite by ensuring that the samples of the train and test fold will not share
the same label value.

Leave-P-Label-Out

LeavePLabelOut is similar as Leave-One-Label-Out, but removes samples related to 𝑃 labels for each training/test
set.

Example of Leave-2-Label Out:

>>> from sklearn.cross_validation import LeavePLabelOut

>>> labels = [1, 1, 2, 2, 3, 3]
>>> lplo = LeavePLabelOut(labels, p=2)
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>>> for train, test in lplo:
... print("%s %s" % (train, test))
[4 5] [0 1 2 3]
[2 3] [0 1 4 5]
[0 1] [2 3 4 5]

Random permutations cross-validation a.k.a. Shuffle & Split

ShuffleSplit

The ShuffleSplit iterator will generate a user defined number of independent train / test dataset splits. Samples
are first shuffled and then split into a pair of train and test sets.

It is possible to control the randomness for reproducibility of the results by explicitly seeding the random_state
pseudo random number generator.

Here is a usage example:

>>> ss = cross_validation.ShuffleSplit(5, n_iter=3, test_size=0.25,
... random_state=0)
>>> for train_index, test_index in ss:
... print("%s %s" % (train_index, test_index))
...
[1 3 4] [2 0]
[1 4 3] [0 2]
[4 0 2] [1 3]

ShuffleSplit is thus a good alternative to KFold cross validation that allows a finer control on the number of
iterations and the proportion of samples in on each side of the train / test split.

Label-Shuffle-Split

LabelShuffleSplit

The LabelShuffleSplit iterator behaves as a combination of ShuffleSplit and LeavePLabelsOut, and
generates a sequence of randomized partitions in which a subset of labels are held out for each split.

Here is a usage example:

>>> from sklearn.cross_validation import LabelShuffleSplit

>>> labels = [1, 1, 2, 2, 3, 3, 4, 4]
>>> slo = LabelShuffleSplit(labels, n_iter=4, test_size=0.5,
... random_state=0)
>>> for train, test in slo:
... print("%s %s" % (train, test))
...
[0 1 2 3] [4 5 6 7]
[2 3 6 7] [0 1 4 5]
[2 3 4 5] [0 1 6 7]
[4 5 6 7] [0 1 2 3]

This class is useful when the behavior of LeavePLabelsOut is desired, but the number of labels is large enough
that generating all possible partitions with 𝑃 labels withheld would be prohibitively expensive. In such a sce-
nario, LabelShuffleSplit provides a random sample (with replacement) of the train / test splits generated by
LeavePLabelsOut.
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Predefined Fold-Splits / Validation-Sets

For some datasets, a pre-defined split of the data into training- and validation fold or into several cross-validation folds
already exists. Using PredefinedSplit it is possible to use these folds e.g. when searching for hyperparameters.

For example, when using a validation set, set the test_fold to 0 for all samples that are part of the validation set,
and to -1 for all other samples.

See also

StratifiedShuffleSplit is a variation of ShuffleSplit, which returns stratified splits, i.e which creates splits
by preserving the same percentage for each target class as in the complete set.

A note on shuffling

If the data ordering is not arbitrary (e.g. samples with the same label are contiguous), shuffling it first may be essential
to get a meaningful cross- validation result. However, the opposite may be true if the samples are not independently
and identically distributed. For example, if samples correspond to news articles, and are ordered by their time of
publication, then shuffling the data will likely lead to a model that is overfit and an inflated validation score: it will be
tested on samples that are artificially similar (close in time) to training samples.

Some cross validation iterators, such as KFold, have an inbuilt option to shuffle the data indices before splitting them.
Note that:

• This consumes less memory than shuffling the data directly.

• By default no shuffling occurs, including for the (stratified) K fold cross- validation performed by specifying
cv=some_integer to cross_val_score, grid search, etc. Keep in mind that train_test_split
still returns a random split.

• The random_state parameter defaults to None, meaning that the shuffling will be different every time
KFold(..., shuffle=True) is iterated. However, GridSearchCV will use the same shuffling for
each set of parameters validated by a single call to its fit method.

• To ensure results are repeatable (on the same platform), use a fixed value for random_state.

Cross validation and model selection

Cross validation iterators can also be used to directly perform model selection using Grid Search for the optimal
hyperparameters of the model. This is the topic if the next section: Grid Search: Searching for estimator parameters.

3.3.2 Grid Search: Searching for estimator parameters

Parameters that are not directly learnt within estimators can be set by searching a parameter space for the best Cross-
validation: evaluating estimator performance score. Typical examples include C, kernel and gamma for Support
Vector Classifier, alpha for Lasso, etc.

Any parameter provided when constructing an estimator may be optimized in this manner. Specifically, to find the
names and current values for all parameters for a given estimator, use:

estimator.get_params()
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Such parameters are often referred to as hyperparameters (particularly in Bayesian learning), distinguishing them from
the parameters optimised in a machine learning procedure.

A search consists of:

• an estimator (regressor or classifier such as sklearn.svm.SVC());

• a parameter space;

• a method for searching or sampling candidates;

• a cross-validation scheme; and

• a score function.

Some models allow for specialized, efficient parameter search strategies, outlined below. Two generic approaches to
sampling search candidates are provided in scikit-learn: for given values, GridSearchCV exhaustively considers all
parameter combinations, while RandomizedSearchCV can sample a given number of candidates from a parameter
space with a specified distribution. After describing these tools we detail best practice applicable to both approaches.

Exhaustive Grid Search

The grid search provided by GridSearchCV exhaustively generates candidates from a grid of parameter values
specified with the param_grid parameter. For instance, the following param_grid:

param_grid = [
{'C': [1, 10, 100, 1000], 'kernel': ['linear']},
{'C': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001], 'kernel': ['rbf']},

]

specifies that two grids should be explored: one with a linear kernel and C values in [1, 10, 100, 1000], and the second
one with an RBF kernel, and the cross-product of C values ranging in [1, 10, 100, 1000] and gamma values in [0.001,
0.0001].

The GridSearchCV instance implements the usual estimator API: when “fitting” it on a dataset all the possible
combinations of parameter values are evaluated and the best combination is retained.

Examples:

• See Parameter estimation using grid search with cross-validation for an example of Grid Search compu-
tation on the digits dataset.

• See Sample pipeline for text feature extraction and evaluation for an example of Grid Search coupling
parameters from a text documents feature extractor (n-gram count vectorizer and TF-IDF transformer)
with a classifier (here a linear SVM trained with SGD with either elastic net or L2 penalty) using a
pipeline.Pipeline instance.

Randomized Parameter Optimization

While using a grid of parameter settings is currently the most widely used method for parameter optimization, other
search methods have more favourable properties. RandomizedSearchCV implements a randomized search over
parameters, where each setting is sampled from a distribution over possible parameter values. This has two main
benefits over an exhaustive search:

• A budget can be chosen independent of the number of parameters and possible values.

• Adding parameters that do not influence the performance does not decrease efficiency.
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Specifying how parameters should be sampled is done using a dictionary, very similar to specifying parameters for
GridSearchCV. Additionally, a computation budget, being the number of sampled candidates or sampling iterations,
is specified using the n_iter parameter. For each parameter, either a distribution over possible values or a list of
discrete choices (which will be sampled uniformly) can be specified:

[{'C': scipy.stats.expon(scale=100), 'gamma': scipy.stats.expon(scale=.1),
'kernel': ['rbf'], 'class_weight':['auto', None]}]

This example uses the scipy.stats module, which contains many useful distributions for sampling parameters,
such as expon, gamma, uniform or randint. In principle, any function can be passed that provides a rvs
(random variate sample) method to sample a value. A call to the rvs function should provide independent random
samples from possible parameter values on consecutive calls.

Warning: The distributions in scipy.stats do not allow specifying a random state. Instead,
they use the global numpy random state, that can be seeded via np.random.seed or set using
np.random.set_state.

For continuous parameters, such as C above, it is important to specify a continuous distribution to take full advantage
of the randomization. This way, increasing n_iter will always lead to a finer search.

Examples:

• Comparing randomized search and grid search for hyperparameter estimation compares the usage and
efficiency of randomized search and grid search.

References:

• Bergstra, J. and Bengio, Y., Random search for hyper-parameter optimization, The Journal of Machine
Learning Research (2012)

Tips for parameter search

Specifying an objective metric

By default, parameter search uses the score function of the estimator to evaluate a parameter setting. These are
the sklearn.metrics.accuracy_score for classification and sklearn.metrics.r2_score for regres-
sion. For some applications, other scoring functions are better suited (for example in unbalanced classification, the
accuracy score is often uninformative). An alternative scoring function can be specified via the scoring parameter
to GridSearchCV, RandomizedSearchCV and many of the specialized cross-validation tools described below.
See The scoring parameter: defining model evaluation rules for more details.

Composite estimators and parameter spaces

Pipeline: chaining estimators describes building composite estimators whose parameter space can be searched with
these tools.

Model selection: development and evaluation

Model selection by evaluating various parameter settings can be seen as a way to use the labeled data to “train” the
parameters of the grid.
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When evaluating the resulting model it is important to do it on held-out samples that were not seen during the grid
search process: it is recommended to split the data into a development set (to be fed to the GridSearchCV instance)
and an evaluation set to compute performance metrics.

This can be done by using the cross_validation.train_test_split utility function.

Parallelism

GridSearchCV and RandomizedSearchCV evaluate each parameter setting independently. Computations can
be run in parallel if your OS supports it, by using the keyword n_jobs=-1. See function signature for more details.

Robustness to failure

Some parameter settings may result in a failure to fit one or more folds of the data. By default, this will cause
the entire search to fail, even if some parameter settings could be fully evaluated. Setting error_score=0 (or
=np.NaN) will make the procedure robust to such failure, issuing a warning and setting the score for that fold to 0 (or
NaN), but completing the search.

Alternatives to brute force parameter search

Model specific cross-validation

Some models can fit data for a range of value of some parameter almost as efficiently as fitting the estimator for a
single value of the parameter. This feature can be leveraged to perform a more efficient cross-validation used for
model selection of this parameter.

The most common parameter amenable to this strategy is the parameter encoding the strength of the regularizer. In
this case we say that we compute the regularization path of the estimator.

Here is the list of such models:

linear_model.ElasticNetCV([l1_ratio, eps, ...]) Elastic Net model with iterative fitting along a regularization path
linear_model.LarsCV([fit_intercept, ...]) Cross-validated Least Angle Regression model
linear_model.LassoCV([eps, n_alphas, ...]) Lasso linear model with iterative fitting along a regularization path
linear_model.LassoLarsCV([fit_intercept, ...]) Cross-validated Lasso, using the LARS algorithm
linear_model.LogisticRegressionCV([Cs, ...]) Logistic Regression CV (aka logit, MaxEnt) classifier.
linear_model.MultiTaskElasticNetCV([...]) Multi-task L1/L2 ElasticNet with built-in cross-validation.
linear_model.MultiTaskLassoCV([eps, ...]) Multi-task L1/L2 Lasso with built-in cross-validation.
linear_model.OrthogonalMatchingPursuitCV([...]) Cross-validated Orthogonal Matching Pursuit model (OMP)
linear_model.RidgeCV([alphas, ...]) Ridge regression with built-in cross-validation.
linear_model.RidgeClassifierCV([alphas, ...]) Ridge classifier with built-in cross-validation.

sklearn.linear_model.ElasticNetCV
class sklearn.linear_model.ElasticNetCV(l1_ratio=0.5, eps=0.001, n_alphas=100, al-

phas=None, fit_intercept=True, normalize=False,
precompute=’auto’, max_iter=1000, tol=0.0001,
cv=None, copy_X=True, verbose=0, n_jobs=1, posi-
tive=False, random_state=None, selection=’cyclic’)

Elastic Net model with iterative fitting along a regularization path

The best model is selected by cross-validation.

Read more in the User Guide.
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Parametersl1_ratio : float or array of floats, optional

float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For
l1_ratio = 0 the penalty is an L2 penalty. For l1_ratio = 1 it is an L1 penalty.
For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2 This parameter
can be a list, in which case the different values are tested by cross-validation and the
one giving the best prediction score is used. Note that a good choice of list of values
for l1_ratio is often to put more values close to 1 (i.e. Lasso) and less close to 0 (i.e.
Ridge), as in [.1, .5, .7, .9, .95, .99, 1]

eps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3.

n_alphas : int, optional

Number of alphas along the regularization path, used for each l1_ratio.

alphas : numpy array, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ’auto’
let us decide. The Gram matrix can also be passed as argument.

max_iter : int, optional

The maximum number of iterations

tol : float, optional

The tolerance for the optimization: if the updates are smaller than tol, the optimization
code checks the dual gap for optimality and continues until it is smaller than tol.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

•None, to use the default 3-fold cross-validation,

•integer, to specify the number of folds.

•An object to be used as a cross-validation generator.

•An iterable yielding train/test splits.

For integer/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

verbose : bool or integer

Amount of verbosity.

n_jobs : integer, optional

Number of CPUs to use during the cross validation. If -1, use all the CPUs.

positive : bool, optional

When set to True, forces the coefficients to be positive.

selection : str, default ‘cyclic’
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If set to ‘random’, a random coefficient is updated every iteration rather than looping
over features sequentially by default. This (setting to ‘random’) often leads to signifi-
cantly faster convergence especially when tol is higher than 1e-4.

random_state : int, RandomState instance, or None (default)

The seed of the pseudo random number generator that selects a random feature to up-
date. Useful only when selection is set to ‘random’.

fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

Attributesalpha_ : float

The amount of penalization chosen by cross validation

l1_ratio_ : float

The compromise between l1 and l2 penalization chosen by cross validation

coef_ : array, shape (n_features,) | (n_targets, n_features)

Parameter vector (w in the cost function formula),

intercept_ : float | array, shape (n_targets, n_features)

Independent term in the decision function.

mse_path_ : array, shape (n_l1_ratio, n_alpha, n_folds)

Mean square error for the test set on each fold, varying l1_ratio and alpha.

alphas_ : numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas)

The grid of alphas used for fitting, for each l1_ratio.

n_iter_ : int

number of iterations run by the coordinate descent solver to reach the specified tolerance
for the optimal alpha.

See also:

enet_path, ElasticNet

Notes

See examples/linear_model/lasso_path_with_crossvalidation.py for an example.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda
parameter in glmnet. More specifically, the optimization objective is:
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1 / (2 * n_samples) * ||y - Xw||^2_2 +
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:

a * L1 + b * L2

for:

alpha = a + b and l1_ratio = a / (a + b).

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
fit(X, y) Fit linear model with coordinate descent
get_params([deep]) Get parameters for this estimator.
path(X, y[, l1_ratio, eps, n_alphas, ...]) Compute elastic net path with coordinate descent
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normal-
ize=False, precompute=’auto’, max_iter=1000, tol=0.0001, cv=None, copy_X=True, ver-
bose=0, n_jobs=1, positive=False, random_state=None, selection=’cyclic’)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19.

Decision function of the linear model.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

fit(X, y)
Fit linear model with coordinate descent

Fit is on grid of alphas and best alpha estimated by cross-validation.

ParametersX : {array-like}, shape (n_samples, n_features)

Training data. Pass directly as float64, Fortran-contiguous data to avoid unnecessary
memory duplication. If y is mono-output, X can be sparse.

y : array-like, shape (n_samples,) or (n_samples, n_targets)

Target values

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.
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Returnsparams : mapping of string to any

Parameter names mapped to their values.

static path(X, y, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’,
Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, posi-
tive=False, check_input=True, **params)

Compute elastic net path with coordinate descent

The elastic net optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

1 / (2 * n_samples) * ||y - Xw||^2_2 +
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

ParametersX : {array-like}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output then X can be sparse.

y : ndarray, shape (n_samples,) or (n_samples, n_outputs)

Target values

l1_ratio : float, optional

float between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties).
l1_ratio=1 corresponds to the Lasso

eps : float

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3

n_alphas : int, optional

Number of alphas along the regularization path

alphas : ndarray, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ’auto’
let us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.
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copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

coef_init : array, shape (n_features, ) | None

The initial values of the coefficients.

verbose : bool or integer

Amount of verbosity.

params : kwargs

keyword arguments passed to the coordinate descent solver.

return_n_iter : bool

whether to return the number of iterations or not.

positive : bool, default False

If set to True, forces coefficients to be positive.

check_input : bool, default True

Skip input validation checks, including the Gram matrix when provided assuming there
are handled by the caller when check_input=False.

Returnsalphas : array, shape (n_alphas,)

The alphas along the path where models are computed.

coefs : array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)

Coefficients along the path.

dual_gaps : array, shape (n_alphas,)

The dual gaps at the end of the optimization for each alpha.

n_iters : array-like, shape (n_alphas,)

The number of iterations taken by the coordinate descent optimizer to reach the specified
tolerance for each alpha. (Is returned when return_n_iter is set to True).

See also:

MultiTaskElasticNet, MultiTaskElasticNetCV, ElasticNet, ElasticNetCV

Notes

See examples/plot_lasso_coordinate_descent_path.py for an example.

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.
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score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

sklearn.linear_model.LarsCV
class sklearn.linear_model.LarsCV(fit_intercept=True, verbose=False, max_iter=500, normal-

ize=True, precompute=’auto’, cv=None, max_n_alphas=1000,
n_jobs=1, eps=2.2204460492503131e-16, copy_X=True, posi-
tive=False)

Cross-validated Least Angle Regression model

Read more in the User Guide.

Parametersfit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

positive : boolean (default=False)

Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept
which is set True by default.

verbose : boolean or integer, optional

Sets the verbosity amount

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

precompute : True | False | ‘auto’ | array-like
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Whether to use a precomputed Gram matrix to speed up calculations. If set to ’auto’
let us decide. The Gram matrix can also be passed as argument.

max_iter: integer, optional :

Maximum number of iterations to perform.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

•None, to use the default 3-fold cross-validation,

•integer, to specify the number of folds.

•An object to be used as a cross-validation generator.

•An iterable yielding train/test splits.

For integer/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

max_n_alphas : integer, optional

The maximum number of points on the path used to compute the residuals in the cross-
validation

n_jobs : integer, optional

Number of CPUs to use during the cross validation. If -1, use all the CPUs

eps : float, optional

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems.

Attributescoef_ : array, shape (n_features,)

parameter vector (w in the formulation formula)

intercept_ : float

independent term in decision function

coef_path_ : array, shape (n_features, n_alphas)

the varying values of the coefficients along the path

alpha_ : float

the estimated regularization parameter alpha

alphas_ : array, shape (n_alphas,)

the different values of alpha along the path

cv_alphas_ : array, shape (n_cv_alphas,)

all the values of alpha along the path for the different folds

cv_mse_path_ : array, shape (n_folds, n_cv_alphas)

the mean square error on left-out for each fold along the path (alpha values given by
cv_alphas)

n_iter_ : array-like or int

the number of iterations run by Lars with the optimal alpha.
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See also:

lars_path, LassoLars, LassoLarsCV

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
fit(X, y) Fit the model using X, y as training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute=’auto’,
cv=None, max_n_alphas=1000, n_jobs=1, eps=2.2204460492503131e-16, copy_X=True,
positive=False)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19.

Decision function of the linear model.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

fit(X, y)
Fit the model using X, y as training data.

ParametersX : array-like, shape (n_samples, n_features)

Training data.

y : array-like, shape (n_samples,)

Target values.

Returnsself : object

returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.
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ReturnsC : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

sklearn.linear_model.LassoCV
class sklearn.linear_model.LassoCV(eps=0.001, n_alphas=100, alphas=None, fit_intercept=True,

normalize=False, precompute=’auto’, max_iter=1000,
tol=0.0001, copy_X=True, cv=None, verbose=False,
n_jobs=1, positive=False, random_state=None, selec-
tion=’cyclic’)

Lasso linear model with iterative fitting along a regularization path

The best model is selected by cross-validation.

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

Read more in the User Guide.

Parameterseps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3.

n_alphas : int, optional

Number of alphas along the regularization path

alphas : numpy array, optional

List of alphas where to compute the models. If None alphas are set automatically
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precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ’auto’
let us decide. The Gram matrix can also be passed as argument.

max_iter : int, optional

The maximum number of iterations

tol : float, optional

The tolerance for the optimization: if the updates are smaller than tol, the optimization
code checks the dual gap for optimality and continues until it is smaller than tol.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

•None, to use the default 3-fold cross-validation,

•integer, to specify the number of folds.

•An object to be used as a cross-validation generator.

•An iterable yielding train/test splits.

For integer/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

verbose : bool or integer

Amount of verbosity.

n_jobs : integer, optional

Number of CPUs to use during the cross validation. If -1, use all the CPUs.

positive : bool, optional

If positive, restrict regression coefficients to be positive

selection : str, default ‘cyclic’

If set to ‘random’, a random coefficient is updated every iteration rather than looping
over features sequentially by default. This (setting to ‘random’) often leads to signifi-
cantly faster convergence especially when tol is higher than 1e-4.

random_state : int, RandomState instance, or None (default)

The seed of the pseudo random number generator that selects a random feature to up-
date. Useful only when selection is set to ‘random’.

fit_intercept : boolean, default True

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

Attributesalpha_ : float

The amount of penalization chosen by cross validation
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coef_ : array, shape (n_features,) | (n_targets, n_features)

parameter vector (w in the cost function formula)

intercept_ : float | array, shape (n_targets,)

independent term in decision function.

mse_path_ : array, shape (n_alphas, n_folds)

mean square error for the test set on each fold, varying alpha

alphas_ : numpy array, shape (n_alphas,)

The grid of alphas used for fitting

dual_gap_ : ndarray, shape ()

The dual gap at the end of the optimization for the optimal alpha (alpha_).

n_iter_ : int

number of iterations run by the coordinate descent solver to reach the specified tolerance
for the optimal alpha.

See also:

lars_path, lasso_path, LassoLars, Lasso, LassoLarsCV

Notes

See examples/linear_model/lasso_path_with_crossvalidation.py for an example.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
fit(X, y) Fit linear model with coordinate descent
get_params([deep]) Get parameters for this estimator.
path(X, y[, eps, n_alphas, alphas, ...]) Compute Lasso path with coordinate descent
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, pre-
compute=’auto’, max_iter=1000, tol=0.0001, copy_X=True, cv=None, verbose=False,
n_jobs=1, positive=False, random_state=None, selection=’cyclic’)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19.

Decision function of the linear model.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)
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Returns predicted values.

fit(X, y)
Fit linear model with coordinate descent

Fit is on grid of alphas and best alpha estimated by cross-validation.

ParametersX : {array-like}, shape (n_samples, n_features)

Training data. Pass directly as float64, Fortran-contiguous data to avoid unnecessary
memory duplication. If y is mono-output, X can be sparse.

y : array-like, shape (n_samples,) or (n_samples, n_targets)

Target values

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

static path(X, y, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’, Xy=None,
copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False,
**params)

Compute Lasso path with coordinate descent

The Lasso optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output then X can be sparse.

y : ndarray, shape (n_samples,), or (n_samples, n_outputs)

Target values

eps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3

n_alphas : int, optional

Number of alphas along the regularization path
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alphas : ndarray, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ’auto’
let us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

coef_init : array, shape (n_features, ) | None

The initial values of the coefficients.

verbose : bool or integer

Amount of verbosity.

params : kwargs

keyword arguments passed to the coordinate descent solver.

positive : bool, default False

If set to True, forces coefficients to be positive.

return_n_iter : bool

whether to return the number of iterations or not.

Returnsalphas : array, shape (n_alphas,)

The alphas along the path where models are computed.

coefs : array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)

Coefficients along the path.

dual_gaps : array, shape (n_alphas,)

The dual gaps at the end of the optimization for each alpha.

n_iters : array-like, shape (n_alphas,)

The number of iterations taken by the coordinate descent optimizer to reach the specified
tolerance for each alpha.

See also:

lars_path, Lasso, LassoLars, LassoCV, LassoLarsCV,
sklearn.decomposition.sparse_encode

Notes

See examples/linear_model/plot_lasso_coordinate_descent_path.py for an example.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.
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Note that in certain cases, the Lars solver may be significantly faster to implement this functionality. In
particular, linear interpolation can be used to retrieve model coefficients between the values output by
lars_path

Examples

Comparing lasso_path and lars_path with interpolation:

>>> X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T
>>> y = np.array([1, 2, 3.1])
>>> # Use lasso_path to compute a coefficient path
>>> _, coef_path, _ = lasso_path(X, y, alphas=[5., 1., .5])
>>> print(coef_path)
[[ 0. 0. 0.46874778]
[ 0.2159048 0.4425765 0.23689075]]

>>> # Now use lars_path and 1D linear interpolation to compute the
>>> # same path
>>> from sklearn.linear_model import lars_path
>>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso')
>>> from scipy import interpolate
>>> coef_path_continuous = interpolate.interp1d(alphas[::-1],
... coef_path_lars[:, ::-1])
>>> print(coef_path_continuous([5., 1., .5]))
[[ 0. 0. 0.46915237]
[ 0.2159048 0.4425765 0.23668876]]

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.
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set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.linear_model.LassoCV

• Cross-validation on diabetes Dataset Exercise

• Feature selection using SelectFromModel and LassoCV

• Lasso model selection: Cross-Validation / AIC / BIC

sklearn.linear_model.LassoLarsCV
class sklearn.linear_model.LassoLarsCV(fit_intercept=True, verbose=False, max_iter=500,

normalize=True, precompute=’auto’,
cv=None, max_n_alphas=1000, n_jobs=1,
eps=2.2204460492503131e-16, copy_X=True, posi-
tive=False)

Cross-validated Lasso, using the LARS algorithm

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

Read more in the User Guide.

Parametersfit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

positive : boolean (default=False)

Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept
which is set True by default. Under the positive restriction the model coefficients do
not converge to the ordinary-least-squares solution for small values of alpha. Only co-
effiencts up to the smallest alpha value (alphas_[alphas_ > 0.].min() when
fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congru-
ence with the solution of the coordinate descent Lasso estimator. As a consequence
using LassoLarsCV only makes sense for problems where a sparse solution is expected
and/or reached.

verbose : boolean or integer, optional

Sets the verbosity amount

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ’auto’
let us decide. The Gram matrix can also be passed as argument.

max_iter : integer, optional

332 Chapter 3. User Guide



scikit-learn user guide, Release 0.17

Maximum number of iterations to perform.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

•None, to use the default 3-fold cross-validation,

•integer, to specify the number of folds.

•An object to be used as a cross-validation generator.

•An iterable yielding train/test splits.

For integer/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

max_n_alphas : integer, optional

The maximum number of points on the path used to compute the residuals in the cross-
validation

n_jobs : integer, optional

Number of CPUs to use during the cross validation. If -1, use all the CPUs

eps : float, optional

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

Attributescoef_ : array, shape (n_features,)

parameter vector (w in the formulation formula)

intercept_ : float

independent term in decision function.

coef_path_ : array, shape (n_features, n_alphas)

the varying values of the coefficients along the path

alpha_ : float

the estimated regularization parameter alpha

alphas_ : array, shape (n_alphas,)

the different values of alpha along the path

cv_alphas_ : array, shape (n_cv_alphas,)

all the values of alpha along the path for the different folds

cv_mse_path_ : array, shape (n_folds, n_cv_alphas)

the mean square error on left-out for each fold along the path (alpha values given by
cv_alphas)

n_iter_ : array-like or int

the number of iterations run by Lars with the optimal alpha.
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See also:

lars_path, LassoLars, LarsCV, LassoCV

Notes

The object solves the same problem as the LassoCV object. However, unlike the LassoCV, it find the relevant
alphas values by itself. In general, because of this property, it will be more stable. However, it is more fragile to
heavily multicollinear datasets.

It is more efficient than the LassoCV if only a small number of features are selected compared to the total
number, for instance if there are very few samples compared to the number of features.

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
fit(X, y) Fit the model using X, y as training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute=’auto’,
cv=None, max_n_alphas=1000, n_jobs=1, eps=2.2204460492503131e-16, copy_X=True,
positive=False)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19.

Decision function of the linear model.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

fit(X, y)
Fit the model using X, y as training data.

ParametersX : array-like, shape (n_samples, n_features)

Training data.

y : array-like, shape (n_samples,)

Target values.

Returnsself : object

returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :
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If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.linear_model.LassoLarsCV

• Lasso model selection: Cross-Validation / AIC / BIC

• Sparse recovery: feature selection for sparse linear models

sklearn.linear_model.LogisticRegressionCV
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class sklearn.linear_model.LogisticRegressionCV(Cs=10, fit_intercept=True, cv=None,
dual=False, penalty=’l2’, scor-
ing=None, solver=’lbfgs’, tol=0.0001,
max_iter=100, class_weight=None,
n_jobs=1, verbose=0, refit=True, in-
tercept_scaling=1.0, multi_class=’ovr’,
random_state=None)

Logistic Regression CV (aka logit, MaxEnt) classifier.

This class implements logistic regression using liblinear, newton-cg, sag of lbfgs optimizer. The newton-cg, sag
and lbfgs solvers support only L2 regularization with primal formulation. The liblinear solver supports both L1
and L2 regularization, with a dual formulation only for the L2 penalty.

For the grid of Cs values (that are set by default to be ten values in a logarithmic scale between 1e-4 and
1e4), the best hyperparameter is selected by the cross-validator StratifiedKFold, but it can be changed using
the cv parameter. In the case of newton-cg and lbfgs solvers, we warm start along the path i.e guess the initial
coefficients of the present fit to be the coefficients got after convergence in the previous fit, so it is supposed to
be faster for high-dimensional dense data.

For a multiclass problem, the hyperparameters for each class are computed using the best scores got by doing a
one-vs-rest in parallel across all folds and classes. Hence this is not the true multinomial loss.

Read more in the User Guide.

ParametersCs : list of floats | int

Each of the values in Cs describes the inverse of regularization strength. If Cs is as an
int, then a grid of Cs values are chosen in a logarithmic scale between 1e-4 and 1e4.
Like in support vector machines, smaller values specify stronger regularization.

fit_intercept : bool, default: True

Specifies if a constant (a.k.a. bias or intercept) should be added to the decision function.

class_weight : dict or ‘balanced’, optional

Weights associated with classes in the form {class_label: weight}. If not
given, all classes are supposed to have weight one.

The “balanced” mode uses the values of y to automatically adjust weights inversely
proportional to class frequencies in the input data as n_samples / (n_classes

* np.bincount(y))

Note that these weights will be multiplied with sample_weight (passed through the fit
method) if sample_weight is specified.

New in version 0.17: class_weight == ‘balanced’

cv : integer or cross-validation generator

The default cross-validation generator used is Stratified K-Folds. If an in-
teger is provided, then it is the number of folds used. See the module
sklearn.cross_validation module for the list of possible cross-validation ob-
jects.

penalty : str, ‘l1’ or ‘l2’

Used to specify the norm used in the penalization. The newton-cg and lbfgs solvers
support only l2 penalties.

dual : bool

Dual or primal formulation. Dual formulation is only implemented for l2 penalty with
liblinear solver. Prefer dual=False when n_samples > n_features.
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scoring : callabale

Scoring function to use as cross-validation criteria. For a list of scoring functions that
can be used, look at sklearn.metrics. The default scoring option used is accu-
racy_score.

solver : {‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’}

Algorithm to use in the optimization problem.

•For small datasets, ‘liblinear’ is a good choice, whereas ‘sag’ isfaster for large
ones.

•For multiclass problems, only ‘newton-cg’ and ‘lbfgs’ handlemultinomial loss;
‘sag’ and ‘liblinear’ are limited to one-versus-rest schemes.

•‘newton-cg’, ‘lbfgs’ and ‘sag’ only handle L2 penalty.

•‘liblinear’ might be slower in LogisticRegressionCV because it doesnot handle
warm-starting.

tol : float, optional

Tolerance for stopping criteria.

max_iter : int, optional

Maximum number of iterations of the optimization algorithm.

n_jobs : int, optional

Number of CPU cores used during the cross-validation loop. If given a value of -1, all
cores are used.

verbose : int

For the ‘liblinear’, ‘sag’ and ‘lbfgs’ solvers set verbose to any positive number for ver-
bosity.

refit : bool

If set to True, the scores are averaged across all folds, and the coefs and the C that
corresponds to the best score is taken, and a final refit is done using these parameters.
Otherwise the coefs, intercepts and C that correspond to the best scores across folds are
averaged.

multi_class : str, {‘ovr’, ‘multinomial’}

Multiclass option can be either ‘ovr’ or ‘multinomial’. If the option chosen is ‘ovr’,
then a binary problem is fit for each label. Else the loss minimised is the multinomial
loss fit across the entire probability distribution. Works only for ‘lbfgs’ and ‘newton-cg’
solvers.

intercept_scaling : float, default 1.

Useful only if solver is liblinear. This parameter is useful only when the solver ‘li-
blinear’ is used and self.fit_intercept is set to True. In this case, x becomes [x,
self.intercept_scaling], i.e. a “synthetic” feature with constant value equals to in-
tercept_scaling is appended to the instance vector. The intercept becomes inter-
cept_scaling * synthetic feature weight Note! the synthetic feature weight is subject
to l1/l2 regularization as all other features. To lessen the effect of regularization on
synthetic feature weight (and therefore on the intercept) intercept_scaling has to be in-
creased.

random_state : int seed, RandomState instance, or None (default)
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The seed of the pseudo random number generator to use when shuffling the data.

Attributescoef_ : array, shape (1, n_features) or (n_classes, n_features)

Coefficient of the features in the decision function.

coef_ is of shape (1, n_features) when the given problem is binary. coef_ is readonly
property derived from raw_coef_ that follows the internal memory layout of liblinear.

intercept_ : array, shape (1,) or (n_classes,)

Intercept (a.k.a. bias) added to the decision function. It is available only when parameter
intercept is set to True and is of shape(1,) when the problem is binary.

Cs_ : array

Array of C i.e. inverse of regularization parameter values used for cross-validation.

coefs_paths_ : array, shape (n_folds, len(Cs_), n_features) or (n_folds,
len(Cs_), n_features + 1)

dict with classes as the keys, and the path of coefficients obtained during cross-
validating across each fold and then across each Cs after doing an OvR for the cor-
responding class as values. If the ‘multi_class’ option is set to ‘multinomial’, then
the coefs_paths are the coefficients corresponding to each class. Each dict value has
shape (n_folds, len(Cs_), n_features) or (n_folds, len(Cs_),
n_features + 1) depending on whether the intercept is fit or not.

scores_ : dict

dict with classes as the keys, and the values as the grid of scores obtained during cross-
validating each fold, after doing an OvR for the corresponding class. If the ‘multi_class’
option given is ‘multinomial’ then the same scores are repeated across all classes, since
this is the multinomial class. Each dict value has shape (n_folds, len(Cs))

C_ : array, shape (n_classes,) or (n_classes - 1,)

Array of C that maps to the best scores across every class. If refit is set to False, then
for each class, the best C is the average of the C’s that correspond to the best scores for
each fold.

n_iter_ : array, shape (n_classes, n_folds, n_cs) or (1, n_folds, n_cs)

Actual number of iterations for all classes, folds and Cs. In the binary or multinomial
cases, the first dimension is equal to 1.

See also:

LogisticRegression

Methods

decision_function(X) Predict confidence scores for samples.
densify() Convert coefficient matrix to dense array format.
fit(X, y[, sample_weight]) Fit the model according to the given training data.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class labels for samples in X.
predict_log_proba(X) Log of probability estimates.
predict_proba(X) Probability estimates.

Continued on next page
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Table 3.7 – continued from previous page
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.
sparsify() Convert coefficient matrix to sparse format.
transform(*args, **kwargs) DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19.

__init__(Cs=10, fit_intercept=True, cv=None, dual=False, penalty=’l2’, scoring=None,
solver=’lbfgs’, tol=0.0001, max_iter=100, class_weight=None, n_jobs=1, verbose=0,
refit=True, intercept_scaling=1.0, multi_class=’ovr’, random_state=None)

decision_function(X)
Predict confidence scores for samples.

The confidence score for a sample is the signed distance of that sample to the hyperplane.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returnsarray, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) :

Confidence scores per (sample, class) combination. In the binary case, confidence score
for self.classes_[1] where >0 means this class would be predicted.

densify()
Convert coefficient matrix to dense array format.

Converts the coef_ member (back) to a numpy.ndarray. This is the default format of coef_ and is
required for fitting, so calling this method is only required on models that have previously been sparsified;
otherwise, it is a no-op.

Returnsself: estimator :

fit(X, y, sample_weight=None)
Fit the model according to the given training data.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

y : array-like, shape (n_samples,)

Target vector relative to X.

sample_weight : array-like, shape (n_samples,) optional

Array of weights that are assigned to individual samples. If not provided, then each
sample is given unit weight.

Returnsself : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]
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Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict class labels for samples in X.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Samples.

ReturnsC : array, shape = [n_samples]

Predicted class label per sample.

predict_log_proba(X)
Log of probability estimates.

The returned estimates for all classes are ordered by the label of classes.

ParametersX : array-like, shape = [n_samples, n_features]

ReturnsT : array-like, shape = [n_samples, n_classes]

Returns the log-probability of the sample for each class in the model, where classes are
ordered as they are in self.classes_.

predict_proba(X)
Probability estimates.

The returned estimates for all classes are ordered by the label of classes.

For a multi_class problem, if multi_class is set to be “multinomial” the softmax function is used to find
the predicted probability of each class. Else use a one-vs-rest approach, i.e calculate the probability of
each class assuming it to be positive using the logistic function. and normalize these values across all the
classes.

ParametersX : array-like, shape = [n_samples, n_features]

ReturnsT : array-like, shape = [n_samples, n_classes]

Returns the probability of the sample for each class in the model, where classes are
ordered as they are in self.classes_.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.
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y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

sparsify()
Convert coefficient matrix to sparse format.

Converts the coef_ member to a scipy.sparse matrix, which for L1-regularized models can be much more
memory- and storage-efficient than the usual numpy.ndarray representation.

The intercept_ member is not converted.

Returnsself: estimator :

Notes

For non-sparse models, i.e. when there are not many zeros in coef_, this may actually increase memory
usage, so use this method with care. A rule of thumb is that the number of zero elements, which can be
computed with (coef_ == 0).sum(), must be more than 50% for this to provide significant benefits.

After calling this method, further fitting with the partial_fit method (if any) will not work until you call
densify.

transform(*args, **kwargs)
DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19. Use
SelectFromModel instead.

Reduce X to its most important features.

Uses coef_ or feature_importances_ to determine the most important features. For
models with a coef_ for each class, the absolute sum over the classes is used.

ParametersX : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold[string, float or None, optional (default=None)] The threshold value to use for
feature selection. Features whose importance is greater or equal are kept while the
others are discarded. If “median” (resp. “mean”), then the threshold value is the me-
dian (resp. the mean) of the feature importances. A scaling factor (e.g., “1.25*mean”)
may also be used. If None and if available, the object attribute threshold is used.
Otherwise, “mean” is used by default.

ReturnsX_r : array of shape [n_samples, n_selected_features]
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The input samples with only the selected features.

sklearn.linear_model.MultiTaskElasticNetCV
class sklearn.linear_model.MultiTaskElasticNetCV(l1_ratio=0.5, eps=0.001, n_alphas=100,

alphas=None, fit_intercept=True,
normalize=False, max_iter=1000,
tol=0.0001, cv=None, copy_X=True,
verbose=0, n_jobs=1, ran-
dom_state=None, selection=’cyclic’)

Multi-task L1/L2 ElasticNet with built-in cross-validation.

The optimization objective for MultiTaskElasticNet is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

Parameterseps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3.

alphas : array-like, optional

List of alphas where to compute the models. If not provided, set automatically.

n_alphas : int, optional

Number of alphas along the regularization path

l1_ratio : float or array of floats

The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For l1_ratio = 0 the penalty is
an L1/L2 penalty. For l1_ratio = 1 it is an L1 penalty. For 0 < l1_ratio < 1, the
penalty is a combination of L1/L2 and L2. This parameter can be a list, in which case
the different values are tested by cross-validation and the one giving the best prediction
score is used. Note that a good choice of list of values for l1_ratio is often to put more
values close to 1 (i.e. Lasso) and less close to 0 (i.e. Ridge), as in [.1, .5, .7,
.9, .95, .99, 1]

fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

max_iter : int, optional

The maximum number of iterations
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tol : float, optional

The tolerance for the optimization: if the updates are smaller than tol, the optimization
code checks the dual gap for optimality and continues until it is smaller than tol.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

•None, to use the default 3-fold cross-validation,

•integer, to specify the number of folds.

•An object to be used as a cross-validation generator.

•An iterable yielding train/test splits.

For integer/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

verbose : bool or integer

Amount of verbosity.

n_jobs : integer, optional

Number of CPUs to use during the cross validation. If -1, use all the CPUs. Note that
this is used only if multiple values for l1_ratio are given.

selection : str, default ‘cyclic’

If set to ‘random’, a random coefficient is updated every iteration rather than looping
over features sequentially by default. This (setting to ‘random’) often leads to signifi-
cantly faster convergence especially when tol is higher than 1e-4.

random_state : int, RandomState instance, or None (default)

The seed of the pseudo random number generator that selects a random feature to up-
date. Useful only when selection is set to ‘random’.

Attributesintercept_ : array, shape (n_tasks,)

Independent term in decision function.

coef_ : array, shape (n_tasks, n_features)

Parameter vector (W in the cost function formula).

alpha_ : float

The amount of penalization chosen by cross validation

mse_path_ : array, shape (n_alphas, n_folds) or (n_l1_ratio, n_alphas, n_folds)

mean square error for the test set on each fold, varying alpha

alphas_ : numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas)

The grid of alphas used for fitting, for each l1_ratio

l1_ratio_ : float

best l1_ratio obtained by cross-validation.

n_iter_ : int

number of iterations run by the coordinate descent solver to reach the specified tolerance
for the optimal alpha.
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See also:

MultiTaskElasticNet, ElasticNetCV, MultiTaskLassoCV

Notes

The algorithm used to fit the model is coordinate descent.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

Examples

>>> from sklearn import linear_model
>>> clf = linear_model.MultiTaskElasticNetCV()
>>> clf.fit([[0,0], [1, 1], [2, 2]],
... [[0, 0], [1, 1], [2, 2]])
...
MultiTaskElasticNetCV(alphas=None, copy_X=True, cv=None, eps=0.001,

fit_intercept=True, l1_ratio=0.5, max_iter=1000, n_alphas=100,
n_jobs=1, normalize=False, random_state=None, selection='cyclic',
tol=0.0001, verbose=0)

>>> print(clf.coef_)
[[ 0.52875032 0.46958558]
[ 0.52875032 0.46958558]]
>>> print(clf.intercept_)
[ 0.00166409 0.00166409]

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
fit(X, y) Fit linear model with coordinate descent
get_params([deep]) Get parameters for this estimator.
path(X, y[, l1_ratio, eps, n_alphas, ...]) Compute elastic net path with coordinate descent
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normal-
ize=False, max_iter=1000, tol=0.0001, cv=None, copy_X=True, verbose=0, n_jobs=1, ran-
dom_state=None, selection=’cyclic’)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19.

Decision function of the linear model.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.
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fit(X, y)
Fit linear model with coordinate descent

Fit is on grid of alphas and best alpha estimated by cross-validation.

ParametersX : {array-like}, shape (n_samples, n_features)

Training data. Pass directly as float64, Fortran-contiguous data to avoid unnecessary
memory duplication. If y is mono-output, X can be sparse.

y : array-like, shape (n_samples,) or (n_samples, n_targets)

Target values

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

static path(X, y, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’,
Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, posi-
tive=False, check_input=True, **params)

Compute elastic net path with coordinate descent

The elastic net optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

1 / (2 * n_samples) * ||y - Xw||^2_2 +
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

ParametersX : {array-like}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output then X can be sparse.

y : ndarray, shape (n_samples,) or (n_samples, n_outputs)

Target values

l1_ratio : float, optional

float between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties).
l1_ratio=1 corresponds to the Lasso
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eps : float

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3

n_alphas : int, optional

Number of alphas along the regularization path

alphas : ndarray, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ’auto’
let us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

coef_init : array, shape (n_features, ) | None

The initial values of the coefficients.

verbose : bool or integer

Amount of verbosity.

params : kwargs

keyword arguments passed to the coordinate descent solver.

return_n_iter : bool

whether to return the number of iterations or not.

positive : bool, default False

If set to True, forces coefficients to be positive.

check_input : bool, default True

Skip input validation checks, including the Gram matrix when provided assuming there
are handled by the caller when check_input=False.

Returnsalphas : array, shape (n_alphas,)

The alphas along the path where models are computed.

coefs : array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)

Coefficients along the path.

dual_gaps : array, shape (n_alphas,)

The dual gaps at the end of the optimization for each alpha.

n_iters : array-like, shape (n_alphas,)

The number of iterations taken by the coordinate descent optimizer to reach the specified
tolerance for each alpha. (Is returned when return_n_iter is set to True).
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See also:

MultiTaskElasticNet, MultiTaskElasticNetCV, ElasticNet, ElasticNetCV

Notes

See examples/plot_lasso_coordinate_descent_path.py for an example.

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

sklearn.linear_model.MultiTaskLassoCV
class sklearn.linear_model.MultiTaskLassoCV(eps=0.001, n_alphas=100, alphas=None,

fit_intercept=True, normalize=False,
max_iter=1000, tol=0.0001, copy_X=True,
cv=None, verbose=False, n_jobs=1, ran-
dom_state=None, selection=’cyclic’)

Multi-task L1/L2 Lasso with built-in cross-validation.

The optimization objective for MultiTaskLasso is:
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(1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * ||W||_21

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

Parameterseps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3.

alphas : array-like, optional

List of alphas where to compute the models. If not provided, set automaticlly.

n_alphas : int, optional

Number of alphas along the regularization path

fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

max_iter : int, optional

The maximum number of iterations.

tol : float, optional

The tolerance for the optimization: if the updates are smaller than tol, the optimization
code checks the dual gap for optimality and continues until it is smaller than tol.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

•None, to use the default 3-fold cross-validation,

•integer, to specify the number of folds.

•An object to be used as a cross-validation generator.

•An iterable yielding train/test splits.

For integer/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

verbose : bool or integer

Amount of verbosity.

n_jobs : integer, optional

Number of CPUs to use during the cross validation. If -1, use all the CPUs. Note that
this is used only if multiple values for l1_ratio are given.
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selection : str, default ‘cyclic’

If set to ‘random’, a random coefficient is updated every iteration rather than looping
over features sequentially by default. This (setting to ‘random’) often leads to signifi-
cantly faster convergence especially when tol is higher than 1e-4.

random_state : int, RandomState instance, or None (default)

The seed of the pseudo random number generator that selects a random feature to up-
date. Useful only when selection is set to ‘random’.

Attributesintercept_ : array, shape (n_tasks,)

Independent term in decision function.

coef_ : array, shape (n_tasks, n_features)

Parameter vector (W in the cost function formula).

alpha_ : float

The amount of penalization chosen by cross validation

mse_path_ : array, shape (n_alphas, n_folds)

mean square error for the test set on each fold, varying alpha

alphas_ : numpy array, shape (n_alphas,)

The grid of alphas used for fitting.

n_iter_ : int

number of iterations run by the coordinate descent solver to reach the specified tolerance
for the optimal alpha.

See also:

MultiTaskElasticNet, ElasticNetCV, MultiTaskElasticNetCV

Notes

The algorithm used to fit the model is coordinate descent.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
fit(X, y) Fit linear model with coordinate descent
get_params([deep]) Get parameters for this estimator.
path(X, y[, eps, n_alphas, alphas, ...]) Compute Lasso path with coordinate descent
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False,
max_iter=1000, tol=0.0001, copy_X=True, cv=None, verbose=False, n_jobs=1, ran-
dom_state=None, selection=’cyclic’)
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decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19.

Decision function of the linear model.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

fit(X, y)
Fit linear model with coordinate descent

Fit is on grid of alphas and best alpha estimated by cross-validation.

ParametersX : {array-like}, shape (n_samples, n_features)

Training data. Pass directly as float64, Fortran-contiguous data to avoid unnecessary
memory duplication. If y is mono-output, X can be sparse.

y : array-like, shape (n_samples,) or (n_samples, n_targets)

Target values

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

static path(X, y, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’, Xy=None,
copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False,
**params)

Compute Lasso path with coordinate descent

The Lasso optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output then X can be sparse.
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y : ndarray, shape (n_samples,), or (n_samples, n_outputs)

Target values

eps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3

n_alphas : int, optional

Number of alphas along the regularization path

alphas : ndarray, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ’auto’
let us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

coef_init : array, shape (n_features, ) | None

The initial values of the coefficients.

verbose : bool or integer

Amount of verbosity.

params : kwargs

keyword arguments passed to the coordinate descent solver.

positive : bool, default False

If set to True, forces coefficients to be positive.

return_n_iter : bool

whether to return the number of iterations or not.

Returnsalphas : array, shape (n_alphas,)

The alphas along the path where models are computed.

coefs : array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)

Coefficients along the path.

dual_gaps : array, shape (n_alphas,)

The dual gaps at the end of the optimization for each alpha.

n_iters : array-like, shape (n_alphas,)

The number of iterations taken by the coordinate descent optimizer to reach the specified
tolerance for each alpha.
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See also:

lars_path, Lasso, LassoLars, LassoCV, LassoLarsCV,
sklearn.decomposition.sparse_encode

Notes

See examples/linear_model/plot_lasso_coordinate_descent_path.py for an example.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

Note that in certain cases, the Lars solver may be significantly faster to implement this functionality. In
particular, linear interpolation can be used to retrieve model coefficients between the values output by
lars_path

Examples

Comparing lasso_path and lars_path with interpolation:

>>> X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T
>>> y = np.array([1, 2, 3.1])
>>> # Use lasso_path to compute a coefficient path
>>> _, coef_path, _ = lasso_path(X, y, alphas=[5., 1., .5])
>>> print(coef_path)
[[ 0. 0. 0.46874778]
[ 0.2159048 0.4425765 0.23689075]]

>>> # Now use lars_path and 1D linear interpolation to compute the
>>> # same path
>>> from sklearn.linear_model import lars_path
>>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso')
>>> from scipy import interpolate
>>> coef_path_continuous = interpolate.interp1d(alphas[::-1],
... coef_path_lars[:, ::-1])
>>> print(coef_path_continuous([5., 1., .5]))
[[ 0. 0. 0.46915237]
[ 0.2159048 0.4425765 0.23668876]]

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)
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Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

sklearn.linear_model.OrthogonalMatchingPursuitCV
class sklearn.linear_model.OrthogonalMatchingPursuitCV(copy=True, fit_intercept=True,

normalize=True,
max_iter=None, cv=None,
n_jobs=1, verbose=False)

Cross-validated Orthogonal Matching Pursuit model (OMP)

Parameterscopy : bool, optional

Whether the design matrix X must be copied by the algorithm. A false value is only
helpful if X is already Fortran-ordered, otherwise a copy is made anyway.

fit_intercept : boolean, optional

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional

If False, the regressors X are assumed to be already normalized.

max_iter : integer, optional

Maximum numbers of iterations to perform, therefore maximum features to include.
10% of n_features but at least 5 if available.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

•None, to use the default 3-fold cross-validation,

•integer, to specify the number of folds.

•An object to be used as a cross-validation generator.

•An iterable yielding train/test splits.

For integer/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

n_jobs : integer, optional
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Number of CPUs to use during the cross validation. If -1, use all the CPUs

verbose : boolean or integer, optional

Sets the verbosity amount

Read more in the :ref:‘User Guide <omp>‘. :

Attributesintercept_ : float or array, shape (n_targets,)

Independent term in decision function.

coef_ : array, shape (n_features,) or (n_features, n_targets)

Parameter vector (w in the problem formulation).

n_nonzero_coefs_ : int

Estimated number of non-zero coefficients giving the best mean squared error over the
cross-validation folds.

n_iter_ : int or array-like

Number of active features across every target for the model refit with the best hyperpa-
rameters got by cross-validating across all folds.

See also:

orthogonal_mp, orthogonal_mp_gram, lars_path, Lars, LassoLars,
OrthogonalMatchingPursuit, LarsCV, LassoLarsCV, decomposition.sparse_encode

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
fit(X, y) Fit the model using X, y as training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(copy=True, fit_intercept=True, normalize=True, max_iter=None, cv=None, n_jobs=1, ver-
bose=False)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19.

Decision function of the linear model.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

fit(X, y)
Fit the model using X, y as training data.

ParametersX : array-like, shape [n_samples, n_features]

Training data.
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y : array-like, shape [n_samples]

Target values.

Returnsself : object

returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.linear_model.OrthogonalMatchingPursuitCV

• Orthogonal Matching Pursuit
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sklearn.linear_model.RidgeCV
class sklearn.linear_model.RidgeCV(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normal-

ize=False, scoring=None, cv=None, gcv_mode=None,
store_cv_values=False)

Ridge regression with built-in cross-validation.

By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-
validation.

Read more in the User Guide.

Parametersalphas : numpy array of shape [n_alphas]

Array of alpha values to try. Small positive values of alpha improve the conditioning of
the problem and reduce the variance of the estimates. Alpha corresponds to C^-1 in
other linear models such as LogisticRegression or LinearSVC.

fit_intercept : boolean

Whether to calculate the intercept for this model. If set to false, no intercept will be
used in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.

scoring : string, callable or None, optional, default: None

A string (see model evaluation documentation) or a scorer callable object / function with
signature scorer(estimator, X, y).

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

•None, to use the efficient Leave-One-Out cross-validation

•integer, to specify the number of folds.

•An object to be used as a cross-validation generator.

•An iterable yielding train/test splits.

For integer/None inputs, if y is binary or multiclass, StratifiedKFold used, else,
KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

gcv_mode : {None, ‘auto’, ‘svd’, eigen’}, optional

Flag indicating which strategy to use when performing Generalized Cross-Validation.
Options are:

'auto' : use svd if n_samples > n_features or when X is a sparse
matrix, otherwise use eigen

'svd' : force computation via singular value decomposition of X
(does not work for sparse matrices)

'eigen' : force computation via eigendecomposition of X^T X

The ‘auto’ mode is the default and is intended to pick the cheaper option of the two
depending upon the shape and format of the training data.

store_cv_values : boolean, default=False
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Flag indicating if the cross-validation values corresponding to each alpha should be
stored in the cv_values_ attribute (see below). This flag is only compatible with
cv=None (i.e. using Generalized Cross-Validation).

Attributescv_values_ : array, shape = [n_samples, n_alphas] or shape = [n_samples, n_targets,
n_alphas], optional

Cross-validation values for each alpha (if store_cv_values=True and cv=None). After
fit() has been called, this attribute will contain the mean squared errors (by default) or
the values of the {loss,score}_func function (if provided in the constructor).

coef_ : array, shape = [n_features] or [n_targets, n_features]

Weight vector(s).

intercept_ : float | array, shape = (n_targets,)

Independent term in decision function. Set to 0.0 if fit_intercept = False.

alpha_ : float

Estimated regularization parameter.

See also:

RidgeRidge regression

RidgeClassifierRidge classifier

RidgeClassifierCVRidge classifier with built-in cross validation

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
fit(X, y[, sample_weight]) Fit Ridge regression model
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None,
gcv_mode=None, store_cv_values=False)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19.

Decision function of the linear model.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

fit(X, y, sample_weight=None)
Fit Ridge regression model

ParametersX : array-like, shape = [n_samples, n_features]

Training data
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y : array-like, shape = [n_samples] or [n_samples, n_targets]

Target values

sample_weight : float or array-like of shape [n_samples]

Sample weight

Returnsself : Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :
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Examples using sklearn.linear_model.RidgeCV

• Face completion with a multi-output estimators

sklearn.linear_model.RidgeClassifierCV
class sklearn.linear_model.RidgeClassifierCV(alphas=(0.1, 1.0, 10.0), fit_intercept=True,

normalize=False, scoring=None, cv=None,
class_weight=None)

Ridge classifier with built-in cross-validation.

By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-
validation. Currently, only the n_features > n_samples case is handled efficiently.

Read more in the User Guide.

Parametersalphas : numpy array of shape [n_alphas]

Array of alpha values to try. Small positive values of alpha improve the conditioning of
the problem and reduce the variance of the estimates. Alpha corresponds to C^-1 in
other linear models such as LogisticRegression or LinearSVC.

fit_intercept : boolean

Whether to calculate the intercept for this model. If set to false, no intercept will be
used in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.

scoring : string, callable or None, optional, default: None

A string (see model evaluation documentation) or a scorer callable object / function with
signature scorer(estimator, X, y).

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

•None, to use the efficient Leave-One-Out cross-validation

•integer, to specify the number of folds.

•An object to be used as a cross-validation generator.

•An iterable yielding train/test splits.

Refer User Guide for the various cross-validation strategies that can be used here.

class_weight : dict or ‘balanced’, optional

Weights associated with classes in the form {class_label: weight}. If not
given, all classes are supposed to have weight one.

The “balanced” mode uses the values of y to automatically adjust weights inversely
proportional to class frequencies in the input data as n_samples / (n_classes

* np.bincount(y))

Attributescv_values_ : array, shape = [n_samples, n_alphas] or shape = [n_samples, n_responses,
n_alphas], optional

Cross-validation values for each alpha (if store_cv_values=True and
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‘cv=None‘). After ‘fit()‘ has been called, this attribute will contain the mean squared errors
(by default) or the values of the ‘{loss,score}_func‘ function (if provided in the constructor).
:

coef_ : array, shape = [n_features] or [n_targets, n_features]

Weight vector(s).

intercept_ : float | array, shape = (n_targets,)

Independent term in decision function. Set to 0.0 if fit_intercept = False.

alpha_ : float

Estimated regularization parameter

See also:

RidgeRidge regression

RidgeClassifierRidge classifier

RidgeCVRidge regression with built-in cross validation

Notes

For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is
implemented by taking advantage of the multi-variate response support in Ridge.

Methods

decision_function(X) Predict confidence scores for samples.
fit(X, y[, sample_weight]) Fit the ridge classifier.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class labels for samples in X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.

__init__(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None,
class_weight=None)

decision_function(X)
Predict confidence scores for samples.

The confidence score for a sample is the signed distance of that sample to the hyperplane.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returnsarray, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) :

Confidence scores per (sample, class) combination. In the binary case, confidence score
for self.classes_[1] where >0 means this class would be predicted.

fit(X, y, sample_weight=None)
Fit the ridge classifier.

ParametersX : array-like, shape (n_samples, n_features)
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Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape (n_samples,)

Target values.

sample_weight : float or numpy array of shape (n_samples,)

Sample weight.

Returnsself : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict class labels for samples in X.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Samples.

ReturnsC : array, shape = [n_samples]

Predicted class label per sample.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :
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Information Criterion

Some models can offer an information-theoretic closed-form formula of the optimal estimate of the regularization
parameter by computing a single regularization path (instead of several when using cross-validation).

Here is the list of models benefitting from the Aikike Information Criterion (AIC) or the Bayesian Information Crite-
rion (BIC) for automated model selection:

linear_model.LassoLarsIC([criterion, ...]) Lasso model fit with Lars using BIC or AIC for model selection

sklearn.linear_model.LassoLarsIC
class sklearn.linear_model.LassoLarsIC(criterion=’aic’, fit_intercept=True, verbose=False,

normalize=True, precompute=’auto’, max_iter=500,
eps=2.2204460492503131e-16, copy_X=True, posi-
tive=False)

Lasso model fit with Lars using BIC or AIC for model selection

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

AIC is the Akaike information criterion and BIC is the Bayes Information criterion. Such criteria are useful
to select the value of the regularization parameter by making a trade-off between the goodness of fit and the
complexity of the model. A good model should explain well the data while being simple.

Read more in the User Guide.

Parameterscriterion : ‘bic’ | ‘aic’

The type of criterion to use.

fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

positive : boolean (default=False)

Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept
which is set True by default. Under the positive restriction the model coefficients do
not converge to the ordinary-least-squares solution for small values of alpha. Only co-
effiencts up to the smallest alpha value (alphas_[alphas_ > 0.].min() when
fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congru-
ence with the solution of the coordinate descent Lasso estimator. As a consequence
using LassoLarsIC only makes sense for problems where a sparse solution is expected
and/or reached.

verbose : boolean or integer, optional

Sets the verbosity amount

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

precompute : True | False | ‘auto’ | array-like
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Whether to use a precomputed Gram matrix to speed up calculations. If set to ’auto’
let us decide. The Gram matrix can also be passed as argument.

max_iter : integer, optional

Maximum number of iterations to perform. Can be used for early stopping.

eps : float, optional

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems. Unlike the tol parameter in some
iterative optimization-based algorithms, this parameter does not control the tolerance of
the optimization.

Attributescoef_ : array, shape (n_features,)

parameter vector (w in the formulation formula)

intercept_ : float

independent term in decision function.

alpha_ : float

the alpha parameter chosen by the information criterion

n_iter_ : int

number of iterations run by lars_path to find the grid of alphas.

criterion_ : array, shape (n_alphas,)

The value of the information criteria (‘aic’, ‘bic’) across all alphas. The alpha which
has the smallest information criteria is chosen.

See also:

lars_path, LassoLars, LassoLarsCV

Notes

The estimation of the number of degrees of freedom is given by:

“On the degrees of freedom of the lasso” Hui Zou, Trevor Hastie, and Robert Tibshirani Ann. Statist. Volume
35, Number 5 (2007), 2173-2192.

http://en.wikipedia.org/wiki/Akaike_information_criterion http://en.wikipedia.org/wiki/Bayesian_information_criterion

Examples

>>> from sklearn import linear_model
>>> clf = linear_model.LassoLarsIC(criterion='bic')
>>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111])
...
LassoLarsIC(copy_X=True, criterion='bic', eps=..., fit_intercept=True,

max_iter=500, normalize=True, positive=False, precompute='auto',
verbose=False)

>>> print(clf.coef_)
[ 0. -1.11...]
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Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
fit(X, y[, copy_X]) Fit the model using X, y as training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(criterion=’aic’, fit_intercept=True, verbose=False, normalize=True, precompute=’auto’,
max_iter=500, eps=2.2204460492503131e-16, copy_X=True, positive=False)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19.

Decision function of the linear model.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

fit(X, y, copy_X=True)
Fit the model using X, y as training data.

ParametersX : array-like, shape (n_samples, n_features)

training data.

y : array-like, shape (n_samples,)

target values.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

Returnsself : object

returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)
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Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.linear_model.LassoLarsIC

• Lasso model selection: Cross-Validation / AIC / BIC

Out of Bag Estimates

When using ensemble methods base upon bagging, i.e. generating new training sets using sampling with replacement,
part of the training set remains unused. For each classifier in the ensemble, a different part of the training set is left
out.

This left out portion can be used to estimate the generalization error without having to rely on a separate validation
set. This estimate comes “for free” as no additional data is needed and can be used for model selection.

This is currently implemented in the following classes:

ensemble.RandomForestClassifier([...]) A random forest classifier.
ensemble.RandomForestRegressor([...]) A random forest regressor.
ensemble.ExtraTreesClassifier([...]) An extra-trees classifier.
ensemble.ExtraTreesRegressor([n_estimators, ...]) An extra-trees regressor.
ensemble.GradientBoostingClassifier([loss, ...]) Gradient Boosting for classification.
ensemble.GradientBoostingRegressor([loss, ...]) Gradient Boosting for regression.

sklearn.ensemble.RandomForestClassifier
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class sklearn.ensemble.RandomForestClassifier(n_estimators=10, crite-
rion=’gini’, max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=’auto’,
max_leaf_nodes=None, bootstrap=True,
oob_score=False, n_jobs=1, ran-
dom_state=None, verbose=0,
warm_start=False, class_weight=None)

A random forest classifier.

A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the
dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is
always the same as the original input sample size but the samples are drawn with replacement if bootstrap=True
(default).

Read more in the User Guide.

Parametersn_estimators : integer, optional (default=10)

The number of trees in the forest.

criterion : string, optional (default=”gini”)

The function to measure the quality of a split. Supported criteria are “gini” for the Gini
impurity and “entropy” for the information gain. Note: this parameter is tree-specific.

max_features : int, float, string or None, optional (default=”auto”)

The number of features to consider when looking for the best split:

•If int, then consider max_features features at each split.

•If float, then max_features is a percentage and int(max_features * n_features) features
are considered at each split.

•If “auto”, then max_features=sqrt(n_features).

•If “sqrt”, then max_features=sqrt(n_features) (same as “auto”).

•If “log2”, then max_features=log2(n_features).

•If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node
samples is found, even if it requires to effectively inspect more than max_features
features. Note: this parameter is tree-specific.

max_depth : integer or None, optional (default=None)

The maximum depth of the tree. If None, then nodes are expanded until all leaves
are pure or until all leaves contain less than min_samples_split samples. Ignored if
max_leaf_nodes is not None. Note: this parameter is tree-specific.

min_samples_split : integer, optional (default=2)

The minimum number of samples required to split an internal node. Note: this parame-
ter is tree-specific.

min_samples_leaf : integer, optional (default=1)

The minimum number of samples in newly created leaves. A split is discarded if after
the split, one of the leaves would contain less then min_samples_leaf samples.
Note: this parameter is tree-specific.
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min_weight_fraction_leaf : float, optional (default=0.)

The minimum weighted fraction of the input samples required to be at a leaf node. Note:
this parameter is tree-specific.

max_leaf_nodes : int or None, optional (default=None)

Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined as
relative reduction in impurity. If None then unlimited number of leaf nodes. If not
None then max_depth will be ignored. Note: this parameter is tree-specific.

bootstrap : boolean, optional (default=True)

Whether bootstrap samples are used when building trees.

oob_score : bool

Whether to use out-of-bag samples to estimate the generalization error.

n_jobs : integer, optional (default=1)

The number of jobs to run in parallel for both fit and predict. If -1, then the number of
jobs is set to the number of cores.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

verbose : int, optional (default=0)

Controls the verbosity of the tree building process.

warm_start : bool, optional (default=False)

When set to True, reuse the solution of the previous call to fit and add more estimators
to the ensemble, otherwise, just fit a whole new forest.

class_weight : dict, list of dicts, “balanced”, “balanced_subsample” or None, optional

Weights associated with classes in the form {class_label: weight}. If not
given, all classes are supposed to have weight one. For multi-output problems, a list of
dicts can be provided in the same order as the columns of y.

The “balanced” mode uses the values of y to automatically adjust weights inversely
proportional to class frequencies in the input data as n_samples / (n_classes

* np.bincount(y))

The “balanced_subsample” mode is the same as “balanced” except that weights are
computed based on the bootstrap sample for every tree grown.

For multi-output, the weights of each column of y will be multiplied.

Note that these weights will be multiplied with sample_weight (passed through the fit
method) if sample_weight is specified.

Attributesestimators_ : list of DecisionTreeClassifier

The collection of fitted sub-estimators.

classes_ : array of shape = [n_classes] or a list of such arrays

The classes labels (single output problem), or a list of arrays of class labels (multi-output
problem).

n_classes_ : int or list
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The number of classes (single output problem), or a list containing the number of classes
for each output (multi-output problem).

n_features_ : int

The number of features when fit is performed.

n_outputs_ : int

The number of outputs when fit is performed.

feature_importances_ : array of shape = [n_features]

The feature importances (the higher, the more important the feature).

oob_score_ : float

Score of the training dataset obtained using an out-of-bag estimate.

oob_decision_function_ : array of shape = [n_samples, n_classes]

Decision function computed with out-of-bag estimate on the training set. If
n_estimators is small it might be possible that a data point was never left out during
the bootstrap. In this case, oob_decision_function_ might contain NaN.

See also:

DecisionTreeClassifier, ExtraTreesClassifier

References

[R21]

Methods

apply(X) Apply trees in the forest to X, return leaf indices.
fit(X, y[, sample_weight]) Build a forest of trees from the training set (X, y).
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class for X.
predict_log_proba(X) Predict class log-probabilities for X.
predict_proba(X) Predict class probabilities for X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.
transform(*args, **kwargs) DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19.

__init__(n_estimators=10, criterion=’gini’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’,
max_leaf_nodes=None, bootstrap=True, oob_score=False, n_jobs=1, random_state=None,
verbose=0, warm_start=False, class_weight=None)

apply(X)
Apply trees in the forest to X, return leaf indices.

ParametersX : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.
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ReturnsX_leaves : array_like, shape = [n_samples, n_estimators]

For each datapoint x in X and for each tree in the forest, return the index of the leaf x
ends up in.

feature_importances_

Return the feature importances (the higher, the more important thefeature).

Returnsfeature_importances_ : array, shape = [n_features]

fit(X, y, sample_weight=None)
Build a forest of trees from the training set (X, y).

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]

The training input samples. Internally, it will be converted to dtype=np.float32
and if a sparse matrix is provided to a sparse csc_matrix.

y : array-like, shape = [n_samples] or [n_samples, n_outputs]

The target values (class labels in classification, real numbers in regression).

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Splits that would create
child nodes with net zero or negative weight are ignored while searching for a split in
each node. In the case of classification, splits are also ignored if they would result in
any single class carrying a negative weight in either child node.

Returnsself : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict class for X.
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The predicted class of an input sample is a vote by the trees in the forest, weighted by their probability
estimates. That is, the predicted class is the one with highest mean probability estimate across the trees.

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returnsy : array of shape = [n_samples] or [n_samples, n_outputs]

The predicted classes.

predict_log_proba(X)
Predict class log-probabilities for X.

The predicted class log-probabilities of an input sample is computed as the log of the mean predicted class
probabilities of the trees in the forest.

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returnsp : array of shape = [n_samples, n_classes], or a list of n_outputs

such arrays if n_outputs > 1. The class probabilities of the input samples. The order of
the classes corresponds to that in the attribute classes_.

predict_proba(X)
Predict class probabilities for X.

The predicted class probabilities of an input sample is computed as the mean predicted class probabilities
of the trees in the forest. The class probability of a single tree is the fraction of samples of the same class
in a leaf.

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returnsp : array of shape = [n_samples, n_classes], or a list of n_outputs

such arrays if n_outputs > 1. The class probabilities of the input samples. The order of
the classes corresponds to that in the attribute classes_.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.
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set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(*args, **kwargs)
DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19. Use
SelectFromModel instead.

Reduce X to its most important features.

Uses coef_ or feature_importances_ to determine the most important features. For
models with a coef_ for each class, the absolute sum over the classes is used.

ParametersX : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold[string, float or None, optional (default=None)] The threshold value to use for
feature selection. Features whose importance is greater or equal are kept while the
others are discarded. If “median” (resp. “mean”), then the threshold value is the me-
dian (resp. the mean) of the feature importances. A scaling factor (e.g., “1.25*mean”)
may also be used. If None and if available, the object attribute threshold is used.
Otherwise, “mean” is used by default.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

Examples using sklearn.ensemble.RandomForestClassifier

• Comparison of Calibration of Classifiers

• Probability Calibration for 3-class classification

• Classifier comparison

• Plot class probabilities calculated by the VotingClassifier

• OOB Errors for Random Forests

• Feature transformations with ensembles of trees

• Plot the decision surfaces of ensembles of trees on the iris dataset

• Comparing randomized search and grid search for hyperparameter estimation

• Classification of text documents using sparse features

sklearn.ensemble.RandomForestRegressor
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class sklearn.ensemble.RandomForestRegressor(n_estimators=10, crite-
rion=’mse’, max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=’auto’, max_leaf_nodes=None,
bootstrap=True, oob_score=False,
n_jobs=1, random_state=None, verbose=0,
warm_start=False)

A random forest regressor.

A random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of
the dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is
always the same as the original input sample size but the samples are drawn with replacement if bootstrap=True
(default).

Read more in the User Guide.

Parametersn_estimators : integer, optional (default=10)

The number of trees in the forest.

criterion : string, optional (default=”mse”)

The function to measure the quality of a split. The only supported criterion is “mse” for
the mean squared error. Note: this parameter is tree-specific.

max_features : int, float, string or None, optional (default=”auto”)

The number of features to consider when looking for the best split:

•If int, then consider max_features features at each split.

•If float, then max_features is a percentage and int(max_features * n_features) features
are considered at each split.

•If “auto”, then max_features=n_features.

•If “sqrt”, then max_features=sqrt(n_features).

•If “log2”, then max_features=log2(n_features).

•If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node
samples is found, even if it requires to effectively inspect more than max_features
features. Note: this parameter is tree-specific.

max_depth : integer or None, optional (default=None)

The maximum depth of the tree. If None, then nodes are expanded until all leaves
are pure or until all leaves contain less than min_samples_split samples. Ignored if
max_leaf_nodes is not None. Note: this parameter is tree-specific.

min_samples_split : integer, optional (default=2)

The minimum number of samples required to split an internal node. Note: this parame-
ter is tree-specific.

min_samples_leaf : integer, optional (default=1)

The minimum number of samples in newly created leaves. A split is discarded if after
the split, one of the leaves would contain less then min_samples_leaf samples.
Note: this parameter is tree-specific.

min_weight_fraction_leaf : float, optional (default=0.)
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The minimum weighted fraction of the input samples required to be at a leaf node. Note:
this parameter is tree-specific.

max_leaf_nodes : int or None, optional (default=None)

Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined as
relative reduction in impurity. If None then unlimited number of leaf nodes. If not
None then max_depth will be ignored. Note: this parameter is tree-specific.

bootstrap : boolean, optional (default=True)

Whether bootstrap samples are used when building trees.

oob_score : bool

whether to use out-of-bag samples to estimate the generalization error.

n_jobs : integer, optional (default=1)

The number of jobs to run in parallel for both fit and predict. If -1, then the number of
jobs is set to the number of cores.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

verbose : int, optional (default=0)

Controls the verbosity of the tree building process.

warm_start : bool, optional (default=False)

When set to True, reuse the solution of the previous call to fit and add more estimators
to the ensemble, otherwise, just fit a whole new forest.

Attributesestimators_ : list of DecisionTreeRegressor

The collection of fitted sub-estimators.

feature_importances_ : array of shape = [n_features]

The feature importances (the higher, the more important the feature).

n_features_ : int

The number of features when fit is performed.

n_outputs_ : int

The number of outputs when fit is performed.

oob_score_ : float

Score of the training dataset obtained using an out-of-bag estimate.

oob_prediction_ : array of shape = [n_samples]

Prediction computed with out-of-bag estimate on the training set.

See also:

DecisionTreeRegressor, ExtraTreesRegressor
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Methods

apply(X) Apply trees in the forest to X, return leaf indices.
fit(X, y[, sample_weight]) Build a forest of trees from the training set (X, y).
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict regression target for X.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.
transform(*args, **kwargs) DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19.

__init__(n_estimators=10, criterion=’mse’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’,
max_leaf_nodes=None, bootstrap=True, oob_score=False, n_jobs=1, random_state=None,
verbose=0, warm_start=False)

apply(X)
Apply trees in the forest to X, return leaf indices.

ParametersX : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

ReturnsX_leaves : array_like, shape = [n_samples, n_estimators]

For each datapoint x in X and for each tree in the forest, return the index of the leaf x
ends up in.

feature_importances_

Return the feature importances (the higher, the more important thefeature).

Returnsfeature_importances_ : array, shape = [n_features]

fit(X, y, sample_weight=None)
Build a forest of trees from the training set (X, y).

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]

The training input samples. Internally, it will be converted to dtype=np.float32
and if a sparse matrix is provided to a sparse csc_matrix.

y : array-like, shape = [n_samples] or [n_samples, n_outputs]

The target values (class labels in classification, real numbers in regression).

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Splits that would create
child nodes with net zero or negative weight are ignored while searching for a split in
each node. In the case of classification, splits are also ignored if they would result in
any single class carrying a negative weight in either child node.
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Returnsself : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict regression target for X.

The predicted regression target of an input sample is computed as the mean predicted regression targets of
the trees in the forest.

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returnsy : array of shape = [n_samples] or [n_samples, n_outputs]

The predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.
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Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(*args, **kwargs)
DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19. Use
SelectFromModel instead.

Reduce X to its most important features.

Uses coef_ or feature_importances_ to determine the most important features. For
models with a coef_ for each class, the absolute sum over the classes is used.

ParametersX : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold[string, float or None, optional (default=None)] The threshold value to use for
feature selection. Features whose importance is greater or equal are kept while the
others are discarded. If “median” (resp. “mean”), then the threshold value is the me-
dian (resp. the mean) of the feature importances. A scaling factor (e.g., “1.25*mean”)
may also be used. If None and if available, the object attribute threshold is used.
Otherwise, “mean” is used by default.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

Examples using sklearn.ensemble.RandomForestRegressor

• Imputing missing values before building an estimator

• Prediction Latency

sklearn.ensemble.ExtraTreesClassifier
class sklearn.ensemble.ExtraTreesClassifier(n_estimators=10, crite-

rion=’gini’, max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=’auto’, max_leaf_nodes=None,
bootstrap=False, oob_score=False,
n_jobs=1, random_state=None, verbose=0,
warm_start=False, class_weight=None)

An extra-trees classifier.

This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on
various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting.

Read more in the User Guide.

Parametersn_estimators : integer, optional (default=10)
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The number of trees in the forest.

criterion : string, optional (default=”gini”)

The function to measure the quality of a split. Supported criteria are “gini” for the Gini
impurity and “entropy” for the information gain. Note: this parameter is tree-specific.

max_features : int, float, string or None, optional (default=”auto”)

The number of features to consider when looking for the best split:

•If int, then consider max_features features at each split.

•If float, then max_features is a percentage and int(max_features * n_features) features
are considered at each split.

•If “auto”, then max_features=sqrt(n_features).

•If “sqrt”, then max_features=sqrt(n_features).

•If “log2”, then max_features=log2(n_features).

•If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node
samples is found, even if it requires to effectively inspect more than max_features
features. Note: this parameter is tree-specific.

max_depth : integer or None, optional (default=None)

The maximum depth of the tree. If None, then nodes are expanded until all leaves
are pure or until all leaves contain less than min_samples_split samples. Ignored if
max_leaf_nodes is not None. Note: this parameter is tree-specific.

min_samples_split : integer, optional (default=2)

The minimum number of samples required to split an internal node. Note: this parame-
ter is tree-specific.

min_samples_leaf : integer, optional (default=1)

The minimum number of samples in newly created leaves. A split is discarded if after
the split, one of the leaves would contain less then min_samples_leaf samples.
Note: this parameter is tree-specific.

min_weight_fraction_leaf : float, optional (default=0.)

The minimum weighted fraction of the input samples required to be at a leaf node. Note:
this parameter is tree-specific.

max_leaf_nodes : int or None, optional (default=None)

Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined as
relative reduction in impurity. If None then unlimited number of leaf nodes. If not
None then max_depth will be ignored. Note: this parameter is tree-specific.

bootstrap : boolean, optional (default=False)

Whether bootstrap samples are used when building trees.

oob_score : bool

Whether to use out-of-bag samples to estimate the generalization error.

n_jobs : integer, optional (default=1)
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The number of jobs to run in parallel for both fit and predict. If -1, then the number of
jobs is set to the number of cores.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

verbose : int, optional (default=0)

Controls the verbosity of the tree building process.

warm_start : bool, optional (default=False)

When set to True, reuse the solution of the previous call to fit and add more estimators
to the ensemble, otherwise, just fit a whole new forest.

class_weight : dict, list of dicts, “balanced”, “balanced_subsample” or None, optional

Weights associated with classes in the form {class_label: weight}. If not
given, all classes are supposed to have weight one. For multi-output problems, a list of
dicts can be provided in the same order as the columns of y.

The “balanced” mode uses the values of y to automatically adjust weights inversely
proportional to class frequencies in the input data as n_samples / (n_classes

* np.bincount(y))

The “balanced_subsample” mode is the same as “balanced” except that weights are
computed based on the bootstrap sample for every tree grown.

For multi-output, the weights of each column of y will be multiplied.

Note that these weights will be multiplied with sample_weight (passed through the fit
method) if sample_weight is specified.

Attributesestimators_ : list of DecisionTreeClassifier

The collection of fitted sub-estimators.

classes_ : array of shape = [n_classes] or a list of such arrays

The classes labels (single output problem), or a list of arrays of class labels (multi-output
problem).

n_classes_ : int or list

The number of classes (single output problem), or a list containing the number of classes
for each output (multi-output problem).

feature_importances_ : array of shape = [n_features]

The feature importances (the higher, the more important the feature).

n_features_ : int

The number of features when fit is performed.

n_outputs_ : int

The number of outputs when fit is performed.

oob_score_ : float

Score of the training dataset obtained using an out-of-bag estimate.

oob_decision_function_ : array of shape = [n_samples, n_classes]
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Decision function computed with out-of-bag estimate on the training set. If
n_estimators is small it might be possible that a data point was never left out during
the bootstrap. In this case, oob_decision_function_ might contain NaN.

See also:

sklearn.tree.ExtraTreeClassifierBase classifier for this ensemble.

RandomForestClassifierEnsemble Classifier based on trees with optimal splits.

References

[R19]

Methods

apply(X) Apply trees in the forest to X, return leaf indices.
fit(X, y[, sample_weight]) Build a forest of trees from the training set (X, y).
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class for X.
predict_log_proba(X) Predict class log-probabilities for X.
predict_proba(X) Predict class probabilities for X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.
transform(*args, **kwargs) DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19.

__init__(n_estimators=10, criterion=’gini’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’,
max_leaf_nodes=None, bootstrap=False, oob_score=False, n_jobs=1, ran-
dom_state=None, verbose=0, warm_start=False, class_weight=None)

apply(X)
Apply trees in the forest to X, return leaf indices.

ParametersX : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

ReturnsX_leaves : array_like, shape = [n_samples, n_estimators]

For each datapoint x in X and for each tree in the forest, return the index of the leaf x
ends up in.

feature_importances_

Return the feature importances (the higher, the more important thefeature).

Returnsfeature_importances_ : array, shape = [n_features]

fit(X, y, sample_weight=None)
Build a forest of trees from the training set (X, y).

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]
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The training input samples. Internally, it will be converted to dtype=np.float32
and if a sparse matrix is provided to a sparse csc_matrix.

y : array-like, shape = [n_samples] or [n_samples, n_outputs]

The target values (class labels in classification, real numbers in regression).

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Splits that would create
child nodes with net zero or negative weight are ignored while searching for a split in
each node. In the case of classification, splits are also ignored if they would result in
any single class carrying a negative weight in either child node.

Returnsself : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict class for X.

The predicted class of an input sample is a vote by the trees in the forest, weighted by their probability
estimates. That is, the predicted class is the one with highest mean probability estimate across the trees.

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returnsy : array of shape = [n_samples] or [n_samples, n_outputs]

The predicted classes.

predict_log_proba(X)
Predict class log-probabilities for X.

The predicted class log-probabilities of an input sample is computed as the log of the mean predicted class
probabilities of the trees in the forest.

380 Chapter 3. User Guide



scikit-learn user guide, Release 0.17

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returnsp : array of shape = [n_samples, n_classes], or a list of n_outputs

such arrays if n_outputs > 1. The class probabilities of the input samples. The order of
the classes corresponds to that in the attribute classes_.

predict_proba(X)
Predict class probabilities for X.

The predicted class probabilities of an input sample is computed as the mean predicted class probabilities
of the trees in the forest. The class probability of a single tree is the fraction of samples of the same class
in a leaf.

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returnsp : array of shape = [n_samples, n_classes], or a list of n_outputs

such arrays if n_outputs > 1. The class probabilities of the input samples. The order of
the classes corresponds to that in the attribute classes_.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(*args, **kwargs)
DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19. Use
SelectFromModel instead.

Reduce X to its most important features.

Uses coef_ or feature_importances_ to determine the most important features. For
models with a coef_ for each class, the absolute sum over the classes is used.
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ParametersX : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold[string, float or None, optional (default=None)] The threshold value to use for
feature selection. Features whose importance is greater or equal are kept while the
others are discarded. If “median” (resp. “mean”), then the threshold value is the me-
dian (resp. the mean) of the feature importances. A scaling factor (e.g., “1.25*mean”)
may also be used. If None and if available, the object attribute threshold is used.
Otherwise, “mean” is used by default.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

Examples using sklearn.ensemble.ExtraTreesClassifier

• Pixel importances with a parallel forest of trees

• Feature importances with forests of trees

• Hashing feature transformation using Totally Random Trees

• Plot the decision surfaces of ensembles of trees on the iris dataset

sklearn.ensemble.ExtraTreesRegressor
class sklearn.ensemble.ExtraTreesRegressor(n_estimators=10, crite-

rion=’mse’, max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=’auto’, max_leaf_nodes=None,
bootstrap=False, oob_score=False,
n_jobs=1, random_state=None, verbose=0,
warm_start=False)

An extra-trees regressor.

This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on
various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting.

Read more in the User Guide.

Parametersn_estimators : integer, optional (default=10)

The number of trees in the forest.

criterion : string, optional (default=”mse”)

The function to measure the quality of a split. The only supported criterion is “mse” for
the mean squared error. Note: this parameter is tree-specific.

max_features : int, float, string or None, optional (default=”auto”)

The number of features to consider when looking for the best split:

•If int, then consider max_features features at each split.

•If float, then max_features is a percentage and int(max_features * n_features) features
are considered at each split.

•If “auto”, then max_features=n_features.

•If “sqrt”, then max_features=sqrt(n_features).
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•If “log2”, then max_features=log2(n_features).

•If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node
samples is found, even if it requires to effectively inspect more than max_features
features. Note: this parameter is tree-specific.

max_depth : integer or None, optional (default=None)

The maximum depth of the tree. If None, then nodes are expanded until all leaves
are pure or until all leaves contain less than min_samples_split samples. Ignored if
max_leaf_nodes is not None. Note: this parameter is tree-specific.

min_samples_split : integer, optional (default=2)

The minimum number of samples required to split an internal node. Note: this parame-
ter is tree-specific.

min_samples_leaf : integer, optional (default=1)

The minimum number of samples in newly created leaves. A split is discarded if after
the split, one of the leaves would contain less then min_samples_leaf samples.
Note: this parameter is tree-specific.

min_weight_fraction_leaf : float, optional (default=0.)

The minimum weighted fraction of the input samples required to be at a leaf node. Note:
this parameter is tree-specific.

max_leaf_nodes : int or None, optional (default=None)

Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined as
relative reduction in impurity. If None then unlimited number of leaf nodes. If not
None then max_depth will be ignored. Note: this parameter is tree-specific.

bootstrap : boolean, optional (default=False)

Whether bootstrap samples are used when building trees. Note: this parameter is tree-
specific.

oob_score : bool

Whether to use out-of-bag samples to estimate the generalization error.

n_jobs : integer, optional (default=1)

The number of jobs to run in parallel for both fit and predict. If -1, then the number of
jobs is set to the number of cores.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

verbose : int, optional (default=0)

Controls the verbosity of the tree building process.

warm_start : bool, optional (default=False)

When set to True, reuse the solution of the previous call to fit and add more estimators
to the ensemble, otherwise, just fit a whole new forest.

Attributesestimators_ : list of DecisionTreeRegressor
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The collection of fitted sub-estimators.

feature_importances_ : array of shape = [n_features]

The feature importances (the higher, the more important the feature).

n_features_ : int

The number of features.

n_outputs_ : int

The number of outputs.

oob_score_ : float

Score of the training dataset obtained using an out-of-bag estimate.

oob_prediction_ : array of shape = [n_samples]

Prediction computed with out-of-bag estimate on the training set.

See also:

sklearn.tree.ExtraTreeRegressorBase estimator for this ensemble.

RandomForestRegressorEnsemble regressor using trees with optimal splits.

References

[R20]

Methods

apply(X) Apply trees in the forest to X, return leaf indices.
fit(X, y[, sample_weight]) Build a forest of trees from the training set (X, y).
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict regression target for X.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.
transform(*args, **kwargs) DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19.

__init__(n_estimators=10, criterion=’mse’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’,
max_leaf_nodes=None, bootstrap=False, oob_score=False, n_jobs=1, ran-
dom_state=None, verbose=0, warm_start=False)

apply(X)
Apply trees in the forest to X, return leaf indices.

ParametersX : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

ReturnsX_leaves : array_like, shape = [n_samples, n_estimators]

For each datapoint x in X and for each tree in the forest, return the index of the leaf x
ends up in.
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feature_importances_

Return the feature importances (the higher, the more important thefeature).

Returnsfeature_importances_ : array, shape = [n_features]

fit(X, y, sample_weight=None)
Build a forest of trees from the training set (X, y).

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]

The training input samples. Internally, it will be converted to dtype=np.float32
and if a sparse matrix is provided to a sparse csc_matrix.

y : array-like, shape = [n_samples] or [n_samples, n_outputs]

The target values (class labels in classification, real numbers in regression).

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Splits that would create
child nodes with net zero or negative weight are ignored while searching for a split in
each node. In the case of classification, splits are also ignored if they would result in
any single class carrying a negative weight in either child node.

Returnsself : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict regression target for X.

The predicted regression target of an input sample is computed as the mean predicted regression targets of
the trees in the forest.

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]
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The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returnsy : array of shape = [n_samples] or [n_samples, n_outputs]

The predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(*args, **kwargs)
DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19. Use
SelectFromModel instead.

Reduce X to its most important features.

Uses coef_ or feature_importances_ to determine the most important features. For
models with a coef_ for each class, the absolute sum over the classes is used.

ParametersX : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold[string, float or None, optional (default=None)] The threshold value to use for
feature selection. Features whose importance is greater or equal are kept while the
others are discarded. If “median” (resp. “mean”), then the threshold value is the me-
dian (resp. the mean) of the feature importances. A scaling factor (e.g., “1.25*mean”)
may also be used. If None and if available, the object attribute threshold is used.
Otherwise, “mean” is used by default.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.
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Examples using sklearn.ensemble.ExtraTreesRegressor

• Face completion with a multi-output estimators

• Sparse recovery: feature selection for sparse linear models

sklearn.ensemble.GradientBoostingClassifier
class sklearn.ensemble.GradientBoostingClassifier(loss=’deviance’, learning_rate=0.1,

n_estimators=100, subsam-
ple=1.0, min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_depth=3, init=None, ran-
dom_state=None, max_features=None,
verbose=0, max_leaf_nodes=None,
warm_start=False, presort=’auto’)

Gradient Boosting for classification.

GB builds an additive model in a forward stage-wise fashion; it allows for the optimization of arbitrary differen-
tiable loss functions. In each stage n_classes_ regression trees are fit on the negative gradient of the binomial
or multinomial deviance loss function. Binary classification is a special case where only a single regression tree
is induced.

Read more in the User Guide.

Parametersloss : {‘deviance’, ‘exponential’}, optional (default=’deviance’)

loss function to be optimized. ‘deviance’ refers to deviance (= logistic regression) for
classification with probabilistic outputs. For loss ‘exponential’ gradient boosting recov-
ers the AdaBoost algorithm.

learning_rate : float, optional (default=0.1)

learning rate shrinks the contribution of each tree by learning_rate. There is a trade-off
between learning_rate and n_estimators.

n_estimators : int (default=100)

The number of boosting stages to perform. Gradient boosting is fairly robust to over-
fitting so a large number usually results in better performance.

max_depth : integer, optional (default=3)

maximum depth of the individual regression estimators. The maximum depth limits the
number of nodes in the tree. Tune this parameter for best performance; the best value
depends on the interaction of the input variables. Ignored if max_leaf_nodes is not
None.

min_samples_split : integer, optional (default=2)

The minimum number of samples required to split an internal node.

min_samples_leaf : integer, optional (default=1)

The minimum number of samples required to be at a leaf node.

min_weight_fraction_leaf : float, optional (default=0.)

The minimum weighted fraction of the input samples required to be at a leaf node.

subsample : float, optional (default=1.0)
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The fraction of samples to be used for fitting the individual base learners. If smaller
than 1.0 this results in Stochastic Gradient Boosting. subsample interacts with the pa-
rameter n_estimators. Choosing subsample < 1.0 leads to a reduction of variance and
an increase in bias.

max_features : int, float, string or None, optional (default=None)

The number of features to consider when looking for the best split:

•If int, then consider max_features features at each split.

•If float, then max_features is a percentage and int(max_features * n_features) fea-
tures are considered at each split.

•If “auto”, then max_features=sqrt(n_features).

•If “sqrt”, then max_features=sqrt(n_features).

•If “log2”, then max_features=log2(n_features).

•If None, then max_features=n_features.

Choosing max_features < n_features leads to a reduction of variance and an increase in
bias.

Note: the search for a split does not stop until at least one valid partition of the node
samples is found, even if it requires to effectively inspect more than max_features
features.

max_leaf_nodes : int or None, optional (default=None)

Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined as
relative reduction in impurity. If None then unlimited number of leaf nodes. If not
None then max_depth will be ignored.

init : BaseEstimator, None, optional (default=None)

An estimator object that is used to compute the initial predictions. init has to provide
fit and predict. If None it uses loss.init_estimator.

verbose : int, default: 0

Enable verbose output. If 1 then it prints progress and performance once in a while
(the more trees the lower the frequency). If greater than 1 then it prints progress and
performance for every tree.

warm_start : bool, default: False

When set to True, reuse the solution of the previous call to fit and add more estimators
to the ensemble, otherwise, just erase the previous solution.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

presort : bool or ‘auto’, optional (default=’auto’)

Whether to presort the data to speed up the finding of best splits in fitting. Auto mode
by default will use presorting on dense data and default to normal sorting on sparse data.
Setting presort to true on sparse data will raise an error.

New in version 0.17: presort parameter.

Attributesfeature_importances_ : array, shape = [n_features]
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The feature importances (the higher, the more important the feature).

oob_improvement_ : array, shape = [n_estimators]

The improvement in loss (= deviance) on the out-of-bag samples relative to the previous
iteration. oob_improvement_[0] is the improvement in loss of the first stage over
the init estimator.

train_score_ : array, shape = [n_estimators]

The i-th score train_score_[i] is the deviance (= loss) of the model at iteration i
on the in-bag sample. If subsample == 1 this is the deviance on the training data.

loss_ : LossFunction

The concrete LossFunction object.

init : BaseEstimator

The estimator that provides the initial predictions. Set via the init argument or
loss.init_estimator.

estimators_ : ndarray of DecisionTreeRegressor, shape = [n_estimators, loss_.K]

The collection of fitted sub-estimators. loss_.K is 1 for binary classification, other-
wise n_classes.

See also:

sklearn.tree.DecisionTreeClassifier, RandomForestClassifier,
AdaBoostClassifier

References

J. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The Annals of Statistics, Vol. 29,
No. 5, 2001.

10.Friedman, Stochastic Gradient Boosting, 1999

T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical Learning Ed. 2, Springer, 2009.

Methods

apply(X) Apply trees in the ensemble to X, return leaf indices.
decision_function(X) Compute the decision function of X.
fit(X, y[, sample_weight, monitor]) Fit the gradient boosting model.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class for X.
predict_log_proba(X) Predict class log-probabilities for X.
predict_proba(X) Predict class probabilities for X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.
staged_decision_function(X) Compute decision function of X for each iteration.
staged_predict(X) Predict class at each stage for X.
staged_predict_proba(X) Predict class probabilities at each stage for X.
transform(*args, **kwargs) DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19.
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__init__(loss=’deviance’, learning_rate=0.1, n_estimators=100, subsample=1.0,
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_depth=3,
init=None, random_state=None, max_features=None, verbose=0, max_leaf_nodes=None,
warm_start=False, presort=’auto’)

apply(X)
Apply trees in the ensemble to X, return leaf indices.

New in version 0.17.

ParametersX : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

ReturnsX_leaves : array_like, shape = [n_samples, n_estimators, n_classes]

For each datapoint x in X and for each tree in the ensemble, return the index of the leaf
x ends up in in each estimator. In the case of binary classification n_classes is 1.

decision_function(X)
Compute the decision function of X.

ParametersX : array-like of shape = [n_samples, n_features]

The input samples.

Returnsscore : array, shape = [n_samples, n_classes] or [n_samples]

The decision function of the input samples. The order of the classes corresponds to that
in the attribute classes_. Regression and binary classification produce an array of shape
[n_samples].

feature_importances_

Return the feature importances (the higher, the more important thefeature).

Returnsfeature_importances_ : array, shape = [n_features]

fit(X, y, sample_weight=None, monitor=None)
Fit the gradient boosting model.

ParametersX : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target values (integers in classification, real numbers in regression) For classification,
labels must correspond to classes.

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Splits that would create
child nodes with net zero or negative weight are ignored while searching for a split in
each node. In the case of classification, splits are also ignored if they would result in
any single class carrying a negative weight in either child node.

monitor : callable, optional

The monitor is called after each iteration with the current iteration, a reference
to the estimator and the local variables of _fit_stages as keyword arguments
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callable(i, self, locals()). If the callable returns True the fitting proce-
dure is stopped. The monitor can be used for various things such as computing held-out
estimates, early stopping, model introspect, and snapshoting.

Returnsself : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict class for X.

ParametersX : array-like of shape = [n_samples, n_features]

The input samples.

Returnsy: array of shape = [”n_samples] :

The predicted values.

predict_log_proba(X)
Predict class log-probabilities for X.

ParametersX : array-like of shape = [n_samples, n_features]

The input samples.

Returnsp : array of shape = [n_samples]

The class log-probabilities of the input samples. The order of the classes corresponds to
that in the attribute classes_.

RaisesAttributeError :

If the loss does not support probabilities.

predict_proba(X)
Predict class probabilities for X.

ParametersX : array-like of shape = [n_samples, n_features]
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The input samples.

Returnsp : array of shape = [n_samples]

The class probabilities of the input samples. The order of the classes corresponds to that
in the attribute classes_.

RaisesAttributeError :

If the loss does not support probabilities.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

staged_decision_function(X)
Compute decision function of X for each iteration.

This method allows monitoring (i.e. determine error on testing set) after each stage.

ParametersX : array-like of shape = [n_samples, n_features]

The input samples.

Returnsscore : generator of array, shape = [n_samples, k]

The decision function of the input samples. The order of the classes corresponds to that
in the attribute classes_. Regression and binary classification are special cases with k
== 1, otherwise k==n_classes.

staged_predict(X)
Predict class at each stage for X.

This method allows monitoring (i.e. determine error on testing set) after each stage.

ParametersX : array-like of shape = [n_samples, n_features]

The input samples.

Returnsy : generator of array of shape = [n_samples]
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The predicted value of the input samples.

staged_predict_proba(X)
Predict class probabilities at each stage for X.

This method allows monitoring (i.e. determine error on testing set) after each stage.

ParametersX : array-like of shape = [n_samples, n_features]

The input samples.

Returnsy : generator of array of shape = [n_samples]

The predicted value of the input samples.

transform(*args, **kwargs)
DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19. Use
SelectFromModel instead.

Reduce X to its most important features.

Uses coef_ or feature_importances_ to determine the most important features. For
models with a coef_ for each class, the absolute sum over the classes is used.

ParametersX : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold[string, float or None, optional (default=None)] The threshold value to use for
feature selection. Features whose importance is greater or equal are kept while the
others are discarded. If “median” (resp. “mean”), then the threshold value is the me-
dian (resp. the mean) of the feature importances. A scaling factor (e.g., “1.25*mean”)
may also be used. If None and if available, the object attribute threshold is used.
Otherwise, “mean” is used by default.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

Examples using sklearn.ensemble.GradientBoostingClassifier

• Gradient Boosting regularization

• Feature transformations with ensembles of trees

• Gradient Boosting Out-of-Bag estimates

sklearn.ensemble.GradientBoostingRegressor
class sklearn.ensemble.GradientBoostingRegressor(loss=’ls’, learning_rate=0.1,

n_estimators=100, subsam-
ple=1.0, min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_depth=3, init=None, ran-
dom_state=None, max_features=None,
alpha=0.9, verbose=0,
max_leaf_nodes=None,
warm_start=False, presort=’auto’)

Gradient Boosting for regression.
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GB builds an additive model in a forward stage-wise fashion; it allows for the optimization of arbitrary differ-
entiable loss functions. In each stage a regression tree is fit on the negative gradient of the given loss function.

Read more in the User Guide.

Parametersloss : {‘ls’, ‘lad’, ‘huber’, ‘quantile’}, optional (default=’ls’)

loss function to be optimized. ‘ls’ refers to least squares regression. ‘lad’ (least absolute
deviation) is a highly robust loss function solely based on order information of the input
variables. ‘huber’ is a combination of the two. ‘quantile’ allows quantile regression
(use alpha to specify the quantile).

learning_rate : float, optional (default=0.1)

learning rate shrinks the contribution of each tree by learning_rate. There is a trade-off
between learning_rate and n_estimators.

n_estimators : int (default=100)

The number of boosting stages to perform. Gradient boosting is fairly robust to over-
fitting so a large number usually results in better performance.

max_depth : integer, optional (default=3)

maximum depth of the individual regression estimators. The maximum depth limits the
number of nodes in the tree. Tune this parameter for best performance; the best value
depends on the interaction of the input variables. Ignored if max_leaf_nodes is not
None.

min_samples_split : integer, optional (default=2)

The minimum number of samples required to split an internal node.

min_samples_leaf : integer, optional (default=1)

The minimum number of samples required to be at a leaf node.

min_weight_fraction_leaf : float, optional (default=0.)

The minimum weighted fraction of the input samples required to be at a leaf node.

subsample : float, optional (default=1.0)

The fraction of samples to be used for fitting the individual base learners. If smaller
than 1.0 this results in Stochastic Gradient Boosting. subsample interacts with the pa-
rameter n_estimators. Choosing subsample < 1.0 leads to a reduction of variance and
an increase in bias.

max_features : int, float, string or None, optional (default=None)

The number of features to consider when looking for the best split:

•If int, then consider max_features features at each split.

•If float, then max_features is a percentage and int(max_features * n_features) fea-
tures are considered at each split.

•If “auto”, then max_features=n_features.

•If “sqrt”, then max_features=sqrt(n_features).

•If “log2”, then max_features=log2(n_features).

•If None, then max_features=n_features.
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Choosing max_features < n_features leads to a reduction of variance and an increase in
bias.

Note: the search for a split does not stop until at least one valid partition of the node
samples is found, even if it requires to effectively inspect more than max_features
features.

max_leaf_nodes : int or None, optional (default=None)

Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined as
relative reduction in impurity. If None then unlimited number of leaf nodes.

alpha : float (default=0.9)

The alpha-quantile of the huber loss function and the quantile loss function. Only if
loss=’huber’ or loss=’quantile’.

init : BaseEstimator, None, optional (default=None)

An estimator object that is used to compute the initial predictions. init has to provide
fit and predict. If None it uses loss.init_estimator.

verbose : int, default: 0

Enable verbose output. If 1 then it prints progress and performance once in a while
(the more trees the lower the frequency). If greater than 1 then it prints progress and
performance for every tree.

warm_start : bool, default: False

When set to True, reuse the solution of the previous call to fit and add more estimators
to the ensemble, otherwise, just erase the previous solution.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

presort : bool or ‘auto’, optional (default=’auto’)

Whether to presort the data to speed up the finding of best splits in fitting. Auto mode
by default will use presorting on dense data and default to normal sorting on sparse data.
Setting presort to true on sparse data will raise an error.

New in version 0.17: optional parameter presort.

Attributesfeature_importances_ : array, shape = [n_features]

The feature importances (the higher, the more important the feature).

oob_improvement_ : array, shape = [n_estimators]

The improvement in loss (= deviance) on the out-of-bag samples relative to the previous
iteration. oob_improvement_[0] is the improvement in loss of the first stage over
the init estimator.

train_score_ : array, shape = [n_estimators]

The i-th score train_score_[i] is the deviance (= loss) of the model at iteration i
on the in-bag sample. If subsample == 1 this is the deviance on the training data.

loss_ : LossFunction

The concrete LossFunction object.
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‘init‘ : BaseEstimator

The estimator that provides the initial predictions. Set via the init argument or
loss.init_estimator.

estimators_ : ndarray of DecisionTreeRegressor, shape = [n_estimators, 1]

The collection of fitted sub-estimators.

See also:

DecisionTreeRegressor, RandomForestRegressor

References

J. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The Annals of Statistics, Vol. 29,
No. 5, 2001.

10.Friedman, Stochastic Gradient Boosting, 1999

T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical Learning Ed. 2, Springer, 2009.

Methods

apply(X) Apply trees in the ensemble to X, return leaf indices.
decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19
fit(X, y[, sample_weight, monitor]) Fit the gradient boosting model.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict regression target for X.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.
staged_decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19
staged_predict(X) Predict regression target at each stage for X.
transform(*args, **kwargs) DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19.

__init__(loss=’ls’, learning_rate=0.1, n_estimators=100, subsample=1.0, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_depth=3, init=None, ran-
dom_state=None, max_features=None, alpha=0.9, verbose=0, max_leaf_nodes=None,
warm_start=False, presort=’auto’)

apply(X)
Apply trees in the ensemble to X, return leaf indices.

New in version 0.17.

ParametersX : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

ReturnsX_leaves : array_like, shape = [n_samples, n_estimators]

For each datapoint x in X and for each tree in the ensemble, return the index of the leaf
x ends up in in each estimator.

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19
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Compute the decision function of X.

ParametersX : array-like of shape = [n_samples, n_features]

The input samples.

Returnsscore : array, shape = [n_samples, n_classes] or [n_samples]

The decision function of the input samples. The order of the classes corresponds to that
in the attribute classes_. Regression and binary classification produce an array of shape
[n_samples].

feature_importances_

Return the feature importances (the higher, the more important thefeature).

Returnsfeature_importances_ : array, shape = [n_features]

fit(X, y, sample_weight=None, monitor=None)
Fit the gradient boosting model.

ParametersX : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target values (integers in classification, real numbers in regression) For classification,
labels must correspond to classes.

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Splits that would create
child nodes with net zero or negative weight are ignored while searching for a split in
each node. In the case of classification, splits are also ignored if they would result in
any single class carrying a negative weight in either child node.

monitor : callable, optional

The monitor is called after each iteration with the current iteration, a reference
to the estimator and the local variables of _fit_stages as keyword arguments
callable(i, self, locals()). If the callable returns True the fitting proce-
dure is stopped. The monitor can be used for various things such as computing held-out
estimates, early stopping, model introspect, and snapshoting.

Returnsself : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.
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get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict regression target for X.

ParametersX : array-like of shape = [n_samples, n_features]

The input samples.

Returnsy : array of shape = [n_samples]

The predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

staged_decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19

Compute decision function of X for each iteration.

This method allows monitoring (i.e. determine error on testing set) after each stage.

ParametersX : array-like of shape = [n_samples, n_features]

The input samples.
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Returnsscore : generator of array, shape = [n_samples, k]

The decision function of the input samples. The order of the classes corresponds to that
in the attribute classes_. Regression and binary classification are special cases with k
== 1, otherwise k==n_classes.

staged_predict(X)
Predict regression target at each stage for X.

This method allows monitoring (i.e. determine error on testing set) after each stage.

ParametersX : array-like of shape = [n_samples, n_features]

The input samples.

Returnsy : generator of array of shape = [n_samples]

The predicted value of the input samples.

transform(*args, **kwargs)
DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19. Use
SelectFromModel instead.

Reduce X to its most important features.

Uses coef_ or feature_importances_ to determine the most important features. For
models with a coef_ for each class, the absolute sum over the classes is used.

ParametersX : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold[string, float or None, optional (default=None)] The threshold value to use for
feature selection. Features whose importance is greater or equal are kept while the
others are discarded. If “median” (resp. “mean”), then the threshold value is the me-
dian (resp. the mean) of the feature importances. A scaling factor (e.g., “1.25*mean”)
may also be used. If None and if available, the object attribute threshold is used.
Otherwise, “mean” is used by default.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

Examples using sklearn.ensemble.GradientBoostingRegressor

• Model Complexity Influence

• Partial Dependence Plots

• Gradient Boosting regression

• Prediction Intervals for Gradient Boosting Regression

3.3.3 Model evaluation: quantifying the quality of predictions

There are 3 different approaches to evaluate the quality of predictions of a model:

• Estimator score method: Estimators have a score method providing a default evaluation criterion for the
problem they are designed to solve. This is not discussed on this page, but in each estimator’s documentation.
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• Scoring parameter: Model-evaluation tools using cross-validation (such as
cross_validation.cross_val_score and grid_search.GridSearchCV) rely on an in-
ternal scoring strategy. This is discussed in the section The scoring parameter: defining model evaluation
rules.

• Metric functions: The metricsmodule implements functions assessing prediction error for specific purposes.
These metrics are detailed in sections on Classification metrics, Multilabel ranking metrics, Regression metrics
and Clustering metrics.

Finally, Dummy estimators are useful to get a baseline value of those metrics for random predictions.

See also:

For “pairwise” metrics, between samples and not estimators or predictions, see the Pairwise metrics, Affinities and
Kernels section.

The scoring parameter: defining model evaluation rules

Model selection and evaluation using tools, such as grid_search.GridSearchCV and
cross_validation.cross_val_score, take a scoring parameter that controls what metric they
apply to the estimators evaluated.

Common cases: predefined values

For the most common use cases, you can designate a scorer object with the scoring parameter; the table below
shows all possible values. All scorer ojects follow the convention that higher return values are better than lower return
values. Thus the returns from mean_absolute_error and mean_squared_error, which measure the distance between the
model and the data, are negated.

Scoring Function Comment
Classification
‘accuracy’ metrics.accuracy_score
‘average_precision’ metrics.average_precision_score
‘f1’ metrics.f1_score for binary targets
‘f1_micro’ metrics.f1_score micro-averaged
‘f1_macro’ metrics.f1_score macro-averaged
‘f1_weighted’ metrics.f1_score weighted average
‘f1_samples’ metrics.f1_score by multilabel sample
‘log_loss’ metrics.log_loss requires predict_proba support
‘precision’ etc. metrics.precision_score suffixes apply as with ‘f1’
‘recall’ etc. metrics.recall_score suffixes apply as with ‘f1’
‘roc_auc’ metrics.roc_auc_score
Clustering
‘adjusted_rand_score’ metrics.adjusted_rand_score
Regression
‘mean_absolute_error’ metrics.mean_absolute_error
‘mean_squared_error’ metrics.mean_squared_error
‘median_absolute_error’ metrics.median_absolute_error
‘r2’ metrics.r2_score

Usage examples:

>>> from sklearn import svm, cross_validation, datasets
>>> iris = datasets.load_iris()
>>> X, y = iris.data, iris.target
>>> model = svm.SVC()
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>>> cross_validation.cross_val_score(model, X, y, scoring='wrong_choice')
Traceback (most recent call last):
ValueError: 'wrong_choice' is not a valid scoring value. Valid options are ['accuracy', 'adjusted_rand_score', 'average_precision', 'f1', 'f1_macro', 'f1_micro', 'f1_samples', 'f1_weighted', 'log_loss', 'mean_absolute_error', 'mean_squared_error', 'median_absolute_error', 'precision', 'precision_macro', 'precision_micro', 'precision_samples', 'precision_weighted', 'r2', 'recall', 'recall_macro', 'recall_micro', 'recall_samples', 'recall_weighted', 'roc_auc']
>>> clf = svm.SVC(probability=True, random_state=0)
>>> cross_validation.cross_val_score(clf, X, y, scoring='log_loss')
array([-0.07..., -0.16..., -0.06...])

Note: The values listed by the ValueError exception correspond to the functions measuring prediction accu-
racy described in the following sections. The scorer objects for those functions are stored in the dictionary
sklearn.metrics.SCORERS.

Defining your scoring strategy from metric functions

The module sklearn.metric also exposes a set of simple functions measuring a prediction error given ground
truth and prediction:

• functions ending with _score return a value to maximize, the higher the better.

• functions ending with _error or _loss return a value to minimize, the lower the better. When converting into
a scorer object using make_scorer, set the greater_is_better parameter to False (True by default; see
the parameter description below).

Metrics available for various machine learning tasks are detailed in sections below.

Many metrics are not given names to be used as scoring values, sometimes because they require additional param-
eters, such as fbeta_score. In such cases, you need to generate an appropriate scoring object. The simplest way
to generate a callable object for scoring is by using make_scorer. That function converts metrics into callables that
can be used for model evaluation.

One typical use case is to wrap an existing metric function from the library with non-default values for its parameters,
such as the beta parameter for the fbeta_score function:

>>> from sklearn.metrics import fbeta_score, make_scorer
>>> ftwo_scorer = make_scorer(fbeta_score, beta=2)
>>> from sklearn.grid_search import GridSearchCV
>>> from sklearn.svm import LinearSVC
>>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]}, scoring=ftwo_scorer)

The second use case is to build a completely custom scorer object from a simple python function using
make_scorer, which can take several parameters:

• the python function you want to use (my_custom_loss_func in the example below)

• whether the python function returns a score (greater_is_better=True, the default) or a loss
(greater_is_better=False). If a loss, the output of the python function is negated by the scorer ob-
ject, conforming to the cross validation convention that scorers return higher values for better models.

• for classification metrics only: whether the python function you provided requires continuous decision certain-
ties (needs_threshold=True). The default value is False.

• any additional parameters, such as beta or labels in f1_score.

Here is an example of building custom scorers, and of using the greater_is_better parameter:

>>> import numpy as np
>>> def my_custom_loss_func(ground_truth, predictions):
... diff = np.abs(ground_truth - predictions).max()
... return np.log(1 + diff)
...
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>>> # loss_func will negate the return value of my_custom_loss_func,
>>> # which will be np.log(2), 0.693, given the values for ground_truth
>>> # and predictions defined below.
>>> loss = make_scorer(my_custom_loss_func, greater_is_better=False)
>>> score = make_scorer(my_custom_loss_func, greater_is_better=True)
>>> ground_truth = [[1, 1]]
>>> predictions = [0, 1]
>>> from sklearn.dummy import DummyClassifier
>>> clf = DummyClassifier(strategy='most_frequent', random_state=0)
>>> clf = clf.fit(ground_truth, predictions)
>>> loss(clf,ground_truth, predictions)
-0.69...
>>> score(clf,ground_truth, predictions)
0.69...

Implementing your own scoring object

You can generate even more flexible model scorers by constructing your own scoring object from scratch, without using
the make_scorer factory. For a callable to be a scorer, it needs to meet the protocol specified by the following two
rules:

• It can be called with parameters (estimator, X, y), where estimator is the model that should be
evaluated, X is validation data, and y is the ground truth target for X (in the supervised case) or None (in the
unsupervised case).

• It returns a floating point number that quantifies the estimator prediction quality on X, with reference to y.
Again, by convention higher numbers are better, so if your scorer returns loss, that value should be negated.

Classification metrics

The sklearn.metrics module implements several loss, score, and utility functions to measure classification per-
formance. Some metrics might require probability estimates of the positive class, confidence values, or binary deci-
sions values. Most implementations allow each sample to provide a weighted contribution to the overall score, through
the sample_weight parameter.

Some of these are restricted to the binary classification case:

matthews_corrcoef(y_true, y_pred) Compute the Matthews correlation coefficient (MCC) for binary classes
precision_recall_curve(y_true, probas_pred) Compute precision-recall pairs for different probability thresholds
roc_curve(y_true, y_score[, pos_label, ...]) Compute Receiver operating characteristic (ROC)

Others also work in the multiclass case:

confusion_matrix(y_true, y_pred[, labels]) Compute confusion matrix to evaluate the accuracy of a classification
hinge_loss(y_true, pred_decision[, labels, ...]) Average hinge loss (non-regularized)

Some also work in the multilabel case:

accuracy_score(y_true, y_pred[, normalize, ...]) Accuracy classification score.
classification_report(y_true, y_pred[, ...]) Build a text report showing the main classification metrics
f1_score(y_true, y_pred[, labels, ...]) Compute the F1 score, also known as balanced F-score or F-measure
fbeta_score(y_true, y_pred, beta[, labels, ...]) Compute the F-beta score

Continued on next page
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Table 3.24 – continued from previous page
hamming_loss(y_true, y_pred[, classes]) Compute the average Hamming loss.
jaccard_similarity_score(y_true, y_pred[, ...]) Jaccard similarity coefficient score
log_loss(y_true, y_pred[, eps, normalize, ...]) Log loss, aka logistic loss or cross-entropy loss.
precision_recall_fscore_support(y_true, y_pred) Compute precision, recall, F-measure and support for each class
precision_score(y_true, y_pred[, labels, ...]) Compute the precision
recall_score(y_true, y_pred[, labels, ...]) Compute the recall
zero_one_loss(y_true, y_pred[, normalize, ...]) Zero-one classification loss.

And some work with binary and multilabel (but not multiclass) problems:

average_precision_score(y_true, y_score[, ...]) Compute average precision (AP) from prediction scores
roc_auc_score(y_true, y_score[, average, ...]) Compute Area Under the Curve (AUC) from prediction scores

In the following sub-sections, we will describe each of those functions, preceded by some notes on common API and
metric definition.

From binary to multiclass and multilabel

Some metrics are essentially defined for binary classification tasks (e.g. f1_score, roc_auc_score). In these
cases, by default only the positive label is evaluated, assuming by default that the positive class is labelled 1 (though
this may be configurable through the pos_label parameter). In extending a binary metric to multiclass or multilabel
problems, the data is treated as a collection of binary problems, one for each class. There are then a number of ways
to average binary metric calculations across the set of classes, each of which may be useful in some scenario. Where
available, you should select among these using the average parameter.

• "macro" simply calculates the mean of the binary metrics, giving equal weight to each class. In problems
where infrequent classes are nonetheless important, macro-averaging may be a means of highlighting their
performance. On the other hand, the assumption that all classes are equally important is often untrue, such that
macro-averaging will over-emphasize the typically low performance on an infrequent class.

• "weighted" accounts for class imbalance by computing the average of binary metrics in which each class’s
score is weighted by its presence in the true data sample.

• "micro" gives each sample-class pair an equal contribution to the overall metric (except as a result of sample-
weight). Rather than summing the metric per class, this sums the dividends and divisors that make up the
the per-class metrics to calculate an overall quotient. Micro-averaging may be preferred in multilabel settings,
including multiclass classification where a majority class is to be ignored.

• "samples" applies only to multilabel problems. It does not calculate a per-class measure, instead calculat-
ing the metric over the true and predicted classes for each sample in the evaluation data, and returning their
(sample_weight-weighted) average.

• Selecting average=None will return an array with the score for each class.

While multiclass data is provided to the metric, like binary targets, as an array of class labels, multilabel data is
specified as an indicator matrix, in which cell [i, j] has value 1 if sample i has label j and value 0 otherwise.

Accuracy score

The accuracy_score function computes the accuracy, either the fraction (default) or the count (normalize=False)
of correct predictions.
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In multilabel classification, the function returns the subset accuracy. If the entire set of predicted labels for a sample
strictly match with the true set of labels, then the subset accuracy is 1.0; otherwise it is 0.0.

If 𝑦𝑖 is the predicted value of the 𝑖-th sample and 𝑦𝑖 is the corresponding true value, then the fraction of correct
predictions over 𝑛samples is defined as

accuracy(𝑦, 𝑦) =
1

𝑛samples

𝑛samples−1∑︁
𝑖=0

1(𝑦𝑖 = 𝑦𝑖)

where 1(𝑥) is the indicator function.

>>> import numpy as np
>>> from sklearn.metrics import accuracy_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> accuracy_score(y_true, y_pred)
0.5
>>> accuracy_score(y_true, y_pred, normalize=False)
2

In the multilabel case with binary label indicators:

>>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5

Example:

• See Test with permutations the significance of a classification score for an example of accuracy score
usage using permutations of the dataset.

Cohen’s kappa

The function cohen_kappa_score computes Cohen’s kappa statistic. This measure is intended to compare label-
ings by different human annotators, not a classifier versus a ground truth.

The kappa score (see docstring) is a number between -1 and 1. Scores above .8 are generally considered good agree-
ment; zero or lower means no agreement (practically random labels).

Kappa scores can be computed for binary or multiclass problems, but not for multilabel problems (except by manually
computing a per-label score) and not for more than two annotators.

Confusion matrix

The confusion_matrix function evaluates classification accuracy by computing the confusion matrix.

By definition, entry 𝑖, 𝑗 in a confusion matrix is the number of observations actually in group 𝑖, but predicted to be in
group 𝑗. Here is an example:

>>> from sklearn.metrics import confusion_matrix
>>> y_true = [2, 0, 2, 2, 0, 1]
>>> y_pred = [0, 0, 2, 2, 0, 2]
>>> confusion_matrix(y_true, y_pred)
array([[2, 0, 0],

[0, 0, 1],
[1, 0, 2]])
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Here is a visual representation of such a confusion matrix (this figure comes from the Confusion matrix example):

Example:

• See Confusion matrix for an example of using a confusion matrix to evaluate classifier output quality.
• See Recognizing hand-written digits for an example of using a confusion matrix to classify hand-written

digits.
• See Classification of text documents using sparse features for an example of using a confusion matrix to

classify text documents.

Classification report

The classification_report function builds a text report showing the main classification metrics. Here is a
small example with custom target_names and inferred labels:

>>> from sklearn.metrics import classification_report
>>> y_true = [0, 1, 2, 2, 0]
>>> y_pred = [0, 0, 2, 2, 0]
>>> target_names = ['class 0', 'class 1', 'class 2']
>>> print(classification_report(y_true, y_pred, target_names=target_names))

precision recall f1-score support

class 0 0.67 1.00 0.80 2
class 1 0.00 0.00 0.00 1
class 2 1.00 1.00 1.00 2

avg / total 0.67 0.80 0.72 5
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Example:

• See Recognizing hand-written digits for an example of classification report usage for hand-written digits.
• See Classification of text documents using sparse features for an example of classification report usage for

text documents.
• See Parameter estimation using grid search with cross-validation for an example of classification report

usage for grid search with nested cross-validation.

Hamming loss

The hamming_loss computes the average Hamming loss or Hamming distance between two sets of samples.

If 𝑦𝑗 is the predicted value for the 𝑗-th label of a given sample, 𝑦𝑗 is the corresponding true value, and 𝑛labels is the
number of classes or labels, then the Hamming loss 𝐿𝐻𝑎𝑚𝑚𝑖𝑛𝑔 between two samples is defined as:

𝐿𝐻𝑎𝑚𝑚𝑖𝑛𝑔(𝑦, 𝑦) =
1

𝑛labels

𝑛labels−1∑︁
𝑗=0

1(𝑦𝑗 ̸= 𝑦𝑗)

where 1(𝑥) is the indicator function.

>>> from sklearn.metrics import hamming_loss
>>> y_pred = [1, 2, 3, 4]
>>> y_true = [2, 2, 3, 4]
>>> hamming_loss(y_true, y_pred)
0.25

In the multilabel case with binary label indicators:

>>> hamming_loss(np.array([[0, 1], [1, 1]]), np.zeros((2, 2)))
0.75

Note: In multiclass classification, the Hamming loss corresponds to the Hamming distance between y_true and
y_pred which is similar to the Zero one loss function. However, while zero-one loss penalizes prediction sets that
do not strictly match true sets, the Hamming loss penalizes individual labels. Thus the Hamming loss, upper bounded
by the zero-one loss, is always between zero and one, inclusive; and predicting a proper subset or superset of the true
labels will give a Hamming loss between zero and one, exclusive.

Jaccard similarity coefficient score

The jaccard_similarity_score function computes the average (default) or sum of Jaccard similarity coeffi-
cients, also called the Jaccard index, between pairs of label sets.

The Jaccard similarity coefficient of the 𝑖-th samples, with a ground truth label set 𝑦𝑖 and predicted label set 𝑦𝑖, is
defined as

𝐽(𝑦𝑖, 𝑦𝑖) =
|𝑦𝑖 ∩ 𝑦𝑖|
|𝑦𝑖 ∪ 𝑦𝑖|

.

In binary and multiclass classification, the Jaccard similarity coefficient score is equal to the classification accuracy.

>>> import numpy as np
>>> from sklearn.metrics import jaccard_similarity_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
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>>> jaccard_similarity_score(y_true, y_pred)
0.5
>>> jaccard_similarity_score(y_true, y_pred, normalize=False)
2

In the multilabel case with binary label indicators:

>>> jaccard_similarity_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.75

Precision, recall and F-measures

Intuitively, precision is the ability of the classifier not to label as positive a sample that is negative, and recall is the
ability of the classifier to find all the positive samples.

The F-measure (𝐹𝛽 and 𝐹1 measures) can be interpreted as a weighted harmonic mean of the precision and recall. A
𝐹𝛽 measure reaches its best value at 1 and its worst score at 0. With 𝛽 = 1, 𝐹𝛽 and 𝐹1 are equivalent, and the recall
and the precision are equally important.

The precision_recall_curve computes a precision-recall curve from the ground truth label and a score given
by the classifier by varying a decision threshold.

The average_precision_score function computes the average precision (AP) from prediction scores. This
score corresponds to the area under the precision-recall curve.

Several functions allow you to analyze the precision, recall and F-measures score:

average_precision_score(y_true, y_score[, ...]) Compute average precision (AP) from prediction scores
f1_score(y_true, y_pred[, labels, ...]) Compute the F1 score, also known as balanced F-score or F-measure
fbeta_score(y_true, y_pred, beta[, labels, ...]) Compute the F-beta score
precision_recall_curve(y_true, probas_pred) Compute precision-recall pairs for different probability thresholds
precision_recall_fscore_support(y_true, y_pred) Compute precision, recall, F-measure and support for each class
precision_score(y_true, y_pred[, labels, ...]) Compute the precision
recall_score(y_true, y_pred[, labels, ...]) Compute the recall

Note that the precision_recall_curve function is restricted to the binary case. The
average_precision_score function works only in binary classification and multilabel indicator format.

Examples:

• See Classification of text documents using sparse features for an example of f1_score usage to classify
text documents.

• See Parameter estimation using grid search with cross-validation for an example of precision_score
and recall_score usage to estimate parameters using grid search with nested cross-validation.

• See Precision-Recall for an example of precision_recall_curve usage to evaluate classifier out-
put quality.

• See Sparse recovery: feature selection for sparse linear models for an example of
precision_recall_curve usage to select features for sparse linear models.

Binary classification In a binary classification task, the terms ‘’positive” and ‘’negative” refer to the classifier’s
prediction, and the terms ‘’true” and ‘’false” refer to whether that prediction corresponds to the external judgment
(sometimes known as the ‘’observation’‘). Given these definitions, we can formulate the following table:
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Actual class (observation)

Predicted class (expectation) tp (true positive) Correct result fp (false positive) Unexpected result
fn (false negative) Missing result tn (true negative) Correct absence of result

In this context, we can define the notions of precision, recall and F-measure:

precision =
𝑡𝑝

𝑡𝑝+ 𝑓𝑝
,

recall =
𝑡𝑝

𝑡𝑝+ 𝑓𝑛
,

𝐹𝛽 = (1 + 𝛽2)
precision× recall
𝛽2precision + recall

.

Here are some small examples in binary classification:

>>> from sklearn import metrics
>>> y_pred = [0, 1, 0, 0]
>>> y_true = [0, 1, 0, 1]
>>> metrics.precision_score(y_true, y_pred)
1.0
>>> metrics.recall_score(y_true, y_pred)
0.5
>>> metrics.f1_score(y_true, y_pred)
0.66...
>>> metrics.fbeta_score(y_true, y_pred, beta=0.5)
0.83...
>>> metrics.fbeta_score(y_true, y_pred, beta=1)
0.66...
>>> metrics.fbeta_score(y_true, y_pred, beta=2)
0.55...
>>> metrics.precision_recall_fscore_support(y_true, y_pred, beta=0.5)
(array([ 0.66..., 1. ]), array([ 1. , 0.5]), array([ 0.71..., 0.83...]), array([2, 2]...))

>>> import numpy as np
>>> from sklearn.metrics import precision_recall_curve
>>> from sklearn.metrics import average_precision_score
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> precision, recall, threshold = precision_recall_curve(y_true, y_scores)
>>> precision
array([ 0.66..., 0.5 , 1. , 1. ])
>>> recall
array([ 1. , 0.5, 0.5, 0. ])
>>> threshold
array([ 0.35, 0.4 , 0.8 ])
>>> average_precision_score(y_true, y_scores)
0.79...

Multiclass and multilabel classification In multiclass and multilabel classification task, the notions of precision,
recall, and F-measures can be applied to each label independently. There are a few ways to combine results across
labels, specified by the average argument to the average_precision_score (multilabel only), f1_score,
fbeta_score, precision_recall_fscore_support, precision_score and recall_score func-
tions, as described above. Note that for “micro”-averaging in a multiclass setting with all labels included will produce
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equal precision, recall and 𝐹 , while “weighted” averaging may produce an F-score that is not between precision and
recall.

To make this more explicit, consider the following notation:

• 𝑦 the set of predicted (𝑠𝑎𝑚𝑝𝑙𝑒, 𝑙𝑎𝑏𝑒𝑙) pairs

• 𝑦 the set of true (𝑠𝑎𝑚𝑝𝑙𝑒, 𝑙𝑎𝑏𝑒𝑙) pairs

• 𝐿 the set of labels

• 𝑆 the set of samples

• 𝑦𝑠 the subset of 𝑦 with sample 𝑠, i.e. 𝑦𝑠 := {(𝑠′, 𝑙) ∈ 𝑦|𝑠′ = 𝑠}

• 𝑦𝑙 the subset of 𝑦 with label 𝑙

• similarly, 𝑦𝑠 and 𝑦𝑙 are subsets of 𝑦

• 𝑃 (𝐴,𝐵) := |𝐴∩𝐵|
|𝐴|

• 𝑅(𝐴,𝐵) := |𝐴∩𝐵|
|𝐵| (Conventions vary on handling 𝐵 = ∅; this implementation uses 𝑅(𝐴,𝐵) := 0, and similar

for 𝑃 .)

• 𝐹𝛽(𝐴,𝐵) :=
(︀
1 + 𝛽2

)︀ 𝑃 (𝐴,𝐵)×𝑅(𝐴,𝐵)
𝛽2𝑃 (𝐴,𝐵)+𝑅(𝐴,𝐵)

Then the metrics are defined as:

average Precision Recall F_beta
"micro" 𝑃 (𝑦, 𝑦) 𝑅(𝑦, 𝑦) 𝐹𝛽(𝑦, 𝑦)
"samples" 1

|𝑆|
∑︀

𝑠∈𝑆 𝑃 (𝑦𝑠, 𝑦𝑠)
1
|𝑆|
∑︀

𝑠∈𝑆 𝑅(𝑦𝑠, 𝑦𝑠)
1
|𝑆|
∑︀

𝑠∈𝑆 𝐹𝛽(𝑦𝑠, 𝑦𝑠)

"macro" 1
|𝐿|
∑︀

𝑙∈𝐿 𝑃 (𝑦𝑙, 𝑦𝑙)
1
|𝐿|
∑︀

𝑙∈𝐿𝑅(𝑦𝑙, 𝑦𝑙)
1
|𝐿|
∑︀

𝑙∈𝐿 𝐹𝛽(𝑦𝑙, 𝑦𝑙)

"weighted" 1∑︀
𝑙∈𝐿|𝑦𝑙|

∑︀
𝑙∈𝐿 |𝑦𝑙|𝑃 (𝑦𝑙, 𝑦𝑙)

1∑︀
𝑙∈𝐿|𝑦𝑙|

∑︀
𝑙∈𝐿 |𝑦𝑙|𝑅(𝑦𝑙, 𝑦𝑙)

1∑︀
𝑙∈𝐿|𝑦𝑙|

∑︀
𝑙∈𝐿 |𝑦𝑙|𝐹𝛽(𝑦𝑙, 𝑦𝑙)

None ⟨𝑃 (𝑦𝑙, 𝑦𝑙)|𝑙 ∈ 𝐿⟩ ⟨𝑅(𝑦𝑙, 𝑦𝑙)|𝑙 ∈ 𝐿⟩ ⟨𝐹𝛽(𝑦𝑙, 𝑦𝑙)|𝑙 ∈ 𝐿⟩

>>> from sklearn import metrics
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> metrics.precision_score(y_true, y_pred, average='macro')
0.22...
>>> metrics.recall_score(y_true, y_pred, average='micro')
...
0.33...
>>> metrics.f1_score(y_true, y_pred, average='weighted')
0.26...
>>> metrics.fbeta_score(y_true, y_pred, average='macro', beta=0.5)
0.23...
>>> metrics.precision_recall_fscore_support(y_true, y_pred, beta=0.5, average=None)
...
(array([ 0.66..., 0. , 0. ]), array([ 1., 0., 0.]), array([ 0.71..., 0. , 0. ]), array([2, 2, 2]...))

For multiclass classification with a “negative class”, it is possible to exclude some labels:

>>> metrics.recall_score(y_true, y_pred, labels=[1, 2], average='micro')
... # excluding 0, no labels were correctly recalled
0.0

Similarly, labels not present in the data sample may be accounted for in macro-averaging.

>>> metrics.precision_score(y_true, y_pred, labels=[0, 1, 2, 3], average='macro')
...
0.166...
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Hinge loss

The hinge_loss function computes the average distance between the model and the data using hinge loss, a one-
sided metric that considers only prediction errors. (Hinge loss is used in maximal margin classifiers such as support
vector machines.)

If the labels are encoded with +1 and -1, 𝑦: is the true value, and 𝑤 is the predicted decisions as output by
decision_function, then the hinge loss is defined as:

𝐿Hinge(𝑦, 𝑤) = max {1− 𝑤𝑦, 0} = |1− 𝑤𝑦|+

If there are more than two labels, hinge_loss uses a multiclass variant due to Crammer & Singer. Here is the paper
describing it.

If 𝑦𝑤 is the predicted decision for true label and 𝑦𝑡 is the maximum of the predicted decisions for all other labels,
where predicted decisions are output by decision function, then multiclass hinge loss is defined by:

𝐿Hinge(𝑦𝑤, 𝑦𝑡) = max {1 + 𝑦𝑡 − 𝑦𝑤, 0}

Here a small example demonstrating the use of the hinge_loss function with a svm classifier in a binary class
problem:

>>> from sklearn import svm
>>> from sklearn.metrics import hinge_loss
>>> X = [[0], [1]]
>>> y = [-1, 1]
>>> est = svm.LinearSVC(random_state=0)
>>> est.fit(X, y)
LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,

intercept_scaling=1, loss='squared_hinge', max_iter=1000,
multi_class='ovr', penalty='l2', random_state=0, tol=0.0001,
verbose=0)

>>> pred_decision = est.decision_function([[-2], [3], [0.5]])
>>> pred_decision
array([-2.18..., 2.36..., 0.09...])
>>> hinge_loss([-1, 1, 1], pred_decision)
0.3...

Here is an example demonstrating the use of the hinge_loss function with a svm classifier in a multiclass problem:

>>> X = np.array([[0], [1], [2], [3]])
>>> Y = np.array([0, 1, 2, 3])
>>> labels = np.array([0, 1, 2, 3])
>>> est = svm.LinearSVC()
>>> est.fit(X, Y)
LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,

intercept_scaling=1, loss='squared_hinge', max_iter=1000,
multi_class='ovr', penalty='l2', random_state=None, tol=0.0001,
verbose=0)

>>> pred_decision = est.decision_function([[-1], [2], [3]])
>>> y_true = [0, 2, 3]
>>> hinge_loss(y_true, pred_decision, labels)
0.56...

Log loss

Log loss, also called logistic regression loss or cross-entropy loss, is defined on probability estimates. It is commonly
used in (multinomial) logistic regression and neural networks, as well as in some variants of expectation-maximization,
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and can be used to evaluate the probability outputs (predict_proba) of a classifier instead of its discrete predic-
tions.

For binary classification with a true label 𝑦 ∈ {0, 1} and a probability estimate 𝑝 = Pr(𝑦 = 1), the log loss per sample
is the negative log-likelihood of the classifier given the true label:

𝐿log(𝑦, 𝑝) = − log Pr(𝑦|𝑝) = −(𝑦 log(𝑝) + (1− 𝑦) log(1− 𝑝))

This extends to the multiclass case as follows. Let the true labels for a set of samples be encoded as a 1-of-K binary
indicator matrix 𝑌 , i.e., 𝑦𝑖,𝑘 = 1 if sample 𝑖 has label 𝑘 taken from a set of 𝐾 labels. Let 𝑃 be a matrix of probability
estimates, with 𝑝𝑖,𝑘 = Pr(𝑡𝑖,𝑘 = 1). Then the log loss of the whole set is

𝐿log(𝑌, 𝑃 ) = − log Pr(𝑌 |𝑃 ) = − 1

𝑁

𝑁−1∑︁
𝑖=0

𝐾−1∑︁
𝑘=0

𝑦𝑖,𝑘 log 𝑝𝑖,𝑘

To see how this generalizes the binary log loss given above, note that in the binary case, 𝑝𝑖,0 = 1 − 𝑝𝑖,1 and 𝑦𝑖,0 =
1− 𝑦𝑖,1, so expanding the inner sum over 𝑦𝑖,𝑘 ∈ {0, 1} gives the binary log loss.

The log_loss function computes log loss given a list of ground-truth labels and a probability matrix, as returned by
an estimator’s predict_proba method.

>>> from sklearn.metrics import log_loss
>>> y_true = [0, 0, 1, 1]
>>> y_pred = [[.9, .1], [.8, .2], [.3, .7], [.01, .99]]
>>> log_loss(y_true, y_pred)
0.1738...

The first [.9, .1] in y_pred denotes 90% probability that the first sample has label 0. The log loss is non-negative.

Matthews correlation coefficient

The matthews_corrcoef function computes the Matthew’s correlation coefficient (MCC) for binary classes.
Quoting Wikipedia:

“The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary
(two-class) classifications. It takes into account true and false positives and negatives and is generally
regarded as a balanced measure which can be used even if the classes are of very different sizes. The
MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents
a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also
known as the phi coefficient.”

If 𝑡𝑝, 𝑡𝑛, 𝑓𝑝 and 𝑓𝑛 are respectively the number of true positives, true negatives, false positives and false negatives,
the MCC coefficient is defined as

𝑀𝐶𝐶 =
𝑡𝑝× 𝑡𝑛− 𝑓𝑝× 𝑓𝑛√︀

(𝑡𝑝+ 𝑓𝑝)(𝑡𝑝+ 𝑓𝑛)(𝑡𝑛+ 𝑓𝑝)(𝑡𝑛+ 𝑓𝑛)
.

Here is a small example illustrating the usage of the matthews_corrcoef function:

>>> from sklearn.metrics import matthews_corrcoef
>>> y_true = [+1, +1, +1, -1]
>>> y_pred = [+1, -1, +1, +1]
>>> matthews_corrcoef(y_true, y_pred)
-0.33...
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Receiver operating characteristic (ROC)

The function roc_curve computes the receiver operating characteristic curve, or ROC curve. Quoting Wikipedia :

“A receiver operating characteristic (ROC), or simply ROC curve, is a graphical plot which illustrates
the performance of a binary classifier system as its discrimination threshold is varied. It is created by
plotting the fraction of true positives out of the positives (TPR = true positive rate) vs. the fraction of false
positives out of the negatives (FPR = false positive rate), at various threshold settings. TPR is also known
as sensitivity, and FPR is one minus the specificity or true negative rate.”

This function requires the true binary value and the target scores, which can either be probability estimates of the
positive class, confidence values, or binary decisions. Here is a small example of how to use the roc_curve function:

>>> import numpy as np
>>> from sklearn.metrics import roc_curve
>>> y = np.array([1, 1, 2, 2])
>>> scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = roc_curve(y, scores, pos_label=2)
>>> fpr
array([ 0. , 0.5, 0.5, 1. ])
>>> tpr
array([ 0.5, 0.5, 1. , 1. ])
>>> thresholds
array([ 0.8 , 0.4 , 0.35, 0.1 ])

This figure shows an example of such an ROC curve:
The roc_auc_score function computes the area under the receiver operating characteristic (ROC) curve, which is
also denoted by AUC or AUROC. By computing the area under the roc curve, the curve information is summarized in
one number. For more information see the Wikipedia article on AUC.

>>> import numpy as np
>>> from sklearn.metrics import roc_auc_score
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> roc_auc_score(y_true, y_scores)
0.75
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In multi-label classification, the roc_auc_score function is extended by averaging over the labels as above.

Compared to metrics such as the subset accuracy, the Hamming loss, or the F1 score, ROC doesn’t require optimizing a
threshold for each label. The roc_auc_score function can also be used in multi-class classification, if the predicted

outputs have been binarized.

Examples:

• See Receiver Operating Characteristic (ROC) for an example of using ROC to evaluate the quality of the
output of a classifier.

• See Receiver Operating Characteristic (ROC) with cross validation for an example of using ROC to
evaluate classifier output quality, using cross-validation.

• See Species distribution modeling for an example of using ROC to model species distribution.

Zero one loss

The zero_one_loss function computes the sum or the average of the 0-1 classification loss (𝐿0−1) over 𝑛samples.
By default, the function normalizes over the sample. To get the sum of the 𝐿0−1, set normalize to False.

In multilabel classification, the zero_one_loss scores a subset as one if its labels strictly match the predictions,
and as a zero if there are any errors. By default, the function returns the percentage of imperfectly predicted subsets.
To get the count of such subsets instead, set normalize to False

If 𝑦𝑖 is the predicted value of the 𝑖-th sample and 𝑦𝑖 is the corresponding true value, then the 0-1 loss 𝐿0−1 is defined
as:

𝐿0−1(𝑦𝑖, 𝑦𝑖) = 1(𝑦𝑖 ̸= 𝑦𝑖)

where 1(𝑥) is the indicator function.

>>> from sklearn.metrics import zero_one_loss
>>> y_pred = [1, 2, 3, 4]
>>> y_true = [2, 2, 3, 4]
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>>> zero_one_loss(y_true, y_pred)
0.25
>>> zero_one_loss(y_true, y_pred, normalize=False)
1

In the multilabel case with binary label indicators, where the first label set [0,1] has an error:

>>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5

>>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2)), normalize=False)
1

Example:

• See Recursive feature elimination with cross-validation for an example of zero one loss usage to perform
recursive feature elimination with cross-validation.

Multilabel ranking metrics

In multilabel learning, each sample can have any number of ground truth labels associated with it. The goal is to give
high scores and better rank to the ground truth labels.

Coverage error

The coverage_error function computes the average number of labels that have to be included in the final predic-
tion such that all true labels are predicted. This is useful if you want to know how many top-scored-labels you have
to predict in average without missing any true one. The best value of this metrics is thus the average number of true
labels.

Formally, given a binary indicator matrix of the ground truth labels 𝑦 ∈ {0, 1}𝑛samples×𝑛labels and the score associated
with each label 𝑓 ∈ R𝑛samples×𝑛labels , the coverage is defined as

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑦, 𝑓) =
1

𝑛samples

𝑛samples−1∑︁
𝑖=0

max
𝑗:𝑦𝑖𝑗=1

rank𝑖𝑗

with rank𝑖𝑗 =
⃒⃒⃒{︁
𝑘 : 𝑓𝑖𝑘 ≥ 𝑓𝑖𝑗

}︁⃒⃒⃒
. Given the rank definition, ties in y_scores are broken by giving the maximal rank

that would have been assigned to all tied values.

Here is a small example of usage of this function:

>>> import numpy as np
>>> from sklearn.metrics import coverage_error
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> coverage_error(y_true, y_score)
2.5

Label ranking average precision

The label_ranking_average_precision_score function implements label ranking average precision
(LRAP). This metric is linked to the average_precision_score function, but is based on the notion of la-
bel ranking instead of precision and recall.
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Label ranking average precision (LRAP) is the average over each ground truth label assigned to each sample, of the
ratio of true vs. total labels with lower score. This metric will yield better scores if you are able to give better rank to
the labels associated with each sample. The obtained score is always strictly greater than 0, and the best value is 1.
If there is exactly one relevant label per sample, label ranking average precision is equivalent to the mean reciprocal
rank.

Formally, given a binary indicator matrix of the ground truth labels 𝑦 ∈ ℛ𝑛samples×𝑛labels and the score associated with
each label 𝑓 ∈ ℛ𝑛samples×𝑛labels , the average precision is defined as

𝐿𝑅𝐴𝑃 (𝑦, 𝑓) =
1

𝑛samples

𝑛samples−1∑︁
𝑖=0

1

|𝑦𝑖|
∑︁

𝑗:𝑦𝑖𝑗=1

|ℒ𝑖𝑗 |
rank𝑖𝑗

with ℒ𝑖𝑗 =
{︁
𝑘 : 𝑦𝑖𝑘 = 1, 𝑓𝑖𝑘 ≥ 𝑓𝑖𝑗

}︁
, rank𝑖𝑗 =

⃒⃒⃒{︁
𝑘 : 𝑓𝑖𝑘 ≥ 𝑓𝑖𝑗

}︁⃒⃒⃒
and | · | is the l0 norm or the cardinality of the set.

Here is a small example of usage of this function:

>>> import numpy as np
>>> from sklearn.metrics import label_ranking_average_precision_score
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> label_ranking_average_precision_score(y_true, y_score)
0.416...

Ranking loss

The label_ranking_loss function computes the ranking loss which averages over the samples the number of
label pairs that are incorrectly ordered, i.e. true labels have a lower score than false labels, weighted by the the inverse
number of false and true labels. The lowest achievable ranking loss is zero.

Formally, given a binary indicator matrix of the ground truth labels 𝑦 ∈ {0, 1}𝑛samples×𝑛labels and the score associated
with each label 𝑓 ∈ R𝑛samples×𝑛labels , the ranking loss is defined as

ranking_loss(𝑦, 𝑓) =
1

𝑛samples

𝑛samples−1∑︁
𝑖=0

1

|𝑦𝑖|(𝑛labels − |𝑦𝑖|)

⃒⃒⃒{︁
(𝑘, 𝑙) : 𝑓𝑖𝑘 < 𝑓𝑖𝑙, 𝑦𝑖𝑘 = 1, 𝑦𝑖𝑙 = 0

}︁⃒⃒⃒
where | · | is the ℓ0 norm or the cardinality of the set.

Here is a small example of usage of this function:

>>> import numpy as np
>>> from sklearn.metrics import label_ranking_loss
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> label_ranking_loss(y_true, y_score)
0.75...
>>> # With the following prediction, we have perfect and minimal loss
>>> y_score = np.array([[1.0, 0.1, 0.2], [0.1, 0.2, 0.9]])
>>> label_ranking_loss(y_true, y_score)
0.0

Regression metrics

The sklearn.metrics module implements several loss, score, and utility functions to measure regression
performance. Some of those have been enhanced to handle the multioutput case: mean_squared_error,
mean_absolute_error, explained_variance_score and r2_score.
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These functions have an multioutput keyword argument which specifies the way the scores or losses for each
individual target should be averaged. The default is ’uniform_average’, which specifies a uniformly weighted
mean over outputs. If an ndarray of shape (n_outputs,) is passed, then its entries are interpreted as weights
and an according weighted average is returned. If multioutput is ’raw_values’ is specified, then all unaltered
individual scores or losses will be returned in an array of shape (n_outputs,).

The r2_score and explained_variance_score accept an additional value ’variance_weighted’ for
the multioutput parameter. This option leads to a weighting of each individual score by the variance of the
corresponding target variable. This setting quantifies the globally captured unscaled variance. If the target vari-
ables are of different scale, then this score puts more importance on well explaining the higher variance variables.
multioutput=’variance_weighted’ is the default value for r2_score for backward compatibility. This
will be changed to uniform_average in the future.

Explained variance score

The explained_variance_score computes the explained variance regression score.

If 𝑦 is the estimated target output, 𝑦 the corresponding (correct) target output, and 𝑉 𝑎𝑟 is Variance, the square of the
standard deviation, then the explained variance is estimated as follow:

explained_variance(𝑦, 𝑦) = 1− 𝑉 𝑎𝑟{𝑦 − 𝑦}
𝑉 𝑎𝑟{𝑦}

The best possible score is 1.0, lower values are worse.

Here is a small example of usage of the explained_variance_score function:

>>> from sklearn.metrics import explained_variance_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> explained_variance_score(y_true, y_pred)
0.957...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> explained_variance_score(y_true, y_pred, multioutput='raw_values')
...
array([ 0.967..., 1. ])
>>> explained_variance_score(y_true, y_pred, multioutput=[0.3, 0.7])
...
0.990...

Mean absolute error

The mean_absolute_error function computes mean absolute error, a risk metric corresponding to the expected
value of the absolute error loss or 𝑙1-norm loss.

If 𝑦𝑖 is the predicted value of the 𝑖-th sample, and 𝑦𝑖 is the corresponding true value, then the mean absolute error
(MAE) estimated over 𝑛samples is defined as

MAE(𝑦, 𝑦) =
1

𝑛samples

𝑛samples−1∑︁
𝑖=0

|𝑦𝑖 − 𝑦𝑖| .

Here is a small example of usage of the mean_absolute_error function:
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>>> from sklearn.metrics import mean_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_absolute_error(y_true, y_pred)
0.5
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_absolute_error(y_true, y_pred)
0.75
>>> mean_absolute_error(y_true, y_pred, multioutput='raw_values')
array([ 0.5, 1. ])
>>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7])
...
0.849...

Mean squared error

The mean_squared_error function computes mean square error, a risk metric corresponding to the expected
value of the squared (quadratic) error loss or loss.

If 𝑦𝑖 is the predicted value of the 𝑖-th sample, and 𝑦𝑖 is the corresponding true value, then the mean squared error
(MSE) estimated over 𝑛samples is defined as

MSE(𝑦, 𝑦) =
1

𝑛samples

𝑛samples−1∑︁
𝑖=0

(𝑦𝑖 − 𝑦𝑖)2.

Here is a small example of usage of the mean_squared_error function:

>>> from sklearn.metrics import mean_squared_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_squared_error(y_true, y_pred)
0.375
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_squared_error(y_true, y_pred)
0.7083...

Examples:

• See Gradient Boosting regression for an example of mean squared error usage to evaluate gradient boost-
ing regression.

Median absolute error

The median_absolute_error is particularly interesting because it is robust to outliers. The loss is calculated by
taking the median of all absolute differences between the target and the prediction.

If 𝑦𝑖 is the predicted value of the 𝑖-th sample and 𝑦𝑖 is the corresponding true value, then the median absolute error
(MedAE) estimated over 𝑛samples is defined as

MedAE(𝑦, 𝑦) = median(| 𝑦1 − 𝑦1 |, . . . , | 𝑦𝑛 − 𝑦𝑛 |).

The median_absolute_error does not support multioutput.
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Here is a small example of usage of the median_absolute_error function:

>>> from sklearn.metrics import median_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> median_absolute_error(y_true, y_pred)
0.5

R² score, the coefficient of determination

The r2_score function computes R², the coefficient of determination. It provides a measure of how well future
samples are likely to be predicted by the model. Best possible score is 1.0 and it can be negative (because the model
can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features,
would get a R^2 score of 0.0.

If 𝑦𝑖 is the predicted value of the 𝑖-th sample and 𝑦𝑖 is the corresponding true value, then the score R² estimated over
𝑛samples is defined as

𝑅2(𝑦, 𝑦) = 1−
∑︀𝑛samples−1

𝑖=0 (𝑦𝑖 − 𝑦𝑖)2∑︀𝑛samples−1
𝑖=0 (𝑦𝑖 − 𝑦)2

where 𝑦 = 1
𝑛samples

∑︀𝑛samples−1
𝑖=0 𝑦𝑖.

Here is a small example of usage of the r2_score function:

>>> from sklearn.metrics import r2_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> r2_score(y_true, y_pred)
0.948...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred, multioutput='variance_weighted')
...
0.938...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred, multioutput='uniform_average')
...
0.936...
>>> r2_score(y_true, y_pred, multioutput='raw_values')
...
array([ 0.965..., 0.908...])
>>> r2_score(y_true, y_pred, multioutput=[0.3, 0.7])
...
0.925...

Example:

• See Lasso and Elastic Net for Sparse Signals for an example of R² score usage to evaluate Lasso and
Elastic Net on sparse signals.
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Clustering metrics

The sklearn.metrics module implements several loss, score, and utility functions. For more information see the
Clustering performance evaluation section for instance clustering, and Biclustering evaluation for biclustering.

Dummy estimators

When doing supervised learning, a simple sanity check consists of comparing one’s estimator against simple rules of
thumb. DummyClassifier implements three such simple strategies for classification:

• stratified generates random predictions by respecting the training set class distribution.

• most_frequent always predicts the most frequent label in the training set.

• prior always predicts the class that maximizes the class prior (like most_frequent‘) and
‘‘predict_proba returns the class prior.

• uniform generates predictions uniformly at random.

• constant always predicts a constant label that is provided by the user. A major motivation of this
method is F1-scoring, when the positive class is in the minority.

Note that with all these strategies, the predict method completely ignores the input data!

To illustrate DummyClassifier, first let’s create an imbalanced dataset:

>>> from sklearn.datasets import load_iris
>>> from sklearn.cross_validation import train_test_split
>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> y[y != 1] = -1
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

Next, let’s compare the accuracy of SVC and most_frequent:

>>> from sklearn.dummy import DummyClassifier
>>> from sklearn.svm import SVC
>>> clf = SVC(kernel='linear', C=1).fit(X_train, y_train)
>>> clf.score(X_test, y_test)
0.63...
>>> clf = DummyClassifier(strategy='most_frequent',random_state=0)
>>> clf.fit(X_train, y_train)
DummyClassifier(constant=None, random_state=0, strategy='most_frequent')
>>> clf.score(X_test, y_test)
0.57...

We see that SVC doesn’t do much better than a dummy classifier. Now, let’s change the kernel:

>>> clf = SVC(kernel='rbf', C=1).fit(X_train, y_train)
>>> clf.score(X_test, y_test)
0.97...

We see that the accuracy was boosted to almost 100%. A cross validation strategy is recommended for a better
estimate of the accuracy, if it is not too CPU costly. For more information see the Cross-validation: evaluating
estimator performance section. Moreover if you want to optimize over the parameter space, it is highly recommended
to use an appropriate methodology; see the Grid Search: Searching for estimator parameters section for details.

More generally, when the accuracy of a classifier is too close to random, it probably means that something went wrong:
features are not helpful, a hyperparameter is not correctly tuned, the classifier is suffering from class imbalance, etc...

DummyRegressor also implements four simple rules of thumb for regression:
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• mean always predicts the mean of the training targets.

• median always predicts the median of the training targets.

• quantile always predicts a user provided quantile of the training targets.

• constant always predicts a constant value that is provided by the user.

In all these strategies, the predict method completely ignores the input data.

3.3.4 Model persistence

After training a scikit-learn model, it is desirable to have a way to persist the model for future use without having to
retrain. The following section gives you an example of how to persist a model with pickle. We’ll also review a few
security and maintainability issues when working with pickle serialization.

Persistence example

It is possible to save a model in the scikit by using Python’s built-in persistence model, namely pickle:

>>> from sklearn import svm
>>> from sklearn import datasets
>>> clf = svm.SVC()
>>> iris = datasets.load_iris()
>>> X, y = iris.data, iris.target
>>> clf.fit(X, y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

>>> import pickle
>>> s = pickle.dumps(clf)
>>> clf2 = pickle.loads(s)
>>> clf2.predict(X[0:1])
array([0])
>>> y[0]
0

In the specific case of the scikit, it may be more interesting to use joblib’s replacement of pickle (joblib.dump &
joblib.load), which is more efficient on objects that carry large numpy arrays internally as is often the case for
fitted scikit-learn estimators, but can only pickle to the disk and not to a string:

>>> from sklearn.externals import joblib
>>> joblib.dump(clf, 'filename.pkl')

Later you can load back the pickled model (possibly in another Python process) with:

>>> clf = joblib.load('filename.pkl')

Note: joblib.dump returns a list of filenames. Each individual numpy array contained in the clf object is serialized
as a separate file on the filesystem. All files are required in the same folder when reloading the model with joblib.load.

Security & maintainability limitations

pickle (and joblib by extension), has some issues regarding maintainability and security. Because of this,
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• Never unpickle untrusted data

• Models saved in one version of scikit-learn might not load in another version.

In order to rebuild a similar model with future versions of scikit-learn, additional metadata should be saved along the
pickled model:

• The training data, e.g. a reference to a immutable snapshot

• The python source code used to generate the model

• The versions of scikit-learn and its dependencies

• The cross validation score obtained on the training data

This should make it possible to check that the cross-validation score is in the same range as before.

If you want to know more about these issues and explore other possible serialization methods, please refer to this talk
by Alex Gaynor.

3.3.5 Validation curves: plotting scores to evaluate models

Every estimator has its advantages and drawbacks. Its generalization error can be decomposed in terms of bias,
variance and noise. The bias of an estimator is its average error for different training sets. The variance of an
estimator indicates how sensitive it is to varying training sets. Noise is a property of the data.

In the following plot, we see a function 𝑓(𝑥) = cos( 3
2𝜋𝑥) and some noisy samples from that function. We use three

different estimators to fit the function: linear regression with polynomial features of degree 1, 4 and 15. We see that
the first estimator can at best provide only a poor fit to the samples and the true function because it is too simple
(high bias), the second estimator approximates it almost perfectly and the last estimator approximates the training data
perfectly but does not fit the true function very well, i.e. it is very sensitive to varying training data (high variance).

Bias and variance are inherent properties of estimators and we usually have to select learning algorithms and hyper-
parameters so that both bias and variance are as low as possible (see Bias-variance dilemma). Another way to reduce
the variance of a model is to use more training data. However, you should only collect more training data if the true
function is too complex to be approximated by an estimator with a lower variance.

In the simple one-dimensional problem that we have seen in the example it is easy to see whether the estimator suffers
from bias or variance. However, in high-dimensional spaces, models can become very difficult to visualize. For this
reason, it is often helpful to use the tools described below.

Examples:

• Underfitting vs. Overfitting
• Plotting Validation Curves
• Plotting Learning Curves
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Validation curve

To validate a model we need a scoring function (see Model evaluation: quantifying the quality of predictions), for
example accuracy for classifiers. The proper way of choosing multiple hyperparameters of an estimator are of course
grid search or similar methods (see Grid Search: Searching for estimator parameters) that select the hyperparameter
with the maximum score on a validation set or multiple validation sets. Note that if we optimized the hyperparameters
based on a validation score the validation score is biased and not a good estimate of the generalization any longer. To
get a proper estimate of the generalization we have to compute the score on another test set.

However, it is sometimes helpful to plot the influence of a single hyperparameter on the training score and the valida-
tion score to find out whether the estimator is overfitting or underfitting for some hyperparameter values.

The function validation_curve can help in this case:

>>> import numpy as np
>>> from sklearn.learning_curve import validation_curve
>>> from sklearn.datasets import load_iris
>>> from sklearn.linear_model import Ridge

>>> np.random.seed(0)
>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> indices = np.arange(y.shape[0])
>>> np.random.shuffle(indices)
>>> X, y = X[indices], y[indices]

>>> train_scores, valid_scores = validation_curve(Ridge(), X, y, "alpha",
... np.logspace(-7, 3, 3))
>>> train_scores
array([[ 0.94..., 0.92..., 0.92...],

[ 0.94..., 0.92..., 0.92...],
[ 0.47..., 0.45..., 0.42...]])

>>> valid_scores
array([[ 0.90..., 0.92..., 0.94...],

[ 0.90..., 0.92..., 0.94...],
[ 0.44..., 0.39..., 0.45...]])

If the training score and the validation score are both low, the estimator will be underfitting. If the training score is
high and the validation score is low, the estimator is overfitting and otherwise it is working very well. A low training
score and a high validation score is usually not possible. All three cases can be found in the plot below where we vary
the parameter 𝛾 of an SVM on the digits dataset.
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Learning curve

A learning curve shows the validation and training score of an estimator for varying numbers of training samples. It
is a tool to find out how much we benefit from adding more training data and whether the estimator suffers more from
a variance error or a bias error. If both the validation score and the training score converge to a value that is too low
with increasing size of the training set, we will not benefit much from more training data. In the following plot you
can see an example: naive Bayes roughly converges to a low score.

We will probably have to use an estimator or a parametrization of the current estimator that can learn more complex
concepts (i.e. has a lower bias). If the training score is much greater than the validation score for the maximum number
of training samples, adding more training samples will most likely increase generalization. In the following plot you
can see that the SVM could benefit from more training examples.

We can use the function learning_curve to generate the values that are required to plot such a learning curve
(number of samples that have been used, the average scores on the training sets and the average scores on the validation
sets):

>>> from sklearn.learning_curve import learning_curve
>>> from sklearn.svm import SVC

>>> train_sizes, train_scores, valid_scores = learning_curve(
... SVC(kernel='linear'), X, y, train_sizes=[50, 80, 110], cv=5)
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>>> train_sizes
array([ 50, 80, 110])
>>> train_scores
array([[ 0.98..., 0.98 , 0.98..., 0.98..., 0.98...],

[ 0.98..., 1. , 0.98..., 0.98..., 0.98...],
[ 0.98..., 1. , 0.98..., 0.98..., 0.99...]])

>>> valid_scores
array([[ 1. , 0.93..., 1. , 1. , 0.96...],

[ 1. , 0.96..., 1. , 1. , 0.96...],
[ 1. , 0.96..., 1. , 1. , 0.96...]])

3.4 Dataset transformations

scikit-learn provides a library of transformers, which may clean (see Preprocessing data), reduce (see Unsupervised
dimensionality reduction), expand (see Kernel Approximation) or generate (see Feature extraction) feature representa-
tions.

Like other estimators, these are represented by classes with fit method, which learns model parameters (e.g. mean
and standard deviation for normalization) from a training set, and a transform method which applies this transfor-
mation model to unseen data. fit_transform may be more convenient and efficient for modelling and transform-
ing the training data simultaneously.

Combining such transformers, either in parallel or series is covered in Pipeline and FeatureUnion: combining es-
timators. Pairwise metrics, Affinities and Kernels covers transforming feature spaces into affinity matrices, while
Transforming the prediction target (y) considers transformations of the target space (e.g. categorical labels) for use in
scikit-learn.

3.4.1 Pipeline and FeatureUnion: combining estimators

Pipeline: chaining estimators

Pipeline can be used to chain multiple estimators into one. This is useful as there is often a fixed sequence of
steps in processing the data, for example feature selection, normalization and classification. Pipeline serves two
purposes here:

Convenience: You only have to call fit and predict once on your data to fit a whole sequence of
estimators.

Joint parameter selection: You can grid search over parameters of all estimators in the pipeline at once.

All estimators in a pipeline, except the last one, must be transformers (i.e. must have a transform method). The
last estimator may be any type (transformer, classifier, etc.).

Usage

The Pipeline is build using a list of (key, value) pairs, where the key a string containing the name you want
to give this step and value is an estimator object:

>>> from sklearn.pipeline import Pipeline
>>> from sklearn.svm import SVC
>>> from sklearn.decomposition import PCA
>>> estimators = [('reduce_dim', PCA()), ('svm', SVC())]
>>> clf = Pipeline(estimators)
>>> clf
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Pipeline(steps=[('reduce_dim', PCA(copy=True, n_components=None,
whiten=False)), ('svm', SVC(C=1.0, cache_size=200, class_weight=None,
coef0=0.0, decision_function_shape=None, degree=3, gamma='auto',
kernel='rbf', max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False))])

The utility function make_pipeline is a shorthand for constructing pipelines; it takes a variable number of estima-
tors and returns a pipeline, filling in the names automatically:

>>> from sklearn.pipeline import make_pipeline
>>> from sklearn.naive_bayes import MultinomialNB
>>> from sklearn.preprocessing import Binarizer
>>> make_pipeline(Binarizer(), MultinomialNB())
Pipeline(steps=[('binarizer', Binarizer(copy=True, threshold=0.0)),

('multinomialnb', MultinomialNB(alpha=1.0,
class_prior=None,
fit_prior=True))])

The estimators of a pipeline are stored as a list in the steps attribute:

>>> clf.steps[0]
('reduce_dim', PCA(copy=True, n_components=None, whiten=False))

and as a dict in named_steps:

>>> clf.named_steps['reduce_dim']
PCA(copy=True, n_components=None, whiten=False)

Parameters of the estimators in the pipeline can be accessed using the <estimator>__<parameter> syntax:

>>> clf.set_params(svm__C=10)
Pipeline(steps=[('reduce_dim', PCA(copy=True, n_components=None,

whiten=False)), ('svm', SVC(C=10, cache_size=200, class_weight=None,
coef0=0.0, decision_function_shape=None, degree=3, gamma='auto',
kernel='rbf', max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False))])

This is particularly important for doing grid searches:

>>> from sklearn.grid_search import GridSearchCV
>>> params = dict(reduce_dim__n_components=[2, 5, 10],
... svm__C=[0.1, 10, 100])
>>> grid_search = GridSearchCV(clf, param_grid=params)

Examples:

• Pipeline Anova SVM
• Sample pipeline for text feature extraction and evaluation
• Pipelining: chaining a PCA and a logistic regression
• Explicit feature map approximation for RBF kernels
• SVM-Anova: SVM with univariate feature selection

See also:

• Grid Search: Searching for estimator parameters
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Notes

Calling fit on the pipeline is the same as calling fit on each estimator in turn, transform the input and pass it
on to the next step. The pipeline has all the methods that the last estimator in the pipeline has, i.e. if the last estimator
is a classifier, the Pipeline can be used as a classifier. If the last estimator is a transformer, again, so is the pipeline.

FeatureUnion: composite feature spaces

FeatureUnion combines several transformer objects into a new transformer that combines their output. A
FeatureUnion takes a list of transformer objects. During fitting, each of these is fit to the data independently.
For transforming data, the transformers are applied in parallel, and the sample vectors they output are concatenated
end-to-end into larger vectors.

FeatureUnion serves the same purposes as Pipeline - convenience and joint parameter estimation and valida-
tion.

FeatureUnion and Pipeline can be combined to create complex models.

(A FeatureUnion has no way of checking whether two transformers might produce identical features. It only
produces a union when the feature sets are disjoint, and making sure they are is the caller’s responsibility.)

Usage

A FeatureUnion is built using a list of (key, value) pairs, where the key is the name you want to give to a
given transformation (an arbitrary string; it only serves as an identifier) and value is an estimator object:

>>> from sklearn.pipeline import FeatureUnion
>>> from sklearn.decomposition import PCA
>>> from sklearn.decomposition import KernelPCA
>>> estimators = [('linear_pca', PCA()), ('kernel_pca', KernelPCA())]
>>> combined = FeatureUnion(estimators)
>>> combined
FeatureUnion(n_jobs=1, transformer_list=[('linear_pca', PCA(copy=True,

n_components=None, whiten=False)), ('kernel_pca', KernelPCA(alpha=1.0,
coef0=1, degree=3, eigen_solver='auto', fit_inverse_transform=False,
gamma=None, kernel='linear', kernel_params=None, max_iter=None,
n_components=None, remove_zero_eig=False, tol=0))],
transformer_weights=None)

Like pipelines, feature unions have a shorthand constructor called make_union that does not require explicit naming
of the components.

Examples:

• Concatenating multiple feature extraction methods
• Feature Union with Heterogeneous Data Sources

3.4.2 Feature extraction

The sklearn.feature_extraction module can be used to extract features in a format supported by machine
learning algorithms from datasets consisting of formats such as text and image.

Note: Feature extraction is very different from Feature selection: the former consists in transforming arbitrary data,
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such as text or images, into numerical features usable for machine learning. The latter is a machine learning technique
applied on these features.

Loading features from dicts

The class DictVectorizer can be used to convert feature arrays represented as lists of standard Python dict
objects to the NumPy/SciPy representation used by scikit-learn estimators.

While not particularly fast to process, Python’s dict has the advantages of being convenient to use, being sparse
(absent features need not be stored) and storing feature names in addition to values.

DictVectorizer implements what is called one-of-K or “one-hot” coding for categorical (aka nominal, discrete)
features. Categorical features are “attribute-value” pairs where the value is restricted to a list of discrete of possibilities
without ordering (e.g. topic identifiers, types of objects, tags, names...).

In the following, “city” is a categorical attribute while “temperature” is a traditional numerical feature:

>>> measurements = [
... {'city': 'Dubai', 'temperature': 33.},
... {'city': 'London', 'temperature': 12.},
... {'city': 'San Fransisco', 'temperature': 18.},
... ]

>>> from sklearn.feature_extraction import DictVectorizer
>>> vec = DictVectorizer()

>>> vec.fit_transform(measurements).toarray()
array([[ 1., 0., 0., 33.],

[ 0., 1., 0., 12.],
[ 0., 0., 1., 18.]])

>>> vec.get_feature_names()
['city=Dubai', 'city=London', 'city=San Fransisco', 'temperature']

DictVectorizer is also a useful representation transformation for training sequence classifiers in Natural Lan-
guage Processing models that typically work by extracting feature windows around a particular word of interest.

For example, suppose that we have a first algorithm that extracts Part of Speech (PoS) tags that we want to use as
complementary tags for training a sequence classifier (e.g. a chunker). The following dict could be such a window of
features extracted around the word ‘sat’ in the sentence ‘The cat sat on the mat.’:

>>> pos_window = [
... {
... 'word-2': 'the',
... 'pos-2': 'DT',
... 'word-1': 'cat',
... 'pos-1': 'NN',
... 'word+1': 'on',
... 'pos+1': 'PP',
... },
... # in a real application one would extract many such dictionaries
... ]

This description can be vectorized into a sparse two-dimensional matrix suitable for feeding into a classifier (maybe
after being piped into a text.TfidfTransformer for normalization):

>>> vec = DictVectorizer()
>>> pos_vectorized = vec.fit_transform(pos_window)
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>>> pos_vectorized
<1x6 sparse matrix of type '<... 'numpy.float64'>'

with 6 stored elements in Compressed Sparse ... format>
>>> pos_vectorized.toarray()
array([[ 1., 1., 1., 1., 1., 1.]])
>>> vec.get_feature_names()
['pos+1=PP', 'pos-1=NN', 'pos-2=DT', 'word+1=on', 'word-1=cat', 'word-2=the']

As you can imagine, if one extracts such a context around each individual word of a corpus of documents the resulting
matrix will be very wide (many one-hot-features) with most of them being valued to zero most of the time. So as to
make the resulting data structure able to fit in memory the DictVectorizer class uses a scipy.sparse matrix
by default instead of a numpy.ndarray.

Feature hashing

The class FeatureHasher is a high-speed, low-memory vectorizer that uses a technique known as feature hashing,
or the “hashing trick”. Instead of building a hash table of the features encountered in training, as the vectorizers
do, instances of FeatureHasher apply a hash function to the features to determine their column index in sample
matrices directly. The result is increased speed and reduced memory usage, at the expense of inspectability; the hasher
does not remember what the input features looked like and has no inverse_transform method.

Since the hash function might cause collisions between (unrelated) features, a signed hash function is used and the
sign of the hash value determines the sign of the value stored in the output matrix for a feature. This way, collisions
are likely to cancel out rather than accumulate error, and the expected mean of any output feature’s value is zero.

If non_negative=True is passed to the constructor, the absolute value is taken. This undoes some of the collision
handling, but allows the output to be passed to estimators like sklearn.naive_bayes.MultinomialNB or
sklearn.feature_selection.chi2 feature selectors that expect non-negative inputs.

FeatureHasher accepts either mappings (like Python’s dict and its variants in the collections module),
(feature, value) pairs, or strings, depending on the constructor parameter input_type. Mapping are treated
as lists of (feature, value) pairs, while single strings have an implicit value of 1, so [’feat1’, ’feat2’,
’feat3’] is interpreted as [(’feat1’, 1), (’feat2’, 1), (’feat3’, 1)]. If a single feature occurs
multiple times in a sample, the associated values will be summed (so (’feat’, 2) and (’feat’, 3.5) become
(’feat’, 5.5)). The output from FeatureHasher is always a scipy.sparse matrix in the CSR format.

Feature hashing can be employed in document classification, but unlike text.CountVectorizer,
FeatureHasher does not do word splitting or any other preprocessing except Unicode-to-UTF-8 encoding; see
Vectorizing a large text corpus with the hashing trick, below, for a combined tokenizer/hasher.

As an example, consider a word-level natural language processing task that needs features extracted from (token,
part_of_speech) pairs. One could use a Python generator function to extract features:

def token_features(token, part_of_speech):
if token.isdigit():

yield "numeric"
else:

yield "token={}".format(token.lower())
yield "token,pos={},{}".format(token, part_of_speech)

if token[0].isupper():
yield "uppercase_initial"

if token.isupper():
yield "all_uppercase"

yield "pos={}".format(part_of_speech)

Then, the raw_X to be fed to FeatureHasher.transform can be constructed using:
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raw_X = (token_features(tok, pos_tagger(tok)) for tok in corpus)

and fed to a hasher with:

hasher = FeatureHasher(input_type='string')
X = hasher.transform(raw_X)

to get a scipy.sparse matrix X.

Note the use of a generator comprehension, which introduces laziness into the feature extraction: tokens are only
processed on demand from the hasher.

Implementation details

FeatureHasher uses the signed 32-bit variant of MurmurHash3. As a result (and because of limitations in
scipy.sparse), the maximum number of features supported is currently 231 − 1.

The original formulation of the hashing trick by Weinberger et al. used two separate hash functions ℎ and 𝜉 to deter-
mine the column index and sign of a feature, respectively. The present implementation works under the assumption
that the sign bit of MurmurHash3 is independent of its other bits.

Since a simple modulo is used to transform the hash function to a column index, it is advisable to use a power of two
as the n_features parameter; otherwise the features will not be mapped evenly to the columns.

References:

• Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola and Josh Attenberg (2009). Feature
hashing for large scale multitask learning. Proc. ICML.

• MurmurHash3.

Text feature extraction

The Bag of Words representation

Text Analysis is a major application field for machine learning algorithms. However the raw data, a sequence of
symbols cannot be fed directly to the algorithms themselves as most of them expect numerical feature vectors with a
fixed size rather than the raw text documents with variable length.

In order to address this, scikit-learn provides utilities for the most common ways to extract numerical features from
text content, namely:

• tokenizing strings and giving an integer id for each possible token, for instance by using white-spaces and
punctuation as token separators.

• counting the occurrences of tokens in each document.

• normalizing and weighting with diminishing importance tokens that occur in the majority of samples / docu-
ments.

In this scheme, features and samples are defined as follows:

• each individual token occurrence frequency (normalized or not) is treated as a feature.

• the vector of all the token frequencies for a given document is considered a multivariate sample.
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A corpus of documents can thus be represented by a matrix with one row per document and one column per token
(e.g. word) occurring in the corpus.

We call vectorization the general process of turning a collection of text documents into numerical feature vectors. This
specific strategy (tokenization, counting and normalization) is called the Bag of Words or “Bag of n-grams” represen-
tation. Documents are described by word occurrences while completely ignoring the relative position information of
the words in the document.

Sparsity

As most documents will typically use a very small subset of the words used in the corpus, the resulting matrix will
have many feature values that are zeros (typically more than 99% of them).

For instance a collection of 10,000 short text documents (such as emails) will use a vocabulary with a size in the order
of 100,000 unique words in total while each document will use 100 to 1000 unique words individually.

In order to be able to store such a matrix in memory but also to speed up algebraic operations matrix / vector, imple-
mentations will typically use a sparse representation such as the implementations available in the scipy.sparse
package.

Common Vectorizer usage

CountVectorizer implements both tokenization and occurrence counting in a single class:

>>> from sklearn.feature_extraction.text import CountVectorizer

This model has many parameters, however the default values are quite reasonable (please see the reference documen-
tation for the details):

>>> vectorizer = CountVectorizer(min_df=1)
>>> vectorizer
CountVectorizer(analyzer=...'word', binary=False, decode_error=...'strict',

dtype=<... 'numpy.int64'>, encoding=...'utf-8', input=...'content',
lowercase=True, max_df=1.0, max_features=None, min_df=1,
ngram_range=(1, 1), preprocessor=None, stop_words=None,
strip_accents=None, token_pattern=...'(?u)\\b\\w\\w+\\b',
tokenizer=None, vocabulary=None)

Let’s use it to tokenize and count the word occurrences of a minimalistic corpus of text documents:

>>> corpus = [
... 'This is the first document.',
... 'This is the second second document.',
... 'And the third one.',
... 'Is this the first document?',
... ]
>>> X = vectorizer.fit_transform(corpus)
>>> X
<4x9 sparse matrix of type '<... 'numpy.int64'>'

with 19 stored elements in Compressed Sparse ... format>

The default configuration tokenizes the string by extracting words of at least 2 letters. The specific function that does
this step can be requested explicitly:

>>> analyze = vectorizer.build_analyzer()
>>> analyze("This is a text document to analyze.") == (
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... ['this', 'is', 'text', 'document', 'to', 'analyze'])
True

Each term found by the analyzer during the fit is assigned a unique integer index corresponding to a column in the
resulting matrix. This interpretation of the columns can be retrieved as follows:

>>> vectorizer.get_feature_names() == (
... ['and', 'document', 'first', 'is', 'one',
... 'second', 'the', 'third', 'this'])
True

>>> X.toarray()
array([[0, 1, 1, 1, 0, 0, 1, 0, 1],

[0, 1, 0, 1, 0, 2, 1, 0, 1],
[1, 0, 0, 0, 1, 0, 1, 1, 0],
[0, 1, 1, 1, 0, 0, 1, 0, 1]]...)

The converse mapping from feature name to column index is stored in the vocabulary_ attribute of the vectorizer:

>>> vectorizer.vocabulary_.get('document')
1

Hence words that were not seen in the training corpus will be completely ignored in future calls to the transform
method:

>>> vectorizer.transform(['Something completely new.']).toarray()
...
array([[0, 0, 0, 0, 0, 0, 0, 0, 0]]...)

Note that in the previous corpus, the first and the last documents have exactly the same words hence are encoded in
equal vectors. In particular we lose the information that the last document is an interrogative form. To preserve some
of the local ordering information we can extract 2-grams of words in addition to the 1-grams (individual words):

>>> bigram_vectorizer = CountVectorizer(ngram_range=(1, 2),
... token_pattern=r'\b\w+\b', min_df=1)
>>> analyze = bigram_vectorizer.build_analyzer()
>>> analyze('Bi-grams are cool!') == (
... ['bi', 'grams', 'are', 'cool', 'bi grams', 'grams are', 'are cool'])
True

The vocabulary extracted by this vectorizer is hence much bigger and can now resolve ambiguities encoded in local
positioning patterns:

>>> X_2 = bigram_vectorizer.fit_transform(corpus).toarray()
>>> X_2
...
array([[0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0],

[0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0],
[1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1]]...)

In particular the interrogative form “Is this” is only present in the last document:

>>> feature_index = bigram_vectorizer.vocabulary_.get('is this')
>>> X_2[:, feature_index]
array([0, 0, 0, 1]...)
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Tf–idf term weighting

In a large text corpus, some words will be very present (e.g. “the”, “a”, “is” in English) hence carrying very little
meaningful information about the actual contents of the document. If we were to feed the direct count data directly to
a classifier those very frequent terms would shadow the frequencies of rarer yet more interesting terms.

In order to re-weight the count features into floating point values suitable for usage by a classifier it is very common
to use the tf–idf transform.

Tf means term-frequency while tf–idf means term-frequency times inverse document-frequency. This was origi-
nally a term weighting scheme developed for information retrieval (as a ranking function for search engines results),
that has also found good use in document classification and clustering.

This normalization is implemented by the TfidfTransformer class:

>>> from sklearn.feature_extraction.text import TfidfTransformer
>>> transformer = TfidfTransformer()
>>> transformer
TfidfTransformer(norm=...'l2', smooth_idf=True, sublinear_tf=False,

use_idf=True)

Again please see the reference documentation for the details on all the parameters.

Let’s take an example with the following counts. The first term is present 100% of the time hence not very interesting.
The two other features only in less than 50% of the time hence probably more representative of the content of the
documents:

>>> counts = [[3, 0, 1],
... [2, 0, 0],
... [3, 0, 0],
... [4, 0, 0],
... [3, 2, 0],
... [3, 0, 2]]
...
>>> tfidf = transformer.fit_transform(counts)
>>> tfidf
<6x3 sparse matrix of type '<... 'numpy.float64'>'

with 9 stored elements in Compressed Sparse ... format>

>>> tfidf.toarray()
array([[ 0.85..., 0. ..., 0.52...],

[ 1. ..., 0. ..., 0. ...],
[ 1. ..., 0. ..., 0. ...],
[ 1. ..., 0. ..., 0. ...],
[ 0.55..., 0.83..., 0. ...],
[ 0.63..., 0. ..., 0.77...]])

Each row is normalized to have unit euclidean norm. The weights of each feature computed by the fit method call
are stored in a model attribute:

>>> transformer.idf_
array([ 1. ..., 2.25..., 1.84...])

As tf–idf is very often used for text features, there is also another class called TfidfVectorizer that combines all
the options of CountVectorizer and TfidfTransformer in a single model:

>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> vectorizer = TfidfVectorizer(min_df=1)
>>> vectorizer.fit_transform(corpus)
...
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<4x9 sparse matrix of type '<... 'numpy.float64'>'
with 19 stored elements in Compressed Sparse ... format>

While the tf–idf normalization is often very useful, there might be cases where the binary occurrence markers might
offer better features. This can be achieved by using the binary parameter of CountVectorizer. In particular,
some estimators such as Bernoulli Naive Bayes explicitly model discrete boolean random variables. Also, very short
texts are likely to have noisy tf–idf values while the binary occurrence info is more stable.

As usual the best way to adjust the feature extraction parameters is to use a cross-validated grid search, for instance by
pipelining the feature extractor with a classifier:

• Sample pipeline for text feature extraction and evaluation

Decoding text files

Text is made of characters, but files are made of bytes. These bytes represent characters according to some encoding.
To work with text files in Python, their bytes must be decoded to a character set called Unicode. Common encodings
are ASCII, Latin-1 (Western Europe), KOI8-R (Russian) and the universal encodings UTF-8 and UTF-16. Many
others exist.

Note: An encoding can also be called a ‘character set’, but this term is less accurate: several encodings can exist for
a single character set.

The text feature extractors in scikit-learn know how to decode text files, but only if you tell them what encoding the
files are in. The CountVectorizer takes an encoding parameter for this purpose. For modern text files, the
correct encoding is probably UTF-8, which is therefore the default (encoding="utf-8").

If the text you are loading is not actually encoded with UTF-8, however, you will get a UnicodeDecodeError.
The vectorizers can be told to be silent about decoding errors by setting the decode_error parameter to either
"ignore" or "replace". See the documentation for the Python function bytes.decode for more details (type
help(bytes.decode) at the Python prompt).

If you are having trouble decoding text, here are some things to try:

• Find out what the actual encoding of the text is. The file might come with a header or README that tells you
the encoding, or there might be some standard encoding you can assume based on where the text comes from.

• You may be able to find out what kind of encoding it is in general using the UNIX command file. The Python
chardet module comes with a script called chardetect.py that will guess the specific encoding, though
you cannot rely on its guess being correct.

• You could try UTF-8 and disregard the errors. You can decode byte strings with
bytes.decode(errors=’replace’) to replace all decoding errors with a meaningless character,
or set decode_error=’replace’ in the vectorizer. This may damage the usefulness of your features.

• Real text may come from a variety of sources that may have used different encodings, or even be sloppily
decoded in a different encoding than the one it was encoded with. This is common in text retrieved from the
Web. The Python package ftfy can automatically sort out some classes of decoding errors, so you could try
decoding the unknown text as latin-1 and then using ftfy to fix errors.

• If the text is in a mish-mash of encodings that is simply too hard to sort out (which is the case for the 20
Newsgroups dataset), you can fall back on a simple single-byte encoding such as latin-1. Some text may
display incorrectly, but at least the same sequence of bytes will always represent the same feature.

For example, the following snippet uses chardet (not shipped with scikit-learn, must be installed separately) to
figure out the encoding of three texts. It then vectorizes the texts and prints the learned vocabulary. The output is not
shown here.
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>>> import chardet
>>> text1 = b"Sei mir gegr\xc3\xbc\xc3\x9ft mein Sauerkraut"
>>> text2 = b"holdselig sind deine Ger\xfcche"
>>> text3 = b"\xff\xfeA\x00u\x00f\x00 \x00F\x00l\x00\xfc\x00g\x00e\x00l\x00n\x00 \x00d\x00e\x00s\x00 \x00G\x00e\x00s\x00a\x00n\x00g\x00e\x00s\x00,\x00 \x00H\x00e\x00r\x00z\x00l\x00i\x00e\x00b\x00c\x00h\x00e\x00n\x00,\x00 \x00t\x00r\x00a\x00g\x00 \x00i\x00c\x00h\x00 \x00d\x00i\x00c\x00h\x00 \x00f\x00o\x00r\x00t\x00"
>>> decoded = [x.decode(chardet.detect(x)['encoding'])
... for x in (text1, text2, text3)]
>>> v = CountVectorizer().fit(decoded).vocabulary_
>>> for term in v: print(v)

(Depending on the version of chardet, it might get the first one wrong.)

For an introduction to Unicode and character encodings in general, see Joel Spolsky’s Absolute Minimum Every
Software Developer Must Know About Unicode.

Applications and examples

The bag of words representation is quite simplistic but surprisingly useful in practice.

In particular in a supervised setting it can be successfully combined with fast and scalable linear models to train
document classifiers, for instance:

• Classification of text documents using sparse features

In an unsupervised setting it can be used to group similar documents together by applying clustering algorithms such
as K-means:

• Clustering text documents using k-means

Finally it is possible to discover the main topics of a corpus by relaxing the hard assignment constraint of clustering,
for instance by using Non-negative matrix factorization (NMF or NNMF):

• Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation

Limitations of the Bag of Words representation

A collection of unigrams (what bag of words is) cannot capture phrases and multi-word expressions, effectively disre-
garding any word order dependence. Additionally, the bag of words model doesn’t account for potential misspellings
or word derivations.

N-grams to the rescue! Instead of building a simple collection of unigrams (n=1), one might prefer a collection of
bigrams (n=2), where occurrences of pairs of consecutive words are counted.

One might alternatively consider a collection of character n-grams, a representation resilient against misspellings and
derivations.

For example, let’s say we’re dealing with a corpus of two documents: [’words’, ’wprds’]. The second docu-
ment contains a misspelling of the word ‘words’. A simple bag of words representation would consider these two as
very distinct documents, differing in both of the two possible features. A character 2-gram representation, however,
would find the documents matching in 4 out of 8 features, which may help the preferred classifier decide better:

>>> ngram_vectorizer = CountVectorizer(analyzer='char_wb', ngram_range=(2, 2), min_df=1)
>>> counts = ngram_vectorizer.fit_transform(['words', 'wprds'])
>>> ngram_vectorizer.get_feature_names() == (
... [' w', 'ds', 'or', 'pr', 'rd', 's ', 'wo', 'wp'])
True
>>> counts.toarray().astype(int)
array([[1, 1, 1, 0, 1, 1, 1, 0],

[1, 1, 0, 1, 1, 1, 0, 1]])
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In the above example, ’char_wb analyzer is used, which creates n-grams only from characters inside word bound-
aries (padded with space on each side). The ’char’ analyzer, alternatively, creates n-grams that span across words:

>>> ngram_vectorizer = CountVectorizer(analyzer='char_wb', ngram_range=(5, 5), min_df=1)
>>> ngram_vectorizer.fit_transform(['jumpy fox'])
...
<1x4 sparse matrix of type '<... 'numpy.int64'>'

with 4 stored elements in Compressed Sparse ... format>
>>> ngram_vectorizer.get_feature_names() == (
... [' fox ', ' jump', 'jumpy', 'umpy '])
True

>>> ngram_vectorizer = CountVectorizer(analyzer='char', ngram_range=(5, 5), min_df=1)
>>> ngram_vectorizer.fit_transform(['jumpy fox'])
...
<1x5 sparse matrix of type '<... 'numpy.int64'>'

with 5 stored elements in Compressed Sparse ... format>
>>> ngram_vectorizer.get_feature_names() == (
... ['jumpy', 'mpy f', 'py fo', 'umpy ', 'y fox'])
True

The word boundaries-aware variant char_wb is especially interesting for languages that use white-spaces for word
separation as it generates significantly less noisy features than the raw char variant in that case. For such languages
it can increase both the predictive accuracy and convergence speed of classifiers trained using such features while
retaining the robustness with regards to misspellings and word derivations.

While some local positioning information can be preserved by extracting n-grams instead of individual words, bag of
words and bag of n-grams destroy most of the inner structure of the document and hence most of the meaning carried
by that internal structure.

In order to address the wider task of Natural Language Understanding, the local structure of sentences and paragraphs
should thus be taken into account. Many such models will thus be casted as “Structured output” problems which are
currently outside of the scope of scikit-learn.

Vectorizing a large text corpus with the hashing trick

The above vectorization scheme is simple but the fact that it holds an in- memory mapping from the string tokens
to the integer feature indices (the vocabulary_ attribute) causes several problems when dealing with large
datasets:

• the larger the corpus, the larger the vocabulary will grow and hence the memory use too,

• fitting requires the allocation of intermediate data structures of size proportional to that of the original dataset.

• building the word-mapping requires a full pass over the dataset hence it is not possible to fit text classifiers in a
strictly online manner.

• pickling and un-pickling vectorizers with a large vocabulary_ can be very slow (typically much slower than
pickling / un-pickling flat data structures such as a NumPy array of the same size),

• it is not easily possible to split the vectorization work into concurrent sub tasks as the vocabulary_ attribute
would have to be a shared state with a fine grained synchronization barrier: the mapping from token string
to feature index is dependent on ordering of the first occurrence of each token hence would have to be shared,
potentially harming the concurrent workers’ performance to the point of making them slower than the sequential
variant.

It is possible to overcome those limitations by combining the “hashing trick” (Feature hashing) implemented by the
sklearn.feature_extraction.FeatureHasher class and the text preprocessing and tokenization features
of the CountVectorizer.
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This combination is implementing in HashingVectorizer, a transformer class that is mostly API compatible with
CountVectorizer. HashingVectorizer is stateless, meaning that you don’t have to call fit on it:

>>> from sklearn.feature_extraction.text import HashingVectorizer
>>> hv = HashingVectorizer(n_features=10)
>>> hv.transform(corpus)
...
<4x10 sparse matrix of type '<... 'numpy.float64'>'

with 16 stored elements in Compressed Sparse ... format>

You can see that 16 non-zero feature tokens were extracted in the vector output: this is less than the 19 non-zeros
extracted previously by the CountVectorizer on the same toy corpus. The discrepancy comes from hash function
collisions because of the low value of the n_features parameter.

In a real world setting, the n_features parameter can be left to its default value of 2 ** 20 (roughly one million
possible features). If memory or downstream models size is an issue selecting a lower value such as 2 ** 18 might
help without introducing too many additional collisions on typical text classification tasks.

Note that the dimensionality does not affect the CPU training time of algorithms which operate on CSR matrices
(LinearSVC(dual=True), Perceptron, SGDClassifier, PassiveAggressive) but it does for algo-
rithms that work with CSC matrices (LinearSVC(dual=False), Lasso(), etc).

Let’s try again with the default setting:

>>> hv = HashingVectorizer()
>>> hv.transform(corpus)
...
<4x1048576 sparse matrix of type '<... 'numpy.float64'>'

with 19 stored elements in Compressed Sparse ... format>

We no longer get the collisions, but this comes at the expense of a much larger dimensionality of the output space. Of
course, other terms than the 19 used here might still collide with each other.

The HashingVectorizer also comes with the following limitations:

• it is not possible to invert the model (no inverse_transform method), nor to access the original string
representation of the features, because of the one-way nature of the hash function that performs the mapping.

• it does not provide IDF weighting as that would introduce statefulness in the model. A TfidfTransformer
can be appended to it in a pipeline if required.

Performing out-of-core scaling with HashingVectorizer

An interesting development of using a HashingVectorizer is the ability to perform out-of-core scaling. This
means that we can learn from data that does not fit into the computer’s main memory.

A strategy to implement out-of-core scaling is to stream data to the estimator in mini-batches. Each mini-batch is
vectorized using HashingVectorizer so as to guarantee that the input space of the estimator has always the same
dimensionality. The amount of memory used at any time is thus bounded by the size of a mini-batch. Although there is
no limit to the amount of data that can be ingested using such an approach, from a practical point of view the learning
time is often limited by the CPU time one wants to spend on the task.

For a full-fledged example of out-of-core scaling in a text classification task see Out-of-core classification of text
documents.

Customizing the vectorizer classes

It is possible to customize the behavior by passing a callable to the vectorizer constructor:
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>>> def my_tokenizer(s):
... return s.split()
...
>>> vectorizer = CountVectorizer(tokenizer=my_tokenizer)
>>> vectorizer.build_analyzer()(u"Some... punctuation!") == (
... ['some...', 'punctuation!'])
True

In particular we name:

• preprocessor: a callable that takes an entire document as input (as a single string), and returns a possibly
transformed version of the document, still as an entire string. This can be used to remove HTML tags, lowercase
the entire document, etc.

• tokenizer: a callable that takes the output from the preprocessor and splits it into tokens, then returns a list
of these.

• analyzer: a callable that replaces the preprocessor and tokenizer. The default analyzers all call the prepro-
cessor and tokenizer, but custom analyzers will skip this. N-gram extraction and stop word filtering take place
at the analyzer level, so a custom analyzer may have to reproduce these steps.

(Lucene users might recognize these names, but be aware that scikit-learn concepts may not map one-to-one onto
Lucene concepts.)

To make the preprocessor, tokenizer and analyzers aware of the model parameters it is possible to derive from the
class and override the build_preprocessor, build_tokenizer‘ and build_analyzer factory methods
instead of passing custom functions.

Some tips and tricks:

• If documents are pre-tokenized by an external package, then store them in files (or strings) with the tokens
separated by whitespace and pass analyzer=str.split

• Fancy token-level analysis such as stemming, lemmatizing, compound splitting, filtering based on part-of-
speech, etc. are not included in the scikit-learn codebase, but can be added by customizing either the tokenizer
or the analyzer. Here’s a CountVectorizer with a tokenizer and lemmatizer using NLTK:

>>> from nltk import word_tokenize
>>> from nltk.stem import WordNetLemmatizer
>>> class LemmaTokenizer(object):
... def __init__(self):
... self.wnl = WordNetLemmatizer()
... def __call__(self, doc):
... return [self.wnl.lemmatize(t) for t in word_tokenize(doc)]
...
>>> vect = CountVectorizer(tokenizer=LemmaTokenizer())

(Note that this will not filter out punctuation.)

Customizing the vectorizer can also be useful when handling Asian languages that do not use an explicit word separator
such as whitespace.

Image feature extraction

Patch extraction

The extract_patches_2d function extracts patches from an image stored as a two-dimensional array, or
three-dimensional with color information along the third axis. For rebuilding an image from all its patches, use
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reconstruct_from_patches_2d. For example let use generate a 4x4 pixel picture with 3 color channels (e.g.
in RGB format):

>>> import numpy as np
>>> from sklearn.feature_extraction import image

>>> one_image = np.arange(4 * 4 * 3).reshape((4, 4, 3))
>>> one_image[:, :, 0] # R channel of a fake RGB picture
array([[ 0, 3, 6, 9],

[12, 15, 18, 21],
[24, 27, 30, 33],
[36, 39, 42, 45]])

>>> patches = image.extract_patches_2d(one_image, (2, 2), max_patches=2,
... random_state=0)
>>> patches.shape
(2, 2, 2, 3)
>>> patches[:, :, :, 0]
array([[[ 0, 3],

[12, 15]],

[[15, 18],
[27, 30]]])

>>> patches = image.extract_patches_2d(one_image, (2, 2))
>>> patches.shape
(9, 2, 2, 3)
>>> patches[4, :, :, 0]
array([[15, 18],

[27, 30]])

Let us now try to reconstruct the original image from the patches by averaging on overlapping areas:

>>> reconstructed = image.reconstruct_from_patches_2d(patches, (4, 4, 3))
>>> np.testing.assert_array_equal(one_image, reconstructed)

The PatchExtractor class works in the same way as extract_patches_2d, only it supports multiple images
as input. It is implemented as an estimator, so it can be used in pipelines. See:

>>> five_images = np.arange(5 * 4 * 4 * 3).reshape(5, 4, 4, 3)
>>> patches = image.PatchExtractor((2, 2)).transform(five_images)
>>> patches.shape
(45, 2, 2, 3)

Connectivity graph of an image

Several estimators in the scikit-learn can use connectivity information between features or samples. For instance Ward
clustering (Hierarchical clustering) can cluster together only neighboring pixels of an image, thus forming contiguous
patches:

For this purpose, the estimators use a ‘connectivity’ matrix, giving which samples are connected.

The function img_to_graph returns such a matrix from a 2D or 3D image. Similarly, grid_to_graph build a
connectivity matrix for images given the shape of these image.

These matrices can be used to impose connectivity in estimators that use connectivity information, such as Ward
clustering (Hierarchical clustering), but also to build precomputed kernels, or similarity matrices.

Note: Examples
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• A demo of structured Ward hierarchical clustering on Lena image

• Spectral clustering for image segmentation

• Feature agglomeration vs. univariate selection

3.4.3 Preprocessing data

The sklearn.preprocessing package provides several common utility functions and transformer classes to
change raw feature vectors into a representation that is more suitable for the downstream estimators.

Standardization, or mean removal and variance scaling

Standardization of datasets is a common requirement for many machine learning estimators implemented in the
scikit; they might behave badly if the individual features do not more or less look like standard normally distributed
data: Gaussian with zero mean and unit variance.

In practice we often ignore the shape of the distribution and just transform the data to center it by removing the mean
value of each feature, then scale it by dividing non-constant features by their standard deviation.

For instance, many elements used in the objective function of a learning algorithm (such as the RBF kernel of Support
Vector Machines or the l1 and l2 regularizers of linear models) assume that all features are centered around zero and
have variance in the same order. If a feature has a variance that is orders of magnitude larger that others, it might
dominate the objective function and make the estimator unable to learn from other features correctly as expected.

The function scale provides a quick and easy way to perform this operation on a single array-like dataset:

>>> from sklearn import preprocessing
>>> import numpy as np
>>> X = np.array([[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]])
>>> X_scaled = preprocessing.scale(X)

>>> X_scaled
array([[ 0. ..., -1.22..., 1.33...],

[ 1.22..., 0. ..., -0.26...],
[-1.22..., 1.22..., -1.06...]])

Scaled data has zero mean and unit variance:
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>>> X_scaled.mean(axis=0)
array([ 0., 0., 0.])

>>> X_scaled.std(axis=0)
array([ 1., 1., 1.])

The preprocessing module further provides a utility class StandardScaler that implements the
Transformer API to compute the mean and standard deviation on a training set so as to be able to later
reapply the same transformation on the testing set. This class is hence suitable for use in the early steps of a
sklearn.pipeline.Pipeline:

>>> scaler = preprocessing.StandardScaler().fit(X)
>>> scaler
StandardScaler(copy=True, with_mean=True, with_std=True)

>>> scaler.mean_
array([ 1. ..., 0. ..., 0.33...])

>>> scaler.scale_
array([ 0.81..., 0.81..., 1.24...])

>>> scaler.transform(X)
array([[ 0. ..., -1.22..., 1.33...],

[ 1.22..., 0. ..., -0.26...],
[-1.22..., 1.22..., -1.06...]])

The scaler instance can then be used on new data to transform it the same way it did on the training set:

>>> scaler.transform([[-1., 1., 0.]])
array([[-2.44..., 1.22..., -0.26...]])

It is possible to disable either centering or scaling by either passing with_mean=False or with_std=False to
the constructor of StandardScaler.

Scaling features to a range

An alternative standardization is scaling features to lie between a given minimum and maximum value, often between
zero and one, or so that the maximum absolute value of each feature is scaled to unit size. This can be achieved using
MinMaxScaler or MaxAbsScaler, respectively.

The motivation to use this scaling include robustness to very small standard deviations of features and preserving zero
entries in sparse data.

Here is an example to scale a toy data matrix to the [0, 1] range:

>>> X_train = np.array([[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]])
...
>>> min_max_scaler = preprocessing.MinMaxScaler()
>>> X_train_minmax = min_max_scaler.fit_transform(X_train)
>>> X_train_minmax
array([[ 0.5 , 0. , 1. ],

[ 1. , 0.5 , 0.33333333],
[ 0. , 1. , 0. ]])

The same instance of the transformer can then be applied to some new test data unseen during the fit call: the same
scaling and shifting operations will be applied to be consistent with the transformation performed on the train data:
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>>> X_test = np.array([[ -3., -1., 4.]])
>>> X_test_minmax = min_max_scaler.transform(X_test)
>>> X_test_minmax
array([[-1.5 , 0. , 1.66666667]])

It is possible to introspect the scaler attributes to find about the exact nature of the transformation learned on the
training data:

>>> min_max_scaler.scale_
array([ 0.5 , 0.5 , 0.33...])

>>> min_max_scaler.min_
array([ 0. , 0.5 , 0.33...])

If MinMaxScaler is given an explicit feature_range=(min, max) the full formula is:

X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))

X_scaled = X_std / (max - min) + min

MaxAbsScaler works in a very similar fashion, but scales in a way that the training data lies within the range [-1,
1] by dividing through the largest maximum value in each feature. It is meant for data that is already centered at zero
or sparse data.

Here is how to use the toy data from the previous example with this scaler:

>>> X_train = np.array([[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]])
...
>>> max_abs_scaler = preprocessing.MaxAbsScaler()
>>> X_train_maxabs = max_abs_scaler.fit_transform(X_train)
>>> X_train_maxabs # doctest +NORMALIZE_WHITESPACE^
array([[ 0.5, -1. , 1. ],

[ 1. , 0. , 0. ],
[ 0. , 1. , -0.5]])

>>> X_test = np.array([[ -3., -1., 4.]])
>>> X_test_maxabs = max_abs_scaler.transform(X_test)
>>> X_test_maxabs
array([[-1.5, -1. , 2. ]])
>>> max_abs_scaler.scale_
array([ 2., 1., 2.])

As with scale, the module further provides convenience functions minmax_scale and maxabs_scale if you
don’t want to create an object.

Scaling sparse data

Centering sparse data would destroy the sparseness structure in the data, and thus rarely is a sensible thing to do.
However, it can make sense to scale sparse inputs, especially if features are on different scales.

MaxAbsScaler and maxabs_scale were specifically designed for scaling sparse data, and are the recommended
way to go about this. However, scale and StandardScaler can accept scipy.sparse matrices as input, as
long as with_centering=False is explicitly passed to the constructor. Otherwise a ValueError will be raised
as silently centering would break the sparsity and would often crash the execution by allocating excessive amounts of
memory unintentionally. RobustScaler cannot be fited to sparse inputs, but you can use the transform method
on sparse inputs.
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Note that the scalers accept both Compressed Sparse Rows and Compressed Sparse Columns format (see
scipy.sparse.csr_matrix and scipy.sparse.csc_matrix). Any other sparse input will be converted
to the Compressed Sparse Rows representation. To avoid unnecessary memory copies, it is recommended to choose
the CSR or CSC representation upstream.

Finally, if the centered data is expected to be small enough, explicitly converting the input to an array using the
toarray method of sparse matrices is another option.

Scaling data with outliers

If your data contains many outliers, scaling using the mean and variance of the data is likely to not work very well.
In these cases, you can use robust_scale and RobustScaler as drop-in replacements instead. They use more
robust estimates for the center and range of your data.

References:

Further discussion on the importance of centering and scaling data is available on this FAQ: Should I normal-
ize/standardize/rescale the data?

Scaling vs Whitening

It is sometimes not enough to center and scale the features independently, since a downstream model can further
make some assumption on the linear independence of the features.
To address this issue you can use sklearn.decomposition.PCA or
sklearn.decomposition.RandomizedPCA with whiten=True to further remove the linear
correlation across features.

Scaling target variables in regression

scale and StandardScaler work out-of-the-box with 1d arrays. This is very useful for scaling the target /
response variables used for regression.

Centering kernel matrices

If you have a kernel matrix of a kernel 𝐾 that computes a dot product in a feature space defined by function 𝑝ℎ𝑖, a
KernelCenterer can transform the kernel matrix so that it contains inner products in the feature space defined by
𝑝ℎ𝑖 followed by removal of the mean in that space.

Normalization

Normalization is the process of scaling individual samples to have unit norm. This process can be useful if you plan
to use a quadratic form such as the dot-product or any other kernel to quantify the similarity of any pair of samples.

This assumption is the base of the Vector Space Model often used in text classification and clustering contexts.

The function normalize provides a quick and easy way to perform this operation on a single array-like dataset,
either using the l1 or l2 norms:
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>>> X = [[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]]
>>> X_normalized = preprocessing.normalize(X, norm='l2')

>>> X_normalized
array([[ 0.40..., -0.40..., 0.81...],

[ 1. ..., 0. ..., 0. ...],
[ 0. ..., 0.70..., -0.70...]])

The preprocessing module further provides a utility class Normalizer that implements the same operation
using the Transformer API (even though the fit method is useless in this case: the class is stateless as this
operation treats samples independently).

This class is hence suitable for use in the early steps of a sklearn.pipeline.Pipeline:

>>> normalizer = preprocessing.Normalizer().fit(X) # fit does nothing
>>> normalizer
Normalizer(copy=True, norm='l2')

The normalizer instance can then be used on sample vectors as any transformer:

>>> normalizer.transform(X)
array([[ 0.40..., -0.40..., 0.81...],

[ 1. ..., 0. ..., 0. ...],
[ 0. ..., 0.70..., -0.70...]])

>>> normalizer.transform([[-1., 1., 0.]])
array([[-0.70..., 0.70..., 0. ...]])

Sparse input

normalize and Normalizer accept both dense array-like and sparse matrices from scipy.sparse as
input.
For sparse input the data is converted to the Compressed Sparse Rows representation (see
scipy.sparse.csr_matrix) before being fed to efficient Cython routines. To avoid unnecessary memory
copies, it is recommended to choose the CSR representation upstream.

Binarization

Feature binarization

Feature binarization is the process of thresholding numerical features to get boolean values. This can be useful for
downstream probabilistic estimators that make assumption that the input data is distributed according to a multi-variate
Bernoulli distribution. For instance, this is the case for the sklearn.neural_network.BernoulliRBM.

It is also common among the text processing community to use binary feature values (probably to simplify the proba-
bilistic reasoning) even if normalized counts (a.k.a. term frequencies) or TF-IDF valued features often perform slightly
better in practice.

As for the Normalizer, the utility class Binarizer is meant to be used in the early stages of
sklearn.pipeline.Pipeline. The fit method does nothing as each sample is treated independently of
others:
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>>> X = [[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]]

>>> binarizer = preprocessing.Binarizer().fit(X) # fit does nothing
>>> binarizer
Binarizer(copy=True, threshold=0.0)

>>> binarizer.transform(X)
array([[ 1., 0., 1.],

[ 1., 0., 0.],
[ 0., 1., 0.]])

It is possible to adjust the threshold of the binarizer:

>>> binarizer = preprocessing.Binarizer(threshold=1.1)
>>> binarizer.transform(X)
array([[ 0., 0., 1.],

[ 1., 0., 0.],
[ 0., 0., 0.]])

As for the StandardScaler and Normalizer classes, the preprocessing module provides a companion function
binarize to be used when the transformer API is not necessary.

Sparse input

binarize and Binarizer accept both dense array-like and sparse matrices from scipy.sparse as input.
For sparse input the data is converted to the Compressed Sparse Rows representation (see
scipy.sparse.csr_matrix). To avoid unnecessary memory copies, it is recommended to choose the
CSR representation upstream.

Encoding categorical features

Often features are not given as continuous values but categorical. For example a person could have fea-
tures ["male", "female"], ["from Europe", "from US", "from Asia"], ["uses Firefox",
"uses Chrome", "uses Safari", "uses Internet Explorer"]. Such features can be efficiently
coded as integers, for instance ["male", "from US", "uses Internet Explorer"] could be expressed
as [0, 1, 3] while ["female", "from Asia", "uses Chrome"] would be [1, 2, 1].

Such integer representation can not be used directly with scikit-learn estimators, as these expect continuous input,
and would interpret the categories as being ordered, which is often not desired (i.e. the set of browsers was ordered
arbitrarily).

One possibility to convert categorical features to features that can be used with scikit-learn estimators is to use a one-
of-K or one-hot encoding, which is implemented in OneHotEncoder. This estimator transforms each categorical
feature with m possible values into m binary features, with only one active.

Continuing the example above:

>>> enc = preprocessing.OneHotEncoder()
>>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])
OneHotEncoder(categorical_features='all', dtype=<... 'float'>,

handle_unknown='error', n_values='auto', sparse=True)
>>> enc.transform([[0, 1, 3]]).toarray()
array([[ 1., 0., 0., 1., 0., 0., 0., 0., 1.]])
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By default, how many values each feature can take is inferred automatically from the dataset. It is possible to specify
this explicitly using the parameter n_values. There are two genders, three possible continents and four web browsers
in our dataset. Then we fit the estimator, and transform a data point. In the result, the first two numbers encode the
gender, the next set of three numbers the continent and the last four the web browser.

See Loading features from dicts for categorical features that are represented as a dict, not as integers.

Imputation of missing values

For various reasons, many real world datasets contain missing values, often encoded as blanks, NaNs or other place-
holders. Such datasets however are incompatible with scikit-learn estimators which assume that all values in an array
are numerical, and that all have and hold meaning. A basic strategy to use incomplete datasets is to discard entire rows
and/or columns containing missing values. However, this comes at the price of losing data which may be valuable
(even though incomplete). A better strategy is to impute the missing values, i.e., to infer them from the known part of
the data.

The Imputer class provides basic strategies for imputing missing values, either using the mean, the median or the
most frequent value of the row or column in which the missing values are located. This class also allows for different
missing values encodings.

The following snippet demonstrates how to replace missing values, encoded as np.nan, using the mean value of the
columns (axis 0) that contain the missing values:

>>> import numpy as np
>>> from sklearn.preprocessing import Imputer
>>> imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
>>> imp.fit([[1, 2], [np.nan, 3], [7, 6]])
Imputer(axis=0, copy=True, missing_values='NaN', strategy='mean', verbose=0)
>>> X = [[np.nan, 2], [6, np.nan], [7, 6]]
>>> print(imp.transform(X))
[[ 4. 2. ]
[ 6. 3.666...]
[ 7. 6. ]]

The Imputer class also supports sparse matrices:

>>> import scipy.sparse as sp
>>> X = sp.csc_matrix([[1, 2], [0, 3], [7, 6]])
>>> imp = Imputer(missing_values=0, strategy='mean', axis=0)
>>> imp.fit(X)
Imputer(axis=0, copy=True, missing_values=0, strategy='mean', verbose=0)
>>> X_test = sp.csc_matrix([[0, 2], [6, 0], [7, 6]])
>>> print(imp.transform(X_test))
[[ 4. 2. ]
[ 6. 3.666...]
[ 7. 6. ]]

Note that, here, missing values are encoded by 0 and are thus implicitly stored in the matrix. This format is thus
suitable when there are many more missing values than observed values.

Imputer can be used in a Pipeline as a way to build a composite estimator that supports imputation. See Imputing
missing values before building an estimator

Generating polynomial features

Often it’s useful to add complexity to the model by considering nonlinear features of the input data. A simple and com-
mon method to use is polynomial features, which can get features’ high-order and interaction terms. It is implemented
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in PolynomialFeatures:

>>> import numpy as np
>>> from sklearn.preprocessing import PolynomialFeatures
>>> X = np.arange(6).reshape(3, 2)
>>> X
array([[0, 1],

[2, 3],
[4, 5]])

>>> poly = PolynomialFeatures(2)
>>> poly.fit_transform(X)
array([[ 1., 0., 1., 0., 0., 1.],

[ 1., 2., 3., 4., 6., 9.],
[ 1., 4., 5., 16., 20., 25.]])

The features of X have been transformed from (𝑋1, 𝑋2) to (1, 𝑋1, 𝑋2, 𝑋
2
1 , 𝑋1𝑋2, 𝑋

2
2 ).

In some cases, only interaction terms among features are required, and it can be gotten with the setting
interaction_only=True:

>>> X = np.arange(9).reshape(3, 3)
>>> X
array([[0, 1, 2],

[3, 4, 5],
[6, 7, 8]])

>>> poly = PolynomialFeatures(degree=3, interaction_only=True)
>>> poly.fit_transform(X)
array([[ 1., 0., 1., 2., 0., 0., 2., 0.],

[ 1., 3., 4., 5., 12., 15., 20., 60.],
[ 1., 6., 7., 8., 42., 48., 56., 336.]])

The features of X have been transformed from (𝑋1, 𝑋2, 𝑋3) to (1, 𝑋1, 𝑋2, 𝑋3, 𝑋1𝑋2, 𝑋1𝑋3, 𝑋2𝑋3, 𝑋1𝑋2𝑋3).

Note that polynomial features are used implicitily in kernel methods (e.g., sklearn.svm.SVC,
sklearn.decomposition.KernelPCA) when using polynomial Kernel functions.

See Polynomial interpolation for Ridge regression using created polynomial features.

Custom transformers

Often, you will want to convert an existing Python function into a transformer to assist in data cleaning or processing.
You can implement a transformer from an arbitrary function with FunctionTransformer. For example, to build
a transformer that applies a log transformation in a pipeline, do:

>>> import numpy as np
>>> from sklearn.preprocessing import FunctionTransformer
>>> transformer = FunctionTransformer(np.log1p)
>>> X = np.array([[0, 1], [2, 3]])
>>> transformer.transform(X)
array([[ 0. , 0.69314718],

[ 1.09861229, 1.38629436]])

For a full code example that demonstrates using a FunctionTransformer to do custom feature selection, see
Using FunctionTransformer to select columns
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3.4.4 Unsupervised dimensionality reduction

If your number of features is high, it may be useful to reduce it with an unsupervised step prior to supervised steps.
Many of the Unsupervised learning methods implement a transform method that can be used to reduce the dimen-
sionality. Below we discuss two specific example of this pattern that are heavily used.

Pipelining

The unsupervised data reduction and the supervised estimator can be chained in one step. See Pipeline: chaining
estimators.

PCA: principal component analysis

decomposition.PCA looks for a combination of features that capture well the variance of the original features.
See Decomposing signals in components (matrix factorization problems).

Examples

• Faces recognition example using eigenfaces and SVMs

Random projections

The module: random_projection provides several tools for data reduction by random projections. See the
relevant section of the documentation: Random Projection.

Examples

• The Johnson-Lindenstrauss bound for embedding with random projections

Feature agglomeration

cluster.FeatureAgglomeration applies Hierarchical clustering to group together features that behave sim-
ilarly.

Examples

• Feature agglomeration vs. univariate selection
• Feature agglomeration

Feature scaling

Note that if features have very different scaling or statistical properties,
cluster.FeatureAgglomeration may not be able to capture the links between related features.
Using a preprocessing.StandardScaler can be useful in these settings.
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3.4.5 Random Projection

The sklearn.random_projection module implements a simple and computationally efficient way to reduce
the dimensionality of the data by trading a controlled amount of accuracy (as additional variance) for faster processing
times and smaller model sizes. This module implements two types of unstructured random matrix: Gaussian random
matrix and sparse random matrix.

The dimensions and distribution of random projections matrices are controlled so as to preserve the pairwise distances
between any two samples of the dataset. Thus random projection is a suitable approximation technique for distance
based method.

References:

• Sanjoy Dasgupta. 2000. Experiments with random projection. In Proceedings of the Sixteenth conference
on Uncertainty in artificial intelligence (UAI‘00), Craig Boutilier and Moisés Goldszmidt (Eds.). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 143-151.

• Ella Bingham and Heikki Mannila. 2001. Random projection in dimensionality reduction: applications to
image and text data. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD ‘01). ACM, New York, NY, USA, 245-250.

The Johnson-Lindenstrauss lemma

The main theoretical result behind the efficiency of random projection is the Johnson-Lindenstrauss lemma (quoting
Wikipedia):

In mathematics, the Johnson-Lindenstrauss lemma is a result concerning low-distortion embeddings of
points from high-dimensional into low-dimensional Euclidean space. The lemma states that a small set
of points in a high-dimensional space can be embedded into a space of much lower dimension in such a
way that distances between the points are nearly preserved. The map used for the embedding is at least
Lipschitz, and can even be taken to be an orthogonal projection.

Knowing only the number of samples, the sklearn.random_projection.johnson_lindenstrauss_min_dim
estimates conservatively the minimal size of the random subspace to guarantee a bounded distortion introduced by the
random projection:

>>> from sklearn.random_projection import johnson_lindenstrauss_min_dim
>>> johnson_lindenstrauss_min_dim(n_samples=1e6, eps=0.5)
663
>>> johnson_lindenstrauss_min_dim(n_samples=1e6, eps=[0.5, 0.1, 0.01])
array([ 663, 11841, 1112658])
>>> johnson_lindenstrauss_min_dim(n_samples=[1e4, 1e5, 1e6], eps=0.1)
array([ 7894, 9868, 11841])

Example:

• See The Johnson-Lindenstrauss bound for embedding with random projections for a theoretical explication
on the Johnson-Lindenstrauss lemma and an empirical validation using sparse random matrices.

References:

• Sanjoy Dasgupta and Anupam Gupta, 1999. An elementary proof of the Johnson-Lindenstrauss Lemma.

448 Chapter 3. User Guide

http://cseweb.ucsd.edu/users/dasgupta/papers/randomf.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.5135&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.5135&rep=rep1&type=pdf
http://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma
http://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.39.3334&rep=rep1&type=pdf


scikit-learn user guide, Release 0.17

3.4. Dataset transformations 449



scikit-learn user guide, Release 0.17

Gaussian random projection

The sklearn.random_projection.GaussianRandomProjection reduces the dimensionality by pro-
jecting the original input space on a randomly generated matrix where components are drawn from the following
distribution 𝑁(0, 1

𝑛𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠
).

Here a small excerpt which illustrates how to use the Gaussian random projection transformer:

>>> import numpy as np
>>> from sklearn import random_projection
>>> X = np.random.rand(100, 10000)
>>> transformer = random_projection.GaussianRandomProjection()
>>> X_new = transformer.fit_transform(X)
>>> X_new.shape
(100, 3947)

Sparse random projection

The sklearn.random_projection.SparseRandomProjection reduces the dimensionality by projecting
the original input space using a sparse random matrix.

Sparse random matrices are an alternative to dense Gaussian random projection matrix that guarantees similar embed-
ding quality while being much more memory efficient and allowing faster computation of the projected data.

If we define s = 1 / density, the elements of the random matrix are drawn from⎧⎪⎪⎨⎪⎪⎩
−
√︁

𝑠
𝑛components

1/2𝑠

0 with probability 1− 1/𝑠

+
√︁

𝑠
𝑛components

1/2𝑠

where 𝑛components is the size of the projected subspace. By default the density of non zero elements is set to the
minimum density as recommended by Ping Li et al.: 1/

√
𝑛features.

Here a small excerpt which illustrates how to use the sparse random projection transformer:

>>> import numpy as np
>>> from sklearn import random_projection
>>> X = np.random.rand(100,10000)
>>> transformer = random_projection.SparseRandomProjection()
>>> X_new = transformer.fit_transform(X)
>>> X_new.shape
(100, 3947)

References:

• D. Achlioptas. 2003. Database-friendly random projections: Johnson-Lindenstrauss with binary coins.
Journal of Computer and System Sciences 66 (2003) 671–687

• Ping Li, Trevor J. Hastie, and Kenneth W. Church. 2006. Very sparse random projections. In Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD ‘06).
ACM, New York, NY, USA, 287-296.

3.4.6 Kernel Approximation

This submodule contains functions that approximate the feature mappings that correspond to certain kernels, as they
are used for example in support vector machines (see Support Vector Machines). The following feature functions
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perform non-linear transformations of the input, which can serve as a basis for linear classification or other algorithms.

The advantage of using approximate explicit feature maps compared to the kernel trick, which makes use of feature
maps implicitly, is that explicit mappings can be better suited for online learning and can significantly reduce the
cost of learning with very large datasets. Standard kernelized SVMs do not scale well to large datasets, but using an
approximate kernel map it is possible to use much more efficient linear SVMs. In particular, the combination of kernel
map approximations with SGDClassifier can make non-linear learning on large datasets possible.

Since there has not been much empirical work using approximate embeddings, it is advisable to compare results
against exact kernel methods when possible.

See also:

Polynomial regression: extending linear models with basis functions for an exact polynomial transformation.

Nystroem Method for Kernel Approximation

The Nystroem method, as implemented in Nystroem is a general method for low-rank approximations of kernels.
It achieves this by essentially subsampling the data on which the kernel is evaluated. By default Nystroem uses the
rbf kernel, but it can use any kernel function or a precomputed kernel matrix. The number of samples used - which
is also the dimensionality of the features computed - is given by the parameter n_components.

Radial Basis Function Kernel

The RBFSampler constructs an approximate mapping for the radial basis function kernel, also known as Random
Kitchen Sinks [RR2007]. This transformation can be used to explicitly model a kernel map, prior to applying a linear
algorithm, for example a linear SVM:

>>> from sklearn.kernel_approximation import RBFSampler
>>> from sklearn.linear_model import SGDClassifier
>>> X = [[0, 0], [1, 1], [1, 0], [0, 1]]
>>> y = [0, 0, 1, 1]
>>> rbf_feature = RBFSampler(gamma=1, random_state=1)
>>> X_features = rbf_feature.fit_transform(X)
>>> clf = SGDClassifier()
>>> clf.fit(X_features, y)
SGDClassifier(alpha=0.0001, average=False, class_weight=None, epsilon=0.1,

eta0=0.0, fit_intercept=True, l1_ratio=0.15,
learning_rate='optimal', loss='hinge', n_iter=5, n_jobs=1,
penalty='l2', power_t=0.5, random_state=None, shuffle=True,
verbose=0, warm_start=False)

>>> clf.score(X_features, y)
1.0

The mapping relies on a Monte Carlo approximation to the kernel values. The fit function performs the Monte Carlo
sampling, whereas the transform method performs the mapping of the data. Because of the inherent randomness
of the process, results may vary between different calls to the fit function.

The fit function takes two arguments: n_components, which is the target dimensionality of the feature transform,
and gamma, the parameter of the RBF-kernel. A higher n_components will result in a better approximation of the
kernel and will yield results more similar to those produced by a kernel SVM. Note that “fitting” the feature function
does not actually depend on the data given to the fit function. Only the dimensionality of the data is used. Details
on the method can be found in [RR2007].

For a given value of n_components RBFSampler is often less accurate as Nystroem. RBFSampler is cheaper
to compute, though, making use of larger feature spaces more efficient.
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Figure 3.8: Comparing an exact RBF kernel (left) with the approximation (right)

Examples:

• Explicit feature map approximation for RBF kernels

Additive Chi Squared Kernel

The additive chi squared kernel is a kernel on histograms, often used in computer vision.

The additive chi squared kernel as used here is given by

𝑘(𝑥, 𝑦) =
∑︁
𝑖

2𝑥𝑖𝑦𝑖
𝑥𝑖 + 𝑦𝑖

This is not exactly the same as sklearn.metrics.additive_chi2_kernel. The authors of [VZ2010] prefer
the version above as it is always positive definite. Since the kernel is additive, it is possible to treat all components
𝑥𝑖 separately for embedding. This makes it possible to sample the Fourier transform in regular intervals, instead of
approximating using Monte Carlo sampling.

The class AdditiveChi2Sampler implements this component wise deterministic sampling. Each component
is sampled 𝑛 times, yielding 2𝑛 + 1 dimensions per input dimension (the multiple of two stems from the real and
complex part of the Fourier transform). In the literature, 𝑛 is usually chosen to be 1 or 2, transforming the dataset to
size n_samples * 5 * n_features (in the case of 𝑛 = 2).

The approximate feature map provided by AdditiveChi2Sampler can be combined with the approximate feature
map provided by RBFSampler to yield an approximate feature map for the exponentiated chi squared kernel. See
the [VZ2010] for details and [VVZ2010] for combination with the RBFSampler.

Skewed Chi Squared Kernel

The skewed chi squared kernel is given by:

𝑘(𝑥, 𝑦) =
∏︁
𝑖

2
√
𝑥𝑖 + 𝑐

√
𝑦𝑖 + 𝑐

𝑥𝑖 + 𝑦𝑖 + 2𝑐

It has properties that are similar to the exponentiated chi squared kernel often used in computer vision, but allows for
a simple Monte Carlo approximation of the feature map.

The usage of the SkewedChi2Sampler is the same as the usage described above for the RBFSampler. The only
difference is in the free parameter, that is called 𝑐. For a motivation for this mapping and the mathematical details see
[LS2010].
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Mathematical Details

Kernel methods like support vector machines or kernelized PCA rely on a property of reproducing kernel Hilbert
spaces. For any positive definite kernel function 𝑘 (a so called Mercer kernel), it is guaranteed that there exists a
mapping 𝜑 into a Hilbert spaceℋ, such that

𝑘(𝑥, 𝑦) = ⟨𝜑(𝑥), 𝜑(𝑦)⟩

Where ⟨·, ·⟩ denotes the inner product in the Hilbert space.

If an algorithm, such as a linear support vector machine or PCA, relies only on the scalar product of data points 𝑥𝑖,
one may use the value of 𝑘(𝑥𝑖, 𝑥𝑗), which corresponds to applying the algorithm to the mapped data points 𝜑(𝑥𝑖). The
advantage of using 𝑘 is that the mapping 𝜑 never has to be calculated explicitly, allowing for arbitrary large features
(even infinite).

One drawback of kernel methods is, that it might be necessary to store many kernel values 𝑘(𝑥𝑖, 𝑥𝑗) during optimiza-
tion. If a kernelized classifier is applied to new data 𝑦𝑗 , 𝑘(𝑥𝑖, 𝑦𝑗) needs to be computed to make predictions, possibly
for many different 𝑥𝑖 in the training set.

The classes in this submodule allow to approximate the embedding 𝜑, thereby working explicitly with the representa-
tions 𝜑(𝑥𝑖), which obviates the need to apply the kernel or store training examples.

References:

3.4.7 Pairwise metrics, Affinities and Kernels

The sklearn.metrics.pairwise submodule implements utilities to evaluate pairwise distances or affinity of
sets of samples.

This module contains both distance metrics and kernels. A brief summary is given on the two here.

Distance metrics are functions d(a, b) such that d(a, b) < d(a, c) if objects a and b are considered “more
similar” than objects a and c. Two objects exactly alike would have a distance of zero. One of the most popular
examples is Euclidean distance. To be a ‘true’ metric, it must obey the following four conditions:

1. d(a, b) >= 0, for all a and b
2. d(a, b) == 0, if and only if a = b, positive definiteness
3. d(a, b) == d(b, a), symmetry
4. d(a, c) <= d(a, b) + d(b, c), the triangle inequality

Kernels are measures of similarity, i.e. s(a, b) > s(a, c) if objects a and b are considered “more similar” than
objects a and c. A kernel must also be positive semi-definite.

There are a number of ways to convert between a distance metric and a similarity measure, such as a kernel. Let D be
the distance, and S be the kernel:

1. S = np.exp(-D * gamma), where one heuristic for choosing gamma is 1 / num_features

2. S = 1. / (D / np.max(D))

Cosine similarity

cosine_similarity computes the L2-normalized dot product of vectors. That is, if 𝑥 and 𝑦 are row vectors, their
cosine similarity 𝑘 is defined as:

𝑘(𝑥, 𝑦) =
𝑥𝑦⊤

‖𝑥‖‖𝑦‖
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This is called cosine similarity, because Euclidean (L2) normalization projects the vectors onto the unit sphere, and
their dot product is then the cosine of the angle between the points denoted by the vectors.

This kernel is a popular choice for computing the similarity of documents represented as tf-idf vec-
tors. cosine_similarity accepts scipy.sparse matrices. (Note that the tf-idf functional-
ity in sklearn.feature_extraction.text can produce normalized vectors, in which case
cosine_similarity is equivalent to linear_kernel, only slower.)

References:

• C.D. Manning, P. Raghavan and H. Schütze (2008). Introduction to Information Retrieval. Cambridge
University Press. http://nlp.stanford.edu/IR-book/html/htmledition/the-vector-space-model-for-scoring-
1.html

Linear kernel

The function linear_kernel computes the linear kernel, that is, a special case of polynomial_kernel with
degree=1 and coef0=0 (homogeneous). If x and y are column vectors, their linear kernel is:

𝑘(𝑥, 𝑦) = 𝑥⊤𝑦

Polynomial kernel

The function polynomial_kernel computes the degree-d polynomial kernel between two vectors. The polyno-
mial kernel represents the similarity between two vectors. Conceptually, the polynomial kernels considers not only
the similarity between vectors under the same dimension, but also across dimensions. When used in machine learning
algorithms, this allows to account for feature interaction.

The polynomial kernel is defined as:

𝑘(𝑥, 𝑦) = (𝛾𝑥⊤𝑦 + 𝑐0)𝑑

where:

• x, y are the input vectors

• d is the kernel degree

If 𝑐0 = 0 the kernel is said to be homogeneous.

Sigmoid kernel

The function sigmoid_kernel computes the sigmoid kernel between two vectors. The sigmoid kernel is also
known as hyperbolic tangent, or Multilayer Perceptron (because, in the neural network field, it is often used as neuron
activation function). It is defined as:

𝑘(𝑥, 𝑦) = tanh(𝛾𝑥⊤𝑦 + 𝑐0)

where:

• x, y are the input vectors

• 𝛾 is known as slope

• 𝑐0 is known as intercept
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RBF kernel

The function rbf_kernel computes the radial basis function (RBF) kernel between two vectors. This kernel is
defined as:

𝑘(𝑥, 𝑦) = exp(−𝛾‖𝑥− 𝑦‖2)

where x and y are the input vectors. If 𝛾 = 𝜎−2 the kernel is known as the Gaussian kernel of variance 𝜎2.

Laplacian kernel

The function laplacian_kernel is a variant on the radial basis function kernel defined as:

𝑘(𝑥, 𝑦) = exp(−𝛾‖𝑥− 𝑦‖1)

where x and y are the input vectors and ‖𝑥− 𝑦‖1 is the Manhattan distance between the input vectors.

It has proven useful in ML applied to noiseless data. See e.g. Machine learning for quantum mechanics in a nutshell.

Chi-squared kernel

The chi-squared kernel is a very popular choice for training non-linear SVMs in computer vision applications. It can
be computed using chi2_kernel and then passed to an sklearn.svm.SVC with kernel="precomputed":

>>> from sklearn.svm import SVC
>>> from sklearn.metrics.pairwise import chi2_kernel
>>> X = [[0, 1], [1, 0], [.2, .8], [.7, .3]]
>>> y = [0, 1, 0, 1]
>>> K = chi2_kernel(X, gamma=.5)
>>> K
array([[ 1. , 0.36..., 0.89..., 0.58...],

[ 0.36..., 1. , 0.51..., 0.83...],
[ 0.89..., 0.51..., 1. , 0.77... ],
[ 0.58..., 0.83..., 0.77... , 1. ]])

>>> svm = SVC(kernel='precomputed').fit(K, y)
>>> svm.predict(K)
array([0, 1, 0, 1])

It can also be directly used as the kernel argument:

>>> svm = SVC(kernel=chi2_kernel).fit(X, y)
>>> svm.predict(X)
array([0, 1, 0, 1])

The chi squared kernel is given by

𝑘(𝑥, 𝑦) = exp

(︃
−𝛾
∑︁
𝑖

(𝑥[𝑖]− 𝑦[𝑖])2

𝑥[𝑖] + 𝑦[𝑖]

)︃

The data is assumed to be non-negative, and is often normalized to have an L1-norm of one. The normalization is
rationalized with the connection to the chi squared distance, which is a distance between discrete probability distribu-
tions.

The chi squared kernel is most commonly used on histograms (bags) of visual words.
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References:

• Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. Local features and kernels for classification
of texture and object categories: A comprehensive study International Journal of Computer Vision 2007
http://research.microsoft.com/en-us/um/people/manik/projects/trade-off/papers/ZhangIJCV06.pdf

3.4.8 Transforming the prediction target (y)

Label binarization

LabelBinarizer is a utility class to help create a label indicator matrix from a list of multi-class labels:

>>> from sklearn import preprocessing
>>> lb = preprocessing.LabelBinarizer()
>>> lb.fit([1, 2, 6, 4, 2])
LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False)
>>> lb.classes_
array([1, 2, 4, 6])
>>> lb.transform([1, 6])
array([[1, 0, 0, 0],

[0, 0, 0, 1]])

For multiple labels per instance, use MultiLabelBinarizer:

>>> lb = preprocessing.MultiLabelBinarizer()
>>> lb.fit_transform([(1, 2), (3,)])
array([[1, 1, 0],

[0, 0, 1]])
>>> lb.classes_
array([1, 2, 3])

Label encoding

LabelEncoder is a utility class to help normalize labels such that they contain only values between 0 and n_classes-
1. This is sometimes useful for writing efficient Cython routines. LabelEncoder can be used as follows:

>>> from sklearn import preprocessing
>>> le = preprocessing.LabelEncoder()
>>> le.fit([1, 2, 2, 6])
LabelEncoder()
>>> le.classes_
array([1, 2, 6])
>>> le.transform([1, 1, 2, 6])
array([0, 0, 1, 2])
>>> le.inverse_transform([0, 0, 1, 2])
array([1, 1, 2, 6])

It can also be used to transform non-numerical labels (as long as they are hashable and comparable) to numerical
labels:

>>> le = preprocessing.LabelEncoder()
>>> le.fit(["paris", "paris", "tokyo", "amsterdam"])
LabelEncoder()
>>> list(le.classes_)
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['amsterdam', 'paris', 'tokyo']
>>> le.transform(["tokyo", "tokyo", "paris"])
array([2, 2, 1])
>>> list(le.inverse_transform([2, 2, 1]))
['tokyo', 'tokyo', 'paris']

3.5 Dataset loading utilities

The sklearn.datasets package embeds some small toy datasets as introduced in the Getting Started section.

To evaluate the impact of the scale of the dataset (n_samples and n_features) while controlling the statistical
properties of the data (typically the correlation and informativeness of the features), it is also possible to generate
synthetic data.

This package also features helpers to fetch larger datasets commonly used by the machine learning community to
benchmark algorithm on data that comes from the ‘real world’.

3.5.1 General dataset API

There are three distinct kinds of dataset interfaces for different types of datasets. The simplest one is the interface for
sample images, which is described below in the Sample images section.

The dataset generation functions and the svmlight loader share a simplistic interface, returning a tuple (X, y) con-
sisting of a n_samples * n_features numpy array X and an array of length n_samples containing the targets
y.

The toy datasets as well as the ‘real world’ datasets and the datasets fetched from mldata.org have more sophisticated
structure. These functions return a dictionary-like object holding at least two items: an array of shape n_samples *
n_features with key data (except for 20newsgroups) and a numpy array of length n_samples, containing the
target values, with key target.

The datasets also contain a description in DESCR and some contain feature_names and target_names. See
the dataset descriptions below for details.

3.5.2 Toy datasets

scikit-learn comes with a few small standard datasets that do not require to download any file from some external
website.

load_boston() Load and return the boston house-prices dataset (regression).
load_iris() Load and return the iris dataset (classification).
load_diabetes() Load and return the diabetes dataset (regression).
load_digits([n_class]) Load and return the digits dataset (classification).
load_linnerud() Load and return the linnerud dataset (multivariate regression).

These datasets are useful to quickly illustrate the behavior of the various algorithms implemented in the scikit. They
are however often too small to be representative of real world machine learning tasks.

3.5. Dataset loading utilities 457



scikit-learn user guide, Release 0.17

3.5.3 Sample images

The scikit also embed a couple of sample JPEG images published under Creative Commons license by their authors.
Those image can be useful to test algorithms and pipeline on 2D data.

load_sample_images() Load sample images for image manipulation.
load_sample_image(image_name) Load the numpy array of a single sample image

Warning: The default coding of images is based on the uint8 dtype to spare memory. Often machine learning
algorithms work best if the input is converted to a floating point representation first. Also, if you plan to use
pylab.imshow don’t forget to scale to the range 0 - 1 as done in the following example.

Examples:

• Color Quantization using K-Means

3.5.4 Sample generators

In addition, scikit-learn includes various random sample generators that can be used to build artificial datasets of
controlled size and complexity.

Generators for classification and clustering

These generators produce a matrix of features and corresponding discrete targets.

Single label

Both make_blobs and make_classification create multiclass datasets by allocating each class one or more
normally-distributed clusters of points. make_blobs provides greater control regarding the centers and standard de-
viations of each cluster, and is used to demonstrate clustering. make_classification specialises in introducing
noise by way of: correlated, redundant and uninformative features; multiple Gaussian clusters per class; and linear
transformations of the feature space.

make_gaussian_quantiles divides a single Gaussian cluster into near-equal-size classes separated
by concentric hyperspheres. make_hastie_10_2 generates a similar binary, 10-dimensional problem.
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make_circles and make_moons generate 2d binary
classification datasets that are challenging to certain algorithms (e.g. centroid-based clustering or linear classification),
including optional Gaussian noise. They are useful for visualisation. produces Gaussian data with a spherical decision
boundary for binary classification.

Multilabel

make_multilabel_classification generates random samples with multiple labels, reflecting a bag of words
drawn from a mixture of topics. The number of topics for each document is drawn from a Poisson distribution, and the
topics themselves are drawn from a fixed random distribution. Similarly, the number of words is drawn from Poisson,
with words drawn from a multinomial, where each topic defines a probability distribution over words. Simplifications
with respect to true bag-of-words mixtures include:

• Per-topic word distributions are independently drawn, where in reality all would be affected by a sparse base
distribution, and would be correlated.

• For a document generated from multiple topics, all topics are weighted equally in generating its bag of words.

• Documents without labels words at random, rather than from a base distribution.

Biclustering

make_biclusters(shape, n_clusters[, noise, ...]) Generate an array with constant block diagonal structure for biclustering.
Continued on next page
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Table 3.29 – continued from previous page
make_checkerboard(shape, n_clusters[, ...]) Generate an array with block checkerboard structure for biclustering.

Generators for regression

make_regression produces regression targets as an optionally-sparse random linear combination of random fea-
tures, with noise. Its informative features may be uncorrelated, or low rank (few features account for most of the
variance).

Other regression generators generate functions deterministically from randomized features.
make_sparse_uncorrelated produces a target as a linear combination of four features with fixed coef-
ficients. Others encode explicitly non-linear relations: make_friedman1 is related by polynomial and sine
transforms; make_friedman2 includes feature multiplication and reciprocation; and make_friedman3 is
similar with an arctan transformation on the target.

Generators for manifold learning

make_s_curve([n_samples, noise, random_state]) Generate an S curve dataset.
make_swiss_roll([n_samples, noise, random_state]) Generate a swiss roll dataset.

Generators for decomposition

make_low_rank_matrix([n_samples, ...]) Generate a mostly low rank matrix with bell-shaped singular values
make_sparse_coded_signal(n_samples, ...[, ...]) Generate a signal as a sparse combination of dictionary elements.
make_spd_matrix(n_dim[, random_state]) Generate a random symmetric, positive-definite matrix.
make_sparse_spd_matrix([dim, alpha, ...]) Generate a sparse symmetric definite positive matrix.

3.5.5 Datasets in svmlight / libsvm format

scikit-learn includes utility functions for loading datasets in the svmlight / libsvm format. In this format, each
line takes the form <label> <feature-id>:<feature-value> <feature-id>:<feature-value>
.... This format is especially suitable for sparse datasets. In this module, scipy sparse CSR matrices are used for X
and numpy arrays are used for y.

You may load a dataset like as follows:

>>> from sklearn.datasets import load_svmlight_file
>>> X_train, y_train = load_svmlight_file("/path/to/train_dataset.txt")
...

You may also load two (or more) datasets at once:

>>> X_train, y_train, X_test, y_test = load_svmlight_files(
... ("/path/to/train_dataset.txt", "/path/to/test_dataset.txt"))
...

In this case, X_train and X_test are guaranteed to have the same number of features. Another way to achieve the
same result is to fix the number of features:

>>> X_test, y_test = load_svmlight_file(
... "/path/to/test_dataset.txt", n_features=X_train.shape[1])
...
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Related links:

Public datasets in svmlight / libsvm format: http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
Faster API-compatible implementation: https://github.com/mblondel/svmlight-loader

The Olivetti faces dataset

This dataset contains a set of face images taken between April 1992 and April 1994 at AT&T Laboratories Cam-
bridge. The website describing the original dataset is now defunct, but archived copies can be accessed through the
Internet Archive’s Wayback Machine. The sklearn.datasets.fetch_olivetti_faces function is the data
fetching / caching function that downloads the data archive from AT&T.

As described on the original website:

There are ten different images of each of 40 distinct subjects. For some subjects, the images were taken
at different times, varying the lighting, facial expressions (open / closed eyes, smiling / not smiling) and
facial details (glasses / no glasses). All the images were taken against a dark homogeneous background
with the subjects in an upright, frontal position (with tolerance for some side movement).

The image is quantized to 256 grey levels and stored as unsigned 8-bit integers; the loader will convert these to floating
point values on the interval [0, 1], which are easier to work with for many algorithms.

The “target” for this database is an integer from 0 to 39 indicating the identity of the person pictured; however, with
only 10 examples per class, this relatively small dataset is more interesting from an unsupervised or semi-supervised
perspective.

The original dataset consisted of 92 x 112, while the version available here consists of 64x64 images.

When using these images, please give credit to AT&T Laboratories Cambridge.

The 20 newsgroups text dataset

The 20 newsgroups dataset comprises around 18000 newsgroups posts on 20 topics split in two subsets: one for
training (or development) and the other one for testing (or for performance evaluation). The split between the train
and test set is based upon a messages posted before and after a specific date.

This module contains two loaders. The first one, sklearn.datasets.fetch_20newsgroups,
returns a list of the raw texts that can be fed to text feature extractors such as
sklearn.feature_extraction.text.CountVectorizer with custom parameters so as to extract
feature vectors. The second one, sklearn.datasets.fetch_20newsgroups_vectorized, returns
ready-to-use features, i.e., it is not necessary to use a feature extractor.

Usage

The sklearn.datasets.fetch_20newsgroups function is a data fetching / caching functions that
downloads the data archive from the original 20 newsgroups website, extracts the archive contents in the
~/scikit_learn_data/20news_home folder and calls the sklearn.datasets.load_files on either
the training or testing set folder, or both of them:

>>> from sklearn.datasets import fetch_20newsgroups
>>> newsgroups_train = fetch_20newsgroups(subset='train')

>>> from pprint import pprint
>>> pprint(list(newsgroups_train.target_names))
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['alt.atheism',
'comp.graphics',
'comp.os.ms-windows.misc',
'comp.sys.ibm.pc.hardware',
'comp.sys.mac.hardware',
'comp.windows.x',
'misc.forsale',
'rec.autos',
'rec.motorcycles',
'rec.sport.baseball',
'rec.sport.hockey',
'sci.crypt',
'sci.electronics',
'sci.med',
'sci.space',
'soc.religion.christian',
'talk.politics.guns',
'talk.politics.mideast',
'talk.politics.misc',
'talk.religion.misc']

The real data lies in the filenames and target attributes. The target attribute is the integer index of the category:

>>> newsgroups_train.filenames.shape
(11314,)
>>> newsgroups_train.target.shape
(11314,)
>>> newsgroups_train.target[:10]
array([12, 6, 9, 8, 6, 7, 9, 2, 13, 19])

It is possible to load only a sub-selection of the categories by passing the list of the categories to load to the
sklearn.datasets.fetch_20newsgroups function:

>>> cats = ['alt.atheism', 'sci.space']
>>> newsgroups_train = fetch_20newsgroups(subset='train', categories=cats)

>>> list(newsgroups_train.target_names)
['alt.atheism', 'sci.space']
>>> newsgroups_train.filenames.shape
(1073,)
>>> newsgroups_train.target.shape
(1073,)
>>> newsgroups_train.target[:10]
array([1, 1, 1, 0, 1, 0, 0, 1, 1, 1])

Converting text to vectors

In order to feed predictive or clustering models with the text data, one first need to turn the text into vec-
tors of numerical values suitable for statistical analysis. This can be achieved with the utilities of the
sklearn.feature_extraction.text as demonstrated in the following example that extract TF-IDF vectors
of unigram tokens from a subset of 20news:

>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> categories = ['alt.atheism', 'talk.religion.misc',
... 'comp.graphics', 'sci.space']
>>> newsgroups_train = fetch_20newsgroups(subset='train',
... categories=categories)
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>>> vectorizer = TfidfVectorizer()
>>> vectors = vectorizer.fit_transform(newsgroups_train.data)
>>> vectors.shape
(2034, 34118)

The extracted TF-IDF vectors are very sparse, with an average of 159 non-zero components by sample in a more than
30000-dimensional space (less than .5% non-zero features):

>>> vectors.nnz / float(vectors.shape[0])
159.01327433628319

sklearn.datasets.fetch_20newsgroups_vectorized is a function which returns ready-to-use tfidf
features instead of file names.

Filtering text for more realistic training

It is easy for a classifier to overfit on particular things that appear in the 20 Newsgroups data, such as newsgroup
headers. Many classifiers achieve very high F-scores, but their results would not generalize to other documents that
aren’t from this window of time.

For example, let’s look at the results of a multinomial Naive Bayes classifier, which is fast to train and achieves a
decent F-score:

>>> from sklearn.naive_bayes import MultinomialNB
>>> from sklearn import metrics
>>> newsgroups_test = fetch_20newsgroups(subset='test',
... categories=categories)
>>> vectors_test = vectorizer.transform(newsgroups_test.data)
>>> clf = MultinomialNB(alpha=.01)
>>> clf.fit(vectors, newsgroups_train.target)
>>> pred = clf.predict(vectors_test)
>>> metrics.f1_score(newsgroups_test.target, pred, average='weighted')
0.88251152461278892

(The example Classification of text documents using sparse features shuffles the training and test data, instead of
segmenting by time, and in that case multinomial Naive Bayes gets a much higher F-score of 0.88. Are you suspicious
yet of what’s going on inside this classifier?)

Let’s take a look at what the most informative features are:

>>> import numpy as np
>>> def show_top10(classifier, vectorizer, categories):
... feature_names = np.asarray(vectorizer.get_feature_names())
... for i, category in enumerate(categories):
... top10 = np.argsort(classifier.coef_[i])[-10:]
... print("%s: %s" % (category, " ".join(feature_names[top10])))
...
>>> show_top10(clf, vectorizer, newsgroups_train.target_names)
alt.atheism: sgi livesey atheists writes people caltech com god keith edu
comp.graphics: organization thanks files subject com image lines university edu graphics
sci.space: toronto moon gov com alaska access henry nasa edu space
talk.religion.misc: article writes kent people christian jesus sandvik edu com god

You can now see many things that these features have overfit to:

• Almost every group is distinguished by whether headers such as NNTP-Posting-Host: and
Distribution: appear more or less often.
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• Another significant feature involves whether the sender is affiliated with a university, as indicated either by their
headers or their signature.

• The word “article” is a significant feature, based on how often people quote previous posts like this: “In article
[article ID], [name] <[e-mail address]> wrote:”

• Other features match the names and e-mail addresses of particular people who were posting at the time.

With such an abundance of clues that distinguish newsgroups, the classifiers barely have to identify topics from text at
all, and they all perform at the same high level.

For this reason, the functions that load 20 Newsgroups data provide a parameter called remove, telling it what
kinds of information to strip out of each file. remove should be a tuple containing any subset of (’headers’,
’footers’, ’quotes’), telling it to remove headers, signature blocks, and quotation blocks respectively.

>>> newsgroups_test = fetch_20newsgroups(subset='test',
... remove=('headers', 'footers', 'quotes'),
... categories=categories)
>>> vectors_test = vectorizer.transform(newsgroups_test.data)
>>> pred = clf.predict(vectors_test)
>>> metrics.f1_score(pred, newsgroups_test.target, average='weighted')
0.78409163025839435

This classifier lost over a lot of its F-score, just because we removed metadata that has little to do with topic classifi-
cation. It loses even more if we also strip this metadata from the training data:

>>> newsgroups_train = fetch_20newsgroups(subset='train',
... remove=('headers', 'footers', 'quotes'),
... categories=categories)
>>> vectors = vectorizer.fit_transform(newsgroups_train.data)
>>> clf = BernoulliNB(alpha=.01)
>>> clf.fit(vectors, newsgroups_train.target)
>>> vectors_test = vectorizer.transform(newsgroups_test.data)
>>> pred = clf.predict(vectors_test)
>>> metrics.f1_score(newsgroups_test.target, pred, average='weighted')
0.73160869205141166

Some other classifiers cope better with this harder version of the task. Try running Sample pipeline for text feature
extraction and evaluation with and without the --filter option to compare the results.

Recommendation

When evaluating text classifiers on the 20 Newsgroups data, you should strip newsgroup-related metadata. In
scikit-learn, you can do this by setting remove=(’headers’, ’footers’, ’quotes’). The F-score
will be lower because it is more realistic.

Examples

• Sample pipeline for text feature extraction and evaluation
• Classification of text documents using sparse features

Downloading datasets from the mldata.org repository

mldata.org is a public repository for machine learning data, supported by the PASCAL network .

The sklearn.datasets package is able to directly download data sets from the repository using the function
sklearn.datasets.fetch_mldata.
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For example, to download the MNIST digit recognition database:

>>> from sklearn.datasets import fetch_mldata
>>> mnist = fetch_mldata('MNIST original', data_home=custom_data_home)

The MNIST database contains a total of 70000 examples of handwritten digits of size 28x28 pixels, labeled from 0 to
9:

>>> mnist.data.shape
(70000, 784)
>>> mnist.target.shape
(70000,)
>>> np.unique(mnist.target)
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])

After the first download, the dataset is cached locally in the path specified by the data_home keyword argument,
which defaults to ~/scikit_learn_data/:

>>> os.listdir(os.path.join(custom_data_home, 'mldata'))
['mnist-original.mat']

Data sets in mldata.org do not adhere to a strict naming or formatting convention.
sklearn.datasets.fetch_mldata is able to make sense of the most common cases, but allows to
tailor the defaults to individual datasets:

• The data arrays in mldata.org are most often shaped as (n_features, n_samples). This is the opposite
of the scikit-learn convention, so sklearn.datasets.fetch_mldata transposes the matrix by
default. The transpose_data keyword controls this behavior:

>>> iris = fetch_mldata('iris', data_home=custom_data_home)
>>> iris.data.shape
(150, 4)
>>> iris = fetch_mldata('iris', transpose_data=False,
... data_home=custom_data_home)
>>> iris.data.shape
(4, 150)

• For datasets with multiple columns, sklearn.datasets.fetch_mldata tries to identify the target and
data columns and rename them to target and data. This is done by looking for arrays named label and
data in the dataset, and failing that by choosing the first array to be target and the second to be data. This
behavior can be changed with the target_name and data_name keywords, setting them to a specific name
or index number (the name and order of the columns in the datasets can be found at its mldata.org under the tab
“Data”:

>>> iris2 = fetch_mldata('datasets-UCI iris', target_name=1, data_name=0,
... data_home=custom_data_home)
>>> iris3 = fetch_mldata('datasets-UCI iris', target_name='class',
... data_name='double0', data_home=custom_data_home)

The Labeled Faces in the Wild face recognition dataset

This dataset is a collection of JPEG pictures of famous people collected over the internet, all details are available on
the official website:

http://vis-www.cs.umass.edu/lfw/

Each picture is centered on a single face. The typical task is called Face Verification: given a pair of two pictures, a
binary classifier must predict whether the two images are from the same person.
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An alternative task, Face Recognition or Face Identification is: given the picture of the face of an unknown person,
identify the name of the person by referring to a gallery of previously seen pictures of identified persons.

Both Face Verification and Face Recognition are tasks that are typically performed on the output of a model trained to
perform Face Detection. The most popular model for Face Detection is called Viola-Jones and is implemented in the
OpenCV library. The LFW faces were extracted by this face detector from various online websites.

Usage

scikit-learn provides two loaders that will automatically download, cache, parse the metadata files, decode
the jpeg and convert the interesting slices into memmaped numpy arrays. This dataset size is more than 200 MB.
The first load typically takes more than a couple of minutes to fully decode the relevant part of the JPEG files into
numpy arrays. If the dataset has been loaded once, the following times the loading times less than 200ms by using a
memmaped version memoized on the disk in the ~/scikit_learn_data/lfw_home/ folder using joblib.

The first loader is used for the Face Identification task: a multi-class classification task (hence supervised learning):

>>> from sklearn.datasets import fetch_lfw_people
>>> lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

>>> for name in lfw_people.target_names:
... print(name)
...
Ariel Sharon
Colin Powell
Donald Rumsfeld
George W Bush
Gerhard Schroeder
Hugo Chavez
Tony Blair

The default slice is a rectangular shape around the face, removing most of the background:

>>> lfw_people.data.dtype
dtype('float32')

>>> lfw_people.data.shape
(1288, 1850)

>>> lfw_people.images.shape
(1288, 50, 37)

Each of the 1140 faces is assigned to a single person id in the target array:

>>> lfw_people.target.shape
(1288,)

>>> list(lfw_people.target[:10])
[5, 6, 3, 1, 0, 1, 3, 4, 3, 0]

The second loader is typically used for the face verification task: each sample is a pair of two picture belonging or not
to the same person:

>>> from sklearn.datasets import fetch_lfw_pairs
>>> lfw_pairs_train = fetch_lfw_pairs(subset='train')

>>> list(lfw_pairs_train.target_names)
['Different persons', 'Same person']
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>>> lfw_pairs_train.pairs.shape
(2200, 2, 62, 47)

>>> lfw_pairs_train.data.shape
(2200, 5828)

>>> lfw_pairs_train.target.shape
(2200,)

Both for the sklearn.datasets.fetch_lfw_people and sklearn.datasets.fetch_lfw_pairs
function it is possible to get an additional dimension with the RGB color channels by passing color=True, in
that case the shape will be (2200, 2, 62, 47, 3).

The sklearn.datasets.fetch_lfw_pairs datasets is subdivided into 3 subsets: the development train
set, the development test set and an evaluation 10_folds set meant to compute performance metrics using a
10-folds cross validation scheme.

References:

• Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments.
Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. University of Massachusetts,
Amherst, Technical Report 07-49, October, 2007.

Examples

Faces recognition example using eigenfaces and SVMs

Forest covertypes

The samples in this dataset correspond to 30×30m patches of forest in the US, collected for the task of predicting
each patch’s cover type, i.e. the dominant species of tree. There are seven covertypes, making this a multiclass
classification problem. Each sample has 54 features, described on the dataset’s homepage. Some of the features are
boolean indicators, while others are discrete or continuous measurements.

sklearn.datasets.fetch_covtype will load the covertype dataset; it returns a dictionary-like object with
the feature matrix in the data member and the target values in target. The dataset will be downloaded from the
web if necessary.

RCV1 dataset

Reuters Corpus Volume I (RCV1) is an archive of over 800,000 manually categorized newswire stories made available
by Reuters, Ltd. for research purposes. The dataset is extensively described in 11.

sklearn.datasets.fetch_rcv1 will load the following version: RCV1-v2, vectors, full sets, topics multil-
abels:

>>> from sklearn.datasets import fetch_rcv1
>>> rcv1 = fetch_rcv1()

11 Lewis, D. D., Yang, Y., Rose, T. G., & Li, F. (2004). RCV1: A new benchmark collection for text categorization research. The Journal of
Machine Learning Research, 5, 361-397.
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It returns a dictionary-like object, with the following attributes:

data: The feature matrix is a scipy CSR sparse matrix, with 804414 samples and 47236 features. Non-zero values
contains cosine-normalized, log TF-IDF vectors. A nearly chronological split is proposed in 1: The first 23149 samples
are the training set. The last 781265 samples are the testing set. This follows the official LYRL2004 chronological
split. The array has 0.16% of non zero values:

>>> rcv1.data.shape
(804414, 47236)

target: The target values are stored in a scipy CSR sparse matrix, with 804414 samples and 103 categories. Each
sample has a value of 1 in its categories, and 0 in others. The array has 3.15% of non zero values:

>>> rcv1.target.shape
(804414, 103)

sample_id: Each sample can be identified by its ID, ranging (with gaps) from 2286 to 810596:

>>> rcv1.sample_id[:3]
array([2286, 2287, 2288], dtype=int32)

target_names: The target values are the topics of each sample. Each sample belongs to at least one topic, and
to up to 17 topics. There are 103 topics, each represented by a string. Their corpus frequencies span five orders of
magnitude, from 5 occurrences for ‘GMIL’, to 381327 for ‘CCAT’:

>>> rcv1.target_names[:3].tolist()
['E11', 'ECAT', 'M11']

The dataset will be downloaded from the rcv1 homepage if necessary. The compressed size is about 656 MB.

References

3.5.6 The Olivetti faces dataset

This dataset contains a set of face images taken between April 1992 and April 1994 at AT&T Laboratories Cam-
bridge. The website describing the original dataset is now defunct, but archived copies can be accessed through the
Internet Archive’s Wayback Machine. The sklearn.datasets.fetch_olivetti_faces function is the data
fetching / caching function that downloads the data archive from AT&T.

As described on the original website:

There are ten different images of each of 40 distinct subjects. For some subjects, the images were taken
at different times, varying the lighting, facial expressions (open / closed eyes, smiling / not smiling) and
facial details (glasses / no glasses). All the images were taken against a dark homogeneous background
with the subjects in an upright, frontal position (with tolerance for some side movement).

The image is quantized to 256 grey levels and stored as unsigned 8-bit integers; the loader will convert these to floating
point values on the interval [0, 1], which are easier to work with for many algorithms.

The “target” for this database is an integer from 0 to 39 indicating the identity of the person pictured; however, with
only 10 examples per class, this relatively small dataset is more interesting from an unsupervised or semi-supervised
perspective.

The original dataset consisted of 92 x 112, while the version available here consists of 64x64 images.

When using these images, please give credit to AT&T Laboratories Cambridge.
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3.5.7 The 20 newsgroups text dataset

The 20 newsgroups dataset comprises around 18000 newsgroups posts on 20 topics split in two subsets: one for
training (or development) and the other one for testing (or for performance evaluation). The split between the train
and test set is based upon a messages posted before and after a specific date.

This module contains two loaders. The first one, sklearn.datasets.fetch_20newsgroups,
returns a list of the raw texts that can be fed to text feature extractors such as
sklearn.feature_extraction.text.CountVectorizer with custom parameters so as to extract
feature vectors. The second one, sklearn.datasets.fetch_20newsgroups_vectorized, returns
ready-to-use features, i.e., it is not necessary to use a feature extractor.

Usage

The sklearn.datasets.fetch_20newsgroups function is a data fetching / caching functions that
downloads the data archive from the original 20 newsgroups website, extracts the archive contents in the
~/scikit_learn_data/20news_home folder and calls the sklearn.datasets.load_files on either
the training or testing set folder, or both of them:

>>> from sklearn.datasets import fetch_20newsgroups
>>> newsgroups_train = fetch_20newsgroups(subset='train')

>>> from pprint import pprint
>>> pprint(list(newsgroups_train.target_names))
['alt.atheism',
'comp.graphics',
'comp.os.ms-windows.misc',
'comp.sys.ibm.pc.hardware',
'comp.sys.mac.hardware',
'comp.windows.x',
'misc.forsale',
'rec.autos',
'rec.motorcycles',
'rec.sport.baseball',
'rec.sport.hockey',
'sci.crypt',
'sci.electronics',
'sci.med',
'sci.space',
'soc.religion.christian',
'talk.politics.guns',
'talk.politics.mideast',
'talk.politics.misc',
'talk.religion.misc']

The real data lies in the filenames and target attributes. The target attribute is the integer index of the category:

>>> newsgroups_train.filenames.shape
(11314,)
>>> newsgroups_train.target.shape
(11314,)
>>> newsgroups_train.target[:10]
array([12, 6, 9, 8, 6, 7, 9, 2, 13, 19])

It is possible to load only a sub-selection of the categories by passing the list of the categories to load to the
sklearn.datasets.fetch_20newsgroups function:
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>>> cats = ['alt.atheism', 'sci.space']
>>> newsgroups_train = fetch_20newsgroups(subset='train', categories=cats)

>>> list(newsgroups_train.target_names)
['alt.atheism', 'sci.space']
>>> newsgroups_train.filenames.shape
(1073,)
>>> newsgroups_train.target.shape
(1073,)
>>> newsgroups_train.target[:10]
array([1, 1, 1, 0, 1, 0, 0, 1, 1, 1])

Converting text to vectors

In order to feed predictive or clustering models with the text data, one first need to turn the text into vec-
tors of numerical values suitable for statistical analysis. This can be achieved with the utilities of the
sklearn.feature_extraction.text as demonstrated in the following example that extract TF-IDF vectors
of unigram tokens from a subset of 20news:

>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> categories = ['alt.atheism', 'talk.religion.misc',
... 'comp.graphics', 'sci.space']
>>> newsgroups_train = fetch_20newsgroups(subset='train',
... categories=categories)
>>> vectorizer = TfidfVectorizer()
>>> vectors = vectorizer.fit_transform(newsgroups_train.data)
>>> vectors.shape
(2034, 34118)

The extracted TF-IDF vectors are very sparse, with an average of 159 non-zero components by sample in a more than
30000-dimensional space (less than .5% non-zero features):

>>> vectors.nnz / float(vectors.shape[0])
159.01327433628319

sklearn.datasets.fetch_20newsgroups_vectorized is a function which returns ready-to-use tfidf
features instead of file names.

Filtering text for more realistic training

It is easy for a classifier to overfit on particular things that appear in the 20 Newsgroups data, such as newsgroup
headers. Many classifiers achieve very high F-scores, but their results would not generalize to other documents that
aren’t from this window of time.

For example, let’s look at the results of a multinomial Naive Bayes classifier, which is fast to train and achieves a
decent F-score:

>>> from sklearn.naive_bayes import MultinomialNB
>>> from sklearn import metrics
>>> newsgroups_test = fetch_20newsgroups(subset='test',
... categories=categories)
>>> vectors_test = vectorizer.transform(newsgroups_test.data)
>>> clf = MultinomialNB(alpha=.01)
>>> clf.fit(vectors, newsgroups_train.target)
>>> pred = clf.predict(vectors_test)
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>>> metrics.f1_score(newsgroups_test.target, pred, average='weighted')
0.88251152461278892

(The example Classification of text documents using sparse features shuffles the training and test data, instead of
segmenting by time, and in that case multinomial Naive Bayes gets a much higher F-score of 0.88. Are you suspicious
yet of what’s going on inside this classifier?)

Let’s take a look at what the most informative features are:

>>> import numpy as np
>>> def show_top10(classifier, vectorizer, categories):
... feature_names = np.asarray(vectorizer.get_feature_names())
... for i, category in enumerate(categories):
... top10 = np.argsort(classifier.coef_[i])[-10:]
... print("%s: %s" % (category, " ".join(feature_names[top10])))
...
>>> show_top10(clf, vectorizer, newsgroups_train.target_names)
alt.atheism: sgi livesey atheists writes people caltech com god keith edu
comp.graphics: organization thanks files subject com image lines university edu graphics
sci.space: toronto moon gov com alaska access henry nasa edu space
talk.religion.misc: article writes kent people christian jesus sandvik edu com god

You can now see many things that these features have overfit to:

• Almost every group is distinguished by whether headers such as NNTP-Posting-Host: and
Distribution: appear more or less often.

• Another significant feature involves whether the sender is affiliated with a university, as indicated either by their
headers or their signature.

• The word “article” is a significant feature, based on how often people quote previous posts like this: “In article
[article ID], [name] <[e-mail address]> wrote:”

• Other features match the names and e-mail addresses of particular people who were posting at the time.

With such an abundance of clues that distinguish newsgroups, the classifiers barely have to identify topics from text at
all, and they all perform at the same high level.

For this reason, the functions that load 20 Newsgroups data provide a parameter called remove, telling it what
kinds of information to strip out of each file. remove should be a tuple containing any subset of (’headers’,
’footers’, ’quotes’), telling it to remove headers, signature blocks, and quotation blocks respectively.

>>> newsgroups_test = fetch_20newsgroups(subset='test',
... remove=('headers', 'footers', 'quotes'),
... categories=categories)
>>> vectors_test = vectorizer.transform(newsgroups_test.data)
>>> pred = clf.predict(vectors_test)
>>> metrics.f1_score(pred, newsgroups_test.target, average='weighted')
0.78409163025839435

This classifier lost over a lot of its F-score, just because we removed metadata that has little to do with topic classifi-
cation. It loses even more if we also strip this metadata from the training data:

>>> newsgroups_train = fetch_20newsgroups(subset='train',
... remove=('headers', 'footers', 'quotes'),
... categories=categories)
>>> vectors = vectorizer.fit_transform(newsgroups_train.data)
>>> clf = BernoulliNB(alpha=.01)
>>> clf.fit(vectors, newsgroups_train.target)
>>> vectors_test = vectorizer.transform(newsgroups_test.data)
>>> pred = clf.predict(vectors_test)
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>>> metrics.f1_score(newsgroups_test.target, pred, average='weighted')
0.73160869205141166

Some other classifiers cope better with this harder version of the task. Try running Sample pipeline for text feature
extraction and evaluation with and without the --filter option to compare the results.

Recommendation

When evaluating text classifiers on the 20 Newsgroups data, you should strip newsgroup-related metadata. In
scikit-learn, you can do this by setting remove=(’headers’, ’footers’, ’quotes’). The F-score
will be lower because it is more realistic.

Examples

• Sample pipeline for text feature extraction and evaluation
• Classification of text documents using sparse features

3.5.8 Downloading datasets from the mldata.org repository

mldata.org is a public repository for machine learning data, supported by the PASCAL network .

The sklearn.datasets package is able to directly download data sets from the repository using the function
sklearn.datasets.fetch_mldata.

For example, to download the MNIST digit recognition database:

>>> from sklearn.datasets import fetch_mldata
>>> mnist = fetch_mldata('MNIST original', data_home=custom_data_home)

The MNIST database contains a total of 70000 examples of handwritten digits of size 28x28 pixels, labeled from 0 to
9:

>>> mnist.data.shape
(70000, 784)
>>> mnist.target.shape
(70000,)
>>> np.unique(mnist.target)
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])

After the first download, the dataset is cached locally in the path specified by the data_home keyword argument,
which defaults to ~/scikit_learn_data/:

>>> os.listdir(os.path.join(custom_data_home, 'mldata'))
['mnist-original.mat']

Data sets in mldata.org do not adhere to a strict naming or formatting convention.
sklearn.datasets.fetch_mldata is able to make sense of the most common cases, but allows to
tailor the defaults to individual datasets:

• The data arrays in mldata.org are most often shaped as (n_features, n_samples). This is the opposite
of the scikit-learn convention, so sklearn.datasets.fetch_mldata transposes the matrix by
default. The transpose_data keyword controls this behavior:

>>> iris = fetch_mldata('iris', data_home=custom_data_home)
>>> iris.data.shape
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(150, 4)
>>> iris = fetch_mldata('iris', transpose_data=False,
... data_home=custom_data_home)
>>> iris.data.shape
(4, 150)

• For datasets with multiple columns, sklearn.datasets.fetch_mldata tries to identify the target and
data columns and rename them to target and data. This is done by looking for arrays named label and
data in the dataset, and failing that by choosing the first array to be target and the second to be data. This
behavior can be changed with the target_name and data_name keywords, setting them to a specific name
or index number (the name and order of the columns in the datasets can be found at its mldata.org under the tab
“Data”:

>>> iris2 = fetch_mldata('datasets-UCI iris', target_name=1, data_name=0,
... data_home=custom_data_home)
>>> iris3 = fetch_mldata('datasets-UCI iris', target_name='class',
... data_name='double0', data_home=custom_data_home)

3.5.9 The Labeled Faces in the Wild face recognition dataset

This dataset is a collection of JPEG pictures of famous people collected over the internet, all details are available on
the official website:

http://vis-www.cs.umass.edu/lfw/

Each picture is centered on a single face. The typical task is called Face Verification: given a pair of two pictures, a
binary classifier must predict whether the two images are from the same person.

An alternative task, Face Recognition or Face Identification is: given the picture of the face of an unknown person,
identify the name of the person by referring to a gallery of previously seen pictures of identified persons.

Both Face Verification and Face Recognition are tasks that are typically performed on the output of a model trained to
perform Face Detection. The most popular model for Face Detection is called Viola-Jones and is implemented in the
OpenCV library. The LFW faces were extracted by this face detector from various online websites.

Usage

scikit-learn provides two loaders that will automatically download, cache, parse the metadata files, decode
the jpeg and convert the interesting slices into memmaped numpy arrays. This dataset size is more than 200 MB.
The first load typically takes more than a couple of minutes to fully decode the relevant part of the JPEG files into
numpy arrays. If the dataset has been loaded once, the following times the loading times less than 200ms by using a
memmaped version memoized on the disk in the ~/scikit_learn_data/lfw_home/ folder using joblib.

The first loader is used for the Face Identification task: a multi-class classification task (hence supervised learning):

>>> from sklearn.datasets import fetch_lfw_people
>>> lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

>>> for name in lfw_people.target_names:
... print(name)
...
Ariel Sharon
Colin Powell
Donald Rumsfeld
George W Bush
Gerhard Schroeder

3.5. Dataset loading utilities 473

http://mldata.org
http://vis-www.cs.umass.edu/lfw/


scikit-learn user guide, Release 0.17

Hugo Chavez
Tony Blair

The default slice is a rectangular shape around the face, removing most of the background:

>>> lfw_people.data.dtype
dtype('float32')

>>> lfw_people.data.shape
(1288, 1850)

>>> lfw_people.images.shape
(1288, 50, 37)

Each of the 1140 faces is assigned to a single person id in the target array:

>>> lfw_people.target.shape
(1288,)

>>> list(lfw_people.target[:10])
[5, 6, 3, 1, 0, 1, 3, 4, 3, 0]

The second loader is typically used for the face verification task: each sample is a pair of two picture belonging or not
to the same person:

>>> from sklearn.datasets import fetch_lfw_pairs
>>> lfw_pairs_train = fetch_lfw_pairs(subset='train')

>>> list(lfw_pairs_train.target_names)
['Different persons', 'Same person']

>>> lfw_pairs_train.pairs.shape
(2200, 2, 62, 47)

>>> lfw_pairs_train.data.shape
(2200, 5828)

>>> lfw_pairs_train.target.shape
(2200,)

Both for the sklearn.datasets.fetch_lfw_people and sklearn.datasets.fetch_lfw_pairs
function it is possible to get an additional dimension with the RGB color channels by passing color=True, in
that case the shape will be (2200, 2, 62, 47, 3).

The sklearn.datasets.fetch_lfw_pairs datasets is subdivided into 3 subsets: the development train
set, the development test set and an evaluation 10_folds set meant to compute performance metrics using a
10-folds cross validation scheme.

References:

• Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments.
Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. University of Massachusetts,
Amherst, Technical Report 07-49, October, 2007.

Examples

Faces recognition example using eigenfaces and SVMs
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3.5.10 Forest covertypes

The samples in this dataset correspond to 30×30m patches of forest in the US, collected for the task of predicting
each patch’s cover type, i.e. the dominant species of tree. There are seven covertypes, making this a multiclass
classification problem. Each sample has 54 features, described on the dataset’s homepage. Some of the features are
boolean indicators, while others are discrete or continuous measurements.

sklearn.datasets.fetch_covtype will load the covertype dataset; it returns a dictionary-like object with
the feature matrix in the data member and the target values in target. The dataset will be downloaded from the
web if necessary.

3.5.11 RCV1 dataset

Reuters Corpus Volume I (RCV1) is an archive of over 800,000 manually categorized newswire stories made available
by Reuters, Ltd. for research purposes. The dataset is extensively described in 12.

sklearn.datasets.fetch_rcv1 will load the following version: RCV1-v2, vectors, full sets, topics multil-
abels:

>>> from sklearn.datasets import fetch_rcv1
>>> rcv1 = fetch_rcv1()

It returns a dictionary-like object, with the following attributes:

data: The feature matrix is a scipy CSR sparse matrix, with 804414 samples and 47236 features. Non-zero values
contains cosine-normalized, log TF-IDF vectors. A nearly chronological split is proposed in 1: The first 23149 samples
are the training set. The last 781265 samples are the testing set. This follows the official LYRL2004 chronological
split. The array has 0.16% of non zero values:

>>> rcv1.data.shape
(804414, 47236)

target: The target values are stored in a scipy CSR sparse matrix, with 804414 samples and 103 categories. Each
sample has a value of 1 in its categories, and 0 in others. The array has 3.15% of non zero values:

>>> rcv1.target.shape
(804414, 103)

sample_id: Each sample can be identified by its ID, ranging (with gaps) from 2286 to 810596:

>>> rcv1.sample_id[:3]
array([2286, 2287, 2288], dtype=int32)

target_names: The target values are the topics of each sample. Each sample belongs to at least one topic, and
to up to 17 topics. There are 103 topics, each represented by a string. Their corpus frequencies span five orders of
magnitude, from 5 occurrences for ‘GMIL’, to 381327 for ‘CCAT’:

>>> rcv1.target_names[:3].tolist()
['E11', 'ECAT', 'M11']

The dataset will be downloaded from the rcv1 homepage if necessary. The compressed size is about 656 MB.

References

12 Lewis, D. D., Yang, Y., Rose, T. G., & Li, F. (2004). RCV1: A new benchmark collection for text categorization research. The Journal of
Machine Learning Research, 5, 361-397.
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3.6 Strategies to scale computationally: bigger data

For some applications the amount of examples, features (or both) and/or the speed at which they need to be processed
are challenging for traditional approaches. In these cases scikit-learn has a number of options you can consider to
make your system scale.

3.6.1 Scaling with instances using out-of-core learning

Out-of-core (or “external memory”) learning is a technique used to learn from data that cannot fit in a computer’s main
memory (RAM).

Here is sketch of a system designed to achieve this goal:

1. a way to stream instances

2. a way to extract features from instances

3. an incremental algorithm

Streaming instances

Basically, 1. may be a reader that yields instances from files on a hard drive, a database, from a network stream etc.
However, details on how to achieve this are beyond the scope of this documentation.

Extracting features

2. could be any relevant way to extract features among the different feature extraction methods supported by scikit-
learn. However, when working with data that needs vectorization and where the set of features or values is not
known in advance one should take explicit care. A good example is text classification where unknown terms are
likely to be found during training. It is possible to use a statefull vectorizer if making multiple passes over the
data is reasonable from an application point of view. Otherwise, one can turn up the difficulty by using a stateless
feature extractor. Currently the preferred way to do this is to use the so-called hashing trick as implemented by
sklearn.feature_extraction.FeatureHasher for datasets with categorical variables represented as list
of Python dicts or sklearn.feature_extraction.text.HashingVectorizer for text documents.

Incremental learning

Finally, for 3. we have a number of options inside scikit-learn. Although all algorithms cannot learn incrementally
(i.e. without seeing all the instances at once), all estimators implementing the partial_fit API are candidates.
Actually, the ability to learn incrementally from a mini-batch of instances (sometimes called “online learning”) is key
to out-of-core learning as it guarantees that at any given time there will be only a small amount of instances in the
main memory. Choosing a good size for the mini-batch that balances relevancy and memory footprint could involve
some tuning 13.

Here is a list of incremental estimators for different tasks:

• Classification

– sklearn.naive_bayes.MultinomialNB

– sklearn.naive_bayes.BernoulliNB

13 Depending on the algorithm the mini-batch size can influence results or not. SGD*, PassiveAggressive*, and discrete NaiveBayes are truly
online and are not affected by batch size. Conversely, MiniBatchKMeans convergence rate is affected by the batch size. Also, its memory footprint
can vary dramatically with batch size.
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– sklearn.linear_model.Perceptron

– sklearn.linear_model.SGDClassifier

– sklearn.linear_model.PassiveAggressiveClassifier

• Regression

– sklearn.linear_model.SGDRegressor

– sklearn.linear_model.PassiveAggressiveRegressor

• Clustering

– sklearn.cluster.MiniBatchKMeans

• Decomposition / feature Extraction

– sklearn.decomposition.MiniBatchDictionaryLearning

– sklearn.decomposition.IncrementalPCA

– sklearn.cluster.MiniBatchKMeans

For classification, a somewhat important thing to note is that although a stateless feature extraction routine may be
able to cope with new/unseen attributes, the incremental learner itself may be unable to cope with new/unseen targets
classes. In this case you have to pass all the possible classes to the first partial_fit call using the classes=
parameter.

Another aspect to consider when choosing a proper algorithm is that all of them don’t put the same importance on each
example over time. Namely, the Perceptron is still sensitive to badly labeled examples even after many examples
whereas the SGD* and PassiveAggressive* families are more robust to this kind of artifacts. Conversely, the
later also tend to give less importance to remarkably different, yet properly labeled examples when they come late in
the stream as their learning rate decreases over time.

Examples

Finally, we have a full-fledged example of Out-of-core classification of text documents. It is aimed at providing a
starting point for people wanting to build out-of-core learning systems and demonstrates most of the notions discussed
above.

Furthermore, it also shows the evolution of the performance of different algorithms with the number of processed
examples.
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Now looking at the computation time of the different parts, we see that the vectorization is much more expensive
than learning itself. From the different algorithms, MultinomialNB is the most expensive, but its overhead can be
mitigated by increasing the size of the mini-batches (exercise: change minibatch_size to 100 and 10000 in the
program and compare).
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Notes

3.7 Computational Performance

For some applications the performance (mainly latency and throughput at prediction time) of estimators is crucial. It
may also be of interest to consider the training throughput but this is often less important in a production setup (where
it often takes place offline).

We will review here the orders of magnitude you can expect from a number of scikit-learn estimators in different
contexts and provide some tips and tricks for overcoming performance bottlenecks.

Prediction latency is measured as the elapsed time necessary to make a prediction (e.g. in micro-seconds). Latency
is often viewed as a distribution and operations engineers often focus on the latency at a given percentile of this
distribution (e.g. the 90 percentile).

Prediction throughput is defined as the number of predictions the software can deliver in a given amount of time (e.g.
in predictions per second).

An important aspect of performance optimization is also that it can hurt prediction accuracy. Indeed, simpler models
(e.g. linear instead of non-linear, or with fewer parameters) often run faster but are not always able to take into account
the same exact properties of the data as more complex ones.

3.7.1 Prediction Latency

One of the most straight-forward concerns one may have when using/choosing a machine learning toolkit is the latency
at which predictions can be made in a production environment.

The main factors that influence the prediction latency are

1. Number of features

2. Input data representation and sparsity

3. Model complexity

4. Feature extraction

A last major parameter is also the possibility to do predictions in bulk or one-at-a-time mode.

Bulk versus Atomic mode

In general doing predictions in bulk (many instances at the same time) is more efficient for a number of reasons
(branching predictability, CPU cache, linear algebra libraries optimizations etc.). Here we see on a setting with few
features that independently of estimator choice the bulk mode is always faster, and for some of them by 1 to 2 orders
of magnitude:
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To benchmark different estimators for your case you can simply change the n_features parameter in this example:
Prediction Latency. This should give you an estimate of the order of magnitude of the prediction latency.

Influence of the Number of Features

Obviously when the number of features increases so does the memory consumption of each example. Indeed, for a
matrix of 𝑀 instances with 𝑁 features, the space complexity is in 𝑂(𝑁𝑀). From a computing perspective it also
means that the number of basic operations (e.g., multiplications for vector-matrix products in linear models) increases
too. Here is a graph of the evolution of the prediction latency with the number of features:
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Overall you can expect the prediction time to increase at least linearly with the number of features (non-linear cases
can happen depending on the global memory footprint and estimator).

Influence of the Input Data Representation

Scipy provides sparse matrix datastructures which are optimized for storing sparse data. The main feature of sparse
formats is that you don’t store zeros so if your data is sparse then you use much less memory. A non-zero value in
a sparse (CSR or CSC) representation will only take on average one 32bit integer position + the 64 bit floating point
value + an additional 32bit per row or column in the matrix. Using sparse input on a dense (or sparse) linear model
can speedup prediction by quite a bit as only the non zero valued features impact the dot product and thus the model
predictions. Hence if you have 100 non zeros in 1e6 dimensional space, you only need 100 multiply and add operation
instead of 1e6.

Calculation over a dense representation, however, may leverage highly optimised vector operations and multithreading
in BLAS, and tends to result in fewer CPU cache misses. So the sparsity should typically be quite high (10% non-zeros
max, to be checked depending on the hardware) for the sparse input representation to be faster than the dense input
representation on a machine with many CPUs and an optimized BLAS implementation.

Here is sample code to test the sparsity of your input:

def sparsity_ratio(X):
return 1.0 - np.count_nonzero(X) / float(X.shape[0] * X.shape[1])

print("input sparsity ratio:", sparsity_ratio(X))

As a rule of thumb you can consider that if the sparsity ratio is greater than 90% you can probably benefit from sparse
formats. Check Scipy’s sparse matrix formats documentation for more information on how to build (or convert your
data to) sparse matrix formats. Most of the time the CSR and CSC formats work best.

Influence of the Model Complexity

Generally speaking, when model complexity increases, predictive power and latency are supposed to increase. In-
creasing predictive power is usually interesting, but for many applications we would better not increase prediction
latency too much. We will now review this idea for different families of supervised models.
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For sklearn.linear_model (e.g. Lasso, ElasticNet, SGDClassifier/Regressor, Ridge & RidgeClassifier, Pas-
siveAgressiveClassifier/Regressor, LinearSVC, LogisticRegression...) the decision function that is applied at predic-
tion time is the same (a dot product) , so latency should be equivalent.

Here is an example using sklearn.linear_model.stochastic_gradient.SGDClassifier with the
elasticnet penalty. The regularization strength is globally controlled by the alpha parameter. With a sufficiently
high alpha, one can then increase the l1_ratio parameter of elasticnet to enforce various levels of sparsity
in the model coefficients. Higher sparsity here is interpreted as less model complexity as we need fewer coefficients to
describe it fully. Of course sparsity influences in turn the prediction time as the sparse dot-product takes time roughly
proportional to the number of non-zero coefficients.

For the sklearn.svm family of algorithms with a non-linear kernel, the latency is tied to the number of support vec-
tors (the fewer the faster). Latency and throughput should (asymptotically) grow linearly with the number of support
vectors in a SVC or SVR model. The kernel will also influence the latency as it is used to compute the projection of the
input vector once per support vector. In the following graph the nu parameter of sklearn.svm.classes.NuSVR
was used to influence the number of support vectors.

For sklearn.ensemble of trees (e.g. RandomForest, GBT, ExtraTrees etc) the number of
trees and their depth play the most important role. Latency and throughput should scale lin-
early with the number of trees. In this case we used directly the n_estimators parameter of
sklearn.ensemble.gradient_boosting.GradientBoostingRegressor.
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In any case be warned that decreasing model complexity can hurt accuracy as mentioned above. For instance a non-
linearly separable problem can be handled with a speedy linear model but prediction power will very likely suffer in
the process.

Feature Extraction Latency

Most scikit-learn models are usually pretty fast as they are implemented either with compiled Cython extensions or
optimized computing libraries. On the other hand, in many real world applications the feature extraction process (i.e.
turning raw data like database rows or network packets into numpy arrays) governs the overall prediction time. For
example on the Reuters text classification task the whole preparation (reading and parsing SGML files, tokenizing the
text and hashing it into a common vector space) is taking 100 to 500 times more time than the actual prediction code,
depending on the chosen model.
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In many cases it is thus recommended to carefully time and profile your feature extraction code as it may be a good
place to start optimizing when your overall latency is too slow for your application.

3.7.2 Prediction Throughput

Another important metric to care about when sizing production systems is the throughput i.e. the number of predictions
you can make in a given amount of time. Here is a benchmark from the Prediction Latency example that measures this
quantity for a number of estimators on synthetic data:
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These throughputs are achieved on a single process. An obvious way to increase the throughput of your application
is to spawn additional instances (usually processes in Python because of the GIL) that share the same model. One
might also add machines to spread the load. A detailed explanation on how to achieve this is beyond the scope of this
documentation though.

3.7.3 Tips and Tricks

Linear algebra libraries

As scikit-learn relies heavily on Numpy/Scipy and linear algebra in general it makes sense to take explicit care of the
versions of these libraries. Basically, you ought to make sure that Numpy is built using an optimized BLAS / LAPACK
library.

Not all models benefit from optimized BLAS and Lapack implementations. For instance models based on (random-
ized) decision trees typically do not rely on BLAS calls in their inner loops, nor do kernel SVMs (SVC, SVR, NuSVC,
NuSVR). On the other hand a linear model implemented with a BLAS DGEMM call (via numpy.dot) will typically
benefit hugely from a tuned BLAS implementation and lead to orders of magnitude speedup over a non-optimized
BLAS.

You can display the BLAS / LAPACK implementation used by your NumPy / SciPy / scikit-learn install with the
following commands:

from numpy.distutils.system_info import get_info
print(get_info('blas_opt'))
print(get_info('lapack_opt'))

Optimized BLAS / LAPACK implementations include:

• Atlas (need hardware specific tuning by rebuilding on the target machine)

• OpenBLAS

• MKL

• Apple Accelerate and vecLib frameworks (OSX only)

More information can be found on the Scipy install page and in this blog post from Daniel Nouri which has some nice
step by step install instructions for Debian / Ubuntu.

Warning: Multithreaded BLAS libraries sometimes conflict with Python’s multiprocessing module, which
is used by e.g. GridSearchCV and most other estimators that take an n_jobs argument (with the exception of
SGDClassifier, SGDRegressor, Perceptron, PassiveAggressiveClassifier and tree-based
methods such as random forests). This is true of Apple’s Accelerate and OpenBLAS when built with OpenMP
support.
Besides scikit-learn, NumPy and SciPy also use BLAS internally, as explained earlier.
If you experience hanging subprocesses with n_jobs>1 or n_jobs=-1, make sure you have a single-threaded
BLAS library, or set n_jobs=1, or upgrade to Python 3.4 which has a new version of multiprocessing that
should be immune to this problem.

Model Compression

Model compression in scikit-learn only concerns linear models for the moment. In this context it means that we want
to control the model sparsity (i.e. the number of non-zero coordinates in the model vectors). It is generally a good
idea to combine model sparsity with sparse input data representation.

Here is sample code that illustrates the use of the sparsify() method:
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clf = SGDRegressor(penalty='elasticnet', l1_ratio=0.25)
clf.fit(X_train, y_train).sparsify()
clf.predict(X_test)

In this example we prefer the elasticnet penalty as it is often a good compromise between model compactness
and prediction power. One can also further tune the l1_ratio parameter (in combination with the regularization
strength alpha) to control this tradeoff.

A typical benchmark on synthetic data yields a >30% decrease in latency when both the model and input are sparse
(with 0.000024 and 0.027400 non-zero coefficients ratio respectively). Your mileage may vary depending on the
sparsity and size of your data and model. Furthermore, sparsifying can be very useful to reduce the memory usage of
predictive models deployed on production servers.

Model Reshaping

Model reshaping consists in selecting only a portion of the available features to fit a model. In other words, if a
model discards features during the learning phase we can then strip those from the input. This has several benefits.
Firstly it reduces memory (and therefore time) overhead of the model itself. It also allows to discard explicit feature
selection components in a pipeline once we know which features to keep from a previous run. Finally, it can help
reduce processing time and I/O usage upstream in the data access and feature extraction layers by not collecting and
building features that are discarded by the model. For instance if the raw data come from a database, it can make it
possible to write simpler and faster queries or reduce I/O usage by making the queries return lighter records. At the
moment, reshaping needs to be performed manually in scikit-learn. In the case of sparse input (particularly in CSR
format), it is generally sufficient to not generate the relevant features, leaving their columns empty.

Links

• scikit-learn developer performance documentation

• Scipy sparse matrix formats documentation
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CHAPTER

FOUR

EXAMPLES

4.1 General examples

General-purpose and introductory examples for the scikit.

4.1.1 Plotting Cross-Validated Predictions

This example shows how to use cross_val_predict to visualize prediction errors.

Python source code: plot_cv_predict.py
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from sklearn import datasets
from sklearn.cross_validation import cross_val_predict
from sklearn import linear_model
import matplotlib.pyplot as plt

lr = linear_model.LinearRegression()
boston = datasets.load_boston()
y = boston.target

# cross_val_predict returns an array of the same size as `y` where each entry
# is a prediction obtained by cross validated:
predicted = cross_val_predict(lr, boston.data, y, cv=10)

fig, ax = plt.subplots()
ax.scatter(y, predicted)
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
plt.show()

Total running time of the example: 0.78 seconds ( 0 minutes 0.78 seconds)

4.1.2 Concatenating multiple feature extraction methods

In many real-world examples, there are many ways to extract features from a dataset. Often it is beneficial to combine
several methods to obtain good performance. This example shows how to use FeatureUnion to combine features
obtained by PCA and univariate selection.

Combining features using this transformer has the benefit that it allows cross validation and grid searches over the
whole process.

The combination used in this example is not particularly helpful on this dataset and is only used to illustrate the usage
of FeatureUnion.

Python source code: feature_stacker.py

# Author: Andreas Mueller <amueller@ais.uni-bonn.de>
#
# License: BSD 3 clause

from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.grid_search import GridSearchCV
from sklearn.svm import SVC
from sklearn.datasets import load_iris
from sklearn.decomposition import PCA
from sklearn.feature_selection import SelectKBest

iris = load_iris()

X, y = iris.data, iris.target

# This dataset is way to high-dimensional. Better do PCA:
pca = PCA(n_components=2)

# Maybe some original features where good, too?
selection = SelectKBest(k=1)

# Build estimator from PCA and Univariate selection:
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combined_features = FeatureUnion([("pca", pca), ("univ_select", selection)])

# Use combined features to transform dataset:
X_features = combined_features.fit(X, y).transform(X)

svm = SVC(kernel="linear")

# Do grid search over k, n_components and C:

pipeline = Pipeline([("features", combined_features), ("svm", svm)])

param_grid = dict(features__pca__n_components=[1, 2, 3],
features__univ_select__k=[1, 2],
svm__C=[0.1, 1, 10])

grid_search = GridSearchCV(pipeline, param_grid=param_grid, verbose=10)
grid_search.fit(X, y)
print(grid_search.best_estimator_)

4.1.3 Isotonic Regression

An illustration of the isotonic regression on generated data. The isotonic regression finds a non-decreasing approx-
imation of a function while minimizing the mean squared error on the training data. The benefit of such a model is
that it does not assume any form for the target function such as linearity. For comparison a linear regression is also
presented.
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Python source code: plot_isotonic_regression.py

print(__doc__)

# Author: Nelle Varoquaux <nelle.varoquaux@gmail.com>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Licence: BSD

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection

from sklearn.linear_model import LinearRegression
from sklearn.isotonic import IsotonicRegression
from sklearn.utils import check_random_state

n = 100
x = np.arange(n)
rs = check_random_state(0)
y = rs.randint(-50, 50, size=(n,)) + 50. * np.log(1 + np.arange(n))

###############################################################################
# Fit IsotonicRegression and LinearRegression models

ir = IsotonicRegression()
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y_ = ir.fit_transform(x, y)

lr = LinearRegression()
lr.fit(x[:, np.newaxis], y) # x needs to be 2d for LinearRegression

###############################################################################
# plot result

segments = [[[i, y[i]], [i, y_[i]]] for i in range(n)]
lc = LineCollection(segments, zorder=0)
lc.set_array(np.ones(len(y)))
lc.set_linewidths(0.5 * np.ones(n))

fig = plt.figure()
plt.plot(x, y, 'r.', markersize=12)
plt.plot(x, y_, 'g.-', markersize=12)
plt.plot(x, lr.predict(x[:, np.newaxis]), 'b-')
plt.gca().add_collection(lc)
plt.legend(('Data', 'Isotonic Fit', 'Linear Fit'), loc='lower right')
plt.title('Isotonic regression')
plt.show()

Total running time of the example: 0.16 seconds ( 0 minutes 0.16 seconds)

4.1.4 Imputing missing values before building an estimator

This example shows that imputing the missing values can give better results than discarding the samples containing
any missing value. Imputing does not always improve the predictions, so please check via cross-validation. Sometimes
dropping rows or using marker values is more effective.

Missing values can be replaced by the mean, the median or the most frequent value using the strategy hyper-
parameter. The median is a more robust estimator for data with high magnitude variables which could dominate
results (otherwise known as a ‘long tail’).

Script output:

Score with the entire dataset = 0.56
Score without the samples containing missing values = 0.48
Score after imputation of the missing values = 0.55

In this case, imputing helps the classifier get close to the original score.

Python source code: missing_values.py

import numpy as np

from sklearn.datasets import load_boston
from sklearn.ensemble import RandomForestRegressor
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import Imputer
from sklearn.cross_validation import cross_val_score

rng = np.random.RandomState(0)

dataset = load_boston()
X_full, y_full = dataset.data, dataset.target
n_samples = X_full.shape[0]
n_features = X_full.shape[1]
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# Estimate the score on the entire dataset, with no missing values
estimator = RandomForestRegressor(random_state=0, n_estimators=100)
score = cross_val_score(estimator, X_full, y_full).mean()
print("Score with the entire dataset = %.2f" % score)

# Add missing values in 75% of the lines
missing_rate = 0.75
n_missing_samples = np.floor(n_samples * missing_rate)
missing_samples = np.hstack((np.zeros(n_samples - n_missing_samples,

dtype=np.bool),
np.ones(n_missing_samples,

dtype=np.bool)))
rng.shuffle(missing_samples)
missing_features = rng.randint(0, n_features, n_missing_samples)

# Estimate the score without the lines containing missing values
X_filtered = X_full[~missing_samples, :]
y_filtered = y_full[~missing_samples]
estimator = RandomForestRegressor(random_state=0, n_estimators=100)
score = cross_val_score(estimator, X_filtered, y_filtered).mean()
print("Score without the samples containing missing values = %.2f" % score)

# Estimate the score after imputation of the missing values
X_missing = X_full.copy()
X_missing[np.where(missing_samples)[0], missing_features] = 0
y_missing = y_full.copy()
estimator = Pipeline([("imputer", Imputer(missing_values=0,

strategy="mean",
axis=0)),

("forest", RandomForestRegressor(random_state=0,
n_estimators=100))])

score = cross_val_score(estimator, X_missing, y_missing).mean()
print("Score after imputation of the missing values = %.2f" % score)

4.1.5 Pipelining: chaining a PCA and a logistic regression

The PCA does an unsupervised dimensionality reduction, while the logistic regression does the prediction.

We use a GridSearchCV to set the dimensionality of the PCA

492 Chapter 4. Examples



scikit-learn user guide, Release 0.17

Python source code: plot_digits_pipe.py

print(__doc__)

# Code source: Gaël Varoquaux
# Modified for documentation by Jaques Grobler
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn import linear_model, decomposition, datasets
from sklearn.pipeline import Pipeline
from sklearn.grid_search import GridSearchCV

logistic = linear_model.LogisticRegression()

pca = decomposition.PCA()
pipe = Pipeline(steps=[('pca', pca), ('logistic', logistic)])

digits = datasets.load_digits()
X_digits = digits.data
y_digits = digits.target

###############################################################################
# Plot the PCA spectrum
pca.fit(X_digits)

plt.figure(1, figsize=(4, 3))
plt.clf()
plt.axes([.2, .2, .7, .7])
plt.plot(pca.explained_variance_, linewidth=2)
plt.axis('tight')
plt.xlabel('n_components')
plt.ylabel('explained_variance_')
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###############################################################################
# Prediction

n_components = [20, 40, 64]
Cs = np.logspace(-4, 4, 3)

#Parameters of pipelines can be set using ‘__’ separated parameter names:

estimator = GridSearchCV(pipe,
dict(pca__n_components=n_components,

logistic__C=Cs))
estimator.fit(X_digits, y_digits)

plt.axvline(estimator.best_estimator_.named_steps['pca'].n_components,
linestyle=':', label='n_components chosen')

plt.legend(prop=dict(size=12))
plt.show()

Total running time of the example: 11.68 seconds ( 0 minutes 11.68 seconds)

4.1.6 Multilabel classification

This example simulates a multi-label document classification problem. The dataset is generated randomly based on
the following process:

• pick the number of labels: n ~ Poisson(n_labels)

• n times, choose a class c: c ~ Multinomial(theta)

• pick the document length: k ~ Poisson(length)

• k times, choose a word: w ~ Multinomial(theta_c)

In the above process, rejection sampling is used to make sure that n is more than 2, and that the document length is
never zero. Likewise, we reject classes which have already been chosen. The documents that are assigned to both
classes are plotted surrounded by two colored circles.

The classification is performed by projecting to the first two principal components found by PCA and CCA for visual-
isation purposes, followed by using the sklearn.multiclass.OneVsRestClassifier metaclassifier using
two SVCs with linear kernels to learn a discriminative model for each class. Note that PCA is used to perform an
unsupervised dimensionality reduction, while CCA is used to perform a supervised one.

Note: in the plot, “unlabeled samples” does not mean that we don’t know the labels (as in semi-supervised learning)
but that the samples simply do not have a label.
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Python source code: plot_multilabel.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import make_multilabel_classification
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import SVC
from sklearn.preprocessing import LabelBinarizer
from sklearn.decomposition import PCA
from sklearn.cross_decomposition import CCA

def plot_hyperplane(clf, min_x, max_x, linestyle, label):
# get the separating hyperplane
w = clf.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(min_x - 5, max_x + 5) # make sure the line is long enough
yy = a * xx - (clf.intercept_[0]) / w[1]
plt.plot(xx, yy, linestyle, label=label)

def plot_subfigure(X, Y, subplot, title, transform):
if transform == "pca":

4.1. General examples 495



scikit-learn user guide, Release 0.17

X = PCA(n_components=2).fit_transform(X)
elif transform == "cca":

X = CCA(n_components=2).fit(X, Y).transform(X)
else:

raise ValueError

min_x = np.min(X[:, 0])
max_x = np.max(X[:, 0])

min_y = np.min(X[:, 1])
max_y = np.max(X[:, 1])

classif = OneVsRestClassifier(SVC(kernel='linear'))
classif.fit(X, Y)

plt.subplot(2, 2, subplot)
plt.title(title)

zero_class = np.where(Y[:, 0])
one_class = np.where(Y[:, 1])
plt.scatter(X[:, 0], X[:, 1], s=40, c='gray')
plt.scatter(X[zero_class, 0], X[zero_class, 1], s=160, edgecolors='b',

facecolors='none', linewidths=2, label='Class 1')
plt.scatter(X[one_class, 0], X[one_class, 1], s=80, edgecolors='orange',

facecolors='none', linewidths=2, label='Class 2')

plot_hyperplane(classif.estimators_[0], min_x, max_x, 'k--',
'Boundary\nfor class 1')

plot_hyperplane(classif.estimators_[1], min_x, max_x, 'k-.',
'Boundary\nfor class 2')

plt.xticks(())
plt.yticks(())

plt.xlim(min_x - .5 * max_x, max_x + .5 * max_x)
plt.ylim(min_y - .5 * max_y, max_y + .5 * max_y)
if subplot == 2:

plt.xlabel('First principal component')
plt.ylabel('Second principal component')
plt.legend(loc="upper left")

plt.figure(figsize=(8, 6))

X, Y = make_multilabel_classification(n_classes=2, n_labels=1,
allow_unlabeled=True,
random_state=1)

plot_subfigure(X, Y, 1, "With unlabeled samples + CCA", "cca")
plot_subfigure(X, Y, 2, "With unlabeled samples + PCA", "pca")

X, Y = make_multilabel_classification(n_classes=2, n_labels=1,
allow_unlabeled=False,
random_state=1)

plot_subfigure(X, Y, 3, "Without unlabeled samples + CCA", "cca")
plot_subfigure(X, Y, 4, "Without unlabeled samples + PCA", "pca")

plt.subplots_adjust(.04, .02, .97, .94, .09, .2)
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plt.show()

Total running time of the example: 0.48 seconds ( 0 minutes 0.48 seconds)

4.1.7 Face completion with a multi-output estimators

This example shows the use of multi-output estimator to complete images. The goal is to predict the lower half of a
face given its upper half.

The first column of images shows true faces. The next columns illustrate how extremely randomized trees, k nearest
neighbors, linear regression and ridge regression complete the lower half of those faces.
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Python source code: plot_multioutput_face_completion.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import fetch_olivetti_faces
from sklearn.utils.validation import check_random_state
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from sklearn.ensemble import ExtraTreesRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import RidgeCV

# Load the faces datasets
data = fetch_olivetti_faces()
targets = data.target

data = data.images.reshape((len(data.images), -1))
train = data[targets < 30]
test = data[targets >= 30] # Test on independent people

# Test on a subset of people
n_faces = 5
rng = check_random_state(4)
face_ids = rng.randint(test.shape[0], size=(n_faces, ))
test = test[face_ids, :]

n_pixels = data.shape[1]
X_train = train[:, :np.ceil(0.5 * n_pixels)] # Upper half of the faces
y_train = train[:, np.floor(0.5 * n_pixels):] # Lower half of the faces
X_test = test[:, :np.ceil(0.5 * n_pixels)]
y_test = test[:, np.floor(0.5 * n_pixels):]

# Fit estimators
ESTIMATORS = {

"Extra trees": ExtraTreesRegressor(n_estimators=10, max_features=32,
random_state=0),

"K-nn": KNeighborsRegressor(),
"Linear regression": LinearRegression(),
"Ridge": RidgeCV(),

}

y_test_predict = dict()
for name, estimator in ESTIMATORS.items():

estimator.fit(X_train, y_train)
y_test_predict[name] = estimator.predict(X_test)

# Plot the completed faces
image_shape = (64, 64)

n_cols = 1 + len(ESTIMATORS)
plt.figure(figsize=(2. * n_cols, 2.26 * n_faces))
plt.suptitle("Face completion with multi-output estimators", size=16)

for i in range(n_faces):
true_face = np.hstack((X_test[i], y_test[i]))

if i:
sub = plt.subplot(n_faces, n_cols, i * n_cols + 1)

else:
sub = plt.subplot(n_faces, n_cols, i * n_cols + 1,

title="true faces")

sub.axis("off")
sub.imshow(true_face.reshape(image_shape),
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cmap=plt.cm.gray,
interpolation="nearest")

for j, est in enumerate(sorted(ESTIMATORS)):
completed_face = np.hstack((X_test[i], y_test_predict[est][i]))

if i:
sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j)

else:
sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j,

title=est)

sub.axis("off")
sub.imshow(completed_face.reshape(image_shape),

cmap=plt.cm.gray,
interpolation="nearest")

plt.show()

Total running time of the example: 8.03 seconds ( 0 minutes 8.03 seconds)

4.1.8 The Johnson-Lindenstrauss bound for embedding with random projections

The Johnson-Lindenstrauss lemma states that any high dimensional dataset can be randomly projected into a lower
dimensional Euclidean space while controlling the distortion in the pairwise distances.

Theoretical bounds

The distortion introduced by a random projection p is asserted by the fact that p is defining an eps-embedding with
good probability as defined by:

(1− 𝑒𝑝𝑠)‖𝑢− 𝑣‖2 < ‖𝑝(𝑢)− 𝑝(𝑣)‖2 < (1 + 𝑒𝑝𝑠)‖𝑢− 𝑣‖2

Where u and v are any rows taken from a dataset of shape [n_samples, n_features] and p is a projection by a random
Gaussian N(0, 1) matrix with shape [n_components, n_features] (or a sparse Achlioptas matrix).

The minimum number of components to guarantees the eps-embedding is given by:

𝑛_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 >= 4𝑙𝑜𝑔(𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠)/(𝑒𝑝𝑠2/2− 𝑒𝑝𝑠3/3)

The first plot shows that with an increasing number of samples n_samples, the minimal number of dimensions
n_components increased logarithmically in order to guarantee an eps-embedding.

The second plot shows that an increase of the admissible distortion eps allows to reduce drastically the minimal
number of dimensions n_components for a given number of samples n_samples

Empirical validation

We validate the above bounds on the the digits dataset or on the 20 newsgroups text document (TF-IDF word frequen-
cies) dataset:

• for the digits dataset, some 8x8 gray level pixels data for 500 handwritten digits pictures are randomly projected
to spaces for various larger number of dimensions n_components.
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• for the 20 newsgroups dataset some 500 documents with 100k features in total are projected using a
sparse random matrix to smaller euclidean spaces with various values for the target number of dimensions
n_components.

The default dataset is the digits dataset. To run the example on the twenty newsgroups dataset, pass the –twenty-
newsgroups command line argument to this script.

For each value of n_components, we plot:

• 2D distribution of sample pairs with pairwise distances in original and projected spaces as x and y axis respec-
tively.

• 1D histogram of the ratio of those distances (projected / original).

We can see that for low values of n_components the distribution is wide with many distorted pairs and a skewed
distribution (due to the hard limit of zero ratio on the left as distances are always positives) while for larger values of
n_components the distortion is controlled and the distances are well preserved by the random projection.

Remarks

According to the JL lemma, projecting 500 samples without too much distortion will require at least several thousands
dimensions, irrespective of the number of features of the original dataset.

Hence using random projections on the digits dataset which only has 64 features in the input space does not make
sense: it does not allow for dimensionality reduction in this case.

On the twenty newsgroups on the other hand the dimensionality can be decreased from 56436 down to 10000 while
reasonably preserving pairwise distances.

•

•
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•

•

•

•
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•

•

Script output:

Embedding 500 samples with dim 64 using various random projections
Projected 500 samples from 64 to 300 in 0.013s
Random matrix with size: 0.029MB
Mean distances rate: 1.00 (0.08)
Projected 500 samples from 64 to 1000 in 0.024s
Random matrix with size: 0.096MB
Mean distances rate: 1.01 (0.05)
Projected 500 samples from 64 to 10000 in 0.260s
Random matrix with size: 0.962MB
Mean distances rate: 1.00 (0.01)

Python source code: plot_johnson_lindenstrauss_bound.py

print(__doc__)

import sys
from time import time
import numpy as np
import matplotlib.pyplot as plt
from sklearn.random_projection import johnson_lindenstrauss_min_dim
from sklearn.random_projection import SparseRandomProjection
from sklearn.datasets import fetch_20newsgroups_vectorized
from sklearn.datasets import load_digits
from sklearn.metrics.pairwise import euclidean_distances

# Part 1: plot the theoretical dependency between n_components_min and
# n_samples

4.1. General examples 503



scikit-learn user guide, Release 0.17

# range of admissible distortions
eps_range = np.linspace(0.1, 0.99, 5)
colors = plt.cm.Blues(np.linspace(0.3, 1.0, len(eps_range)))

# range of number of samples (observation) to embed
n_samples_range = np.logspace(1, 9, 9)

plt.figure()
for eps, color in zip(eps_range, colors):

min_n_components = johnson_lindenstrauss_min_dim(n_samples_range, eps=eps)
plt.loglog(n_samples_range, min_n_components, color=color)

plt.legend(["eps = %0.1f" % eps for eps in eps_range], loc="lower right")
plt.xlabel("Number of observations to eps-embed")
plt.ylabel("Minimum number of dimensions")
plt.title("Johnson-Lindenstrauss bounds:\nn_samples vs n_components")

# range of admissible distortions
eps_range = np.linspace(0.01, 0.99, 100)

# range of number of samples (observation) to embed
n_samples_range = np.logspace(2, 6, 5)
colors = plt.cm.Blues(np.linspace(0.3, 1.0, len(n_samples_range)))

plt.figure()
for n_samples, color in zip(n_samples_range, colors):

min_n_components = johnson_lindenstrauss_min_dim(n_samples, eps=eps_range)
plt.semilogy(eps_range, min_n_components, color=color)

plt.legend(["n_samples = %d" % n for n in n_samples_range], loc="upper right")
plt.xlabel("Distortion eps")
plt.ylabel("Minimum number of dimensions")
plt.title("Johnson-Lindenstrauss bounds:\nn_components vs eps")

# Part 2: perform sparse random projection of some digits images which are
# quite low dimensional and dense or documents of the 20 newsgroups dataset
# which is both high dimensional and sparse

if '--twenty-newsgroups' in sys.argv:
# Need an internet connection hence not enabled by default
data = fetch_20newsgroups_vectorized().data[:500]

else:
data = load_digits().data[:500]

n_samples, n_features = data.shape
print("Embedding %d samples with dim %d using various random projections"

% (n_samples, n_features))

n_components_range = np.array([300, 1000, 10000])
dists = euclidean_distances(data, squared=True).ravel()

# select only non-identical samples pairs
nonzero = dists != 0
dists = dists[nonzero]

for n_components in n_components_range:
t0 = time()
rp = SparseRandomProjection(n_components=n_components)
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projected_data = rp.fit_transform(data)
print("Projected %d samples from %d to %d in %0.3fs"

% (n_samples, n_features, n_components, time() - t0))
if hasattr(rp, 'components_'):

n_bytes = rp.components_.data.nbytes
n_bytes += rp.components_.indices.nbytes
print("Random matrix with size: %0.3fMB" % (n_bytes / 1e6))

projected_dists = euclidean_distances(
projected_data, squared=True).ravel()[nonzero]

plt.figure()
plt.hexbin(dists, projected_dists, gridsize=100, cmap=plt.cm.PuBu)
plt.xlabel("Pairwise squared distances in original space")
plt.ylabel("Pairwise squared distances in projected space")
plt.title("Pairwise distances distribution for n_components=%d" %

n_components)
cb = plt.colorbar()
cb.set_label('Sample pairs counts')

rates = projected_dists / dists
print("Mean distances rate: %0.2f (%0.2f)"

% (np.mean(rates), np.std(rates)))

plt.figure()
plt.hist(rates, bins=50, normed=True, range=(0., 2.))
plt.xlabel("Squared distances rate: projected / original")
plt.ylabel("Distribution of samples pairs")
plt.title("Histogram of pairwise distance rates for n_components=%d" %

n_components)

# TODO: compute the expected value of eps and add them to the previous plot
# as vertical lines / region

plt.show()

Total running time of the example: 4.65 seconds ( 0 minutes 4.65 seconds)

4.1.9 Comparison of kernel ridge regression and SVR

Both kernel ridge regression (KRR) and SVR learn a non-linear function by employing the kernel trick, i.e., they
learn a linear function in the space induced by the respective kernel which corresponds to a non-linear function in the
original space. They differ in the loss functions (ridge versus epsilon-insensitive loss). In contrast to SVR, fitting a
KRR can be done in closed-form and is typically faster for medium-sized datasets. On the other hand, the learned
model is non-sparse and thus slower than SVR at prediction-time.

This example illustrates both methods on an artificial dataset, which consists of a sinusoidal target function and strong
noise added to every fifth datapoint. The first figure compares the learned model of KRR and SVR when both com-
plexity/regularization and bandwidth of the RBF kernel are optimized using grid-search. The learned functions are
very similar; however, fitting KRR is approx. seven times faster than fitting SVR (both with grid-search). However,
prediction of 100000 target values is more than tree times faster with SVR since it has learned a sparse model using
only approx. 1/3 of the 100 training datapoints as support vectors.

The next figure compares the time for fitting and prediction of KRR and SVR for different sizes of the training set.
Fitting KRR is faster than SVR for medium- sized training sets (less than 1000 samples); however, for larger training
sets SVR scales better. With regard to prediction time, SVR is faster than KRR for all sizes of the training set because
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of the learned sparse solution. Note that the degree of sparsity and thus the prediction time depends on the parameters
epsilon and C of the SVR.

•

•

•

Script output:

SVR complexity and bandwidth selected and model fitted in 0.670 s
KRR complexity and bandwidth selected and model fitted in 0.173 s
Support vector ratio: 0.320
SVR prediction for 100000 inputs in 0.107 s
KRR prediction for 100000 inputs in 0.432 s

Python source code: plot_kernel_ridge_regression.py
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# Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
# License: BSD 3 clause

from __future__ import division
import time

import numpy as np

from sklearn.svm import SVR
from sklearn.grid_search import GridSearchCV
from sklearn.learning_curve import learning_curve
from sklearn.kernel_ridge import KernelRidge
import matplotlib.pyplot as plt

rng = np.random.RandomState(0)

#############################################################################
# Generate sample data
X = 5 * rng.rand(10000, 1)
y = np.sin(X).ravel()

# Add noise to targets
y[::5] += 3 * (0.5 - rng.rand(X.shape[0]/5))

X_plot = np.linspace(0, 5, 100000)[:, None]

#############################################################################
# Fit regression model
train_size = 100
svr = GridSearchCV(SVR(kernel='rbf', gamma=0.1), cv=5,

param_grid={"C": [1e0, 1e1, 1e2, 1e3],
"gamma": np.logspace(-2, 2, 5)})

kr = GridSearchCV(KernelRidge(kernel='rbf', gamma=0.1), cv=5,
param_grid={"alpha": [1e0, 0.1, 1e-2, 1e-3],

"gamma": np.logspace(-2, 2, 5)})

t0 = time.time()
svr.fit(X[:train_size], y[:train_size])
svr_fit = time.time() - t0
print("SVR complexity and bandwidth selected and model fitted in %.3f s"

% svr_fit)

t0 = time.time()
kr.fit(X[:train_size], y[:train_size])
kr_fit = time.time() - t0
print("KRR complexity and bandwidth selected and model fitted in %.3f s"

% kr_fit)

sv_ratio = svr.best_estimator_.support_.shape[0] / train_size
print("Support vector ratio: %.3f" % sv_ratio)

t0 = time.time()
y_svr = svr.predict(X_plot)
svr_predict = time.time() - t0
print("SVR prediction for %d inputs in %.3f s"

% (X_plot.shape[0], svr_predict))
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t0 = time.time()
y_kr = kr.predict(X_plot)
kr_predict = time.time() - t0
print("KRR prediction for %d inputs in %.3f s"

% (X_plot.shape[0], kr_predict))

#############################################################################
# look at the results
sv_ind = svr.best_estimator_.support_
plt.scatter(X[sv_ind], y[sv_ind], c='r', s=50, label='SVR support vectors')
plt.scatter(X[:100], y[:100], c='k', label='data')
plt.hold('on')
plt.plot(X_plot, y_svr, c='r',

label='SVR (fit: %.3fs, predict: %.3fs)' % (svr_fit, svr_predict))
plt.plot(X_plot, y_kr, c='g',

label='KRR (fit: %.3fs, predict: %.3fs)' % (kr_fit, kr_predict))
plt.xlabel('data')
plt.ylabel('target')
plt.title('SVR versus Kernel Ridge')
plt.legend()

# Visualize training and prediction time
plt.figure()

# Generate sample data
X = 5 * rng.rand(10000, 1)
y = np.sin(X).ravel()
y[::5] += 3 * (0.5 - rng.rand(X.shape[0]/5))
sizes = np.logspace(1, 4, 7)
for name, estimator in {"KRR": KernelRidge(kernel='rbf', alpha=0.1,

gamma=10),
"SVR": SVR(kernel='rbf', C=1e1, gamma=10)}.items():

train_time = []
test_time = []
for train_test_size in sizes:

t0 = time.time()
estimator.fit(X[:train_test_size], y[:train_test_size])
train_time.append(time.time() - t0)

t0 = time.time()
estimator.predict(X_plot[:1000])
test_time.append(time.time() - t0)

plt.plot(sizes, train_time, 'o-', color="r" if name == "SVR" else "g",
label="%s (train)" % name)

plt.plot(sizes, test_time, 'o--', color="r" if name == "SVR" else "g",
label="%s (test)" % name)

plt.xscale("log")
plt.yscale("log")
plt.xlabel("Train size")
plt.ylabel("Time (seconds)")
plt.title('Execution Time')
plt.legend(loc="best")

# Visualize learning curves
plt.figure()
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svr = SVR(kernel='rbf', C=1e1, gamma=0.1)
kr = KernelRidge(kernel='rbf', alpha=0.1, gamma=0.1)
train_sizes, train_scores_svr, test_scores_svr = \

learning_curve(svr, X[:100], y[:100], train_sizes=np.linspace(0.1, 1, 10),
scoring="mean_squared_error", cv=10)

train_sizes_abs, train_scores_kr, test_scores_kr = \
learning_curve(kr, X[:100], y[:100], train_sizes=np.linspace(0.1, 1, 10),

scoring="mean_squared_error", cv=10)

plt.plot(train_sizes, test_scores_svr.mean(1), 'o-', color="r",
label="SVR")

plt.plot(train_sizes, test_scores_kr.mean(1), 'o-', color="g",
label="KRR")

plt.xlabel("Train size")
plt.ylabel("Mean Squared Error")
plt.title('Learning curves')
plt.legend(loc="best")

plt.show()

Total running time of the example: 79.66 seconds ( 1 minutes 19.66 seconds)

4.1.10 Feature Union with Heterogeneous Data Sources

Datasets can often contain components of that require different feature extraction and processing pipelines. This
scenario might occur when:

1. Your dataset consists of heterogeneous data types (e.g. raster images and text captions)

2. Your dataset is stored in a Pandas DataFrame and different columns require different processing pipelines.

This example demonstrates how to use sklearn.feature_extraction.FeatureUnion on a dataset con-
taining different types of features. We use the 20-newsgroups dataset and compute standard bag-of-words features for
the subject line and body in separate pipelines as well as ad hoc features on the body. We combine them (with weights)
using a FeatureUnion and finally train a classifier on the combined set of features.

The choice of features is not particularly helpful, but serves to illustrate the technique.

Python source code: hetero_feature_union.py

# Author: Matt Terry <matt.terry@gmail.com>
#
# License: BSD 3 clause
from __future__ import print_function

import numpy as np

from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.datasets import fetch_20newsgroups
from sklearn.datasets.twenty_newsgroups import strip_newsgroup_footer
from sklearn.datasets.twenty_newsgroups import strip_newsgroup_quoting
from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction import DictVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import classification_report
from sklearn.pipeline import FeatureUnion
from sklearn.pipeline import Pipeline
from sklearn.svm import SVC
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class ItemSelector(BaseEstimator, TransformerMixin):
"""For data grouped by feature, select subset of data at a provided key.

The data is expected to be stored in a 2D data structure, where the first
index is over features and the second is over samples. i.e.

>> len(data[key]) == n_samples

Please note that this is the opposite convention to sklearn feature
matrixes (where the first index corresponds to sample).

ItemSelector only requires that the collection implement getitem
(data[key]). Examples include: a dict of lists, 2D numpy array, Pandas
DataFrame, numpy record array, etc.

>> data = {'a': [1, 5, 2, 5, 2, 8],
'b': [9, 4, 1, 4, 1, 3]}

>> ds = ItemSelector(key='a')
>> data['a'] == ds.transform(data)

ItemSelector is not designed to handle data grouped by sample. (e.g. a
list of dicts). If your data is structured this way, consider a
transformer along the lines of `sklearn.feature_extraction.DictVectorizer`.

Parameters
----------
key : hashable, required

The key corresponding to the desired value in a mappable.
"""
def __init__(self, key):

self.key = key

def fit(self, x, y=None):
return self

def transform(self, data_dict):
return data_dict[self.key]

class TextStats(BaseEstimator, TransformerMixin):
"""Extract features from each document for DictVectorizer"""

def fit(self, x, y=None):
return self

def transform(self, posts):
return [{'length': len(text),

'num_sentences': text.count('.')}
for text in posts]

class SubjectBodyExtractor(BaseEstimator, TransformerMixin):
"""Extract the subject & body from a usenet post in a single pass.

Takes a sequence of strings and produces a dict of sequences. Keys are
`subject` and `body`.
"""
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def fit(self, x, y=None):
return self

def transform(self, posts):
features = np.recarray(shape=(len(posts),),

dtype=[('subject', object), ('body', object)])
for i, text in enumerate(posts):

headers, _, bod = text.partition('\n\n')
bod = strip_newsgroup_footer(bod)
bod = strip_newsgroup_quoting(bod)
features['body'][i] = bod

prefix = 'Subject:'
sub = ''
for line in headers.split('\n'):

if line.startswith(prefix):
sub = line[len(prefix):]
break

features['subject'][i] = sub

return features

pipeline = Pipeline([
# Extract the subject & body
('subjectbody', SubjectBodyExtractor()),

# Use FeatureUnion to combine the features from subject and body
('union', FeatureUnion(

transformer_list=[

# Pipeline for pulling features from the post's subject line
('subject', Pipeline([

('selector', ItemSelector(key='subject')),
('tfidf', TfidfVectorizer(min_df=50)),

])),

# Pipeline for standard bag-of-words model for body
('body_bow', Pipeline([

('selector', ItemSelector(key='body')),
('tfidf', TfidfVectorizer()),
('best', TruncatedSVD(n_components=50)),

])),

# Pipeline for pulling ad hoc features from post's body
('body_stats', Pipeline([

('selector', ItemSelector(key='body')),
('stats', TextStats()), # returns a list of dicts
('vect', DictVectorizer()), # list of dicts -> feature matrix

])),

],

# weight components in FeatureUnion
transformer_weights={

'subject': 0.8,
'body_bow': 0.5,
'body_stats': 1.0,
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},
)),

# Use a SVC classifier on the combined features
('svc', SVC(kernel='linear')),

])

# limit the list of categories to make running this exmaple faster.
categories = ['alt.atheism', 'talk.religion.misc']
train = fetch_20newsgroups(random_state=1,

subset='train',
categories=categories,
)

test = fetch_20newsgroups(random_state=1,
subset='test',
categories=categories,
)

pipeline.fit(train.data, train.target)
y = pipeline.predict(test.data)
print(classification_report(y, test.target))

4.1.11 Explicit feature map approximation for RBF kernels

An example illustrating the approximation of the feature map of an RBF kernel.

It shows how to use RBFSampler and Nystroem to approximate the feature map of an RBF kernel for classification
with an SVM on the digits dataset. Results using a linear SVM in the original space, a linear SVM using the approx-
imate mappings and using a kernelized SVM are compared. Timings and accuracy for varying amounts of Monte
Carlo samplings (in the case of RBFSampler, which uses random Fourier features) and different sized subsets of the
training set (for Nystroem) for the approximate mapping are shown.

Please note that the dataset here is not large enough to show the benefits of kernel approximation, as the exact SVM is
still reasonably fast.

Sampling more dimensions clearly leads to better classification results, but comes at a greater cost. This means there
is a tradeoff between runtime and accuracy, given by the parameter n_components. Note that solving the Linear
SVM and also the approximate kernel SVM could be greatly accelerated by using stochastic gradient descent via
sklearn.linear_model.SGDClassifier. This is not easily possible for the case of the kernelized SVM.

The second plot visualized the decision surfaces of the RBF kernel SVM and the linear SVM with approximate kernel
maps. The plot shows decision surfaces of the classifiers projected onto the first two principal components of the data.
This visualization should be taken with a grain of salt since it is just an interesting slice through the decision surface
in 64 dimensions. In particular note that a datapoint (represented as a dot) does not necessarily be classified into the
region it is lying in, since it will not lie on the plane that the first two principal components span.

The usage of RBFSampler and Nystroem is described in detail in Kernel Approximation.

512 Chapter 4. Examples



scikit-learn user guide, Release 0.17

•

•

Python source code: plot_kernel_approximation.py

print(__doc__)

# Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
# Andreas Mueller <amueller@ais.uni-bonn.de>
# License: BSD 3 clause

# Standard scientific Python imports
import matplotlib.pyplot as plt
import numpy as np
from time import time

# Import datasets, classifiers and performance metrics
from sklearn import datasets, svm, pipeline
from sklearn.kernel_approximation import (RBFSampler,

Nystroem)
from sklearn.decomposition import PCA

# The digits dataset
digits = datasets.load_digits(n_class=9)

# To apply an classifier on this data, we need to flatten the image, to
# turn the data in a (samples, feature) matrix:
n_samples = len(digits.data)
data = digits.data / 16.
data -= data.mean(axis=0)

# We learn the digits on the first half of the digits
data_train, targets_train = data[:n_samples / 2], digits.target[:n_samples / 2]
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# Now predict the value of the digit on the second half:
data_test, targets_test = data[n_samples / 2:], digits.target[n_samples / 2:]
#data_test = scaler.transform(data_test)

# Create a classifier: a support vector classifier
kernel_svm = svm.SVC(gamma=.2)
linear_svm = svm.LinearSVC()

# create pipeline from kernel approximation
# and linear svm
feature_map_fourier = RBFSampler(gamma=.2, random_state=1)
feature_map_nystroem = Nystroem(gamma=.2, random_state=1)
fourier_approx_svm = pipeline.Pipeline([("feature_map", feature_map_fourier),

("svm", svm.LinearSVC())])

nystroem_approx_svm = pipeline.Pipeline([("feature_map", feature_map_nystroem),
("svm", svm.LinearSVC())])

# fit and predict using linear and kernel svm:

kernel_svm_time = time()
kernel_svm.fit(data_train, targets_train)
kernel_svm_score = kernel_svm.score(data_test, targets_test)
kernel_svm_time = time() - kernel_svm_time

linear_svm_time = time()
linear_svm.fit(data_train, targets_train)
linear_svm_score = linear_svm.score(data_test, targets_test)
linear_svm_time = time() - linear_svm_time

sample_sizes = 30 * np.arange(1, 10)
fourier_scores = []
nystroem_scores = []
fourier_times = []
nystroem_times = []

for D in sample_sizes:
fourier_approx_svm.set_params(feature_map__n_components=D)
nystroem_approx_svm.set_params(feature_map__n_components=D)
start = time()
nystroem_approx_svm.fit(data_train, targets_train)
nystroem_times.append(time() - start)

start = time()
fourier_approx_svm.fit(data_train, targets_train)
fourier_times.append(time() - start)

fourier_score = fourier_approx_svm.score(data_test, targets_test)
nystroem_score = nystroem_approx_svm.score(data_test, targets_test)
nystroem_scores.append(nystroem_score)
fourier_scores.append(fourier_score)

# plot the results:
plt.figure(figsize=(8, 8))
accuracy = plt.subplot(211)
# second y axis for timeings
timescale = plt.subplot(212)
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accuracy.plot(sample_sizes, nystroem_scores, label="Nystroem approx. kernel")
timescale.plot(sample_sizes, nystroem_times, '--',

label='Nystroem approx. kernel')

accuracy.plot(sample_sizes, fourier_scores, label="Fourier approx. kernel")
timescale.plot(sample_sizes, fourier_times, '--',

label='Fourier approx. kernel')

# horizontal lines for exact rbf and linear kernels:
accuracy.plot([sample_sizes[0], sample_sizes[-1]],

[linear_svm_score, linear_svm_score], label="linear svm")
timescale.plot([sample_sizes[0], sample_sizes[-1]],

[linear_svm_time, linear_svm_time], '--', label='linear svm')

accuracy.plot([sample_sizes[0], sample_sizes[-1]],
[kernel_svm_score, kernel_svm_score], label="rbf svm")

timescale.plot([sample_sizes[0], sample_sizes[-1]],
[kernel_svm_time, kernel_svm_time], '--', label='rbf svm')

# vertical line for dataset dimensionality = 64
accuracy.plot([64, 64], [0.7, 1], label="n_features")

# legends and labels
accuracy.set_title("Classification accuracy")
timescale.set_title("Training times")
accuracy.set_xlim(sample_sizes[0], sample_sizes[-1])
accuracy.set_xticks(())
accuracy.set_ylim(np.min(fourier_scores), 1)
timescale.set_xlabel("Sampling steps = transformed feature dimension")
accuracy.set_ylabel("Classification accuracy")
timescale.set_ylabel("Training time in seconds")
accuracy.legend(loc='best')
timescale.legend(loc='best')

# visualize the decision surface, projected down to the first
# two principal components of the dataset
pca = PCA(n_components=8).fit(data_train)

X = pca.transform(data_train)

# Gemerate grid along first two principal components
multiples = np.arange(-2, 2, 0.1)
# steps along first component
first = multiples[:, np.newaxis] * pca.components_[0, :]
# steps along second component
second = multiples[:, np.newaxis] * pca.components_[1, :]
# combine
grid = first[np.newaxis, :, :] + second[:, np.newaxis, :]
flat_grid = grid.reshape(-1, data.shape[1])

# title for the plots
titles = ['SVC with rbf kernel',

'SVC (linear kernel)\n with Fourier rbf feature map\n'
'n_components=100',
'SVC (linear kernel)\n with Nystroem rbf feature map\n'
'n_components=100']

plt.tight_layout()
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plt.figure(figsize=(12, 5))

# predict and plot
for i, clf in enumerate((kernel_svm, nystroem_approx_svm,

fourier_approx_svm)):
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
plt.subplot(1, 3, i + 1)
Z = clf.predict(flat_grid)

# Put the result into a color plot
Z = Z.reshape(grid.shape[:-1])
plt.contourf(multiples, multiples, Z, cmap=plt.cm.Paired)
plt.axis('off')

# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=targets_train, cmap=plt.cm.Paired)

plt.title(titles[i])
plt.tight_layout()
plt.show()

Total running time of the example: 4.54 seconds ( 0 minutes 4.54 seconds)

4.2 Examples based on real world datasets

Applications to real world problems with some medium sized datasets or interactive user interface.

4.2.1 Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet
Allocation

This is an example of applying Non-negative Matrix Factorization and Latent Dirichlet Allocation on a corpus of doc-
uments and extract additive models of the topic structure of the corpus. The output is a list of topics, each represented
as a list of terms (weights are not shown).

The default parameters (n_samples / n_features / n_topics) should make the example runnable in a couple of tens of
seconds. You can try to increase the dimensions of the problem, but be aware that the time complexity is polynomial
in NMF. In LDA, the time complexity is proportional to (n_samples * iterations).

Python source code: topics_extraction_with_nmf_lda.py

# Author: Olivier Grisel <olivier.grisel@ensta.org>
# Lars Buitinck <L.J.Buitinck@uva.nl>
# Chyi-Kwei Yau <chyikwei.yau@gmail.com>
# License: BSD 3 clause

from __future__ import print_function
from time import time

from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.decomposition import NMF, LatentDirichletAllocation
from sklearn.datasets import fetch_20newsgroups

n_samples = 2000
n_features = 1000
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n_topics = 10
n_top_words = 20

def print_top_words(model, feature_names, n_top_words):
for topic_idx, topic in enumerate(model.components_):

print("Topic #%d:" % topic_idx)
print(" ".join([feature_names[i]

for i in topic.argsort()[:-n_top_words - 1:-1]]))
print()

# Load the 20 newsgroups dataset and vectorize it. We use a few heuristics
# to filter out useless terms early on: the posts are stripped of headers,
# footers and quoted replies, and common English words, words occurring in
# only one document or in at least 95% of the documents are removed.

print("Loading dataset...")
t0 = time()
dataset = fetch_20newsgroups(shuffle=True, random_state=1,

remove=('headers', 'footers', 'quotes'))
data_samples = dataset.data
print("done in %0.3fs." % (time() - t0))

# Use tf-idf features for NMF.
print("Extracting tf-idf features for NMF...")
tfidf_vectorizer = TfidfVectorizer(max_df=0.95, min_df=2, #max_features=n_features,

stop_words='english')
t0 = time()
tfidf = tfidf_vectorizer.fit_transform(data_samples)
print("done in %0.3fs." % (time() - t0))

# Use tf (raw term count) features for LDA.
print("Extracting tf features for LDA...")
tf_vectorizer = CountVectorizer(max_df=0.95, min_df=2, max_features=n_features,

stop_words='english')
t0 = time()
tf = tf_vectorizer.fit_transform(data_samples)
print("done in %0.3fs." % (time() - t0))

# Fit the NMF model
print("Fitting the NMF model with tf-idf features,"

"n_samples=%d and n_features=%d..."
% (n_samples, n_features))

t0 = time()
nmf = NMF(n_components=n_topics, random_state=1, alpha=.1, l1_ratio=.5).fit(tfidf)
exit()
print("done in %0.3fs." % (time() - t0))

print("\nTopics in NMF model:")
tfidf_feature_names = tfidf_vectorizer.get_feature_names()
print_top_words(nmf, tfidf_feature_names, n_top_words)

print("Fitting LDA models with tf features, n_samples=%d and n_features=%d..."
% (n_samples, n_features))

lda = LatentDirichletAllocation(n_topics=n_topics, max_iter=5,
learning_method='online', learning_offset=50.,
random_state=0)
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t0 = time()
lda.fit(tf)
print("done in %0.3fs." % (time() - t0))

print("\nTopics in LDA model:")
tf_feature_names = tf_vectorizer.get_feature_names()
print_top_words(lda, tf_feature_names, n_top_words)

4.2.2 Outlier detection on a real data set

This example illustrates the need for robust covariance estimation on a real data set. It is useful both for outlier
detection and for a better understanding of the data structure.

We selected two sets of two variables from the Boston housing data set as an illustration of what kind of analysis can
be done with several outlier detection tools. For the purpose of visualization, we are working with two-dimensional
examples, but one should be aware that things are not so trivial in high-dimension, as it will be pointed out.

In both examples below, the main result is that the empirical covariance estimate, as a non-robust one, is highly
influenced by the heterogeneous structure of the observations. Although the robust covariance estimate is able to
focus on the main mode of the data distribution, it sticks to the assumption that the data should be Gaussian distributed,
yielding some biased estimation of the data structure, but yet accurate to some extent. The One-Class SVM algorithm

First example

The first example illustrates how robust covariance estimation can help concentrating on a relevant cluster when an-
other one exists. Here, many observations are confounded into one and break down the empirical covariance estima-
tion. Of course, some screening tools would have pointed out the presence of two clusters (Support Vector Machines,
Gaussian Mixture Models, univariate outlier detection, ...). But had it been a high-dimensional example, none of these
could be applied that easily.

Second example

The second example shows the ability of the Minimum Covariance Determinant robust estimator of covariance to
concentrate on the main mode of the data distribution: the location seems to be well estimated, although the covariance
is hard to estimate due to the banana-shaped distribution. Anyway, we can get rid of some outlying observations. The
One-Class SVM is able to capture the real data structure, but the difficulty is to adjust its kernel bandwidth parameter
so as to obtain a good compromise between the shape of the data scatter matrix and the risk of over-fitting the data.

•
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Python source code: plot_outlier_detection_housing.py

print(__doc__)

# Author: Virgile Fritsch <virgile.fritsch@inria.fr>
# License: BSD 3 clause

import numpy as np
from sklearn.covariance import EllipticEnvelope
from sklearn.svm import OneClassSVM
import matplotlib.pyplot as plt
import matplotlib.font_manager
from sklearn.datasets import load_boston

# Get data
X1 = load_boston()['data'][:, [8, 10]] # two clusters
X2 = load_boston()['data'][:, [5, 12]] # "banana"-shaped

# Define "classifiers" to be used
classifiers = {

"Empirical Covariance": EllipticEnvelope(support_fraction=1.,
contamination=0.261),

"Robust Covariance (Minimum Covariance Determinant)":
EllipticEnvelope(contamination=0.261),
"OCSVM": OneClassSVM(nu=0.261, gamma=0.05)}

colors = ['m', 'g', 'b']
legend1 = {}
legend2 = {}

# Learn a frontier for outlier detection with several classifiers
xx1, yy1 = np.meshgrid(np.linspace(-8, 28, 500), np.linspace(3, 40, 500))
xx2, yy2 = np.meshgrid(np.linspace(3, 10, 500), np.linspace(-5, 45, 500))
for i, (clf_name, clf) in enumerate(classifiers.items()):

plt.figure(1)
clf.fit(X1)
Z1 = clf.decision_function(np.c_[xx1.ravel(), yy1.ravel()])
Z1 = Z1.reshape(xx1.shape)
legend1[clf_name] = plt.contour(

xx1, yy1, Z1, levels=[0], linewidths=2, colors=colors[i])
plt.figure(2)
clf.fit(X2)
Z2 = clf.decision_function(np.c_[xx2.ravel(), yy2.ravel()])
Z2 = Z2.reshape(xx2.shape)
legend2[clf_name] = plt.contour(
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xx2, yy2, Z2, levels=[0], linewidths=2, colors=colors[i])

legend1_values_list = list( legend1.values() )
legend1_keys_list = list( legend1.keys() )

# Plot the results (= shape of the data points cloud)
plt.figure(1) # two clusters
plt.title("Outlier detection on a real data set (boston housing)")
plt.scatter(X1[:, 0], X1[:, 1], color='black')
bbox_args = dict(boxstyle="round", fc="0.8")
arrow_args = dict(arrowstyle="->")
plt.annotate("several confounded points", xy=(24, 19),

xycoords="data", textcoords="data",
xytext=(13, 10), bbox=bbox_args, arrowprops=arrow_args)

plt.xlim((xx1.min(), xx1.max()))
plt.ylim((yy1.min(), yy1.max()))
plt.legend((legend1_values_list[0].collections[0],

legend1_values_list[1].collections[0],
legend1_values_list[2].collections[0]),

(legend1_keys_list[0], legend1_keys_list[1], legend1_keys_list[2]),
loc="upper center",
prop=matplotlib.font_manager.FontProperties(size=12))

plt.ylabel("accessibility to radial highways")
plt.xlabel("pupil-teacher ratio by town")

legend2_values_list = list( legend2.values() )
legend2_keys_list = list( legend2.keys() )

plt.figure(2) # "banana" shape
plt.title("Outlier detection on a real data set (boston housing)")
plt.scatter(X2[:, 0], X2[:, 1], color='black')
plt.xlim((xx2.min(), xx2.max()))
plt.ylim((yy2.min(), yy2.max()))
plt.legend((legend2_values_list[0].collections[0],

legend2_values_list[1].collections[0],
legend2_values_list[2].collections[0]),

(legend2_values_list[0], legend2_values_list[1], legend2_values_list[2]),
loc="upper center",
prop=matplotlib.font_manager.FontProperties(size=12))

plt.ylabel("% lower status of the population")
plt.xlabel("average number of rooms per dwelling")

plt.show()

Total running time of the example: 6.27 seconds ( 0 minutes 6.27 seconds)

4.2.3 Compressive sensing: tomography reconstruction with L1 prior (Lasso)

This example shows the reconstruction of an image from a set of parallel projections, acquired along different angles.
Such a dataset is acquired in computed tomography (CT).

Without any prior information on the sample, the number of projections required to reconstruct the image is of the
order of the linear size l of the image (in pixels). For simplicity we consider here a sparse image, where only pixels
on the boundary of objects have a non-zero value. Such data could correspond for example to a cellular material.
Note however that most images are sparse in a different basis, such as the Haar wavelets. Only l/7 projections are
acquired, therefore it is necessary to use prior information available on the sample (its sparsity): this is an example of
compressive sensing.
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The tomography projection operation is a linear transformation. In addition to the data-fidelity term corresponding
to a linear regression, we penalize the L1 norm of the image to account for its sparsity. The resulting optimization
problem is called the Lasso. We use the class sklearn.linear_model.Lasso, that uses the coordinate descent
algorithm. Importantly, this implementation is more computationally efficient on a sparse matrix, than the projection
operator used here.

The reconstruction with L1 penalization gives a result with zero error (all pixels are successfully labeled with 0 or 1),
even if noise was added to the projections. In comparison, an L2 penalization (sklearn.linear_model.Ridge)
produces a large number of labeling errors for the pixels. Important artifacts are observed on the reconstructed image,
contrary to the L1 penalization. Note in particular the circular artifact separating the pixels in the corners, that have
contributed to fewer projections than the central disk.

Python source code: plot_tomography_l1_reconstruction.py

print(__doc__)

# Author: Emmanuelle Gouillart <emmanuelle.gouillart@nsup.org>
# License: BSD 3 clause

import numpy as np
from scipy import sparse
from scipy import ndimage
from sklearn.linear_model import Lasso
from sklearn.linear_model import Ridge
import matplotlib.pyplot as plt

def _weights(x, dx=1, orig=0):
x = np.ravel(x)
floor_x = np.floor((x - orig) / dx)
alpha = (x - orig - floor_x * dx) / dx
return np.hstack((floor_x, floor_x + 1)), np.hstack((1 - alpha, alpha))

def _generate_center_coordinates(l_x):
X, Y = np.mgrid[:l_x, :l_x].astype(np.float64)
center = l_x / 2.
X += 0.5 - center
Y += 0.5 - center
return X, Y
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def build_projection_operator(l_x, n_dir):
""" Compute the tomography design matrix.

Parameters
----------

l_x : int
linear size of image array

n_dir : int
number of angles at which projections are acquired.

Returns
-------
p : sparse matrix of shape (n_dir l_x, l_x**2)
"""
X, Y = _generate_center_coordinates(l_x)
angles = np.linspace(0, np.pi, n_dir, endpoint=False)
data_inds, weights, camera_inds = [], [], []
data_unravel_indices = np.arange(l_x ** 2)
data_unravel_indices = np.hstack((data_unravel_indices,

data_unravel_indices))
for i, angle in enumerate(angles):

Xrot = np.cos(angle) * X - np.sin(angle) * Y
inds, w = _weights(Xrot, dx=1, orig=X.min())
mask = np.logical_and(inds >= 0, inds < l_x)
weights += list(w[mask])
camera_inds += list(inds[mask] + i * l_x)
data_inds += list(data_unravel_indices[mask])

proj_operator = sparse.coo_matrix((weights, (camera_inds, data_inds)))
return proj_operator

def generate_synthetic_data():
""" Synthetic binary data """
rs = np.random.RandomState(0)
n_pts = 36.
x, y = np.ogrid[0:l, 0:l]
mask_outer = (x - l / 2) ** 2 + (y - l / 2) ** 2 < (l / 2) ** 2
mask = np.zeros((l, l))
points = l * rs.rand(2, n_pts)
mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1
mask = ndimage.gaussian_filter(mask, sigma=l / n_pts)
res = np.logical_and(mask > mask.mean(), mask_outer)
return res - ndimage.binary_erosion(res)

# Generate synthetic images, and projections
l = 128
proj_operator = build_projection_operator(l, l / 7.)
data = generate_synthetic_data()
proj = proj_operator * data.ravel()[:, np.newaxis]
proj += 0.15 * np.random.randn(*proj.shape)

# Reconstruction with L2 (Ridge) penalization
rgr_ridge = Ridge(alpha=0.2)
rgr_ridge.fit(proj_operator, proj.ravel())
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rec_l2 = rgr_ridge.coef_.reshape(l, l)

# Reconstruction with L1 (Lasso) penalization
# the best value of alpha was determined using cross validation
# with LassoCV
rgr_lasso = Lasso(alpha=0.001)
rgr_lasso.fit(proj_operator, proj.ravel())
rec_l1 = rgr_lasso.coef_.reshape(l, l)

plt.figure(figsize=(8, 3.3))
plt.subplot(131)
plt.imshow(data, cmap=plt.cm.gray, interpolation='nearest')
plt.axis('off')
plt.title('original image')
plt.subplot(132)
plt.imshow(rec_l2, cmap=plt.cm.gray, interpolation='nearest')
plt.title('L2 penalization')
plt.axis('off')
plt.subplot(133)
plt.imshow(rec_l1, cmap=plt.cm.gray, interpolation='nearest')
plt.title('L1 penalization')
plt.axis('off')

plt.subplots_adjust(hspace=0.01, wspace=0.01, top=1, bottom=0, left=0,
right=1)

plt.show()

Total running time of the example: 11.29 seconds ( 0 minutes 11.29 seconds)

4.2.4 Faces recognition example using eigenfaces and SVMs

The dataset used in this example is a preprocessed excerpt of the “Labeled Faces in the Wild”, aka LFW:

http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB)

Expected results for the top 5 most represented people in the dataset:

Ariel Sharon 0.67 0.92 0.77 13
Colin Powell 0.75 0.78 0.76 60
Donald Rumsfeld 0.78 0.67 0.72 27
George W Bush 0.86 0.86 0.86 146
Gerhard Schroeder 0.76 0.76 0.76 25
Hugo Chavez 0.67 0.67 0.67 15
Tony Blair 0.81 0.69 0.75 36
avg / total 0.80 0.80 0.80 322

Python source code: face_recognition.py

from __future__ import print_function

from time import time
import logging
import matplotlib.pyplot as plt

from sklearn.cross_validation import train_test_split
from sklearn.datasets import fetch_lfw_people
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from sklearn.grid_search import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.decomposition import RandomizedPCA
from sklearn.svm import SVC

print(__doc__)

# Display progress logs on stdout
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')

###############################################################################
# Download the data, if not already on disk and load it as numpy arrays

lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

# introspect the images arrays to find the shapes (for plotting)
n_samples, h, w = lfw_people.images.shape

# for machine learning we use the 2 data directly (as relative pixel
# positions info is ignored by this model)
X = lfw_people.data
n_features = X.shape[1]

# the label to predict is the id of the person
y = lfw_people.target
target_names = lfw_people.target_names
n_classes = target_names.shape[0]

print("Total dataset size:")
print("n_samples: %d" % n_samples)
print("n_features: %d" % n_features)
print("n_classes: %d" % n_classes)

###############################################################################
# Split into a training set and a test set using a stratified k fold

# split into a training and testing set
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.25, random_state=42)

###############################################################################
# Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled
# dataset): unsupervised feature extraction / dimensionality reduction
n_components = 150

print("Extracting the top %d eigenfaces from %d faces"
% (n_components, X_train.shape[0]))

t0 = time()
pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train)
print("done in %0.3fs" % (time() - t0))

eigenfaces = pca.components_.reshape((n_components, h, w))
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print("Projecting the input data on the eigenfaces orthonormal basis")
t0 = time()
X_train_pca = pca.transform(X_train)
X_test_pca = pca.transform(X_test)
print("done in %0.3fs" % (time() - t0))

###############################################################################
# Train a SVM classification model

print("Fitting the classifier to the training set")
t0 = time()
param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5],

'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }
clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid)
clf = clf.fit(X_train_pca, y_train)
print("done in %0.3fs" % (time() - t0))
print("Best estimator found by grid search:")
print(clf.best_estimator_)

###############################################################################
# Quantitative evaluation of the model quality on the test set

print("Predicting people's names on the test set")
t0 = time()
y_pred = clf.predict(X_test_pca)
print("done in %0.3fs" % (time() - t0))

print(classification_report(y_test, y_pred, target_names=target_names))
print(confusion_matrix(y_test, y_pred, labels=range(n_classes)))

###############################################################################
# Qualitative evaluation of the predictions using matplotlib

def plot_gallery(images, titles, h, w, n_row=3, n_col=4):
"""Helper function to plot a gallery of portraits"""
plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))
plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)
for i in range(n_row * n_col):

plt.subplot(n_row, n_col, i + 1)
plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)
plt.title(titles[i], size=12)
plt.xticks(())
plt.yticks(())

# plot the result of the prediction on a portion of the test set

def title(y_pred, y_test, target_names, i):
pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1]
true_name = target_names[y_test[i]].rsplit(' ', 1)[-1]
return 'predicted: %s\ntrue: %s' % (pred_name, true_name)

prediction_titles = [title(y_pred, y_test, target_names, i)
for i in range(y_pred.shape[0])]
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plot_gallery(X_test, prediction_titles, h, w)

# plot the gallery of the most significative eigenfaces

eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]
plot_gallery(eigenfaces, eigenface_titles, h, w)

plt.show()

4.2.5 Model Complexity Influence

Demonstrate how model complexity influences both prediction accuracy and computational performance.

The dataset is the Boston Housing dataset (resp. 20 Newsgroups) for regression (resp. classification).

For each class of models we make the model complexity vary through the choice of relevant model parameters and
measure the influence on both computational performance (latency) and predictive power (MSE or Hamming Loss).

•

•

•

Script output:

Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
eta0=0.0, fit_intercept=True, l1_ratio=0.25,
learning_rate='optimal', loss='modified_huber', n_iter=5, n_jobs=1,
penalty='elasticnet', power_t=0.5, random_state=None, shuffle=True,
verbose=0, warm_start=False)

Complexity: 4454 | Hamming Loss (Misclassification Ratio): 0.2501 | Pred. Time: 0.032960s
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Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
eta0=0.0, fit_intercept=True, l1_ratio=0.5, learning_rate='optimal',
loss='modified_huber', n_iter=5, n_jobs=1, penalty='elasticnet',
power_t=0.5, random_state=None, shuffle=True, verbose=0,
warm_start=False)

Complexity: 1624 | Hamming Loss (Misclassification Ratio): 0.2923 | Pred. Time: 0.029268s

Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
eta0=0.0, fit_intercept=True, l1_ratio=0.75,
learning_rate='optimal', loss='modified_huber', n_iter=5, n_jobs=1,
penalty='elasticnet', power_t=0.5, random_state=None, shuffle=True,
verbose=0, warm_start=False)

Complexity: 873 | Hamming Loss (Misclassification Ratio): 0.3191 | Pred. Time: 0.016402s

Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
eta0=0.0, fit_intercept=True, l1_ratio=0.9, learning_rate='optimal',
loss='modified_huber', n_iter=5, n_jobs=1, penalty='elasticnet',
power_t=0.5, random_state=None, shuffle=True, verbose=0,
warm_start=False)

Complexity: 655 | Hamming Loss (Misclassification Ratio): 0.3252 | Pred. Time: 0.022094s

Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
kernel='rbf', max_iter=-1, nu=0.1, shrinking=True, tol=0.001,
verbose=False)

Complexity: 69 | MSE: 31.8133 | Pred. Time: 0.000596s

Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
kernel='rbf', max_iter=-1, nu=0.25, shrinking=True, tol=0.001,
verbose=False)

Complexity: 136 | MSE: 25.6140 | Pred. Time: 0.000885s

Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
kernel='rbf', max_iter=-1, nu=0.5, shrinking=True, tol=0.001,
verbose=False)

Complexity: 243 | MSE: 22.3315 | Pred. Time: 0.001762s

Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
kernel='rbf', max_iter=-1, nu=0.75, shrinking=True, tol=0.001,
verbose=False)

Complexity: 350 | MSE: 21.3679 | Pred. Time: 0.002310s

Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
kernel='rbf', max_iter=-1, nu=0.9, shrinking=True, tol=0.001,
verbose=False)

Complexity: 404 | MSE: 21.0915 | Pred. Time: 0.003159s

Benchmarking GradientBoostingRegressor(alpha=0.9, init=None, learning_rate=0.1, loss='ls',
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10, presort='auto',
random_state=None, subsample=1.0, verbose=0, warm_start=False)

Complexity: 10 | MSE: 28.9793 | Pred. Time: 0.000137s

Benchmarking GradientBoostingRegressor(alpha=0.9, init=None, learning_rate=0.1, loss='ls',
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=50, presort='auto',
random_state=None, subsample=1.0, verbose=0, warm_start=False)
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Complexity: 50 | MSE: 8.3398 | Pred. Time: 0.000231s

Benchmarking GradientBoostingRegressor(alpha=0.9, init=None, learning_rate=0.1, loss='ls',
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=100,
presort='auto', random_state=None, subsample=1.0, verbose=0,
warm_start=False)

Complexity: 100 | MSE: 7.0096 | Pred. Time: 0.000371s

Benchmarking GradientBoostingRegressor(alpha=0.9, init=None, learning_rate=0.1, loss='ls',
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=200,
presort='auto', random_state=None, subsample=1.0, verbose=0,
warm_start=False)

Complexity: 200 | MSE: 6.1836 | Pred. Time: 0.000627s

Benchmarking GradientBoostingRegressor(alpha=0.9, init=None, learning_rate=0.1, loss='ls',
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=500,
presort='auto', random_state=None, subsample=1.0, verbose=0,
warm_start=False)

Complexity: 500 | MSE: 6.3426 | Pred. Time: 0.001780s

Python source code: plot_model_complexity_influence.py

print(__doc__)

# Author: Eustache Diemert <eustache@diemert.fr>
# License: BSD 3 clause

import time
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1.parasite_axes import host_subplot
from mpl_toolkits.axisartist.axislines import Axes
from scipy.sparse.csr import csr_matrix

from sklearn import datasets
from sklearn.utils import shuffle
from sklearn.metrics import mean_squared_error
from sklearn.svm.classes import NuSVR
from sklearn.ensemble.gradient_boosting import GradientBoostingRegressor
from sklearn.linear_model.stochastic_gradient import SGDClassifier
from sklearn.metrics import hamming_loss

###############################################################################
# Routines

# initialize random generator
np.random.seed(0)

def generate_data(case, sparse=False):
"""Generate regression/classification data."""
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bunch = None
if case == 'regression':

bunch = datasets.load_boston()
elif case == 'classification':

bunch = datasets.fetch_20newsgroups_vectorized(subset='all')
X, y = shuffle(bunch.data, bunch.target)
offset = int(X.shape[0] * 0.8)
X_train, y_train = X[:offset], y[:offset]
X_test, y_test = X[offset:], y[offset:]
if sparse:

X_train = csr_matrix(X_train)
X_test = csr_matrix(X_test)

else:
X_train = np.array(X_train)
X_test = np.array(X_test)

y_test = np.array(y_test)
y_train = np.array(y_train)
data = {'X_train': X_train, 'X_test': X_test, 'y_train': y_train,

'y_test': y_test}
return data

def benchmark_influence(conf):
"""
Benchmark influence of :changing_param: on both MSE and latency.
"""
prediction_times = []
prediction_powers = []
complexities = []
for param_value in conf['changing_param_values']:

conf['tuned_params'][conf['changing_param']] = param_value
estimator = conf['estimator'](**conf['tuned_params'])
print("Benchmarking %s" % estimator)
estimator.fit(conf['data']['X_train'], conf['data']['y_train'])
conf['postfit_hook'](estimator)
complexity = conf['complexity_computer'](estimator)
complexities.append(complexity)
start_time = time.time()
for _ in range(conf['n_samples']):

y_pred = estimator.predict(conf['data']['X_test'])
elapsed_time = (time.time() - start_time) / float(conf['n_samples'])
prediction_times.append(elapsed_time)
pred_score = conf['prediction_performance_computer'](

conf['data']['y_test'], y_pred)
prediction_powers.append(pred_score)
print("Complexity: %d | %s: %.4f | Pred. Time: %fs\n" % (

complexity, conf['prediction_performance_label'], pred_score,
elapsed_time))

return prediction_powers, prediction_times, complexities

def plot_influence(conf, mse_values, prediction_times, complexities):
"""
Plot influence of model complexity on both accuracy and latency.
"""
plt.figure(figsize=(12, 6))
host = host_subplot(111, axes_class=Axes)
plt.subplots_adjust(right=0.75)
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par1 = host.twinx()
host.set_xlabel('Model Complexity (%s)' % conf['complexity_label'])
y1_label = conf['prediction_performance_label']
y2_label = "Time (s)"
host.set_ylabel(y1_label)
par1.set_ylabel(y2_label)
p1, = host.plot(complexities, mse_values, 'b-', label="prediction error")
p2, = par1.plot(complexities, prediction_times, 'r-',

label="latency")
host.legend(loc='upper right')
host.axis["left"].label.set_color(p1.get_color())
par1.axis["right"].label.set_color(p2.get_color())
plt.title('Influence of Model Complexity - %s' % conf['estimator'].__name__)
plt.show()

def _count_nonzero_coefficients(estimator):
a = estimator.coef_.toarray()
return np.count_nonzero(a)

###############################################################################
# main code
regression_data = generate_data('regression')
classification_data = generate_data('classification', sparse=True)
configurations = [

{'estimator': SGDClassifier,
'tuned_params': {'penalty': 'elasticnet', 'alpha': 0.001, 'loss':

'modified_huber', 'fit_intercept': True},
'changing_param': 'l1_ratio',
'changing_param_values': [0.25, 0.5, 0.75, 0.9],
'complexity_label': 'non_zero coefficients',
'complexity_computer': _count_nonzero_coefficients,
'prediction_performance_computer': hamming_loss,
'prediction_performance_label': 'Hamming Loss (Misclassification Ratio)',
'postfit_hook': lambda x: x.sparsify(),
'data': classification_data,
'n_samples': 30},

{'estimator': NuSVR,
'tuned_params': {'C': 1e3, 'gamma': 2 ** -15},
'changing_param': 'nu',
'changing_param_values': [0.1, 0.25, 0.5, 0.75, 0.9],
'complexity_label': 'n_support_vectors',
'complexity_computer': lambda x: len(x.support_vectors_),
'data': regression_data,
'postfit_hook': lambda x: x,
'prediction_performance_computer': mean_squared_error,
'prediction_performance_label': 'MSE',
'n_samples': 30},

{'estimator': GradientBoostingRegressor,
'tuned_params': {'loss': 'ls'},
'changing_param': 'n_estimators',
'changing_param_values': [10, 50, 100, 200, 500],
'complexity_label': 'n_trees',
'complexity_computer': lambda x: x.n_estimators,
'data': regression_data,
'postfit_hook': lambda x: x,
'prediction_performance_computer': mean_squared_error,
'prediction_performance_label': 'MSE',
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'n_samples': 30},
]
for conf in configurations:

prediction_performances, prediction_times, complexities = \
benchmark_influence(conf)

plot_influence(conf, prediction_performances, prediction_times,
complexities)

Total running time of the example: 27.47 seconds ( 0 minutes 27.47 seconds)

4.2.6 Species distribution modeling

Modeling species’ geographic distributions is an important problem in conservation biology. In this example we model
the geographic distribution of two south american mammals given past observations and 14 environmental variables.
Since we have only positive examples (there are no unsuccessful observations), we cast this problem as a density
estimation problem and use the OneClassSVM provided by the package sklearn.svm as our modeling tool. The dataset
is provided by Phillips et. al. (2006). If available, the example uses basemap to plot the coast lines and national
boundaries of South America.

The two species are:

• “Bradypus variegatus” , the Brown-throated Sloth.

• “Microryzomys minutus” , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia,
Ecuador, Peru, and Venezuela.

References

• “Maximum entropy modeling of species geographic distributions” S. J. Phillips, R. P. Anderson, R. E. Schapire
- Ecological Modelling, 190:231-259, 2006.
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Script output:
________________________________________________________________________________
Modeling distribution of species 'bradypus variegatus'
- fit OneClassSVM ... done.
- plot coastlines from coverage
- predict species distribution

Area under the ROC curve : 0.868380
________________________________________________________________________________
Modeling distribution of species 'microryzomys minutus'
- fit OneClassSVM ... done.
- plot coastlines from coverage
- predict species distribution

Area under the ROC curve : 0.993919

time elapsed: 8.20s

Python source code: plot_species_distribution_modeling.py

# Authors: Peter Prettenhofer <peter.prettenhofer@gmail.com>
# Jake Vanderplas <vanderplas@astro.washington.edu>
#
# License: BSD 3 clause

from __future__ import print_function
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from time import time

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets.base import Bunch
from sklearn.datasets import fetch_species_distributions
from sklearn.datasets.species_distributions import construct_grids
from sklearn import svm, metrics

# if basemap is available, we'll use it.
# otherwise, we'll improvise later...
try:

from mpl_toolkits.basemap import Basemap
basemap = True

except ImportError:
basemap = False

print(__doc__)

def create_species_bunch(species_name, train, test, coverages, xgrid, ygrid):
"""Create a bunch with information about a particular organism

This will use the test/train record arrays to extract the
data specific to the given species name.
"""
bunch = Bunch(name=' '.join(species_name.split("_")[:2]))
species_name = species_name.encode('ascii')
points = dict(test=test, train=train)

for label, pts in points.items():
# choose points associated with the desired species
pts = pts[pts['species'] == species_name]
bunch['pts_%s' % label] = pts

# determine coverage values for each of the training & testing points
ix = np.searchsorted(xgrid, pts['dd long'])
iy = np.searchsorted(ygrid, pts['dd lat'])
bunch['cov_%s' % label] = coverages[:, -iy, ix].T

return bunch

def plot_species_distribution(species=("bradypus_variegatus_0",
"microryzomys_minutus_0")):

"""
Plot the species distribution.
"""
if len(species) > 2:

print("Note: when more than two species are provided,"
" only the first two will be used")

t0 = time()

# Load the compressed data
data = fetch_species_distributions()
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# Set up the data grid
xgrid, ygrid = construct_grids(data)

# The grid in x,y coordinates
X, Y = np.meshgrid(xgrid, ygrid[::-1])

# create a bunch for each species
BV_bunch = create_species_bunch(species[0],

data.train, data.test,
data.coverages, xgrid, ygrid)

MM_bunch = create_species_bunch(species[1],
data.train, data.test,
data.coverages, xgrid, ygrid)

# background points (grid coordinates) for evaluation
np.random.seed(13)
background_points = np.c_[np.random.randint(low=0, high=data.Ny,

size=10000),
np.random.randint(low=0, high=data.Nx,

size=10000)].T

# We'll make use of the fact that coverages[6] has measurements at all
# land points. This will help us decide between land and water.
land_reference = data.coverages[6]

# Fit, predict, and plot for each species.
for i, species in enumerate([BV_bunch, MM_bunch]):

print("_" * 80)
print("Modeling distribution of species '%s'" % species.name)

# Standardize features
mean = species.cov_train.mean(axis=0)
std = species.cov_train.std(axis=0)
train_cover_std = (species.cov_train - mean) / std

# Fit OneClassSVM
print(" - fit OneClassSVM ... ", end='')
clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.5)
clf.fit(train_cover_std)
print("done.")

# Plot map of South America
plt.subplot(1, 2, i + 1)
if basemap:

print(" - plot coastlines using basemap")
m = Basemap(projection='cyl', llcrnrlat=Y.min(),

urcrnrlat=Y.max(), llcrnrlon=X.min(),
urcrnrlon=X.max(), resolution='c')

m.drawcoastlines()
m.drawcountries()

else:
print(" - plot coastlines from coverage")
plt.contour(X, Y, land_reference,

levels=[-9999], colors="k",
linestyles="solid")

plt.xticks([])
plt.yticks([])
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print(" - predict species distribution")

# Predict species distribution using the training data
Z = np.ones((data.Ny, data.Nx), dtype=np.float64)

# We'll predict only for the land points.
idx = np.where(land_reference > -9999)
coverages_land = data.coverages[:, idx[0], idx[1]].T

pred = clf.decision_function((coverages_land - mean) / std)[:, 0]
Z *= pred.min()
Z[idx[0], idx[1]] = pred

levels = np.linspace(Z.min(), Z.max(), 25)
Z[land_reference == -9999] = -9999

# plot contours of the prediction
plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds)
plt.colorbar(format='%.2f')

# scatter training/testing points
plt.scatter(species.pts_train['dd long'], species.pts_train['dd lat'],

s=2 ** 2, c='black',
marker='^', label='train')

plt.scatter(species.pts_test['dd long'], species.pts_test['dd lat'],
s=2 ** 2, c='black',
marker='x', label='test')

plt.legend()
plt.title(species.name)
plt.axis('equal')

# Compute AUC with regards to background points
pred_background = Z[background_points[0], background_points[1]]
pred_test = clf.decision_function((species.cov_test - mean)

/ std)[:, 0]
scores = np.r_[pred_test, pred_background]
y = np.r_[np.ones(pred_test.shape), np.zeros(pred_background.shape)]
fpr, tpr, thresholds = metrics.roc_curve(y, scores)
roc_auc = metrics.auc(fpr, tpr)
plt.text(-35, -70, "AUC: %.3f" % roc_auc, ha="right")
print("\n Area under the ROC curve : %f" % roc_auc)

print("\ntime elapsed: %.2fs" % (time() - t0))

plot_species_distribution()
plt.show()

Total running time of the example: 8.21 seconds ( 0 minutes 8.21 seconds)

4.2.7 Visualizing the stock market structure

This example employs several unsupervised learning techniques to extract the stock market structure from variations
in historical quotes.

The quantity that we use is the daily variation in quote price: quotes that are linked tend to cofluctuate during a day.
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Learning a graph structure

We use sparse inverse covariance estimation to find which quotes are correlated conditionally on the others. Specifi-
cally, sparse inverse covariance gives us a graph, that is a list of connection. For each symbol, the symbols that it is
connected too are those useful to explain its fluctuations.

Clustering

We use clustering to group together quotes that behave similarly. Here, amongst the various clustering techniques
available in the scikit-learn, we use Affinity Propagation as it does not enforce equal-size clusters, and it can choose
automatically the number of clusters from the data.

Note that this gives us a different indication than the graph, as the graph reflects conditional relations between variables,
while the clustering reflects marginal properties: variables clustered together can be considered as having a similar
impact at the level of the full stock market.

Embedding in 2D space

For visualization purposes, we need to lay out the different symbols on a 2D canvas. For this we use Manifold learning
techniques to retrieve 2D embedding.

Visualization

The output of the 3 models are combined in a 2D graph where nodes represents the stocks and edges the:

• cluster labels are used to define the color of the nodes

• the sparse covariance model is used to display the strength of the edges

• the 2D embedding is used to position the nodes in the plan

This example has a fair amount of visualization-related code, as visualization is crucial here to display the graph. One
of the challenge is to position the labels minimizing overlap. For this we use an heuristic based on the direction of the
nearest neighbor along each axis.

Python source code: plot_stock_market.py

print(__doc__)
return

# Author: Gael Varoquaux gael.varoquaux@normalesup.org
# License: BSD 3 clause

import datetime

import numpy as np
import matplotlib.pyplot as plt
try:

from matplotlib.finance import quotes_historical_yahoo
except ImportError:

from matplotlib.finance import quotes_historical_yahoo_ochl as quotes_historical_yahoo
from matplotlib.collections import LineCollection

from sklearn import cluster, covariance, manifold

###############################################################################
# Retrieve the data from Internet
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# Choose a time period reasonnably calm (not too long ago so that we get
# high-tech firms, and before the 2008 crash)
d1 = datetime.datetime(2003, 1, 1)
d2 = datetime.datetime(2008, 1, 1)

# kraft symbol has now changed from KFT to MDLZ in yahoo
symbol_dict = {

'TOT': 'Total',
'XOM': 'Exxon',
'CVX': 'Chevron',
'COP': 'ConocoPhillips',
'VLO': 'Valero Energy',
'MSFT': 'Microsoft',
'IBM': 'IBM',
'TWX': 'Time Warner',
'CMCSA': 'Comcast',
'CVC': 'Cablevision',
'YHOO': 'Yahoo',
'DELL': 'Dell',
'HPQ': 'HP',
'AMZN': 'Amazon',
'TM': 'Toyota',
'CAJ': 'Canon',
'MTU': 'Mitsubishi',
'SNE': 'Sony',
'F': 'Ford',
'HMC': 'Honda',
'NAV': 'Navistar',
'NOC': 'Northrop Grumman',
'BA': 'Boeing',
'KO': 'Coca Cola',
'MMM': '3M',
'MCD': 'Mc Donalds',
'PEP': 'Pepsi',
'MDLZ': 'Kraft Foods',
'K': 'Kellogg',
'UN': 'Unilever',
'MAR': 'Marriott',
'PG': 'Procter Gamble',
'CL': 'Colgate-Palmolive',
'GE': 'General Electrics',
'WFC': 'Wells Fargo',
'JPM': 'JPMorgan Chase',
'AIG': 'AIG',
'AXP': 'American express',
'BAC': 'Bank of America',
'GS': 'Goldman Sachs',
'AAPL': 'Apple',
'SAP': 'SAP',
'CSCO': 'Cisco',
'TXN': 'Texas instruments',
'XRX': 'Xerox',
'LMT': 'Lookheed Martin',
'WMT': 'Wal-Mart',
'WBA': 'Walgreen',
'HD': 'Home Depot',
'GSK': 'GlaxoSmithKline',
'PFE': 'Pfizer',
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'SNY': 'Sanofi-Aventis',
'NVS': 'Novartis',
'KMB': 'Kimberly-Clark',
'R': 'Ryder',
'GD': 'General Dynamics',
'RTN': 'Raytheon',
'CVS': 'CVS',
'CAT': 'Caterpillar',
'DD': 'DuPont de Nemours'}

symbols, names = np.array(list(symbol_dict.items())).T

quotes = [quotes_historical_yahoo(symbol, d1, d2, asobject=True)
for symbol in symbols]

open = np.array([q.open for q in quotes]).astype(np.float)
close = np.array([q.close for q in quotes]).astype(np.float)

# The daily variations of the quotes are what carry most information
variation = close - open

###############################################################################
# Learn a graphical structure from the correlations
edge_model = covariance.GraphLassoCV()

# standardize the time series: using correlations rather than covariance
# is more efficient for structure recovery
X = variation.copy().T
X /= X.std(axis=0)
edge_model.fit(X)

###############################################################################
# Cluster using affinity propagation

_, labels = cluster.affinity_propagation(edge_model.covariance_)
n_labels = labels.max()

for i in range(n_labels + 1):
print('Cluster %i: %s' % ((i + 1), ', '.join(names[labels == i])))

###############################################################################
# Find a low-dimension embedding for visualization: find the best position of
# the nodes (the stocks) on a 2D plane

# We use a dense eigen_solver to achieve reproducibility (arpack is
# initiated with random vectors that we don't control). In addition, we
# use a large number of neighbors to capture the large-scale structure.
node_position_model = manifold.LocallyLinearEmbedding(

n_components=2, eigen_solver='dense', n_neighbors=6)

embedding = node_position_model.fit_transform(X.T).T

###############################################################################
# Visualization
plt.figure(1, facecolor='w', figsize=(10, 8))
plt.clf()
ax = plt.axes([0., 0., 1., 1.])
plt.axis('off')
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# Display a graph of the partial correlations
partial_correlations = edge_model.precision_.copy()
d = 1 / np.sqrt(np.diag(partial_correlations))
partial_correlations *= d
partial_correlations *= d[:, np.newaxis]
non_zero = (np.abs(np.triu(partial_correlations, k=1)) > 0.02)

# Plot the nodes using the coordinates of our embedding
plt.scatter(embedding[0], embedding[1], s=100 * d ** 2, c=labels,

cmap=plt.cm.spectral)

# Plot the edges
start_idx, end_idx = np.where(non_zero)
#a sequence of (*line0*, *line1*, *line2*), where::
# linen = (x0, y0), (x1, y1), ... (xm, ym)
segments = [[embedding[:, start], embedding[:, stop]]

for start, stop in zip(start_idx, end_idx)]
values = np.abs(partial_correlations[non_zero])
lc = LineCollection(segments,

zorder=0, cmap=plt.cm.hot_r,
norm=plt.Normalize(0, .7 * values.max()))

lc.set_array(values)
lc.set_linewidths(15 * values)
ax.add_collection(lc)

# Add a label to each node. The challenge here is that we want to
# position the labels to avoid overlap with other labels
for index, (name, label, (x, y)) in enumerate(

zip(names, labels, embedding.T)):

dx = x - embedding[0]
dx[index] = 1
dy = y - embedding[1]
dy[index] = 1
this_dx = dx[np.argmin(np.abs(dy))]
this_dy = dy[np.argmin(np.abs(dx))]
if this_dx > 0:

horizontalalignment = 'left'
x = x + .002

else:
horizontalalignment = 'right'
x = x - .002

if this_dy > 0:
verticalalignment = 'bottom'
y = y + .002

else:
verticalalignment = 'top'
y = y - .002

plt.text(x, y, name, size=10,
horizontalalignment=horizontalalignment,
verticalalignment=verticalalignment,
bbox=dict(facecolor='w',

edgecolor=plt.cm.spectral(label / float(n_labels)),
alpha=.6))

plt.xlim(embedding[0].min() - .15 * embedding[0].ptp(),
embedding[0].max() + .10 * embedding[0].ptp(),)

plt.ylim(embedding[1].min() - .03 * embedding[1].ptp(),
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embedding[1].max() + .03 * embedding[1].ptp())

Total running time of the example: 0.00 seconds ( 0 minutes 0.00 seconds)

4.2.8 Wikipedia principal eigenvector

A classical way to assert the relative importance of vertices in a graph is to compute the principal eigenvector of the
adjacency matrix so as to assign to each vertex the values of the components of the first eigenvector as a centrality
score:

http://en.wikipedia.org/wiki/Eigenvector_centrality

On the graph of webpages and links those values are called the PageRank scores by Google.

The goal of this example is to analyze the graph of links inside wikipedia articles to rank articles by relative importance
according to this eigenvector centrality.

The traditional way to compute the principal eigenvector is to use the power iteration method:

http://en.wikipedia.org/wiki/Power_iteration

Here the computation is achieved thanks to Martinsson’s Randomized SVD algorithm implemented in the scikit.

The graph data is fetched from the DBpedia dumps. DBpedia is an extraction of the latent structured data of the
Wikipedia content.

Python source code: wikipedia_principal_eigenvector.py

# Author: Olivier Grisel <olivier.grisel@ensta.org>
# License: BSD 3 clause

from __future__ import print_function

from bz2 import BZ2File
import os
from datetime import datetime
from pprint import pprint
from time import time

import numpy as np

from scipy import sparse

from sklearn.decomposition import randomized_svd
from sklearn.externals.joblib import Memory
from sklearn.externals.six.moves.urllib.request import urlopen
from sklearn.externals.six import iteritems

print(__doc__)

###############################################################################
# Where to download the data, if not already on disk
redirects_url = "http://downloads.dbpedia.org/3.5.1/en/redirects_en.nt.bz2"
redirects_filename = redirects_url.rsplit("/", 1)[1]

page_links_url = "http://downloads.dbpedia.org/3.5.1/en/page_links_en.nt.bz2"
page_links_filename = page_links_url.rsplit("/", 1)[1]

resources = [
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(redirects_url, redirects_filename),
(page_links_url, page_links_filename),

]

for url, filename in resources:
if not os.path.exists(filename):

print("Downloading data from '%s', please wait..." % url)
opener = urlopen(url)
open(filename, 'wb').write(opener.read())
print()

###############################################################################
# Loading the redirect files

memory = Memory(cachedir=".")

def index(redirects, index_map, k):
"""Find the index of an article name after redirect resolution"""
k = redirects.get(k, k)
return index_map.setdefault(k, len(index_map))

DBPEDIA_RESOURCE_PREFIX_LEN = len("http://dbpedia.org/resource/")
SHORTNAME_SLICE = slice(DBPEDIA_RESOURCE_PREFIX_LEN + 1, -1)

def short_name(nt_uri):
"""Remove the < and > URI markers and the common URI prefix"""
return nt_uri[SHORTNAME_SLICE]

def get_redirects(redirects_filename):
"""Parse the redirections and build a transitively closed map out of it"""
redirects = {}
print("Parsing the NT redirect file")
for l, line in enumerate(BZ2File(redirects_filename)):

split = line.split()
if len(split) != 4:

print("ignoring malformed line: " + line)
continue

redirects[short_name(split[0])] = short_name(split[2])
if l % 1000000 == 0:

print("[%s] line: %08d" % (datetime.now().isoformat(), l))

# compute the transitive closure
print("Computing the transitive closure of the redirect relation")
for l, source in enumerate(redirects.keys()):

transitive_target = None
target = redirects[source]
seen = set([source])
while True:

transitive_target = target
target = redirects.get(target)
if target is None or target in seen:

break
seen.add(target)
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redirects[source] = transitive_target
if l % 1000000 == 0:

print("[%s] line: %08d" % (datetime.now().isoformat(), l))

return redirects

# disabling joblib as the pickling of large dicts seems much too slow
#@memory.cache
def get_adjacency_matrix(redirects_filename, page_links_filename, limit=None):

"""Extract the adjacency graph as a scipy sparse matrix

Redirects are resolved first.

Returns X, the scipy sparse adjacency matrix, redirects as python
dict from article names to article names and index_map a python dict
from article names to python int (article indexes).
"""

print("Computing the redirect map")
redirects = get_redirects(redirects_filename)

print("Computing the integer index map")
index_map = dict()
links = list()
for l, line in enumerate(BZ2File(page_links_filename)):

split = line.split()
if len(split) != 4:

print("ignoring malformed line: " + line)
continue

i = index(redirects, index_map, short_name(split[0]))
j = index(redirects, index_map, short_name(split[2]))
links.append((i, j))
if l % 1000000 == 0:

print("[%s] line: %08d" % (datetime.now().isoformat(), l))

if limit is not None and l >= limit - 1:
break

print("Computing the adjacency matrix")
X = sparse.lil_matrix((len(index_map), len(index_map)), dtype=np.float32)
for i, j in links:

X[i, j] = 1.0
del links
print("Converting to CSR representation")
X = X.tocsr()
print("CSR conversion done")
return X, redirects, index_map

# stop after 5M links to make it possible to work in RAM
X, redirects, index_map = get_adjacency_matrix(

redirects_filename, page_links_filename, limit=5000000)
names = dict((i, name) for name, i in iteritems(index_map))

print("Computing the principal singular vectors using randomized_svd")
t0 = time()
U, s, V = randomized_svd(X, 5, n_iter=3)
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print("done in %0.3fs" % (time() - t0))

# print the names of the wikipedia related strongest compenents of the the
# principal singular vector which should be similar to the highest eigenvector
print("Top wikipedia pages according to principal singular vectors")
pprint([names[i] for i in np.abs(U.T[0]).argsort()[-10:]])
pprint([names[i] for i in np.abs(V[0]).argsort()[-10:]])

def centrality_scores(X, alpha=0.85, max_iter=100, tol=1e-10):
"""Power iteration computation of the principal eigenvector

This method is also known as Google PageRank and the implementation
is based on the one from the NetworkX project (BSD licensed too)
with copyrights by:

Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>

"""
n = X.shape[0]
X = X.copy()
incoming_counts = np.asarray(X.sum(axis=1)).ravel()

print("Normalizing the graph")
for i in incoming_counts.nonzero()[0]:

X.data[X.indptr[i]:X.indptr[i + 1]] *= 1.0 / incoming_counts[i]
dangle = np.asarray(np.where(X.sum(axis=1) == 0, 1.0 / n, 0)).ravel()

scores = np.ones(n, dtype=np.float32) / n # initial guess
for i in range(max_iter):

print("power iteration #%d" % i)
prev_scores = scores
scores = (alpha * (scores * X + np.dot(dangle, prev_scores))

+ (1 - alpha) * prev_scores.sum() / n)
# check convergence: normalized l_inf norm
scores_max = np.abs(scores).max()
if scores_max == 0.0:

scores_max = 1.0
err = np.abs(scores - prev_scores).max() / scores_max
print("error: %0.6f" % err)
if err < n * tol:

return scores

return scores

print("Computing principal eigenvector score using a power iteration method")
t0 = time()
scores = centrality_scores(X, max_iter=100, tol=1e-10)
print("done in %0.3fs" % (time() - t0))
pprint([names[i] for i in np.abs(scores).argsort()[-10:]])

4.2.9 Prediction Latency

This is an example showing the prediction latency of various scikit-learn estimators.

The goal is to measure the latency one can expect when doing predictions either in bulk or atomic (i.e. one by one)
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mode.

The plots represent the distribution of the prediction latency as a boxplot.

•

•

•

•

Script output:

Benchmarking SGDRegressor(alpha=0.01, average=False, epsilon=0.1, eta0=0.01,
fit_intercept=True, l1_ratio=0.25, learning_rate='invscaling',
loss='squared_loss', n_iter=5, penalty='elasticnet', power_t=0.25,
random_state=None, shuffle=True, verbose=0, warm_start=False)

Benchmarking RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
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max_features='auto', max_leaf_nodes=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=10, n_jobs=1, oob_score=False, random_state=None,
verbose=0, warm_start=False)

Benchmarking SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1, gamma='auto',
kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)

benchmarking with 100 features
benchmarking with 250 features
benchmarking with 500 features
example run in 2.76s

Python source code: plot_prediction_latency.py

# Authors: Eustache Diemert <eustache@diemert.fr>
# License: BSD 3 clause

from __future__ import print_function
from collections import defaultdict

import time
import gc
import numpy as np
import matplotlib.pyplot as plt

from scipy.stats import scoreatpercentile
from sklearn.datasets.samples_generator import make_regression
from sklearn.ensemble.forest import RandomForestRegressor
from sklearn.linear_model.ridge import Ridge
from sklearn.linear_model.stochastic_gradient import SGDRegressor
from sklearn.svm.classes import SVR

def _not_in_sphinx():
# Hack to detect whether we are running by the sphinx builder
return '__file__' in globals()

def atomic_benchmark_estimator(estimator, X_test, verbose=False):
"""Measure runtime prediction of each instance."""
n_instances = X_test.shape[0]
runtimes = np.zeros(n_instances, dtype=np.float)
for i in range(n_instances):

instance = X_test[[i], :]
start = time.time()
estimator.predict(instance)
runtimes[i] = time.time() - start

if verbose:
print("atomic_benchmark runtimes:", min(runtimes), scoreatpercentile(

runtimes, 50), max(runtimes))
return runtimes

def bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose):
"""Measure runtime prediction of the whole input."""
n_instances = X_test.shape[0]
runtimes = np.zeros(n_bulk_repeats, dtype=np.float)
for i in range(n_bulk_repeats):

start = time.time()
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estimator.predict(X_test)
runtimes[i] = time.time() - start

runtimes = np.array(list(map(lambda x: x / float(n_instances), runtimes)))
if verbose:

print("bulk_benchmark runtimes:", min(runtimes), scoreatpercentile(
runtimes, 50), max(runtimes))

return runtimes

def benchmark_estimator(estimator, X_test, n_bulk_repeats=30, verbose=False):
"""
Measure runtimes of prediction in both atomic and bulk mode.

Parameters
----------
estimator : already trained estimator supporting `predict()`
X_test : test input
n_bulk_repeats : how many times to repeat when evaluating bulk mode

Returns
-------
atomic_runtimes, bulk_runtimes : a pair of `np.array` which contain the
runtimes in seconds.

"""
atomic_runtimes = atomic_benchmark_estimator(estimator, X_test, verbose)
bulk_runtimes = bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats,

verbose)
return atomic_runtimes, bulk_runtimes

def generate_dataset(n_train, n_test, n_features, noise=0.1, verbose=False):
"""Generate a regression dataset with the given parameters."""
if verbose:

print("generating dataset...")
X, y, coef = make_regression(n_samples=n_train + n_test,

n_features=n_features, noise=noise, coef=True)
X_train = X[:n_train]
y_train = y[:n_train]
X_test = X[n_train:]
y_test = y[n_train:]
idx = np.arange(n_train)
np.random.seed(13)
np.random.shuffle(idx)
X_train = X_train[idx]
y_train = y_train[idx]

std = X_train.std(axis=0)
mean = X_train.mean(axis=0)
X_train = (X_train - mean) / std
X_test = (X_test - mean) / std

std = y_train.std(axis=0)
mean = y_train.mean(axis=0)
y_train = (y_train - mean) / std
y_test = (y_test - mean) / std

gc.collect()
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if verbose:
print("ok")

return X_train, y_train, X_test, y_test

def boxplot_runtimes(runtimes, pred_type, configuration):
"""
Plot a new `Figure` with boxplots of prediction runtimes.

Parameters
----------
runtimes : list of `np.array` of latencies in micro-seconds
cls_names : list of estimator class names that generated the runtimes
pred_type : 'bulk' or 'atomic'

"""

fig, ax1 = plt.subplots(figsize=(10, 6))
bp = plt.boxplot(runtimes, )

cls_infos = ['%s\n(%d %s)' % (estimator_conf['name'],
estimator_conf['complexity_computer'](

estimator_conf['instance']),
estimator_conf['complexity_label']) for

estimator_conf in configuration['estimators']]
plt.setp(ax1, xticklabels=cls_infos)
plt.setp(bp['boxes'], color='black')
plt.setp(bp['whiskers'], color='black')
plt.setp(bp['fliers'], color='red', marker='+')

ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey',
alpha=0.5)

ax1.set_axisbelow(True)
ax1.set_title('Prediction Time per Instance - %s, %d feats.' % (

pred_type.capitalize(),
configuration['n_features']))

ax1.set_ylabel('Prediction Time (us)')

plt.show()

def benchmark(configuration):
"""Run the whole benchmark."""
X_train, y_train, X_test, y_test = generate_dataset(

configuration['n_train'], configuration['n_test'],
configuration['n_features'])

stats = {}
for estimator_conf in configuration['estimators']:

print("Benchmarking", estimator_conf['instance'])
estimator_conf['instance'].fit(X_train, y_train)
gc.collect()
a, b = benchmark_estimator(estimator_conf['instance'], X_test)
stats[estimator_conf['name']] = {'atomic': a, 'bulk': b}

cls_names = [estimator_conf['name'] for estimator_conf in configuration[
'estimators']]
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runtimes = [1e6 * stats[clf_name]['atomic'] for clf_name in cls_names]
boxplot_runtimes(runtimes, 'atomic', configuration)
runtimes = [1e6 * stats[clf_name]['bulk'] for clf_name in cls_names]
boxplot_runtimes(runtimes, 'bulk (%d)' % configuration['n_test'],

configuration)

def n_feature_influence(estimators, n_train, n_test, n_features, percentile):
"""
Estimate influence of the number of features on prediction time.

Parameters
----------

estimators : dict of (name (str), estimator) to benchmark
n_train : nber of training instances (int)
n_test : nber of testing instances (int)
n_features : list of feature-space dimensionality to test (int)
percentile : percentile at which to measure the speed (int [0-100])

Returns:
--------

percentiles : dict(estimator_name,
dict(n_features, percentile_perf_in_us))

"""
percentiles = defaultdict(defaultdict)
for n in n_features:

print("benchmarking with %d features" % n)
X_train, y_train, X_test, y_test = generate_dataset(n_train, n_test, n)
for cls_name, estimator in estimators.items():

estimator.fit(X_train, y_train)
gc.collect()
runtimes = bulk_benchmark_estimator(estimator, X_test, 30, False)
percentiles[cls_name][n] = 1e6 * scoreatpercentile(runtimes,

percentile)
return percentiles

def plot_n_features_influence(percentiles, percentile):
fig, ax1 = plt.subplots(figsize=(10, 6))
colors = ['r', 'g', 'b']
for i, cls_name in enumerate(percentiles.keys()):

x = np.array(sorted([n for n in percentiles[cls_name].keys()]))
y = np.array([percentiles[cls_name][n] for n in x])
plt.plot(x, y, color=colors[i], )

ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey',
alpha=0.5)

ax1.set_axisbelow(True)
ax1.set_title('Evolution of Prediction Time with #Features')
ax1.set_xlabel('#Features')
ax1.set_ylabel('Prediction Time at %d%%-ile (us)' % percentile)
plt.show()

def benchmark_throughputs(configuration, duration_secs=0.1):
"""benchmark throughput for different estimators."""
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X_train, y_train, X_test, y_test = generate_dataset(
configuration['n_train'], configuration['n_test'],
configuration['n_features'])

throughputs = dict()
for estimator_config in configuration['estimators']:

estimator_config['instance'].fit(X_train, y_train)
start_time = time.time()
n_predictions = 0
while (time.time() - start_time) < duration_secs:

estimator_config['instance'].predict(X_test[[0]])
n_predictions += 1

throughputs[estimator_config['name']] = n_predictions / duration_secs
return throughputs

def plot_benchmark_throughput(throughputs, configuration):
fig, ax = plt.subplots(figsize=(10, 6))
colors = ['r', 'g', 'b']
cls_infos = ['%s\n(%d %s)' % (estimator_conf['name'],

estimator_conf['complexity_computer'](
estimator_conf['instance']),

estimator_conf['complexity_label']) for
estimator_conf in configuration['estimators']]

cls_values = [throughputs[estimator_conf['name']] for estimator_conf in
configuration['estimators']]

plt.bar(range(len(throughputs)), cls_values, width=0.5, color=colors)
ax.set_xticks(np.linspace(0.25, len(throughputs) - 0.75, len(throughputs)))
ax.set_xticklabels(cls_infos, fontsize=10)
ymax = max(cls_values) * 1.2
ax.set_ylim((0, ymax))
ax.set_ylabel('Throughput (predictions/sec)')
ax.set_title('Prediction Throughput for different estimators (%d '

'features)' % configuration['n_features'])
plt.show()

###############################################################################
# main code

start_time = time.time()

# benchmark bulk/atomic prediction speed for various regressors
configuration = {

'n_train': int(1e3),
'n_test': int(1e2),
'n_features': int(1e2),
'estimators': [

{'name': 'Linear Model',
'instance': SGDRegressor(penalty='elasticnet', alpha=0.01,

l1_ratio=0.25, fit_intercept=True),
'complexity_label': 'non-zero coefficients',
'complexity_computer': lambda clf: np.count_nonzero(clf.coef_)},
{'name': 'RandomForest',
'instance': RandomForestRegressor(),
'complexity_label': 'estimators',
'complexity_computer': lambda clf: clf.n_estimators},
{'name': 'SVR',
'instance': SVR(kernel='rbf'),
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'complexity_label': 'support vectors',
'complexity_computer': lambda clf: len(clf.support_vectors_)},

]
}
benchmark(configuration)

# benchmark n_features influence on prediction speed
percentile = 90
percentiles = n_feature_influence({'ridge': Ridge()},

configuration['n_train'],
configuration['n_test'],
[100, 250, 500], percentile)

plot_n_features_influence(percentiles, percentile)

# benchmark throughput
throughputs = benchmark_throughputs(configuration)
plot_benchmark_throughput(throughputs, configuration)

stop_time = time.time()
print("example run in %.2fs" % (stop_time - start_time))

Total running time of the example: 2.76 seconds ( 0 minutes 2.76 seconds)

4.2.10 Libsvm GUI

A simple graphical frontend for Libsvm mainly intended for didactic purposes. You can create data points by point
and click and visualize the decision region induced by different kernels and parameter settings.

To create positive examples click the left mouse button; to create negative examples click the right button.

If all examples are from the same class, it uses a one-class SVM.

Python source code: svm_gui.py

from __future__ import division, print_function

print(__doc__)

# Author: Peter Prettenhoer <peter.prettenhofer@gmail.com>
#
# License: BSD 3 clause

import matplotlib
matplotlib.use('TkAgg')

from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from matplotlib.backends.backend_tkagg import NavigationToolbar2TkAgg
from matplotlib.figure import Figure
from matplotlib.contour import ContourSet

import Tkinter as Tk
import sys
import numpy as np

from sklearn import svm
from sklearn.datasets import dump_svmlight_file
from sklearn.externals.six.moves import xrange
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y_min, y_max = -50, 50
x_min, x_max = -50, 50

class Model(object):
"""The Model which hold the data. It implements the
observable in the observer pattern and notifies the
registered observers on change event.
"""

def __init__(self):
self.observers = []
self.surface = None
self.data = []
self.cls = None
self.surface_type = 0

def changed(self, event):
"""Notify the observers. """
for observer in self.observers:

observer.update(event, self)

def add_observer(self, observer):
"""Register an observer. """
self.observers.append(observer)

def set_surface(self, surface):
self.surface = surface

def dump_svmlight_file(self, file):
data = np.array(self.data)
X = data[:, 0:2]
y = data[:, 2]
dump_svmlight_file(X, y, file)

class Controller(object):
def __init__(self, model):

self.model = model
self.kernel = Tk.IntVar()
self.surface_type = Tk.IntVar()
# Whether or not a model has been fitted
self.fitted = False

def fit(self):
print("fit the model")
train = np.array(self.model.data)
X = train[:, 0:2]
y = train[:, 2]

C = float(self.complexity.get())
gamma = float(self.gamma.get())
coef0 = float(self.coef0.get())
degree = int(self.degree.get())
kernel_map = {0: "linear", 1: "rbf", 2: "poly"}
if len(np.unique(y)) == 1:

clf = svm.OneClassSVM(kernel=kernel_map[self.kernel.get()],
gamma=gamma, coef0=coef0, degree=degree)
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clf.fit(X)
else:

clf = svm.SVC(kernel=kernel_map[self.kernel.get()], C=C,
gamma=gamma, coef0=coef0, degree=degree)

clf.fit(X, y)
if hasattr(clf, 'score'):

print("Accuracy:", clf.score(X, y) * 100)
X1, X2, Z = self.decision_surface(clf)
self.model.clf = clf
self.model.set_surface((X1, X2, Z))
self.model.surface_type = self.surface_type.get()
self.fitted = True
self.model.changed("surface")

def decision_surface(self, cls):
delta = 1
x = np.arange(x_min, x_max + delta, delta)
y = np.arange(y_min, y_max + delta, delta)
X1, X2 = np.meshgrid(x, y)
Z = cls.decision_function(np.c_[X1.ravel(), X2.ravel()])
Z = Z.reshape(X1.shape)
return X1, X2, Z

def clear_data(self):
self.model.data = []
self.fitted = False
self.model.changed("clear")

def add_example(self, x, y, label):
self.model.data.append((x, y, label))
self.model.changed("example_added")

# update decision surface if already fitted.
self.refit()

def refit(self):
"""Refit the model if already fitted. """
if self.fitted:

self.fit()

class View(object):
"""Test docstring. """
def __init__(self, root, controller):

f = Figure()
ax = f.add_subplot(111)
ax.set_xticks([])
ax.set_yticks([])
ax.set_xlim((x_min, x_max))
ax.set_ylim((y_min, y_max))
canvas = FigureCanvasTkAgg(f, master=root)
canvas.show()
canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
canvas.mpl_connect('button_press_event', self.onclick)
toolbar = NavigationToolbar2TkAgg(canvas, root)
toolbar.update()
self.controllbar = ControllBar(root, controller)
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self.f = f
self.ax = ax
self.canvas = canvas
self.controller = controller
self.contours = []
self.c_labels = None
self.plot_kernels()

def plot_kernels(self):
self.ax.text(-50, -60, "Linear: $u^T v$")
self.ax.text(-20, -60, "RBF: $\exp (-\gamma \| u-v \|^2)$")
self.ax.text(10, -60, "Poly: $(\gamma \, u^T v + r)^d$")

def onclick(self, event):
if event.xdata and event.ydata:

if event.button == 1:
self.controller.add_example(event.xdata, event.ydata, 1)

elif event.button == 3:
self.controller.add_example(event.xdata, event.ydata, -1)

def update_example(self, model, idx):
x, y, l = model.data[idx]
if l == 1:

color = 'w'
elif l == -1:

color = 'k'
self.ax.plot([x], [y], "%so" % color, scalex=0.0, scaley=0.0)

def update(self, event, model):
if event == "examples_loaded":

for i in xrange(len(model.data)):
self.update_example(model, i)

if event == "example_added":
self.update_example(model, -1)

if event == "clear":
self.ax.clear()
self.ax.set_xticks([])
self.ax.set_yticks([])
self.contours = []
self.c_labels = None
self.plot_kernels()

if event == "surface":
self.remove_surface()
self.plot_support_vectors(model.clf.support_vectors_)
self.plot_decision_surface(model.surface, model.surface_type)

self.canvas.draw()

def remove_surface(self):
"""Remove old decision surface."""
if len(self.contours) > 0:

for contour in self.contours:
if isinstance(contour, ContourSet):

for lineset in contour.collections:
lineset.remove()
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else:
contour.remove()

self.contours = []

def plot_support_vectors(self, support_vectors):
"""Plot the support vectors by placing circles over the
corresponding data points and adds the circle collection
to the contours list."""
cs = self.ax.scatter(support_vectors[:, 0], support_vectors[:, 1],

s=80, edgecolors="k", facecolors="none")
self.contours.append(cs)

def plot_decision_surface(self, surface, type):
X1, X2, Z = surface
if type == 0:

levels = [-1.0, 0.0, 1.0]
linestyles = ['dashed', 'solid', 'dashed']
colors = 'k'
self.contours.append(self.ax.contour(X1, X2, Z, levels,

colors=colors,
linestyles=linestyles))

elif type == 1:
self.contours.append(self.ax.contourf(X1, X2, Z, 10,

cmap=matplotlib.cm.bone,
origin='lower', alpha=0.85))

self.contours.append(self.ax.contour(X1, X2, Z, [0.0], colors='k',
linestyles=['solid']))

else:
raise ValueError("surface type unknown")

class ControllBar(object):
def __init__(self, root, controller):

fm = Tk.Frame(root)
kernel_group = Tk.Frame(fm)
Tk.Radiobutton(kernel_group, text="Linear", variable=controller.kernel,

value=0, command=controller.refit).pack(anchor=Tk.W)
Tk.Radiobutton(kernel_group, text="RBF", variable=controller.kernel,

value=1, command=controller.refit).pack(anchor=Tk.W)
Tk.Radiobutton(kernel_group, text="Poly", variable=controller.kernel,

value=2, command=controller.refit).pack(anchor=Tk.W)
kernel_group.pack(side=Tk.LEFT)

valbox = Tk.Frame(fm)
controller.complexity = Tk.StringVar()
controller.complexity.set("1.0")
c = Tk.Frame(valbox)
Tk.Label(c, text="C:", anchor="e", width=7).pack(side=Tk.LEFT)
Tk.Entry(c, width=6, textvariable=controller.complexity).pack(

side=Tk.LEFT)
c.pack()

controller.gamma = Tk.StringVar()
controller.gamma.set("0.01")
g = Tk.Frame(valbox)
Tk.Label(g, text="gamma:", anchor="e", width=7).pack(side=Tk.LEFT)
Tk.Entry(g, width=6, textvariable=controller.gamma).pack(side=Tk.LEFT)
g.pack()
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controller.degree = Tk.StringVar()
controller.degree.set("3")
d = Tk.Frame(valbox)
Tk.Label(d, text="degree:", anchor="e", width=7).pack(side=Tk.LEFT)
Tk.Entry(d, width=6, textvariable=controller.degree).pack(side=Tk.LEFT)
d.pack()

controller.coef0 = Tk.StringVar()
controller.coef0.set("0")
r = Tk.Frame(valbox)
Tk.Label(r, text="coef0:", anchor="e", width=7).pack(side=Tk.LEFT)
Tk.Entry(r, width=6, textvariable=controller.coef0).pack(side=Tk.LEFT)
r.pack()
valbox.pack(side=Tk.LEFT)

cmap_group = Tk.Frame(fm)
Tk.Radiobutton(cmap_group, text="Hyperplanes",

variable=controller.surface_type, value=0,
command=controller.refit).pack(anchor=Tk.W)

Tk.Radiobutton(cmap_group, text="Surface",
variable=controller.surface_type, value=1,
command=controller.refit).pack(anchor=Tk.W)

cmap_group.pack(side=Tk.LEFT)

train_button = Tk.Button(fm, text='Fit', width=5,
command=controller.fit)

train_button.pack()
fm.pack(side=Tk.LEFT)
Tk.Button(fm, text='Clear', width=5,

command=controller.clear_data).pack(side=Tk.LEFT)

def get_parser():
from optparse import OptionParser
op = OptionParser()
op.add_option("--output",

action="store", type="str", dest="output",
help="Path where to dump data.")

return op

def main(argv):
op = get_parser()
opts, args = op.parse_args(argv[1:])
root = Tk.Tk()
model = Model()
controller = Controller(model)
root.wm_title("Scikit-learn Libsvm GUI")
view = View(root, controller)
model.add_observer(view)
Tk.mainloop()

if opts.output:
model.dump_svmlight_file(opts.output)

if __name__ == "__main__":
main(sys.argv)
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4.2.11 Out-of-core classification of text documents

This is an example showing how scikit-learn can be used for classification using an out-of-core approach: learning
from data that doesn’t fit into main memory. We make use of an online classifier, i.e., one that supports the partial_fit
method, that will be fed with batches of examples. To guarantee that the features space remains the same over time
we leverage a HashingVectorizer that will project each example into the same feature space. This is especially useful
in the case of text classification where new features (words) may appear in each batch.

The dataset used in this example is Reuters-21578 as provided by the UCI ML repository. It will be automatically
downloaded and uncompressed on first run.

The plot represents the learning curve of the classifier: the evolution of classification accuracy over the course of the
mini-batches. Accuracy is measured on the first 1000 samples, held out as a validation set.

To limit the memory consumption, we queue examples up to a fixed amount before feeding them to the learner.

•

•
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•

•

Script output:

Test set is 975 documents (114 positive)
Passive-Aggressive classifier : 985 train docs ( 132 positive) 975 test docs ( 114 positive) accuracy: 0.941 in 1.15s ( 853 docs/s)

Perceptron classifier : 985 train docs ( 132 positive) 975 test docs ( 114 positive) accuracy: 0.919 in 1.16s ( 852 docs/s)
NB Multinomial classifier : 985 train docs ( 132 positive) 975 test docs ( 114 positive) accuracy: 0.884 in 1.18s ( 832 docs/s)

SGD classifier : 985 train docs ( 132 positive) 975 test docs ( 114 positive) accuracy: 0.930 in 1.19s ( 829 docs/s)

Passive-Aggressive classifier : 3383 train docs ( 396 positive) 975 test docs ( 114 positive) accuracy: 0.960 in 3.06s ( 1105 docs/s)
Perceptron classifier : 3383 train docs ( 396 positive) 975 test docs ( 114 positive) accuracy: 0.938 in 3.06s ( 1104 docs/s)

NB Multinomial classifier : 3383 train docs ( 396 positive) 975 test docs ( 114 positive) accuracy: 0.889 in 3.09s ( 1096 docs/s)
SGD classifier : 3383 train docs ( 396 positive) 975 test docs ( 114 positive) accuracy: 0.956 in 3.09s ( 1095 docs/s)

Passive-Aggressive classifier : 6203 train docs ( 784 positive) 975 test docs ( 114 positive) accuracy: 0.960 in 5.26s ( 1178 docs/s)
Perceptron classifier : 6203 train docs ( 784 positive) 975 test docs ( 114 positive) accuracy: 0.948 in 5.26s ( 1178 docs/s)

NB Multinomial classifier : 6203 train docs ( 784 positive) 975 test docs ( 114 positive) accuracy: 0.914 in 5.29s ( 1172 docs/s)
SGD classifier : 6203 train docs ( 784 positive) 975 test docs ( 114 positive) accuracy: 0.969 in 5.29s ( 1171 docs/s)

Passive-Aggressive classifier : 9033 train docs ( 1079 positive) 975 test docs ( 114 positive) accuracy: 0.968 in 8.23s ( 1098 docs/s)
Perceptron classifier : 9033 train docs ( 1079 positive) 975 test docs ( 114 positive) accuracy: 0.963 in 8.23s ( 1097 docs/s)

NB Multinomial classifier : 9033 train docs ( 1079 positive) 975 test docs ( 114 positive) accuracy: 0.923 in 8.26s ( 1093 docs/s)
SGD classifier : 9033 train docs ( 1079 positive) 975 test docs ( 114 positive) accuracy: 0.965 in 8.27s ( 1092 docs/s)

Passive-Aggressive classifier : 11951 train docs ( 1440 positive) 975 test docs ( 114 positive) accuracy: 0.969 in 10.84s ( 1102 docs/s)
Perceptron classifier : 11951 train docs ( 1440 positive) 975 test docs ( 114 positive) accuracy: 0.962 in 10.85s ( 1101 docs/s)
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NB Multinomial classifier : 11951 train docs ( 1440 positive) 975 test docs ( 114 positive) accuracy: 0.935 in 10.95s ( 1091 docs/s)
SGD classifier : 11951 train docs ( 1440 positive) 975 test docs ( 114 positive) accuracy: 0.967 in 10.97s ( 1089 docs/s)

Passive-Aggressive classifier : 14736 train docs ( 1810 positive) 975 test docs ( 114 positive) accuracy: 0.969 in 13.78s ( 1069 docs/s)
Perceptron classifier : 14736 train docs ( 1810 positive) 975 test docs ( 114 positive) accuracy: 0.950 in 13.78s ( 1069 docs/s)

NB Multinomial classifier : 14736 train docs ( 1810 positive) 975 test docs ( 114 positive) accuracy: 0.934 in 13.80s ( 1067 docs/s)
SGD classifier : 14736 train docs ( 1810 positive) 975 test docs ( 114 positive) accuracy: 0.964 in 13.81s ( 1067 docs/s)

Passive-Aggressive classifier : 17179 train docs ( 2101 positive) 975 test docs ( 114 positive) accuracy: 0.973 in 16.45s ( 1044 docs/s)
Perceptron classifier : 17179 train docs ( 2101 positive) 975 test docs ( 114 positive) accuracy: 0.959 in 16.45s ( 1044 docs/s)

NB Multinomial classifier : 17179 train docs ( 2101 positive) 975 test docs ( 114 positive) accuracy: 0.936 in 16.49s ( 1042 docs/s)
SGD classifier : 17179 train docs ( 2101 positive) 975 test docs ( 114 positive) accuracy: 0.961 in 16.49s ( 1041 docs/s)

Python source code: plot_out_of_core_classification.py

# Authors: Eustache Diemert <eustache@diemert.fr>
# @FedericoV <https://github.com/FedericoV/>
# License: BSD 3 clause

from __future__ import print_function

from glob import glob
import itertools
import os.path
import re
import tarfile
import time

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rcParams

from sklearn.externals.six.moves import html_parser
from sklearn.externals.six.moves import urllib
from sklearn.datasets import get_data_home
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.linear_model import SGDClassifier
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.linear_model import Perceptron
from sklearn.naive_bayes import MultinomialNB

def _not_in_sphinx():
# Hack to detect whether we are running by the sphinx builder
return '__file__' in globals()

###############################################################################
# Reuters Dataset related routines
###############################################################################

class ReutersParser(html_parser.HTMLParser):
"""Utility class to parse a SGML file and yield documents one at a time."""

def __init__(self, encoding='latin-1'):
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html_parser.HTMLParser.__init__(self)
self._reset()
self.encoding = encoding

def handle_starttag(self, tag, attrs):
method = 'start_' + tag
getattr(self, method, lambda x: None)(attrs)

def handle_endtag(self, tag):
method = 'end_' + tag
getattr(self, method, lambda: None)()

def _reset(self):
self.in_title = 0
self.in_body = 0
self.in_topics = 0
self.in_topic_d = 0
self.title = ""
self.body = ""
self.topics = []
self.topic_d = ""

def parse(self, fd):
self.docs = []
for chunk in fd:

self.feed(chunk.decode(self.encoding))
for doc in self.docs:

yield doc
self.docs = []

self.close()

def handle_data(self, data):
if self.in_body:

self.body += data
elif self.in_title:

self.title += data
elif self.in_topic_d:

self.topic_d += data

def start_reuters(self, attributes):
pass

def end_reuters(self):
self.body = re.sub(r'\s+', r' ', self.body)
self.docs.append({'title': self.title,

'body': self.body,
'topics': self.topics})

self._reset()

def start_title(self, attributes):
self.in_title = 1

def end_title(self):
self.in_title = 0

def start_body(self, attributes):
self.in_body = 1
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def end_body(self):
self.in_body = 0

def start_topics(self, attributes):
self.in_topics = 1

def end_topics(self):
self.in_topics = 0

def start_d(self, attributes):
self.in_topic_d = 1

def end_d(self):
self.in_topic_d = 0
self.topics.append(self.topic_d)
self.topic_d = ""

def stream_reuters_documents(data_path=None):
"""Iterate over documents of the Reuters dataset.

The Reuters archive will automatically be downloaded and uncompressed if
the `data_path` directory does not exist.

Documents are represented as dictionaries with 'body' (str),
'title' (str), 'topics' (list(str)) keys.

"""

DOWNLOAD_URL = ('http://archive.ics.uci.edu/ml/machine-learning-databases/'
'reuters21578-mld/reuters21578.tar.gz')

ARCHIVE_FILENAME = 'reuters21578.tar.gz'

if data_path is None:
data_path = os.path.join(get_data_home(), "reuters")

if not os.path.exists(data_path):
"""Download the dataset."""
print("downloading dataset (once and for all) into %s" %

data_path)
os.mkdir(data_path)

def progress(blocknum, bs, size):
total_sz_mb = '%.2f MB' % (size / 1e6)
current_sz_mb = '%.2f MB' % ((blocknum * bs) / 1e6)
if _not_in_sphinx():

print('\rdownloaded %s / %s' % (current_sz_mb, total_sz_mb),
end='')

archive_path = os.path.join(data_path, ARCHIVE_FILENAME)
urllib.request.urlretrieve(DOWNLOAD_URL, filename=archive_path,

reporthook=progress)
if _not_in_sphinx():

print('\r', end='')
print("untarring Reuters dataset...")
tarfile.open(archive_path, 'r:gz').extractall(data_path)
print("done.")

parser = ReutersParser()
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for filename in glob(os.path.join(data_path, "*.sgm")):
for doc in parser.parse(open(filename, 'rb')):

yield doc

###############################################################################
# Main
###############################################################################
# Create the vectorizer and limit the number of features to a reasonable
# maximum
vectorizer = HashingVectorizer(decode_error='ignore', n_features=2 ** 18,

non_negative=True)

# Iterator over parsed Reuters SGML files.
data_stream = stream_reuters_documents()

# We learn a binary classification between the "acq" class and all the others.
# "acq" was chosen as it is more or less evenly distributed in the Reuters
# files. For other datasets, one should take care of creating a test set with
# a realistic portion of positive instances.
all_classes = np.array([0, 1])
positive_class = 'acq'

# Here are some classifiers that support the `partial_fit` method
partial_fit_classifiers = {

'SGD': SGDClassifier(),
'Perceptron': Perceptron(),
'NB Multinomial': MultinomialNB(alpha=0.01),
'Passive-Aggressive': PassiveAggressiveClassifier(),

}

def get_minibatch(doc_iter, size, pos_class=positive_class):
"""Extract a minibatch of examples, return a tuple X_text, y.

Note: size is before excluding invalid docs with no topics assigned.

"""
data = [(u'{title}\n\n{body}'.format(**doc), pos_class in doc['topics'])

for doc in itertools.islice(doc_iter, size)
if doc['topics']]

if not len(data):
return np.asarray([], dtype=int), np.asarray([], dtype=int)

X_text, y = zip(*data)
return X_text, np.asarray(y, dtype=int)

def iter_minibatches(doc_iter, minibatch_size):
"""Generator of minibatches."""
X_text, y = get_minibatch(doc_iter, minibatch_size)
while len(X_text):

yield X_text, y
X_text, y = get_minibatch(doc_iter, minibatch_size)

# test data statistics
test_stats = {'n_test': 0, 'n_test_pos': 0}
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# First we hold out a number of examples to estimate accuracy
n_test_documents = 1000
tick = time.time()
X_test_text, y_test = get_minibatch(data_stream, 1000)
parsing_time = time.time() - tick
tick = time.time()
X_test = vectorizer.transform(X_test_text)
vectorizing_time = time.time() - tick
test_stats['n_test'] += len(y_test)
test_stats['n_test_pos'] += sum(y_test)
print("Test set is %d documents (%d positive)" % (len(y_test), sum(y_test)))

def progress(cls_name, stats):
"""Report progress information, return a string."""
duration = time.time() - stats['t0']
s = "%20s classifier : \t" % cls_name
s += "%(n_train)6d train docs (%(n_train_pos)6d positive) " % stats
s += "%(n_test)6d test docs (%(n_test_pos)6d positive) " % test_stats
s += "accuracy: %(accuracy).3f " % stats
s += "in %.2fs (%5d docs/s)" % (duration, stats['n_train'] / duration)
return s

cls_stats = {}

for cls_name in partial_fit_classifiers:
stats = {'n_train': 0, 'n_train_pos': 0,

'accuracy': 0.0, 'accuracy_history': [(0, 0)], 't0': time.time(),
'runtime_history': [(0, 0)], 'total_fit_time': 0.0}

cls_stats[cls_name] = stats

get_minibatch(data_stream, n_test_documents)
# Discard test set

# We will feed the classifier with mini-batches of 1000 documents; this means
# we have at most 1000 docs in memory at any time. The smaller the document
# batch, the bigger the relative overhead of the partial fit methods.
minibatch_size = 1000

# Create the data_stream that parses Reuters SGML files and iterates on
# documents as a stream.
minibatch_iterators = iter_minibatches(data_stream, minibatch_size)
total_vect_time = 0.0

# Main loop : iterate on mini-batchs of examples
for i, (X_train_text, y_train) in enumerate(minibatch_iterators):

tick = time.time()
X_train = vectorizer.transform(X_train_text)
total_vect_time += time.time() - tick

for cls_name, cls in partial_fit_classifiers.items():
tick = time.time()
# update estimator with examples in the current mini-batch
cls.partial_fit(X_train, y_train, classes=all_classes)

# accumulate test accuracy stats
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cls_stats[cls_name]['total_fit_time'] += time.time() - tick
cls_stats[cls_name]['n_train'] += X_train.shape[0]
cls_stats[cls_name]['n_train_pos'] += sum(y_train)
tick = time.time()
cls_stats[cls_name]['accuracy'] = cls.score(X_test, y_test)
cls_stats[cls_name]['prediction_time'] = time.time() - tick
acc_history = (cls_stats[cls_name]['accuracy'],

cls_stats[cls_name]['n_train'])
cls_stats[cls_name]['accuracy_history'].append(acc_history)
run_history = (cls_stats[cls_name]['accuracy'],

total_vect_time + cls_stats[cls_name]['total_fit_time'])
cls_stats[cls_name]['runtime_history'].append(run_history)

if i % 3 == 0:
print(progress(cls_name, cls_stats[cls_name]))

if i % 3 == 0:
print('\n')

###############################################################################
# Plot results
###############################################################################

def plot_accuracy(x, y, x_legend):
"""Plot accuracy as a function of x."""
x = np.array(x)
y = np.array(y)
plt.title('Classification accuracy as a function of %s' % x_legend)
plt.xlabel('%s' % x_legend)
plt.ylabel('Accuracy')
plt.grid(True)
plt.plot(x, y)

rcParams['legend.fontsize'] = 10
cls_names = list(sorted(cls_stats.keys()))

# Plot accuracy evolution
plt.figure()
for _, stats in sorted(cls_stats.items()):

# Plot accuracy evolution with #examples
accuracy, n_examples = zip(*stats['accuracy_history'])
plot_accuracy(n_examples, accuracy, "training examples (#)")
ax = plt.gca()
ax.set_ylim((0.8, 1))

plt.legend(cls_names, loc='best')

plt.figure()
for _, stats in sorted(cls_stats.items()):

# Plot accuracy evolution with runtime
accuracy, runtime = zip(*stats['runtime_history'])
plot_accuracy(runtime, accuracy, 'runtime (s)')
ax = plt.gca()
ax.set_ylim((0.8, 1))

plt.legend(cls_names, loc='best')

# Plot fitting times
plt.figure()
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fig = plt.gcf()
cls_runtime = []
for cls_name, stats in sorted(cls_stats.items()):

cls_runtime.append(stats['total_fit_time'])

cls_runtime.append(total_vect_time)
cls_names.append('Vectorization')
bar_colors = rcParams['axes.color_cycle'][:len(cls_names)]

ax = plt.subplot(111)
rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5,

color=bar_colors)

ax.set_xticks(np.linspace(0.25, len(cls_names) - 0.75, len(cls_names)))
ax.set_xticklabels(cls_names, fontsize=10)
ymax = max(cls_runtime) * 1.2
ax.set_ylim((0, ymax))
ax.set_ylabel('runtime (s)')
ax.set_title('Training Times')

def autolabel(rectangles):
"""attach some text vi autolabel on rectangles."""
for rect in rectangles:

height = rect.get_height()
ax.text(rect.get_x() + rect.get_width() / 2.,

1.05 * height, '%.4f' % height,
ha='center', va='bottom')

autolabel(rectangles)
plt.show()

# Plot prediction times
plt.figure()
#fig = plt.gcf()
cls_runtime = []
cls_names = list(sorted(cls_stats.keys()))
for cls_name, stats in sorted(cls_stats.items()):

cls_runtime.append(stats['prediction_time'])
cls_runtime.append(parsing_time)
cls_names.append('Read/Parse\n+Feat.Extr.')
cls_runtime.append(vectorizing_time)
cls_names.append('Hashing\n+Vect.')
bar_colors = rcParams['axes.color_cycle'][:len(cls_names)]

ax = plt.subplot(111)
rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5,

color=bar_colors)

ax.set_xticks(np.linspace(0.25, len(cls_names) - 0.75, len(cls_names)))
ax.set_xticklabels(cls_names, fontsize=8)
plt.setp(plt.xticks()[1], rotation=30)
ymax = max(cls_runtime) * 1.2
ax.set_ylim((0, ymax))
ax.set_ylabel('runtime (s)')
ax.set_title('Prediction Times (%d instances)' % n_test_documents)
autolabel(rectangles)
plt.show()
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Total running time of the example: 17.87 seconds ( 0 minutes 17.87 seconds)

4.3 Biclustering

Examples concerning the sklearn.cluster.bicluster module.

4.3.1 A demo of the Spectral Co-Clustering algorithm

This example demonstrates how to generate a dataset and bicluster it using the the Spectral Co-Clustering algorithm.

The dataset is generated using the make_biclusters function, which creates a matrix of small values and im-
plants bicluster with large values. The rows and columns are then shuffled and passed to the Spectral Co-Clustering
algorithm. Rearranging the shuffled matrix to make biclusters contiguous shows how accurately the algorithm found
the biclusters.

•

•
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•

Script output:

consensus score: 1.000

Python source code: plot_spectral_coclustering.py

print(__doc__)

# Author: Kemal Eren <kemal@kemaleren.com>
# License: BSD 3 clause

import numpy as np
from matplotlib import pyplot as plt

from sklearn.datasets import make_biclusters
from sklearn.datasets import samples_generator as sg
from sklearn.cluster.bicluster import SpectralCoclustering
from sklearn.metrics import consensus_score

data, rows, columns = make_biclusters(
shape=(300, 300), n_clusters=5, noise=5,
shuffle=False, random_state=0)

plt.matshow(data, cmap=plt.cm.Blues)
plt.title("Original dataset")

data, row_idx, col_idx = sg._shuffle(data, random_state=0)
plt.matshow(data, cmap=plt.cm.Blues)
plt.title("Shuffled dataset")

model = SpectralCoclustering(n_clusters=5, random_state=0)
model.fit(data)
score = consensus_score(model.biclusters_,

(rows[:, row_idx], columns[:, col_idx]))

print("consensus score: {:.3f}".format(score))

fit_data = data[np.argsort(model.row_labels_)]
fit_data = fit_data[:, np.argsort(model.column_labels_)]
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plt.matshow(fit_data, cmap=plt.cm.Blues)
plt.title("After biclustering; rearranged to show biclusters")

plt.show()

Total running time of the example: 0.19 seconds ( 0 minutes 0.19 seconds)

4.3.2 A demo of the Spectral Biclustering algorithm

This example demonstrates how to generate a checkerboard dataset and bicluster it using the Spectral Biclustering
algorithm.

The data is generated with the make_checkerboard function, then shuffled and passed to the Spectral Biclustering
algorithm. The rows and columns of the shuffled matrix are rearranged to show the biclusters found by the algorithm.

The outer product of the row and column label vectors shows a representation of the checkerboard structure.

•

•
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•

•

Script output:

consensus score: 1.0

Python source code: plot_spectral_biclustering.py

print(__doc__)

# Author: Kemal Eren <kemal@kemaleren.com>
# License: BSD 3 clause

import numpy as np
from matplotlib import pyplot as plt

from sklearn.datasets import make_checkerboard
from sklearn.datasets import samples_generator as sg
from sklearn.cluster.bicluster import SpectralBiclustering
from sklearn.metrics import consensus_score

n_clusters = (4, 3)
data, rows, columns = make_checkerboard(
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shape=(300, 300), n_clusters=n_clusters, noise=10,
shuffle=False, random_state=0)

plt.matshow(data, cmap=plt.cm.Blues)
plt.title("Original dataset")

data, row_idx, col_idx = sg._shuffle(data, random_state=0)
plt.matshow(data, cmap=plt.cm.Blues)
plt.title("Shuffled dataset")

model = SpectralBiclustering(n_clusters=n_clusters, method='log',
random_state=0)

model.fit(data)
score = consensus_score(model.biclusters_,

(rows[:, row_idx], columns[:, col_idx]))

print("consensus score: {:.1f}".format(score))

fit_data = data[np.argsort(model.row_labels_)]
fit_data = fit_data[:, np.argsort(model.column_labels_)]

plt.matshow(fit_data, cmap=plt.cm.Blues)
plt.title("After biclustering; rearranged to show biclusters")

plt.matshow(np.outer(np.sort(model.row_labels_) + 1,
np.sort(model.column_labels_) + 1),

cmap=plt.cm.Blues)
plt.title("Checkerboard structure of rearranged data")

plt.show()

Total running time of the example: 0.58 seconds ( 0 minutes 0.58 seconds)

4.3.3 Biclustering documents with the Spectral Co-clustering algorithm

This example demonstrates the Spectral Co-clustering algorithm on the twenty newsgroups dataset. The ‘comp.os.ms-
windows.misc’ category is excluded because it contains many posts containing nothing but data.

The TF-IDF vectorized posts form a word frequency matrix, which is then biclustered using Dhillon’s Spectral Co-
Clustering algorithm. The resulting document-word biclusters indicate subsets words used more often in those subsets
documents.

For a few of the best biclusters, its most common document categories and its ten most important words get printed.
The best biclusters are determined by their normalized cut. The best words are determined by comparing their sums
inside and outside the bicluster.

For comparison, the documents are also clustered using MiniBatchKMeans. The document clusters derived from the
biclusters achieve a better V-measure than clusters found by MiniBatchKMeans.

Output:

Vectorizing...
Coclustering...
Done in 9.53s. V-measure: 0.4455
MiniBatchKMeans...
Done in 12.00s. V-measure: 0.3309

Best biclusters:
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----------------
bicluster 0 : 1951 documents, 4373 words
categories : 23% talk.politics.guns, 19% talk.politics.misc, 14% sci.med
words : gun, guns, geb, banks, firearms, drugs, gordon, clinton, cdt, amendment

bicluster 1 : 1165 documents, 3304 words
categories : 29% talk.politics.mideast, 26% soc.religion.christian, 25% alt.atheism
words : god, jesus, christians, atheists, kent, sin, morality, belief, resurrection, marriage

bicluster 2 : 2219 documents, 2830 words
categories : 18% comp.sys.mac.hardware, 16% comp.sys.ibm.pc.hardware, 16% comp.graphics
words : voltage, dsp, board, receiver, circuit, shipping, packages, stereo, compression, package

bicluster 3 : 1860 documents, 2745 words
categories : 26% rec.motorcycles, 23% rec.autos, 13% misc.forsale
words : bike, car, dod, engine, motorcycle, ride, honda, cars, bmw, bikes

bicluster 4 : 12 documents, 155 words
categories : 100% rec.sport.hockey
words : scorer, unassisted, reichel, semak, sweeney, kovalenko, ricci, audette, momesso, nedved

Python source code: bicluster_newsgroups.py

from __future__ import print_function

print(__doc__)

from collections import defaultdict
import operator
import re
from time import time

import numpy as np

from sklearn.cluster.bicluster import SpectralCoclustering
from sklearn.cluster import MiniBatchKMeans
from sklearn.externals.six import iteritems
from sklearn.datasets.twenty_newsgroups import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.cluster import v_measure_score

def number_aware_tokenizer(doc):
""" Tokenizer that maps all numeric tokens to a placeholder.

For many applications, tokens that begin with a number are not directly
useful, but the fact that such a token exists can be relevant. By applying
this form of dimensionality reduction, some methods may perform better.
"""
token_pattern = re.compile(u'(?u)\\b\\w\\w+\\b')
tokens = token_pattern.findall(doc)
tokens = ["#NUMBER" if token[0] in "0123456789_" else token

for token in tokens]
return tokens

# exclude 'comp.os.ms-windows.misc'
categories = ['alt.atheism', 'comp.graphics',

'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware',
'comp.windows.x', 'misc.forsale', 'rec.autos',
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'rec.motorcycles', 'rec.sport.baseball',
'rec.sport.hockey', 'sci.crypt', 'sci.electronics',
'sci.med', 'sci.space', 'soc.religion.christian',
'talk.politics.guns', 'talk.politics.mideast',
'talk.politics.misc', 'talk.religion.misc']

newsgroups = fetch_20newsgroups(categories=categories)
y_true = newsgroups.target

vectorizer = TfidfVectorizer(stop_words='english', min_df=5,
tokenizer=number_aware_tokenizer)

cocluster = SpectralCoclustering(n_clusters=len(categories),
svd_method='arpack', random_state=0)

kmeans = MiniBatchKMeans(n_clusters=len(categories), batch_size=20000,
random_state=0)

print("Vectorizing...")
X = vectorizer.fit_transform(newsgroups.data)

print("Coclustering...")
start_time = time()
cocluster.fit(X)
y_cocluster = cocluster.row_labels_
print("Done in {:.2f}s. V-measure: {:.4f}".format(

time() - start_time,
v_measure_score(y_cocluster, y_true)))

print("MiniBatchKMeans...")
start_time = time()
y_kmeans = kmeans.fit_predict(X)
print("Done in {:.2f}s. V-measure: {:.4f}".format(

time() - start_time,
v_measure_score(y_kmeans, y_true)))

feature_names = vectorizer.get_feature_names()
document_names = list(newsgroups.target_names[i] for i in newsgroups.target)

def bicluster_ncut(i):
rows, cols = cocluster.get_indices(i)
if not (np.any(rows) and np.any(cols)):

import sys
return sys.float_info.max

row_complement = np.nonzero(np.logical_not(cocluster.rows_[i]))[0]
col_complement = np.nonzero(np.logical_not(cocluster.columns_[i]))[0]
# Note: the following is identical to X[rows[:, np.newaxis], cols].sum() but
# much faster in scipy <= 0.16
weight = X[rows][:, cols].sum()
cut = (X[row_complement][:, cols].sum() +

X[rows][:, col_complement].sum())
return cut / weight

def most_common(d):
"""Items of a defaultdict(int) with the highest values.

Like Counter.most_common in Python >=2.7.
"""
return sorted(iteritems(d), key=operator.itemgetter(1), reverse=True)
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bicluster_ncuts = list(bicluster_ncut(i)
for i in range(len(newsgroups.target_names)))

best_idx = np.argsort(bicluster_ncuts)[:5]

print()
print("Best biclusters:")
print("----------------")
for idx, cluster in enumerate(best_idx):

n_rows, n_cols = cocluster.get_shape(cluster)
cluster_docs, cluster_words = cocluster.get_indices(cluster)
if not len(cluster_docs) or not len(cluster_words):

continue

# categories
counter = defaultdict(int)
for i in cluster_docs:

counter[document_names[i]] += 1
cat_string = ", ".join("{:.0f}% {}".format(float(c) / n_rows * 100, name)

for name, c in most_common(counter)[:3])

# words
out_of_cluster_docs = cocluster.row_labels_ != cluster
out_of_cluster_docs = np.where(out_of_cluster_docs)[0]
word_col = X[:, cluster_words]
word_scores = np.array(word_col[cluster_docs, :].sum(axis=0) -

word_col[out_of_cluster_docs, :].sum(axis=0))
word_scores = word_scores.ravel()
important_words = list(feature_names[cluster_words[i]]

for i in word_scores.argsort()[:-11:-1])

print("bicluster {} : {} documents, {} words".format(
idx, n_rows, n_cols))

print("categories : {}".format(cat_string))
print("words : {}\n".format(', '.join(important_words)))

4.4 Calibration

Examples illustrating the calibration of predicted probabilities of classifiers.

4.4.1 Comparison of Calibration of Classifiers

Well calibrated classifiers are probabilistic classifiers for which the output of the predict_proba method can be directly
interpreted as a confidence level. For instance a well calibrated (binary) classifier should classify the samples such that
among the samples to which it gave a predict_proba value close to 0.8, approx. 80% actually belong to the positive
class.

LogisticRegression returns well calibrated predictions as it directly optimizes log-loss. In contrast, the other methods
return biased probilities, with different biases per method:

• GaussianNaiveBayes tends to push probabilties to 0 or 1 (note the counts in the histograms). This is mainly
because it makes the assumption that features are conditionally independent given the class, which is not the
case in this dataset which contains 2 redundant features.
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• RandomForestClassifier shows the opposite behavior: the histograms show peaks at approx. 0.2 and 0.9 prob-
ability, while probabilities close to 0 or 1 are very rare. An explanation for this is given by Niculescu-Mizil
and Caruana [1]: “Methods such as bagging and random forests that average predictions from a base set of
models can have difficulty making predictions near 0 and 1 because variance in the underlying base models will
bias predictions that should be near zero or one away from these values. Because predictions are restricted to
the interval [0,1], errors caused by variance tend to be one- sided near zero and one. For example, if a model
should predict p = 0 for a case, the only way bagging can achieve this is if all bagged trees predict zero. If we
add noise to the trees that bagging is averaging over, this noise will cause some trees to predict values larger
than 0 for this case, thus moving the average prediction of the bagged ensemble away from 0. We observe this
effect most strongly with random forests because the base-level trees trained with random forests have relatively
high variance due to feature subseting.” As a result, the calibration curve shows a characteristic sigmoid shape,
indicating that the classifier could trust its “intuition” more and return probabilties closer to 0 or 1 typically.

• Support Vector Classification (SVC) shows an even more sigmoid curve as the RandomForestClassifier, which is
typical for maximum-margin methods (compare Niculescu-Mizil and Caruana [1]), which focus on hard samples
that are close to the decision boundary (the support vectors).

References:
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Python source code: plot_compare_calibration.py

print(__doc__)

# Author: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
# License: BSD Style.

import numpy as np
np.random.seed(0)

import matplotlib.pyplot as plt

from sklearn import datasets
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import LogisticRegression
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from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import LinearSVC
from sklearn.calibration import calibration_curve

X, y = datasets.make_classification(n_samples=100000, n_features=20,
n_informative=2, n_redundant=2)

train_samples = 100 # Samples used for training the models

X_train = X[:train_samples]
X_test = X[train_samples:]
y_train = y[:train_samples]
y_test = y[train_samples:]

# Create classifiers
lr = LogisticRegression()
gnb = GaussianNB()
svc = LinearSVC(C=1.0)
rfc = RandomForestClassifier(n_estimators=100)

###############################################################################
# Plot calibration plots

plt.figure(figsize=(10, 10))
ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
ax2 = plt.subplot2grid((3, 1), (2, 0))

ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated")
for clf, name in [(lr, 'Logistic'),

(gnb, 'Naive Bayes'),
(svc, 'Support Vector Classification'),
(rfc, 'Random Forest')]:

clf.fit(X_train, y_train)
if hasattr(clf, "predict_proba"):

prob_pos = clf.predict_proba(X_test)[:, 1]
else: # use decision function

prob_pos = clf.decision_function(X_test)
prob_pos = \

(prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min())
fraction_of_positives, mean_predicted_value = \

calibration_curve(y_test, prob_pos, n_bins=10)

ax1.plot(mean_predicted_value, fraction_of_positives, "s-",
label="%s" % (name, ))

ax2.hist(prob_pos, range=(0, 1), bins=10, label=name,
histtype="step", lw=2)

ax1.set_ylabel("Fraction of positives")
ax1.set_ylim([-0.05, 1.05])
ax1.legend(loc="lower right")
ax1.set_title('Calibration plots (reliability curve)')

ax2.set_xlabel("Mean predicted value")
ax2.set_ylabel("Count")
ax2.legend(loc="upper center", ncol=2)
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plt.tight_layout()
plt.show()

Total running time of the example: 2.81 seconds ( 0 minutes 2.81 seconds)

4.4.2 Probability Calibration curves

When performing classification one often wants to predict not only the class label, but also the associated probability.
This probability gives some kind of confidence on the prediction. This example demonstrates how to display how well
calibrated the predicted probabilities are and how to calibrate an uncalibrated classifier.

The experiment is performed on an artificial dataset for binary classification with 100.000 samples (1.000 of them are
used for model fitting) with 20 features. Of the 20 features, only 2 are informative and 10 are redundant. The first
figure shows the estimated probabilities obtained with logistic regression, Gaussian naive Bayes, and Gaussian naive
Bayes with both isotonic calibration and sigmoid calibration. The calibration performance is evaluated with Brier
score, reported in the legend (the smaller the better). One can observe here that logistic regression is well calibrated
while raw Gaussian naive Bayes performs very badly. This is because of the redundant features which violate the
assumption of feature-independence and result in an overly confident classifier, which is indicated by the typical
transposed-sigmoid curve.

Calibration of the probabilities of Gaussian naive Bayes with isotonic regression can fix this issue as can be seen from
the nearly diagonal calibration curve. Sigmoid calibration also improves the brier score slightly, albeit not as strongly
as the non-parametric isotonic regression. This can be attributed to the fact that we have plenty of calibration data such
that the greater flexibility of the non-parametric model can be exploited.

The second figure shows the calibration curve of a linear support-vector classifier (LinearSVC). LinearSVC shows
the opposite behavior as Gaussian naive Bayes: the calibration curve has a sigmoid curve, which is typical for an
under-confident classifier. In the case of LinearSVC, this is caused by the margin property of the hinge loss, which
lets the model focus on hard samples that are close to the decision boundary (the support vectors).

Both kinds of calibration can fix this issue and yield nearly identical results. This shows that sigmoid calibration can
deal with situations where the calibration curve of the base classifier is sigmoid (e.g., for LinearSVC) but not where it
is transposed-sigmoid (e.g., Gaussian naive Bayes).

•
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Script output:

Logistic:
Brier: 0.099
Precision: 0.872
Recall: 0.851
F1: 0.862

Naive Bayes:
Brier: 0.118
Precision: 0.857
Recall: 0.876
F1: 0.867

Naive Bayes + Isotonic:
Brier: 0.098
Precision: 0.883
Recall: 0.836
F1: 0.859

Naive Bayes + Sigmoid:
Brier: 0.109
Precision: 0.861
Recall: 0.871
F1: 0.866

Logistic:
Brier: 0.099
Precision: 0.872
Recall: 0.851
F1: 0.862

SVC:
Brier: 0.163
Precision: 0.872
Recall: 0.852
F1: 0.862

SVC + Isotonic:
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Brier: 0.100
Precision: 0.853
Recall: 0.878
F1: 0.865

SVC + Sigmoid:
Brier: 0.099
Precision: 0.874
Recall: 0.849
F1: 0.861

Python source code: plot_calibration_curve.py

print(__doc__)

# Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
# License: BSD Style.

import matplotlib.pyplot as plt

from sklearn import datasets
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import LinearSVC
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import (brier_score_loss, precision_score, recall_score,

f1_score)
from sklearn.calibration import CalibratedClassifierCV, calibration_curve
from sklearn.cross_validation import train_test_split

# Create dataset of classification task with many redundant and few
# informative features
X, y = datasets.make_classification(n_samples=100000, n_features=20,

n_informative=2, n_redundant=10,
random_state=42)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.99,
random_state=42)

def plot_calibration_curve(est, name, fig_index):
"""Plot calibration curve for est w/o and with calibration. """
# Calibrated with isotonic calibration
isotonic = CalibratedClassifierCV(est, cv=2, method='isotonic')

# Calibrated with sigmoid calibration
sigmoid = CalibratedClassifierCV(est, cv=2, method='sigmoid')

# Logistic regression with no calibration as baseline
lr = LogisticRegression(C=1., solver='lbfgs')

fig = plt.figure(fig_index, figsize=(10, 10))
ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
ax2 = plt.subplot2grid((3, 1), (2, 0))

ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated")
for clf, name in [(lr, 'Logistic'),

(est, name),
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(isotonic, name + ' + Isotonic'),
(sigmoid, name + ' + Sigmoid')]:

clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
if hasattr(clf, "predict_proba"):

prob_pos = clf.predict_proba(X_test)[:, 1]
else: # use decision function

prob_pos = clf.decision_function(X_test)
prob_pos = \

(prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min())

clf_score = brier_score_loss(y_test, prob_pos, pos_label=y.max())
print("%s:" % name)
print("\tBrier: %1.3f" % (clf_score))
print("\tPrecision: %1.3f" % precision_score(y_test, y_pred))
print("\tRecall: %1.3f" % recall_score(y_test, y_pred))
print("\tF1: %1.3f\n" % f1_score(y_test, y_pred))

fraction_of_positives, mean_predicted_value = \
calibration_curve(y_test, prob_pos, n_bins=10)

ax1.plot(mean_predicted_value, fraction_of_positives, "s-",
label="%s (%1.3f)" % (name, clf_score))

ax2.hist(prob_pos, range=(0, 1), bins=10, label=name,
histtype="step", lw=2)

ax1.set_ylabel("Fraction of positives")
ax1.set_ylim([-0.05, 1.05])
ax1.legend(loc="lower right")
ax1.set_title('Calibration plots (reliability curve)')

ax2.set_xlabel("Mean predicted value")
ax2.set_ylabel("Count")
ax2.legend(loc="upper center", ncol=2)

plt.tight_layout()

# Plot calibration cuve for Gaussian Naive Bayes
plot_calibration_curve(GaussianNB(), "Naive Bayes", 1)

# Plot calibration cuve for Linear SVC
plot_calibration_curve(LinearSVC(), "SVC", 2)

plt.show()

Total running time of the example: 3.17 seconds ( 0 minutes 3.17 seconds)

4.4.3 Probability calibration of classifiers

When performing classification you often want to predict not only the class label, but also the associated proba-
bility. This probability gives you some kind of confidence on the prediction. However, not all classifiers pro-
vide well-calibrated probabilities, some being over-confident while others being under-confident. Thus, a sepa-
rate calibration of predicted probabilities is often desirable as a postprocessing. This example illustrates two dif-
ferent methods for this calibration and evaluates the quality of the returned probabilities using Brier’s score (see
http://en.wikipedia.org/wiki/Brier_score).

4.4. Calibration 579

http://en.wikipedia.org/wiki/Brier_score


scikit-learn user guide, Release 0.17

Compared are the estimated probability using a Gaussian naive Bayes classifier without calibration, with a sigmoid
calibration, and with a non-parametric isotonic calibration. One can observe that only the non-parametric model is
able to provide a probability calibration that returns probabilities close to the expected 0.5 for most of the samples
belonging to the middle cluster with heterogeneous labels. This results in a significantly improved Brier score.

•

•

Script output:

Brier scores: (the smaller the better)
No calibration: 0.104
With isotonic calibration: 0.084
With sigmoid calibration: 0.109

Python source code: plot_calibration.py

print(__doc__)

# Author: Mathieu Blondel <mathieu@mblondel.org>
# Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Balazs Kegl <balazs.kegl@gmail.com>
# Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
# License: BSD Style.

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm

from sklearn.datasets import make_blobs
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import brier_score_loss

580 Chapter 4. Examples



scikit-learn user guide, Release 0.17

from sklearn.calibration import CalibratedClassifierCV
from sklearn.cross_validation import train_test_split

n_samples = 50000
n_bins = 3 # use 3 bins for calibration_curve as we have 3 clusters here

# Generate 3 blobs with 2 classes where the second blob contains
# half positive samples and half negative samples. Probability in this
# blob is therefore 0.5.
centers = [(-5, -5), (0, 0), (5, 5)]
X, y = make_blobs(n_samples=n_samples, n_features=2, cluster_std=1.0,

centers=centers, shuffle=False, random_state=42)

y[:n_samples // 2] = 0
y[n_samples // 2:] = 1
sample_weight = np.random.RandomState(42).rand(y.shape[0])

# split train, test for calibration
X_train, X_test, y_train, y_test, sw_train, sw_test = \

train_test_split(X, y, sample_weight, test_size=0.9, random_state=42)

# Gaussian Naive-Bayes with no calibration
clf = GaussianNB()
clf.fit(X_train, y_train) # GaussianNB itself does not support sample-weights
prob_pos_clf = clf.predict_proba(X_test)[:, 1]

# Gaussian Naive-Bayes with isotonic calibration
clf_isotonic = CalibratedClassifierCV(clf, cv=2, method='isotonic')
clf_isotonic.fit(X_train, y_train, sw_train)
prob_pos_isotonic = clf_isotonic.predict_proba(X_test)[:, 1]

# Gaussian Naive-Bayes with sigmoid calibration
clf_sigmoid = CalibratedClassifierCV(clf, cv=2, method='sigmoid')
clf_sigmoid.fit(X_train, y_train, sw_train)
prob_pos_sigmoid = clf_sigmoid.predict_proba(X_test)[:, 1]

print("Brier scores: (the smaller the better)")

clf_score = brier_score_loss(y_test, prob_pos_clf, sw_test)
print("No calibration: %1.3f" % clf_score)

clf_isotonic_score = brier_score_loss(y_test, prob_pos_isotonic, sw_test)
print("With isotonic calibration: %1.3f" % clf_isotonic_score)

clf_sigmoid_score = brier_score_loss(y_test, prob_pos_sigmoid, sw_test)
print("With sigmoid calibration: %1.3f" % clf_sigmoid_score)

###############################################################################
# Plot the data and the predicted probabilities
plt.figure()
y_unique = np.unique(y)
colors = cm.rainbow(np.linspace(0.0, 1.0, y_unique.size))
for this_y, color in zip(y_unique, colors):

this_X = X_train[y_train == this_y]
this_sw = sw_train[y_train == this_y]
plt.scatter(this_X[:, 0], this_X[:, 1], s=this_sw * 50, c=color, alpha=0.5,

label="Class %s" % this_y)
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plt.legend(loc="best")
plt.title("Data")

plt.figure()
order = np.lexsort((prob_pos_clf, ))
plt.plot(prob_pos_clf[order], 'r', label='No calibration (%1.3f)' % clf_score)
plt.plot(prob_pos_isotonic[order], 'g', linewidth=3,

label='Isotonic calibration (%1.3f)' % clf_isotonic_score)
plt.plot(prob_pos_sigmoid[order], 'b', linewidth=3,

label='Sigmoid calibration (%1.3f)' % clf_sigmoid_score)
plt.plot(np.linspace(0, y_test.size, 51)[1::2],

y_test[order].reshape(25, -1).mean(1),
'k', linewidth=3, label=r'Empirical')

plt.ylim([-0.05, 1.05])
plt.xlabel("Instances sorted according to predicted probability "

"(uncalibrated GNB)")
plt.ylabel("P(y=1)")
plt.legend(loc="upper left")
plt.title("Gaussian naive Bayes probabilities")

plt.show()

Total running time of the example: 0.56 seconds ( 0 minutes 0.56 seconds)

4.4.4 Probability Calibration for 3-class classification

This example illustrates how sigmoid calibration changes predicted probabilities for a 3-class classification problem.
Illustrated is the standard 2-simplex, where the three corners correspond to the three classes. Arrows point from the
probability vectors predicted by an uncalibrated classifier to the probability vectors predicted by the same classifier
after sigmoid calibration on a hold-out validation set. Colors indicate the true class of an instance (red: class 1, green:
class 2, blue: class 3).

The base classifier is a random forest classifier with 25 base estimators (trees). If this classifier is trained on all 800
training datapoints, it is overly confident in its predictions and thus incurs a large log-loss. Calibrating an identical
classifier, which was trained on 600 datapoints, with method=’sigmoid’ on the remaining 200 datapoints reduces the
confidence of the predictions, i.e., moves the probability vectors from the edges of the simplex towards the center.
This calibration results in a lower log-loss. Note that an alternative would have been to increase the number of base
estimators which would have resulted in a similar decrease in log-loss.

•
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Script output:

Log-loss of

* uncalibrated classifier trained on 800 datapoints: 1.280

* classifier trained on 600 datapoints and calibrated on 200 datapoint: 0.534

Python source code: plot_calibration_multiclass.py

print(__doc__)

# Author: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
# License: BSD Style.

import matplotlib.pyplot as plt

import numpy as np

from sklearn.datasets import make_blobs
from sklearn.ensemble import RandomForestClassifier
from sklearn.calibration import CalibratedClassifierCV
from sklearn.metrics import log_loss

np.random.seed(0)

# Generate data
X, y = make_blobs(n_samples=1000, n_features=2, random_state=42,

cluster_std=5.0)
X_train, y_train = X[:600], y[:600]
X_valid, y_valid = X[600:800], y[600:800]
X_train_valid, y_train_valid = X[:800], y[:800]
X_test, y_test = X[800:], y[800:]

# Train uncalibrated random forest classifier on whole train and validation
# data and evaluate on test data
clf = RandomForestClassifier(n_estimators=25)
clf.fit(X_train_valid, y_train_valid)
clf_probs = clf.predict_proba(X_test)
score = log_loss(y_test, clf_probs)

# Train random forest classifier, calibrate on validation data and evaluate
# on test data
clf = RandomForestClassifier(n_estimators=25)
clf.fit(X_train, y_train)
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clf_probs = clf.predict_proba(X_test)
sig_clf = CalibratedClassifierCV(clf, method="sigmoid", cv="prefit")
sig_clf.fit(X_valid, y_valid)
sig_clf_probs = sig_clf.predict_proba(X_test)
sig_score = log_loss(y_test, sig_clf_probs)

# Plot changes in predicted probabilities via arrows
plt.figure(0)
colors = ["r", "g", "b"]
for i in range(clf_probs.shape[0]):

plt.arrow(clf_probs[i, 0], clf_probs[i, 1],
sig_clf_probs[i, 0] - clf_probs[i, 0],
sig_clf_probs[i, 1] - clf_probs[i, 1],
color=colors[y_test[i]], head_width=1e-2)

# Plot perfect predictions
plt.plot([1.0], [0.0], 'ro', ms=20, label="Class 1")
plt.plot([0.0], [1.0], 'go', ms=20, label="Class 2")
plt.plot([0.0], [0.0], 'bo', ms=20, label="Class 3")

# Plot boundaries of unit simplex
plt.plot([0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], 'k', label="Simplex")

# Annotate points on the simplex
plt.annotate(r'($\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$)',

xy=(1.0/3, 1.0/3), xytext=(1.0/3, .23), xycoords='data',
arrowprops=dict(facecolor='black', shrink=0.05),
horizontalalignment='center', verticalalignment='center')

plt.plot([1.0/3], [1.0/3], 'ko', ms=5)
plt.annotate(r'($\frac{1}{2}$, $0$, $\frac{1}{2}$)',

xy=(.5, .0), xytext=(.5, .1), xycoords='data',
arrowprops=dict(facecolor='black', shrink=0.05),
horizontalalignment='center', verticalalignment='center')

plt.annotate(r'($0$, $\frac{1}{2}$, $\frac{1}{2}$)',
xy=(.0, .5), xytext=(.1, .5), xycoords='data',
arrowprops=dict(facecolor='black', shrink=0.05),
horizontalalignment='center', verticalalignment='center')

plt.annotate(r'($\frac{1}{2}$, $\frac{1}{2}$, $0$)',
xy=(.5, .5), xytext=(.6, .6), xycoords='data',
arrowprops=dict(facecolor='black', shrink=0.05),
horizontalalignment='center', verticalalignment='center')

plt.annotate(r'($0$, $0$, $1$)',
xy=(0, 0), xytext=(.1, .1), xycoords='data',
arrowprops=dict(facecolor='black', shrink=0.05),
horizontalalignment='center', verticalalignment='center')

plt.annotate(r'($1$, $0$, $0$)',
xy=(1, 0), xytext=(1, .1), xycoords='data',
arrowprops=dict(facecolor='black', shrink=0.05),
horizontalalignment='center', verticalalignment='center')

plt.annotate(r'($0$, $1$, $0$)',
xy=(0, 1), xytext=(.1, 1), xycoords='data',
arrowprops=dict(facecolor='black', shrink=0.05),
horizontalalignment='center', verticalalignment='center')

# Add grid
plt.grid("off")
for x in [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]:

plt.plot([0, x], [x, 0], 'k', alpha=0.2)
plt.plot([0, 0 + (1-x)/2], [x, x + (1-x)/2], 'k', alpha=0.2)
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plt.plot([x, x + (1-x)/2], [0, 0 + (1-x)/2], 'k', alpha=0.2)

plt.title("Change of predicted probabilities after sigmoid calibration")
plt.xlabel("Probability class 1")
plt.ylabel("Probability class 2")
plt.xlim(-0.05, 1.05)
plt.ylim(-0.05, 1.05)
plt.legend(loc="best")

print("Log-loss of")
print(" * uncalibrated classifier trained on 800 datapoints: %.3f "

% score)
print(" * classifier trained on 600 datapoints and calibrated on "

"200 datapoint: %.3f" % sig_score)

# Illustrate calibrator
plt.figure(1)
# generate grid over 2-simplex
p1d = np.linspace(0, 1, 20)
p0, p1 = np.meshgrid(p1d, p1d)
p2 = 1 - p0 - p1
p = np.c_[p0.ravel(), p1.ravel(), p2.ravel()]
p = p[p[:, 2] >= 0]

calibrated_classifier = sig_clf.calibrated_classifiers_[0]
prediction = np.vstack([calibrator.predict(this_p)

for calibrator, this_p in
zip(calibrated_classifier.calibrators_, p.T)]).T

prediction /= prediction.sum(axis=1)[:, None]

# Ploit modifications of calibrator
for i in range(prediction.shape[0]):

plt.arrow(p[i, 0], p[i, 1],
prediction[i, 0] - p[i, 0], prediction[i, 1] - p[i, 1],
head_width=1e-2, color=colors[np.argmax(p[i])])

# Plot boundaries of unit simplex
plt.plot([0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], 'k', label="Simplex")

plt.grid("off")
for x in [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]:

plt.plot([0, x], [x, 0], 'k', alpha=0.2)
plt.plot([0, 0 + (1-x)/2], [x, x + (1-x)/2], 'k', alpha=0.2)
plt.plot([x, x + (1-x)/2], [0, 0 + (1-x)/2], 'k', alpha=0.2)

plt.title("Illustration of sigmoid calibrator")
plt.xlabel("Probability class 1")
plt.ylabel("Probability class 2")
plt.xlim(-0.05, 1.05)
plt.ylim(-0.05, 1.05)

plt.show()

Total running time of the example: 0.50 seconds ( 0 minutes 0.50 seconds)
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4.5 Classification

General examples about classification algorithms.

4.5.1 Recognizing hand-written digits

An example showing how the scikit-learn can be used to recognize images of hand-written digits.

This example is commented in the tutorial section of the user manual.

Script output:

Classification report for classifier SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma=0.001, kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False):

precision recall f1-score support

0 1.00 0.99 0.99 88
1 0.99 0.97 0.98 91
2 0.99 0.99 0.99 86
3 0.98 0.87 0.92 91
4 0.99 0.96 0.97 92
5 0.95 0.97 0.96 91
6 0.99 0.99 0.99 91
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7 0.96 0.99 0.97 89
8 0.94 1.00 0.97 88
9 0.93 0.98 0.95 92

avg / total 0.97 0.97 0.97 899

Confusion matrix:
[[87 0 0 0 1 0 0 0 0 0]
[ 0 88 1 0 0 0 0 0 1 1]
[ 0 0 85 1 0 0 0 0 0 0]
[ 0 0 0 79 0 3 0 4 5 0]
[ 0 0 0 0 88 0 0 0 0 4]
[ 0 0 0 0 0 88 1 0 0 2]
[ 0 1 0 0 0 0 90 0 0 0]
[ 0 0 0 0 0 1 0 88 0 0]
[ 0 0 0 0 0 0 0 0 88 0]
[ 0 0 0 1 0 1 0 0 0 90]]

Python source code: plot_digits_classification.py

print(__doc__)

# Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
# License: BSD 3 clause

# Standard scientific Python imports
import matplotlib.pyplot as plt

# Import datasets, classifiers and performance metrics
from sklearn import datasets, svm, metrics

# The digits dataset
digits = datasets.load_digits()

# The data that we are interested in is made of 8x8 images of digits, let's
# have a look at the first 3 images, stored in the `images` attribute of the
# dataset. If we were working from image files, we could load them using
# pylab.imread. Note that each image must have the same size. For these
# images, we know which digit they represent: it is given in the 'target' of
# the dataset.
images_and_labels = list(zip(digits.images, digits.target))
for index, (image, label) in enumerate(images_and_labels[:4]):

plt.subplot(2, 4, index + 1)
plt.axis('off')
plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
plt.title('Training: %i' % label)

# To apply a classifier on this data, we need to flatten the image, to
# turn the data in a (samples, feature) matrix:
n_samples = len(digits.images)
data = digits.images.reshape((n_samples, -1))

# Create a classifier: a support vector classifier
classifier = svm.SVC(gamma=0.001)

# We learn the digits on the first half of the digits
classifier.fit(data[:n_samples / 2], digits.target[:n_samples / 2])
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# Now predict the value of the digit on the second half:
expected = digits.target[n_samples / 2:]
predicted = classifier.predict(data[n_samples / 2:])

print("Classification report for classifier %s:\n%s\n"
% (classifier, metrics.classification_report(expected, predicted)))

print("Confusion matrix:\n%s" % metrics.confusion_matrix(expected, predicted))

images_and_predictions = list(zip(digits.images[n_samples / 2:], predicted))
for index, (image, prediction) in enumerate(images_and_predictions[:4]):

plt.subplot(2, 4, index + 5)
plt.axis('off')
plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
plt.title('Prediction: %i' % prediction)

plt.show()

Total running time of the example: 0.65 seconds ( 0 minutes 0.65 seconds)

4.5.2 Normal and Shrinkage Linear Discriminant Analysis for classification

Shows how shrinkage improves classification.

Python source code: plot_lda.py
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from __future__ import division

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import make_blobs
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

n_train = 20 # samples for training
n_test = 200 # samples for testing
n_averages = 50 # how often to repeat classification
n_features_max = 75 # maximum number of features
step = 4 # step size for the calculation

def generate_data(n_samples, n_features):
"""Generate random blob-ish data with noisy features.

This returns an array of input data with shape `(n_samples, n_features)`
and an array of `n_samples` target labels.

Only one feature contains discriminative information, the other features
contain only noise.
"""
X, y = make_blobs(n_samples=n_samples, n_features=1, centers=[[-2], [2]])

# add non-discriminative features
if n_features > 1:

X = np.hstack([X, np.random.randn(n_samples, n_features - 1)])
return X, y

acc_clf1, acc_clf2 = [], []
n_features_range = range(1, n_features_max + 1, step)
for n_features in n_features_range:

score_clf1, score_clf2 = 0, 0
for _ in range(n_averages):

X, y = generate_data(n_train, n_features)

clf1 = LinearDiscriminantAnalysis(solver='lsqr', shrinkage='auto').fit(X, y)
clf2 = LinearDiscriminantAnalysis(solver='lsqr', shrinkage=None).fit(X, y)

X, y = generate_data(n_test, n_features)
score_clf1 += clf1.score(X, y)
score_clf2 += clf2.score(X, y)

acc_clf1.append(score_clf1 / n_averages)
acc_clf2.append(score_clf2 / n_averages)

features_samples_ratio = np.array(n_features_range) / n_train

plt.plot(features_samples_ratio, acc_clf1, linewidth=2,
label="Linear Discriminant Analysis with shrinkage", color='r')

plt.plot(features_samples_ratio, acc_clf2, linewidth=2,
label="Linear Discriminant Analysis", color='g')

plt.xlabel('n_features / n_samples')
plt.ylabel('Classification accuracy')
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plt.legend(loc=1, prop={'size': 12})
plt.suptitle('Linear Discriminant Analysis vs. \
shrinkage Linear Discriminant Analysis (1 discriminative feature)')
plt.show()

Total running time of the example: 11.04 seconds ( 0 minutes 11.04 seconds)

4.5.3 Plot classification probability

Plot the classification probability for different classifiers. We use a 3 class dataset, and we classify it with a Support
Vector classifier, L1 and L2 penalized logistic regression with either a One-Vs-Rest or multinomial setting.

The logistic regression is not a multiclass classifier out of the box. As a result it can identify only the first class.
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Script output:

classif_rate for L2 logistic (Multinomial) : 82.000000
classif_rate for L1 logistic : 79.333333
classif_rate for Linear SVC : 82.000000
classif_rate for L2 logistic (OvR) : 76.666667
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Python source code: plot_classification_probability.py

print(__doc__)

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# License: BSD 3 clause

import matplotlib.pyplot as plt
import numpy as np

from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn import datasets

iris = datasets.load_iris()
X = iris.data[:, 0:2] # we only take the first two features for visualization
y = iris.target

n_features = X.shape[1]

C = 1.0

# Create different classifiers. The logistic regression cannot do
# multiclass out of the box.
classifiers = {'L1 logistic': LogisticRegression(C=C, penalty='l1'),

'L2 logistic (OvR)': LogisticRegression(C=C, penalty='l2'),
'Linear SVC': SVC(kernel='linear', C=C, probability=True,

random_state=0),
'L2 logistic (Multinomial)': LogisticRegression(
C=C, solver='lbfgs', multi_class='multinomial'
)}

n_classifiers = len(classifiers)

plt.figure(figsize=(3 * 2, n_classifiers * 2))
plt.subplots_adjust(bottom=.2, top=.95)

xx = np.linspace(3, 9, 100)
yy = np.linspace(1, 5, 100).T
xx, yy = np.meshgrid(xx, yy)
Xfull = np.c_[xx.ravel(), yy.ravel()]

for index, (name, classifier) in enumerate(classifiers.items()):
classifier.fit(X, y)

y_pred = classifier.predict(X)
classif_rate = np.mean(y_pred.ravel() == y.ravel()) * 100
print("classif_rate for %s : %f " % (name, classif_rate))

# View probabilities=
probas = classifier.predict_proba(Xfull)
n_classes = np.unique(y_pred).size
for k in range(n_classes):

plt.subplot(n_classifiers, n_classes, index * n_classes + k + 1)
plt.title("Class %d" % k)
if k == 0:

plt.ylabel(name)

592 Chapter 4. Examples



scikit-learn user guide, Release 0.17

imshow_handle = plt.imshow(probas[:, k].reshape((100, 100)),
extent=(3, 9, 1, 5), origin='lower')

plt.xticks(())
plt.yticks(())
idx = (y_pred == k)
if idx.any():

plt.scatter(X[idx, 0], X[idx, 1], marker='o', c='k')

ax = plt.axes([0.15, 0.04, 0.7, 0.05])
plt.title("Probability")
plt.colorbar(imshow_handle, cax=ax, orientation='horizontal')

plt.show()

Total running time of the example: 1.26 seconds ( 0 minutes 1.26 seconds)

4.5.4 Classifier comparison

A comparison of a several classifiers in scikit-learn on synthetic datasets. The point of this example is to illustrate
the nature of decision boundaries of different classifiers. This should be taken with a grain of salt, as the intuition
conveyed by these examples does not necessarily carry over to real datasets.

Particularly in high-dimensional spaces, data can more easily be separated linearly and the simplicity of classifiers
such as naive Bayes and linear SVMs might lead to better generalization than is achieved by other classifiers.

The plots show training points in solid colors and testing points semi-transparent. The lower right shows the classifi-
cation accuracy on the test set.

Python source code: plot_classifier_comparison.py

print(__doc__)

# Code source: Gaël Varoquaux
# Andreas Müller
# Modified for documentation by Jaques Grobler
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
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from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis

h = .02 # step size in the mesh

names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Decision Tree",
"Random Forest", "AdaBoost", "Naive Bayes", "Linear Discriminant Analysis",
"Quadratic Discriminant Analysis"]

classifiers = [
KNeighborsClassifier(3),
SVC(kernel="linear", C=0.025),
SVC(gamma=2, C=1),
DecisionTreeClassifier(max_depth=5),
RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),
AdaBoostClassifier(),
GaussianNB(),
LinearDiscriminantAnalysis(),
QuadraticDiscriminantAnalysis()]

X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,
random_state=1, n_clusters_per_class=1)

rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)
linearly_separable = (X, y)

datasets = [make_moons(noise=0.3, random_state=0),
make_circles(noise=0.2, factor=0.5, random_state=1),
linearly_separable
]

figure = plt.figure(figsize=(27, 9))
i = 1
# iterate over datasets
for ds in datasets:

# preprocess dataset, split into training and test part
X, y = ds
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4)

x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))

# just plot the dataset first
cm = plt.cm.RdBu
cm_bright = ListedColormap(['#FF0000', '#0000FF'])
ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
# Plot the training points
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)
# and testing points
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6)
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ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
i += 1

# iterate over classifiers
for name, clf in zip(names, classifiers):

ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)

# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
if hasattr(clf, "decision_function"):

Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
else:

Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]

# Put the result into a color plot
Z = Z.reshape(xx.shape)
ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)

# Plot also the training points
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)
# and testing points
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright,

alpha=0.6)

ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
ax.set_title(name)
ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'),

size=15, horizontalalignment='right')
i += 1

figure.subplots_adjust(left=.02, right=.98)
plt.show()

Total running time of the example: 7.17 seconds ( 0 minutes 7.17 seconds)

4.5.5 Linear and Quadratic Discriminant Analysis with confidence ellipsoid

Plot the confidence ellipsoids of each class and decision boundary
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Python source code: plot_lda_qda.py

print(__doc__)

from scipy import linalg
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
from matplotlib import colors

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis

###############################################################################
# colormap
cmap = colors.LinearSegmentedColormap(

'red_blue_classes',
{'red': [(0, 1, 1), (1, 0.7, 0.7)],
'green': [(0, 0.7, 0.7), (1, 0.7, 0.7)],
'blue': [(0, 0.7, 0.7), (1, 1, 1)]})

plt.cm.register_cmap(cmap=cmap)

###############################################################################
# generate datasets
def dataset_fixed_cov():
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'''Generate 2 Gaussians samples with the same covariance matrix'''
n, dim = 300, 2
np.random.seed(0)
C = np.array([[0., -0.23], [0.83, .23]])
X = np.r_[np.dot(np.random.randn(n, dim), C),

np.dot(np.random.randn(n, dim), C) + np.array([1, 1])]
y = np.hstack((np.zeros(n), np.ones(n)))
return X, y

def dataset_cov():
'''Generate 2 Gaussians samples with different covariance matrices'''
n, dim = 300, 2
np.random.seed(0)
C = np.array([[0., -1.], [2.5, .7]]) * 2.
X = np.r_[np.dot(np.random.randn(n, dim), C),

np.dot(np.random.randn(n, dim), C.T) + np.array([1, 4])]
y = np.hstack((np.zeros(n), np.ones(n)))
return X, y

###############################################################################
# plot functions
def plot_data(lda, X, y, y_pred, fig_index):

splot = plt.subplot(2, 2, fig_index)
if fig_index == 1:

plt.title('Linear Discriminant Analysis')
plt.ylabel('Data with fixed covariance')

elif fig_index == 2:
plt.title('Quadratic Discriminant Analysis')

elif fig_index == 3:
plt.ylabel('Data with varying covariances')

tp = (y == y_pred) # True Positive
tp0, tp1 = tp[y == 0], tp[y == 1]
X0, X1 = X[y == 0], X[y == 1]
X0_tp, X0_fp = X0[tp0], X0[~tp0]
X1_tp, X1_fp = X1[tp1], X1[~tp1]

# class 0: dots
plt.plot(X0_tp[:, 0], X0_tp[:, 1], 'o', color='red')
plt.plot(X0_fp[:, 0], X0_fp[:, 1], '.', color='#990000') # dark red

# class 1: dots
plt.plot(X1_tp[:, 0], X1_tp[:, 1], 'o', color='blue')
plt.plot(X1_fp[:, 0], X1_fp[:, 1], '.', color='#000099') # dark blue

# class 0 and 1 : areas
nx, ny = 200, 100
x_min, x_max = plt.xlim()
y_min, y_max = plt.ylim()
xx, yy = np.meshgrid(np.linspace(x_min, x_max, nx),

np.linspace(y_min, y_max, ny))
Z = lda.predict_proba(np.c_[xx.ravel(), yy.ravel()])
Z = Z[:, 1].reshape(xx.shape)
plt.pcolormesh(xx, yy, Z, cmap='red_blue_classes',

norm=colors.Normalize(0., 1.))
plt.contour(xx, yy, Z, [0.5], linewidths=2., colors='k')
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# means
plt.plot(lda.means_[0][0], lda.means_[0][1],

'o', color='black', markersize=10)
plt.plot(lda.means_[1][0], lda.means_[1][1],

'o', color='black', markersize=10)

return splot

def plot_ellipse(splot, mean, cov, color):
v, w = linalg.eigh(cov)
u = w[0] / linalg.norm(w[0])
angle = np.arctan(u[1] / u[0])
angle = 180 * angle / np.pi # convert to degrees
# filled Gaussian at 2 standard deviation
ell = mpl.patches.Ellipse(mean, 2 * v[0] ** 0.5, 2 * v[1] ** 0.5,

180 + angle, color=color)
ell.set_clip_box(splot.bbox)
ell.set_alpha(0.5)
splot.add_artist(ell)
splot.set_xticks(())
splot.set_yticks(())

def plot_lda_cov(lda, splot):
plot_ellipse(splot, lda.means_[0], lda.covariance_, 'red')
plot_ellipse(splot, lda.means_[1], lda.covariance_, 'blue')

def plot_qda_cov(qda, splot):
plot_ellipse(splot, qda.means_[0], qda.covariances_[0], 'red')
plot_ellipse(splot, qda.means_[1], qda.covariances_[1], 'blue')

###############################################################################
for i, (X, y) in enumerate([dataset_fixed_cov(), dataset_cov()]):

# Linear Discriminant Analysis
lda = LinearDiscriminantAnalysis(solver="svd", store_covariance=True)
y_pred = lda.fit(X, y).predict(X)
splot = plot_data(lda, X, y, y_pred, fig_index=2 * i + 1)
plot_lda_cov(lda, splot)
plt.axis('tight')

# Quadratic Discriminant Analysis
qda = QuadraticDiscriminantAnalysis(store_covariances=True)
y_pred = qda.fit(X, y).predict(X)
splot = plot_data(qda, X, y, y_pred, fig_index=2 * i + 2)
plot_qda_cov(qda, splot)
plt.axis('tight')

plt.suptitle('Linear Discriminant Analysis vs Quadratic Discriminant Analysis')
plt.show()

Total running time of the example: 0.54 seconds ( 0 minutes 0.54 seconds)

4.6 Clustering

Examples concerning the sklearn.cluster module.
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4.6.1 A demo of the mean-shift clustering algorithm

Reference:

Dorin Comaniciu and Peter Meer, “Mean Shift: A robust approach toward feature space analysis”. IEEE Transactions
on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619.

Script output:

number of estimated clusters : 3

Python source code: plot_mean_shift.py

print(__doc__)

import numpy as np
from sklearn.cluster import MeanShift, estimate_bandwidth
from sklearn.datasets.samples_generator import make_blobs

###############################################################################
# Generate sample data
centers = [[1, 1], [-1, -1], [1, -1]]
X, _ = make_blobs(n_samples=10000, centers=centers, cluster_std=0.6)

###############################################################################
# Compute clustering with MeanShift
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# The following bandwidth can be automatically detected using
bandwidth = estimate_bandwidth(X, quantile=0.2, n_samples=500)

ms = MeanShift(bandwidth=bandwidth, bin_seeding=True)
ms.fit(X)
labels = ms.labels_
cluster_centers = ms.cluster_centers_

labels_unique = np.unique(labels)
n_clusters_ = len(labels_unique)

print("number of estimated clusters : %d" % n_clusters_)

###############################################################################
# Plot result
import matplotlib.pyplot as plt
from itertools import cycle

plt.figure(1)
plt.clf()

colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk')
for k, col in zip(range(n_clusters_), colors):

my_members = labels == k
cluster_center = cluster_centers[k]
plt.plot(X[my_members, 0], X[my_members, 1], col + '.')
plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col,

markeredgecolor='k', markersize=14)
plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()

Total running time of the example: 0.50 seconds ( 0 minutes 0.50 seconds)

4.6.2 A demo of structured Ward hierarchical clustering on Lena image

Compute the segmentation of a 2D image with Ward hierarchical clustering. The clustering is spatially constrained in
order for each segmented region to be in one piece.
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Script output:

Compute structured hierarchical clustering...
Elapsed time: 7.672435522079468
Number of pixels: 65536
Number of clusters: 15

Python source code: plot_lena_ward_segmentation.py

# Author : Vincent Michel, 2010
# Alexandre Gramfort, 2011
# License: BSD 3 clause

print(__doc__)

import time as time
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
from sklearn.feature_extraction.image import grid_to_graph
from sklearn.cluster import AgglomerativeClustering

###############################################################################
# Generate data
lena = sp.misc.lena()
# Downsample the image by a factor of 4
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lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2]
X = np.reshape(lena, (-1, 1))

###############################################################################
# Define the structure A of the data. Pixels connected to their neighbors.
connectivity = grid_to_graph(*lena.shape)

###############################################################################
# Compute clustering
print("Compute structured hierarchical clustering...")
st = time.time()
n_clusters = 15 # number of regions
ward = AgglomerativeClustering(n_clusters=n_clusters,

linkage='ward', connectivity=connectivity).fit(X)
label = np.reshape(ward.labels_, lena.shape)
print("Elapsed time: ", time.time() - st)
print("Number of pixels: ", label.size)
print("Number of clusters: ", np.unique(label).size)

###############################################################################
# Plot the results on an image
plt.figure(figsize=(5, 5))
plt.imshow(lena, cmap=plt.cm.gray)
for l in range(n_clusters):

plt.contour(label == l, contours=1,
colors=[plt.cm.spectral(l / float(n_clusters)), ])

plt.xticks(())
plt.yticks(())
plt.show()

Total running time of the example: 8.00 seconds ( 0 minutes 8.00 seconds)

4.6.3 Feature agglomeration

These images how similar features are merged together using feature agglomeration.
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Python source code: plot_digits_agglomeration.py

print(__doc__)

# Code source: Gaël Varoquaux
# Modified for documentation by Jaques Grobler
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn import datasets, cluster
from sklearn.feature_extraction.image import grid_to_graph

digits = datasets.load_digits()
images = digits.images
X = np.reshape(images, (len(images), -1))
connectivity = grid_to_graph(*images[0].shape)

agglo = cluster.FeatureAgglomeration(connectivity=connectivity,
n_clusters=32)

agglo.fit(X)
X_reduced = agglo.transform(X)

X_restored = agglo.inverse_transform(X_reduced)
images_restored = np.reshape(X_restored, images.shape)
plt.figure(1, figsize=(4, 3.5))
plt.clf()
plt.subplots_adjust(left=.01, right=.99, bottom=.01, top=.91)
for i in range(4):

plt.subplot(3, 4, i + 1)
plt.imshow(images[i], cmap=plt.cm.gray, vmax=16, interpolation='nearest')
plt.xticks(())
plt.yticks(())
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if i == 1:
plt.title('Original data')

plt.subplot(3, 4, 4 + i + 1)
plt.imshow(images_restored[i], cmap=plt.cm.gray, vmax=16,

interpolation='nearest')
if i == 1:

plt.title('Agglomerated data')
plt.xticks(())
plt.yticks(())

plt.subplot(3, 4, 10)
plt.imshow(np.reshape(agglo.labels_, images[0].shape),

interpolation='nearest', cmap=plt.cm.spectral)
plt.xticks(())
plt.yticks(())
plt.title('Labels')
plt.show()

Total running time of the example: 0.66 seconds ( 0 minutes 0.66 seconds)

4.6.4 Demo of affinity propagation clustering algorithm

Reference: Brendan J. Frey and Delbert Dueck, “Clustering by Passing Messages Between Data Points”, Science Feb.
2007
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Script output:

Estimated number of clusters: 3
Homogeneity: 0.872
Completeness: 0.872
V-measure: 0.872
Adjusted Rand Index: 0.912
Adjusted Mutual Information: 0.871
Silhouette Coefficient: 0.753

Python source code: plot_affinity_propagation.py

print(__doc__)

from sklearn.cluster import AffinityPropagation
from sklearn import metrics
from sklearn.datasets.samples_generator import make_blobs

##############################################################################
# Generate sample data
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=300, centers=centers, cluster_std=0.5,

random_state=0)

##############################################################################
# Compute Affinity Propagation
af = AffinityPropagation(preference=-50).fit(X)
cluster_centers_indices = af.cluster_centers_indices_
labels = af.labels_

n_clusters_ = len(cluster_centers_indices)

print('Estimated number of clusters: %d' % n_clusters_)
print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels))
print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels))
print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))
print("Adjusted Rand Index: %0.3f"

% metrics.adjusted_rand_score(labels_true, labels))
print("Adjusted Mutual Information: %0.3f"

% metrics.adjusted_mutual_info_score(labels_true, labels))
print("Silhouette Coefficient: %0.3f"

% metrics.silhouette_score(X, labels, metric='sqeuclidean'))

##############################################################################
# Plot result
import matplotlib.pyplot as plt
from itertools import cycle

plt.close('all')
plt.figure(1)
plt.clf()

colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk')
for k, col in zip(range(n_clusters_), colors):

class_members = labels == k
cluster_center = X[cluster_centers_indices[k]]
plt.plot(X[class_members, 0], X[class_members, 1], col + '.')
plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col,

markeredgecolor='k', markersize=14)
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for x in X[class_members]:
plt.plot([cluster_center[0], x[0]], [cluster_center[1], x[1]], col)

plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()

Total running time of the example: 0.87 seconds ( 0 minutes 0.87 seconds)

4.6.5 Demonstration of k-means assumptions

This example is meant to illustrate situations where k-means will produce unintuitive and possibly unexpected clusters.
In the first three plots, the input data does not conform to some implicit assumption that k-means makes and undesirable
clusters are produced as a result. In the last plot, k-means returns intuitive clusters despite unevenly sized blobs.
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Python source code: plot_kmeans_assumptions.py

print(__doc__)

# Author: Phil Roth <mr.phil.roth@gmail.com>
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs

plt.figure(figsize=(12, 12))

n_samples = 1500
random_state = 170
X, y = make_blobs(n_samples=n_samples, random_state=random_state)

# Incorrect number of clusters
y_pred = KMeans(n_clusters=2, random_state=random_state).fit_predict(X)

plt.subplot(221)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.title("Incorrect Number of Blobs")

# Anisotropicly distributed data
transformation = [[ 0.60834549, -0.63667341], [-0.40887718, 0.85253229]]
X_aniso = np.dot(X, transformation)
y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_aniso)

plt.subplot(222)
plt.scatter(X_aniso[:, 0], X_aniso[:, 1], c=y_pred)
plt.title("Anisotropicly Distributed Blobs")

# Different variance
X_varied, y_varied = make_blobs(n_samples=n_samples,

cluster_std=[1.0, 2.5, 0.5],
random_state=random_state)

y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_varied)

plt.subplot(223)
plt.scatter(X_varied[:, 0], X_varied[:, 1], c=y_pred)
plt.title("Unequal Variance")

# Unevenly sized blobs
X_filtered = np.vstack((X[y == 0][:500], X[y == 1][:100], X[y == 2][:10]))
y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_filtered)

plt.subplot(224)
plt.scatter(X_filtered[:, 0], X_filtered[:, 1], c=y_pred)
plt.title("Unevenly Sized Blobs")

plt.show()

Total running time of the example: 0.54 seconds ( 0 minutes 0.54 seconds)

4.6. Clustering 607



scikit-learn user guide, Release 0.17

4.6.6 Agglomerative clustering with and without structure

This example shows the effect of imposing a connectivity graph to capture local structure in the data. The graph is
simply the graph of 20 nearest neighbors.

Two consequences of imposing a connectivity can be seen. First clustering with a connectivity matrix is much faster.

Second, when using a connectivity matrix, average and complete linkage are unstable and tend to create a few clusters
that grow very quickly. Indeed, average and complete linkage fight this percolation behavior by considering all the
distances between two clusters when merging them. The connectivity graph breaks this mechanism. This effect is more
pronounced for very sparse graphs (try decreasing the number of neighbors in kneighbors_graph) and with complete
linkage. In particular, having a very small number of neighbors in the graph, imposes a geometry that is close to that
of single linkage, which is well known to have this percolation instability.

•

•

•

•

Python source code: plot_agglomerative_clustering.py

# Authors: Gael Varoquaux, Nelle Varoquaux
# License: BSD 3 clause

import time
import matplotlib.pyplot as plt
import numpy as np

from sklearn.cluster import AgglomerativeClustering
from sklearn.neighbors import kneighbors_graph
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# Generate sample data
n_samples = 1500
np.random.seed(0)
t = 1.5 * np.pi * (1 + 3 * np.random.rand(1, n_samples))
x = t * np.cos(t)
y = t * np.sin(t)

X = np.concatenate((x, y))
X += .7 * np.random.randn(2, n_samples)
X = X.T

# Create a graph capturing local connectivity. Larger number of neighbors
# will give more homogeneous clusters to the cost of computation
# time. A very large number of neighbors gives more evenly distributed
# cluster sizes, but may not impose the local manifold structure of
# the data
knn_graph = kneighbors_graph(X, 30, include_self=False)

for connectivity in (None, knn_graph):
for n_clusters in (30, 3):

plt.figure(figsize=(10, 4))
for index, linkage in enumerate(('average', 'complete', 'ward')):

plt.subplot(1, 3, index + 1)
model = AgglomerativeClustering(linkage=linkage,

connectivity=connectivity,
n_clusters=n_clusters)

t0 = time.time()
model.fit(X)
elapsed_time = time.time() - t0
plt.scatter(X[:, 0], X[:, 1], c=model.labels_,

cmap=plt.cm.spectral)
plt.title('linkage=%s (time %.2fs)' % (linkage, elapsed_time),

fontdict=dict(verticalalignment='top'))
plt.axis('equal')
plt.axis('off')

plt.subplots_adjust(bottom=0, top=.89, wspace=0,
left=0, right=1)

plt.suptitle('n_cluster=%i, connectivity=%r' %
(n_clusters, connectivity is not None), size=17)

plt.show()

Total running time of the example: 10.92 seconds ( 0 minutes 10.92 seconds)

4.6.7 Segmenting the picture of Lena in regions

This example uses Spectral clustering on a graph created from voxel-to-voxel difference on an image to break this
image into multiple partly-homogeneous regions.

This procedure (spectral clustering on an image) is an efficient approximate solution for finding normalized graph cuts.

There are two options to assign labels:

• with ‘kmeans’ spectral clustering will cluster samples in the embedding space using a kmeans algorithm
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• whereas ‘discrete’ will iteratively search for the closest partition space to the embedding space.

•

•

Python source code: plot_lena_segmentation.py

print(__doc__)

# Author: Gael Varoquaux <gael.varoquaux@normalesup.org>, Brian Cheung
# License: BSD 3 clause

import time

import numpy as np
import scipy as sp
import matplotlib.pyplot as plt

from sklearn.feature_extraction import image
from sklearn.cluster import spectral_clustering

lena = sp.misc.lena()
# Downsample the image by a factor of 4
lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2]
lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2]

# Convert the image into a graph with the value of the gradient on the
# edges.
graph = image.img_to_graph(lena)
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# Take a decreasing function of the gradient: an exponential
# The smaller beta is, the more independent the segmentation is of the
# actual image. For beta=1, the segmentation is close to a voronoi
beta = 5
eps = 1e-6
graph.data = np.exp(-beta * graph.data / lena.std()) + eps

# Apply spectral clustering (this step goes much faster if you have pyamg
# installed)
N_REGIONS = 11

###############################################################################
# Visualize the resulting regions

for assign_labels in ('kmeans', 'discretize'):
t0 = time.time()
labels = spectral_clustering(graph, n_clusters=N_REGIONS,

assign_labels=assign_labels,
random_state=1)

t1 = time.time()
labels = labels.reshape(lena.shape)

plt.figure(figsize=(5, 5))
plt.imshow(lena, cmap=plt.cm.gray)
for l in range(N_REGIONS):

plt.contour(labels == l, contours=1,
colors=[plt.cm.spectral(l / float(N_REGIONS)), ])

plt.xticks(())
plt.yticks(())
plt.title('Spectral clustering: %s, %.2fs' % (assign_labels, (t1 - t0)))

plt.show()

Total running time of the example: 86.22 seconds ( 1 minutes 26.22 seconds)

4.6.8 Demo of DBSCAN clustering algorithm

Finds core samples of high density and expands clusters from them.
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Script output:

Estimated number of clusters: 3
Homogeneity: 0.953
Completeness: 0.883
V-measure: 0.917
Adjusted Rand Index: 0.952
Adjusted Mutual Information: 0.883
Silhouette Coefficient: 0.626

Python source code: plot_dbscan.py

print(__doc__)

import numpy as np

from sklearn.cluster import DBSCAN
from sklearn import metrics
from sklearn.datasets.samples_generator import make_blobs
from sklearn.preprocessing import StandardScaler

##############################################################################
# Generate sample data
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4,

random_state=0)
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X = StandardScaler().fit_transform(X)

##############################################################################
# Compute DBSCAN
db = DBSCAN(eps=0.3, min_samples=10).fit(X)
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
labels = db.labels_

# Number of clusters in labels, ignoring noise if present.
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)

print('Estimated number of clusters: %d' % n_clusters_)
print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels))
print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels))
print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))
print("Adjusted Rand Index: %0.3f"

% metrics.adjusted_rand_score(labels_true, labels))
print("Adjusted Mutual Information: %0.3f"

% metrics.adjusted_mutual_info_score(labels_true, labels))
print("Silhouette Coefficient: %0.3f"

% metrics.silhouette_score(X, labels))

##############################################################################
# Plot result
import matplotlib.pyplot as plt

# Black removed and is used for noise instead.
unique_labels = set(labels)
colors = plt.cm.Spectral(np.linspace(0, 1, len(unique_labels)))
for k, col in zip(unique_labels, colors):

if k == -1:
# Black used for noise.
col = 'k'

class_member_mask = (labels == k)

xy = X[class_member_mask & core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col,

markeredgecolor='k', markersize=14)

xy = X[class_member_mask & ~core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col,

markeredgecolor='k', markersize=6)

plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()

Total running time of the example: 0.38 seconds ( 0 minutes 0.38 seconds)

4.6.9 Online learning of a dictionary of parts of faces

This example uses a large dataset of faces to learn a set of 20 x 20 images patches that constitute faces.

From the programming standpoint, it is interesting because it shows how to use the online API of the scikit-learn to
process a very large dataset by chunks. The way we proceed is that we load an image at a time and extract randomly

4.6. Clustering 613



scikit-learn user guide, Release 0.17

50 patches from this image. Once we have accumulated 500 of these patches (using 10 images), we run the partial_fit
method of the online KMeans object, MiniBatchKMeans.

The verbose setting on the MiniBatchKMeans enables us to see that some clusters are reassigned during the successive
calls to partial-fit. This is because the number of patches that they represent has become too low, and it is better to
choose a random new cluster.

Script output:

Learning the dictionary...
Partial fit of 100 out of 2400
Partial fit of 200 out of 2400
[MiniBatchKMeans] Reassigning 16 cluster centers.
Partial fit of 300 out of 2400
Partial fit of 400 out of 2400
Partial fit of 500 out of 2400
Partial fit of 600 out of 2400
Partial fit of 700 out of 2400
Partial fit of 800 out of 2400
Partial fit of 900 out of 2400
Partial fit of 1000 out of 2400
Partial fit of 1100 out of 2400
Partial fit of 1200 out of 2400
Partial fit of 1300 out of 2400
Partial fit of 1400 out of 2400
Partial fit of 1500 out of 2400
Partial fit of 1600 out of 2400
Partial fit of 1700 out of 2400
Partial fit of 1800 out of 2400
Partial fit of 1900 out of 2400
Partial fit of 2000 out of 2400
Partial fit of 2100 out of 2400
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Partial fit of 2200 out of 2400
Partial fit of 2300 out of 2400
Partial fit of 2400 out of 2400
done in 8.36s.

Python source code: plot_dict_face_patches.py

print(__doc__)

import time

import matplotlib.pyplot as plt
import numpy as np

from sklearn import datasets
from sklearn.cluster import MiniBatchKMeans
from sklearn.feature_extraction.image import extract_patches_2d

faces = datasets.fetch_olivetti_faces()

###############################################################################
# Learn the dictionary of images

print('Learning the dictionary... ')
rng = np.random.RandomState(0)
kmeans = MiniBatchKMeans(n_clusters=81, random_state=rng, verbose=True)
patch_size = (20, 20)

buffer = []
index = 1
t0 = time.time()

# The online learning part: cycle over the whole dataset 6 times
index = 0
for _ in range(6):

for img in faces.images:
data = extract_patches_2d(img, patch_size, max_patches=50,

random_state=rng)
data = np.reshape(data, (len(data), -1))
buffer.append(data)
index += 1
if index % 10 == 0:

data = np.concatenate(buffer, axis=0)
data -= np.mean(data, axis=0)
data /= np.std(data, axis=0)
kmeans.partial_fit(data)
buffer = []

if index % 100 == 0:
print('Partial fit of %4i out of %i'

% (index, 6 * len(faces.images)))

dt = time.time() - t0
print('done in %.2fs.' % dt)

###############################################################################
# Plot the results
plt.figure(figsize=(4.2, 4))
for i, patch in enumerate(kmeans.cluster_centers_):

4.6. Clustering 615



scikit-learn user guide, Release 0.17

plt.subplot(9, 9, i + 1)
plt.imshow(patch.reshape(patch_size), cmap=plt.cm.gray,

interpolation='nearest')
plt.xticks(())
plt.yticks(())

plt.suptitle('Patches of faces\nTrain time %.1fs on %d patches' %
(dt, 8 * len(faces.images)), fontsize=16)

plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23)

plt.show()

Total running time of the example: 14.13 seconds ( 0 minutes 14.13 seconds)

4.6.10 Vector Quantization Example

The classic image processing example, Lena, an 8-bit grayscale bit-depth, 512 x 512 sized image, is used here to
illustrate how k-means is used for vector quantization.

•

•

•

•

Python source code: plot_lena_compress.py

print(__doc__)

# Code source: Gaël Varoquaux
# Modified for documentation by Jaques Grobler
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# License: BSD 3 clause

import numpy as np
import scipy as sp
import matplotlib.pyplot as plt

from sklearn import cluster

n_clusters = 5
np.random.seed(0)

try:
lena = sp.lena()

except AttributeError:
# Newer versions of scipy have lena in misc
from scipy import misc
lena = misc.lena()

X = lena.reshape((-1, 1)) # We need an (n_sample, n_feature) array
k_means = cluster.KMeans(n_clusters=n_clusters, n_init=4)
k_means.fit(X)
values = k_means.cluster_centers_.squeeze()
labels = k_means.labels_

# create an array from labels and values
lena_compressed = np.choose(labels, values)
lena_compressed.shape = lena.shape

vmin = lena.min()
vmax = lena.max()

# original lena
plt.figure(1, figsize=(3, 2.2))
plt.imshow(lena, cmap=plt.cm.gray, vmin=vmin, vmax=256)

# compressed lena
plt.figure(2, figsize=(3, 2.2))
plt.imshow(lena_compressed, cmap=plt.cm.gray, vmin=vmin, vmax=vmax)

# equal bins lena
regular_values = np.linspace(0, 256, n_clusters + 1)
regular_labels = np.searchsorted(regular_values, lena) - 1
regular_values = .5 * (regular_values[1:] + regular_values[:-1]) # mean
regular_lena = np.choose(regular_labels.ravel(), regular_values)
regular_lena.shape = lena.shape
plt.figure(3, figsize=(3, 2.2))
plt.imshow(regular_lena, cmap=plt.cm.gray, vmin=vmin, vmax=vmax)

# histogram
plt.figure(4, figsize=(3, 2.2))
plt.clf()
plt.axes([.01, .01, .98, .98])
plt.hist(X, bins=256, color='.5', edgecolor='.5')
plt.yticks(())
plt.xticks(regular_values)
values = np.sort(values)
for center_1, center_2 in zip(values[:-1], values[1:]):

plt.axvline(.5 * (center_1 + center_2), color='b')
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for center_1, center_2 in zip(regular_values[:-1], regular_values[1:]):
plt.axvline(.5 * (center_1 + center_2), color='b', linestyle='--')

plt.show()

Total running time of the example: 2.66 seconds ( 0 minutes 2.66 seconds)

4.6.11 Hierarchical clustering: structured vs unstructured ward

Example builds a swiss roll dataset and runs hierarchical clustering on their position.

For more information, see Hierarchical clustering.

In a first step, the hierarchical clustering is performed without connectivity constraints on the structure and is solely
based on distance, whereas in a second step the clustering is restricted to the k-Nearest Neighbors graph: it’s a
hierarchical clustering with structure prior.

Some of the clusters learned without connectivity constraints do not respect the structure of the swiss roll and extend
across different folds of the manifolds. On the opposite, when opposing connectivity constraints, the clusters form a
nice parcellation of the swiss roll.

•

•

Script output:

Compute unstructured hierarchical clustering...
Elapsed time: 1.31s
Number of points: 1500
Compute structured hierarchical clustering...
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Elapsed time: 0.21s
Number of points: 1500

Python source code: plot_ward_structured_vs_unstructured.py

# Authors : Vincent Michel, 2010
# Alexandre Gramfort, 2010
# Gael Varoquaux, 2010
# License: BSD 3 clause

print(__doc__)

import time as time
import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d.axes3d as p3
from sklearn.cluster import AgglomerativeClustering
from sklearn.datasets.samples_generator import make_swiss_roll

###############################################################################
# Generate data (swiss roll dataset)
n_samples = 1500
noise = 0.05
X, _ = make_swiss_roll(n_samples, noise)
# Make it thinner
X[:, 1] *= .5

###############################################################################
# Compute clustering
print("Compute unstructured hierarchical clustering...")
st = time.time()
ward = AgglomerativeClustering(n_clusters=6, linkage='ward').fit(X)
elapsed_time = time.time() - st
label = ward.labels_
print("Elapsed time: %.2fs" % elapsed_time)
print("Number of points: %i" % label.size)

###############################################################################
# Plot result
fig = plt.figure()
ax = p3.Axes3D(fig)
ax.view_init(7, -80)
for l in np.unique(label):

ax.plot3D(X[label == l, 0], X[label == l, 1], X[label == l, 2],
'o', color=plt.cm.jet(np.float(l) / np.max(label + 1)))

plt.title('Without connectivity constraints (time %.2fs)' % elapsed_time)

###############################################################################
# Define the structure A of the data. Here a 10 nearest neighbors
from sklearn.neighbors import kneighbors_graph
connectivity = kneighbors_graph(X, n_neighbors=10, include_self=False)

###############################################################################
# Compute clustering
print("Compute structured hierarchical clustering...")
st = time.time()
ward = AgglomerativeClustering(n_clusters=6, connectivity=connectivity,
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linkage='ward').fit(X)
elapsed_time = time.time() - st
label = ward.labels_
print("Elapsed time: %.2fs" % elapsed_time)
print("Number of points: %i" % label.size)

###############################################################################
# Plot result
fig = plt.figure()
ax = p3.Axes3D(fig)
ax.view_init(7, -80)
for l in np.unique(label):

ax.plot3D(X[label == l, 0], X[label == l, 1], X[label == l, 2],
'o', color=plt.cm.jet(float(l) / np.max(label + 1)))

plt.title('With connectivity constraints (time %.2fs)' % elapsed_time)

plt.show()

Total running time of the example: 1.65 seconds ( 0 minutes 1.65 seconds)

4.6.12 Spectral clustering for image segmentation

In this example, an image with connected circles is generated and spectral clustering is used to separate the circles.

In these settings, the Spectral clustering approach solves the problem know as ‘normalized graph cuts’: the image is
seen as a graph of connected voxels, and the spectral clustering algorithm amounts to choosing graph cuts defining
regions while minimizing the ratio of the gradient along the cut, and the volume of the region.

As the algorithm tries to balance the volume (ie balance the region sizes), if we take circles with different sizes, the
segmentation fails.

In addition, as there is no useful information in the intensity of the image, or its gradient, we choose to perform the
spectral clustering on a graph that is only weakly informed by the gradient. This is close to performing a Voronoi
partition of the graph.

In addition, we use the mask of the objects to restrict the graph to the outline of the objects. In this example, we are
interested in separating the objects one from the other, and not from the background.

•
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•

•

•

Python source code: plot_segmentation_toy.py
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print(__doc__)

# Authors: Emmanuelle Gouillart <emmanuelle.gouillart@normalesup.org>
# Gael Varoquaux <gael.varoquaux@normalesup.org>
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.feature_extraction import image
from sklearn.cluster import spectral_clustering

###############################################################################
l = 100
x, y = np.indices((l, l))

center1 = (28, 24)
center2 = (40, 50)
center3 = (67, 58)
center4 = (24, 70)

radius1, radius2, radius3, radius4 = 16, 14, 15, 14

circle1 = (x - center1[0]) ** 2 + (y - center1[1]) ** 2 < radius1 ** 2
circle2 = (x - center2[0]) ** 2 + (y - center2[1]) ** 2 < radius2 ** 2
circle3 = (x - center3[0]) ** 2 + (y - center3[1]) ** 2 < radius3 ** 2
circle4 = (x - center4[0]) ** 2 + (y - center4[1]) ** 2 < radius4 ** 2

###############################################################################
# 4 circles
img = circle1 + circle2 + circle3 + circle4
mask = img.astype(bool)
img = img.astype(float)

img += 1 + 0.2 * np.random.randn(*img.shape)

# Convert the image into a graph with the value of the gradient on the
# edges.
graph = image.img_to_graph(img, mask=mask)

# Take a decreasing function of the gradient: we take it weakly
# dependent from the gradient the segmentation is close to a voronoi
graph.data = np.exp(-graph.data / graph.data.std())

# Force the solver to be arpack, since amg is numerically
# unstable on this example
labels = spectral_clustering(graph, n_clusters=4, eigen_solver='arpack')
label_im = -np.ones(mask.shape)
label_im[mask] = labels

plt.matshow(img)
plt.matshow(label_im)

###############################################################################
# 2 circles
img = circle1 + circle2
mask = img.astype(bool)
img = img.astype(float)
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img += 1 + 0.2 * np.random.randn(*img.shape)

graph = image.img_to_graph(img, mask=mask)
graph.data = np.exp(-graph.data / graph.data.std())

labels = spectral_clustering(graph, n_clusters=2, eigen_solver='arpack')
label_im = -np.ones(mask.shape)
label_im[mask] = labels

plt.matshow(img)
plt.matshow(label_im)

plt.show()

Total running time of the example: 1.54 seconds ( 0 minutes 1.54 seconds)

4.6.13 K-means Clustering

The plots display firstly what a K-means algorithm would yield using three clusters. It is then shown what the effect
of a bad initialization is on the classification process: By setting n_init to only 1 (default is 10), the amount of times
that the algorithm will be run with different centroid seeds is reduced. The next plot displays what using eight clusters
would deliver and finally the ground truth.

•

•

•
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•

Python source code: plot_cluster_iris.py

print(__doc__)

# Code source: Gaël Varoquaux
# Modified for documentation by Jaques Grobler
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

from sklearn.cluster import KMeans
from sklearn import datasets

np.random.seed(5)

centers = [[1, 1], [-1, -1], [1, -1]]
iris = datasets.load_iris()
X = iris.data
y = iris.target

estimators = {'k_means_iris_3': KMeans(n_clusters=3),
'k_means_iris_8': KMeans(n_clusters=8),
'k_means_iris_bad_init': KMeans(n_clusters=3, n_init=1,

init='random')}

fignum = 1
for name, est in estimators.items():

fig = plt.figure(fignum, figsize=(4, 3))
plt.clf()
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)

plt.cla()
est.fit(X)
labels = est.labels_

ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=labels.astype(np.float))

ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])
ax.set_xlabel('Petal width')
ax.set_ylabel('Sepal length')
ax.set_zlabel('Petal length')
fignum = fignum + 1
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# Plot the ground truth
fig = plt.figure(fignum, figsize=(4, 3))
plt.clf()
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)

plt.cla()

for name, label in [('Setosa', 0),
('Versicolour', 1),
('Virginica', 2)]:

ax.text3D(X[y == label, 3].mean(),
X[y == label, 0].mean() + 1.5,
X[y == label, 2].mean(), name,
horizontalalignment='center',
bbox=dict(alpha=.5, edgecolor='w', facecolor='w'))

# Reorder the labels to have colors matching the cluster results
y = np.choose(y, [1, 2, 0]).astype(np.float)
ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=y)

ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])
ax.set_xlabel('Petal width')
ax.set_ylabel('Sepal length')
ax.set_zlabel('Petal length')
plt.show()

Total running time of the example: 0.94 seconds ( 0 minutes 0.94 seconds)

4.6.14 Various Agglomerative Clustering on a 2D embedding of digits

An illustration of various linkage option for agglomerative clustering on a 2D embedding of the digits dataset.

The goal of this example is to show intuitively how the metrics behave, and not to find good clusters for the digits.
This is why the example works on a 2D embedding.

What this example shows us is the behavior “rich getting richer” of agglomerative clustering that tends to create uneven
cluster sizes. This behavior is especially pronounced for the average linkage strategy, that ends up with a couple of
singleton clusters.

•
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Script output:

Computing embedding
Done.
ward : 16.22s
average : 16.90s
complete : 16.31s

Python source code: plot_digits_linkage.py

# Authors: Gael Varoquaux
# License: BSD 3 clause (C) INRIA 2014

print(__doc__)
from time import time

import numpy as np
from scipy import ndimage
from matplotlib import pyplot as plt

from sklearn import manifold, datasets

digits = datasets.load_digits(n_class=10)
X = digits.data
y = digits.target
n_samples, n_features = X.shape

np.random.seed(0)

def nudge_images(X, y):
# Having a larger dataset shows more clearly the behavior of the
# methods, but we multiply the size of the dataset only by 2, as the
# cost of the hierarchical clustering methods are strongly
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# super-linear in n_samples
shift = lambda x: ndimage.shift(x.reshape((8, 8)),

.3 * np.random.normal(size=2),
mode='constant',
).ravel()

X = np.concatenate([X, np.apply_along_axis(shift, 1, X)])
Y = np.concatenate([y, y], axis=0)
return X, Y

X, y = nudge_images(X, y)

#----------------------------------------------------------------------
# Visualize the clustering
def plot_clustering(X_red, X, labels, title=None):

x_min, x_max = np.min(X_red, axis=0), np.max(X_red, axis=0)
X_red = (X_red - x_min) / (x_max - x_min)

plt.figure(figsize=(6, 4))
for i in range(X_red.shape[0]):

plt.text(X_red[i, 0], X_red[i, 1], str(y[i]),
color=plt.cm.spectral(labels[i] / 10.),
fontdict={'weight': 'bold', 'size': 9})

plt.xticks([])
plt.yticks([])
if title is not None:

plt.title(title, size=17)
plt.axis('off')
plt.tight_layout()

#----------------------------------------------------------------------
# 2D embedding of the digits dataset
print("Computing embedding")
X_red = manifold.SpectralEmbedding(n_components=2).fit_transform(X)
print("Done.")

from sklearn.cluster import AgglomerativeClustering

for linkage in ('ward', 'average', 'complete'):
clustering = AgglomerativeClustering(linkage=linkage, n_clusters=10)
t0 = time()
clustering.fit(X_red)
print("%s : %.2fs" % (linkage, time() - t0))

plot_clustering(X_red, X, clustering.labels_, "%s linkage" % linkage)

plt.show()

Total running time of the example: 80.99 seconds ( 1 minutes 20.99 seconds)

4.6.15 Color Quantization using K-Means

Performs a pixel-wise Vector Quantization (VQ) of an image of the summer palace (China), reducing the number of
colors required to show the image from 96,615 unique colors to 64, while preserving the overall appearance quality.
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In this example, pixels are represented in a 3D-space and K-means is used to find 64 color clusters. In the image
processing literature, the codebook obtained from K-means (the cluster centers) is called the color palette. Using a
single byte, up to 256 colors can be addressed, whereas an RGB encoding requires 3 bytes per pixel. The GIF file
format, for example, uses such a palette.

For comparison, a quantized image using a random codebook (colors picked up randomly) is also shown.

•

•

•

Script output:

Fitting model on a small sub-sample of the data
done in 0.467s.
Predicting color indices on the full image (k-means)
done in 0.408s.
Predicting color indices on the full image (random)
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done in 0.259s.

Python source code: plot_color_quantization.py

# Authors: Robert Layton <robertlayton@gmail.com>
# Olivier Grisel <olivier.grisel@ensta.org>
# Mathieu Blondel <mathieu@mblondel.org>
#
# License: BSD 3 clause

print(__doc__)
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.metrics import pairwise_distances_argmin
from sklearn.datasets import load_sample_image
from sklearn.utils import shuffle
from time import time

n_colors = 64

# Load the Summer Palace photo
china = load_sample_image("china.jpg")

# Convert to floats instead of the default 8 bits integer coding. Dividing by
# 255 is important so that plt.imshow behaves works well on float data (need to
# be in the range [0-1]
china = np.array(china, dtype=np.float64) / 255

# Load Image and transform to a 2D numpy array.
w, h, d = original_shape = tuple(china.shape)
assert d == 3
image_array = np.reshape(china, (w * h, d))

print("Fitting model on a small sub-sample of the data")
t0 = time()
image_array_sample = shuffle(image_array, random_state=0)[:1000]
kmeans = KMeans(n_clusters=n_colors, random_state=0).fit(image_array_sample)
print("done in %0.3fs." % (time() - t0))

# Get labels for all points
print("Predicting color indices on the full image (k-means)")
t0 = time()
labels = kmeans.predict(image_array)
print("done in %0.3fs." % (time() - t0))

codebook_random = shuffle(image_array, random_state=0)[:n_colors + 1]
print("Predicting color indices on the full image (random)")
t0 = time()
labels_random = pairwise_distances_argmin(codebook_random,

image_array,
axis=0)

print("done in %0.3fs." % (time() - t0))

def recreate_image(codebook, labels, w, h):
"""Recreate the (compressed) image from the code book & labels"""
d = codebook.shape[1]
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image = np.zeros((w, h, d))
label_idx = 0
for i in range(w):

for j in range(h):
image[i][j] = codebook[labels[label_idx]]
label_idx += 1

return image

# Display all results, alongside original image
plt.figure(1)
plt.clf()
ax = plt.axes([0, 0, 1, 1])
plt.axis('off')
plt.title('Original image (96,615 colors)')
plt.imshow(china)

plt.figure(2)
plt.clf()
ax = plt.axes([0, 0, 1, 1])
plt.axis('off')
plt.title('Quantized image (64 colors, K-Means)')
plt.imshow(recreate_image(kmeans.cluster_centers_, labels, w, h))

plt.figure(3)
plt.clf()
ax = plt.axes([0, 0, 1, 1])
plt.axis('off')
plt.title('Quantized image (64 colors, Random)')
plt.imshow(recreate_image(codebook_random, labels_random, w, h))
plt.show()

Total running time of the example: 2.49 seconds ( 0 minutes 2.49 seconds)

4.6.16 Compare BIRCH and MiniBatchKMeans

This example compares the timing of Birch (with and without the global clustering step) and MiniBatchKMeans on a
synthetic dataset having 100,000 samples and 2 features generated using make_blobs.

If n_clusters is set to None, the data is reduced from 100,000 samples to a set of 158 clusters. This can be viewed
as a preprocessing step before the final (global) clustering step that further reduces these 158 clusters to 100 clusters.

Script output:
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Birch without global clustering as the final step took 4.73 seconds
n_clusters : 158
Birch with global clustering as the final step took 5.02 seconds
n_clusters : 100
Time taken to run MiniBatchKMeans 6.31 seconds

Python source code: plot_birch_vs_minibatchkmeans.py

# Authors: Manoj Kumar <manojkumarsivaraj334@gmail.com
# Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# License: BSD 3 clause

print(__doc__)

from itertools import cycle
from time import time
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as colors

from sklearn.preprocessing import StandardScaler
from sklearn.cluster import Birch, MiniBatchKMeans
from sklearn.datasets.samples_generator import make_blobs

# Generate centers for the blobs so that it forms a 10 X 10 grid.
xx = np.linspace(-22, 22, 10)
yy = np.linspace(-22, 22, 10)
xx, yy = np.meshgrid(xx, yy)
n_centres = np.hstack((np.ravel(xx)[:, np.newaxis],

np.ravel(yy)[:, np.newaxis]))

# Generate blobs to do a comparison between MiniBatchKMeans and Birch.
X, y = make_blobs(n_samples=100000, centers=n_centres, random_state=0)

# Use all colors that matplotlib provides by default.
colors_ = cycle(colors.cnames.keys())

fig = plt.figure(figsize=(12, 4))
fig.subplots_adjust(left=0.04, right=0.98, bottom=0.1, top=0.9)

# Compute clustering with Birch with and without the final clustering step
# and plot.
birch_models = [Birch(threshold=1.7, n_clusters=None),

Birch(threshold=1.7, n_clusters=100)]
final_step = ['without global clustering', 'with global clustering']

for ind, (birch_model, info) in enumerate(zip(birch_models, final_step)):
t = time()
birch_model.fit(X)
time_ = time() - t
print("Birch %s as the final step took %0.2f seconds" % (

info, (time() - t)))

# Plot result
labels = birch_model.labels_
centroids = birch_model.subcluster_centers_
n_clusters = np.unique(labels).size
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print("n_clusters : %d" % n_clusters)

ax = fig.add_subplot(1, 3, ind + 1)
for this_centroid, k, col in zip(centroids, range(n_clusters), colors_):

mask = labels == k
ax.plot(X[mask, 0], X[mask, 1], 'w',

markerfacecolor=col, marker='.')
if birch_model.n_clusters is None:

ax.plot(this_centroid[0], this_centroid[1], '+', markerfacecolor=col,
markeredgecolor='k', markersize=5)

ax.set_ylim([-25, 25])
ax.set_xlim([-25, 25])
ax.set_autoscaley_on(False)
ax.set_title('Birch %s' % info)

# Compute clustering with MiniBatchKMeans.
mbk = MiniBatchKMeans(init='k-means++', n_clusters=100, batch_size=100,

n_init=10, max_no_improvement=10, verbose=0,
random_state=0)

t0 = time()
mbk.fit(X)
t_mini_batch = time() - t0
print("Time taken to run MiniBatchKMeans %0.2f seconds" % t_mini_batch)
mbk_means_labels_unique = np.unique(mbk.labels_)

ax = fig.add_subplot(1, 3, 3)
for this_centroid, k, col in zip(mbk.cluster_centers_,

range(n_clusters), colors_):
mask = mbk.labels_ == k
ax.plot(X[mask, 0], X[mask, 1], 'w', markerfacecolor=col, marker='.')
ax.plot(this_centroid[0], this_centroid[1], '+', markeredgecolor='k',

markersize=5)
ax.set_xlim([-25, 25])
ax.set_ylim([-25, 25])
ax.set_title("MiniBatchKMeans")
ax.set_autoscaley_on(False)
plt.show()

Total running time of the example: 18.81 seconds ( 0 minutes 18.81 seconds)

4.6.17 Feature agglomeration vs. univariate selection

This example compares 2 dimensionality reduction strategies:

• univariate feature selection with Anova

• feature agglomeration with Ward hierarchical clustering

Both methods are compared in a regression problem using a BayesianRidge as supervised estimator.
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Script output:
________________________________________________________________________________
[Memory] Calling sklearn.cluster.hierarchical.ward_tree...
ward_tree(array([[-0.451933, ..., -0.675318],

...,
[ 0.275706, ..., -1.085711]]),

<1600x1600 sparse matrix of type '<class 'numpy.int64'>'
with 7840 stored elements in COOrdinate format>, n_clusters=None, n_components=None)

________________________________________________________ward_tree - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.cluster.hierarchical.ward_tree...
ward_tree(array([[ 0.905206, ..., 0.161245],

...,
[-0.849835, ..., -1.091621]]),

<1600x1600 sparse matrix of type '<class 'numpy.int64'>'
with 7840 stored elements in COOrdinate format>, n_clusters=None, n_components=None)

________________________________________________________ward_tree - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.cluster.hierarchical.ward_tree...
ward_tree(array([[ 0.905206, ..., -0.675318],

...,
[-0.849835, ..., -1.085711]]),

<1600x1600 sparse matrix of type '<class 'numpy.int64'>'
with 7840 stored elements in COOrdinate format>, n_clusters=None, n_components=None)

________________________________________________________ward_tree - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.feature_selection.univariate_selection.f_regression...
f_regression(array([[-0.451933, ..., 0.275706],

...,
[-0.675318, ..., -1.085711]]),

array([ 25.267703, ..., -25.026711]))
_____________________________________________________f_regression - 0.0s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.feature_selection.univariate_selection.f_regression...
f_regression(array([[ 0.905206, ..., -0.849835],

...,
[ 0.161245, ..., -1.091621]]),

array([ -27.447268, ..., -112.638768]))
_____________________________________________________f_regression - 0.0s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.feature_selection.univariate_selection.f_regression...
f_regression(array([[ 0.905206, ..., -0.849835],
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...,
[-0.675318, ..., -1.085711]]),

array([-27.447268, ..., -25.026711]))
_____________________________________________________f_regression - 0.0s, 0.0min

Python source code: plot_feature_agglomeration_vs_univariate_selection.py

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# License: BSD 3 clause

print(__doc__)

import shutil
import tempfile

import numpy as np
import matplotlib.pyplot as plt
from scipy import linalg, ndimage

from sklearn.feature_extraction.image import grid_to_graph
from sklearn import feature_selection
from sklearn.cluster import FeatureAgglomeration
from sklearn.linear_model import BayesianRidge
from sklearn.pipeline import Pipeline
from sklearn.grid_search import GridSearchCV
from sklearn.externals.joblib import Memory
from sklearn.cross_validation import KFold

###############################################################################
# Generate data
n_samples = 200
size = 40 # image size
roi_size = 15
snr = 5.
np.random.seed(0)
mask = np.ones([size, size], dtype=np.bool)

coef = np.zeros((size, size))
coef[0:roi_size, 0:roi_size] = -1.
coef[-roi_size:, -roi_size:] = 1.

X = np.random.randn(n_samples, size ** 2)
for x in X: # smooth data

x[:] = ndimage.gaussian_filter(x.reshape(size, size), sigma=1.0).ravel()
X -= X.mean(axis=0)
X /= X.std(axis=0)

y = np.dot(X, coef.ravel())
noise = np.random.randn(y.shape[0])
noise_coef = (linalg.norm(y, 2) / np.exp(snr / 20.)) / linalg.norm(noise, 2)
y += noise_coef * noise # add noise

###############################################################################
# Compute the coefs of a Bayesian Ridge with GridSearch
cv = KFold(len(y), 2) # cross-validation generator for model selection
ridge = BayesianRidge()
cachedir = tempfile.mkdtemp()
mem = Memory(cachedir=cachedir, verbose=1)

634 Chapter 4. Examples



scikit-learn user guide, Release 0.17

# Ward agglomeration followed by BayesianRidge
connectivity = grid_to_graph(n_x=size, n_y=size)
ward = FeatureAgglomeration(n_clusters=10, connectivity=connectivity,

memory=mem)
clf = Pipeline([('ward', ward), ('ridge', ridge)])
# Select the optimal number of parcels with grid search
clf = GridSearchCV(clf, {'ward__n_clusters': [10, 20, 30]}, n_jobs=1, cv=cv)
clf.fit(X, y) # set the best parameters
coef_ = clf.best_estimator_.steps[-1][1].coef_
coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_)
coef_agglomeration_ = coef_.reshape(size, size)

# Anova univariate feature selection followed by BayesianRidge
f_regression = mem.cache(feature_selection.f_regression) # caching function
anova = feature_selection.SelectPercentile(f_regression)
clf = Pipeline([('anova', anova), ('ridge', ridge)])
# Select the optimal percentage of features with grid search
clf = GridSearchCV(clf, {'anova__percentile': [5, 10, 20]}, cv=cv)
clf.fit(X, y) # set the best parameters
coef_ = clf.best_estimator_.steps[-1][1].coef_
coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_.reshape(1, -1))
coef_selection_ = coef_.reshape(size, size)

###############################################################################
# Inverse the transformation to plot the results on an image
plt.close('all')
plt.figure(figsize=(7.3, 2.7))
plt.subplot(1, 3, 1)
plt.imshow(coef, interpolation="nearest", cmap=plt.cm.RdBu_r)
plt.title("True weights")
plt.subplot(1, 3, 2)
plt.imshow(coef_selection_, interpolation="nearest", cmap=plt.cm.RdBu_r)
plt.title("Feature Selection")
plt.subplot(1, 3, 3)
plt.imshow(coef_agglomeration_, interpolation="nearest", cmap=plt.cm.RdBu_r)
plt.title("Feature Agglomeration")
plt.subplots_adjust(0.04, 0.0, 0.98, 0.94, 0.16, 0.26)
plt.show()

# Attempt to remove the temporary cachedir, but don't worry if it fails
shutil.rmtree(cachedir, ignore_errors=True)

Total running time of the example: 1.93 seconds ( 0 minutes 1.93 seconds)

4.6.18 Agglomerative clustering with different metrics

Demonstrates the effect of different metrics on the hierarchical clustering.

The example is engineered to show the effect of the choice of different metrics. It is applied to waveforms, which
can be seen as high-dimensional vector. Indeed, the difference between metrics is usually more pronounced in high
dimension (in particular for euclidean and cityblock).

We generate data from three groups of waveforms. Two of the waveforms (waveform 1 and waveform 2) are propor-
tional one to the other. The cosine distance is invariant to a scaling of the data, as a result, it cannot distinguish these
two waveforms. Thus even with no noise, clustering using this distance will not separate out waveform 1 and 2.

We add observation noise to these waveforms. We generate very sparse noise: only 6% of the time points contain
noise. As a result, the l1 norm of this noise (ie “cityblock” distance) is much smaller than it’s l2 norm (“euclidean”
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distance). This can be seen on the inter-class distance matrices: the values on the diagonal, that characterize the spread
of the class, are much bigger for the Euclidean distance than for the cityblock distance.

When we apply clustering to the data, we find that the clustering reflects what was in the distance matrices. Indeed,
for the Euclidean distance, the classes are ill-separated because of the noise, and thus the clustering does not separate
the waveforms. For the cityblock distance, the separation is good and the waveform classes are recovered. Finally, the
cosine distance does not separate at all waveform 1 and 2, thus the clustering puts them in the same cluster.

•

•

•
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Python source code: plot_agglomerative_clustering_metrics.py

# Author: Gael Varoquaux
# License: BSD 3-Clause or CC-0

import matplotlib.pyplot as plt
import numpy as np

from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics import pairwise_distances

np.random.seed(0)

# Generate waveform data
n_features = 2000
t = np.pi * np.linspace(0, 1, n_features)

def sqr(x):
return np.sign(np.cos(x))

X = list()
y = list()
for i, (phi, a) in enumerate([(.5, .15), (.5, .6), (.3, .2)]):

for _ in range(30):
phase_noise = .01 * np.random.normal()
amplitude_noise = .04 * np.random.normal()
additional_noise = 1 - 2 * np.random.rand(n_features)
# Make the noise sparse
additional_noise[np.abs(additional_noise) < .997] = 0

X.append(12 * ((a + amplitude_noise)

* (sqr(6 * (t + phi + phase_noise)))
+ additional_noise))

y.append(i)

X = np.array(X)
y = np.array(y)

n_clusters = 3

labels = ('Waveform 1', 'Waveform 2', 'Waveform 3')

# Plot the ground-truth labelling
plt.figure()
plt.axes([0, 0, 1, 1])
for l, c, n in zip(range(n_clusters), 'rgb',

labels):
lines = plt.plot(X[y == l].T, c=c, alpha=.5)
lines[0].set_label(n)

plt.legend(loc='best')

plt.axis('tight')
plt.axis('off')
plt.suptitle("Ground truth", size=20)

# Plot the distances
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for index, metric in enumerate(["cosine", "euclidean", "cityblock"]):
avg_dist = np.zeros((n_clusters, n_clusters))
plt.figure(figsize=(5, 4.5))
for i in range(n_clusters):

for j in range(n_clusters):
avg_dist[i, j] = pairwise_distances(X[y == i], X[y == j],

metric=metric).mean()
avg_dist /= avg_dist.max()
for i in range(n_clusters):

for j in range(n_clusters):
plt.text(i, j, '%5.3f' % avg_dist[i, j],

verticalalignment='center',
horizontalalignment='center')

plt.imshow(avg_dist, interpolation='nearest', cmap=plt.cm.gnuplot2,
vmin=0)

plt.xticks(range(n_clusters), labels, rotation=45)
plt.yticks(range(n_clusters), labels)
plt.colorbar()
plt.suptitle("Interclass %s distances" % metric, size=18)
plt.tight_layout()

# Plot clustering results
for index, metric in enumerate(["cosine", "euclidean", "cityblock"]):

model = AgglomerativeClustering(n_clusters=n_clusters,
linkage="average", affinity=metric)

model.fit(X)
plt.figure()
plt.axes([0, 0, 1, 1])
for l, c in zip(np.arange(model.n_clusters), 'rgbk'):

plt.plot(X[model.labels_ == l].T, c=c, alpha=.5)
plt.axis('tight')
plt.axis('off')
plt.suptitle("AgglomerativeClustering(affinity=%s)" % metric, size=20)

plt.show()

Total running time of the example: 1.49 seconds ( 0 minutes 1.49 seconds)

4.6.19 Empirical evaluation of the impact of k-means initialization

Evaluate the ability of k-means initializations strategies to make the algorithm convergence robust as measured by the
relative standard deviation of the inertia of the clustering (i.e. the sum of distances to the nearest cluster center).

The first plot shows the best inertia reached for each combination of the model (KMeans or MiniBatchKMeans)
and the init method (init="random" or init="kmeans++") for increasing values of the n_init parameter
that controls the number of initializations.

The second plot demonstrate one single run of the MiniBatchKMeans estimator using a init="random" and
n_init=1. This run leads to a bad convergence (local optimum) with estimated centers stuck between ground truth
clusters.

The dataset used for evaluation is a 2D grid of isotropic Gaussian clusters widely spaced.
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Script output:

Evaluation of KMeans with k-means++ init
Evaluation of KMeans with random init
Evaluation of MiniBatchKMeans with k-means++ init
Evaluation of MiniBatchKMeans with random init

Python source code: plot_kmeans_stability_low_dim_dense.py

print(__doc__)

# Author: Olivier Grisel <olivier.grisel@ensta.org>
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm

from sklearn.utils import shuffle
from sklearn.utils import check_random_state
from sklearn.cluster import MiniBatchKMeans
from sklearn.cluster import KMeans

random_state = np.random.RandomState(0)

# Number of run (with randomly generated dataset) for each strategy so as
# to be able to compute an estimate of the standard deviation
n_runs = 5
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# k-means models can do several random inits so as to be able to trade
# CPU time for convergence robustness
n_init_range = np.array([1, 5, 10, 15, 20])

# Datasets generation parameters
n_samples_per_center = 100
grid_size = 3
scale = 0.1
n_clusters = grid_size ** 2

def make_data(random_state, n_samples_per_center, grid_size, scale):
random_state = check_random_state(random_state)
centers = np.array([[i, j]

for i in range(grid_size)
for j in range(grid_size)])

n_clusters_true, n_features = centers.shape

noise = random_state.normal(
scale=scale, size=(n_samples_per_center, centers.shape[1]))

X = np.concatenate([c + noise for c in centers])
y = np.concatenate([[i] * n_samples_per_center

for i in range(n_clusters_true)])
return shuffle(X, y, random_state=random_state)

# Part 1: Quantitative evaluation of various init methods

fig = plt.figure()
plots = []
legends = []

cases = [
(KMeans, 'k-means++', {}),
(KMeans, 'random', {}),
(MiniBatchKMeans, 'k-means++', {'max_no_improvement': 3}),
(MiniBatchKMeans, 'random', {'max_no_improvement': 3, 'init_size': 500}),

]

for factory, init, params in cases:
print("Evaluation of %s with %s init" % (factory.__name__, init))
inertia = np.empty((len(n_init_range), n_runs))

for run_id in range(n_runs):
X, y = make_data(run_id, n_samples_per_center, grid_size, scale)
for i, n_init in enumerate(n_init_range):

km = factory(n_clusters=n_clusters, init=init, random_state=run_id,
n_init=n_init, **params).fit(X)

inertia[i, run_id] = km.inertia_
p = plt.errorbar(n_init_range, inertia.mean(axis=1), inertia.std(axis=1))
plots.append(p[0])
legends.append("%s with %s init" % (factory.__name__, init))

plt.xlabel('n_init')
plt.ylabel('inertia')
plt.legend(plots, legends)
plt.title("Mean inertia for various k-means init across %d runs" % n_runs)
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# Part 2: Qualitative visual inspection of the convergence

X, y = make_data(random_state, n_samples_per_center, grid_size, scale)
km = MiniBatchKMeans(n_clusters=n_clusters, init='random', n_init=1,

random_state=random_state).fit(X)

fig = plt.figure()
for k in range(n_clusters):

my_members = km.labels_ == k
color = cm.spectral(float(k) / n_clusters, 1)
plt.plot(X[my_members, 0], X[my_members, 1], 'o', marker='.', c=color)
cluster_center = km.cluster_centers_[k]
plt.plot(cluster_center[0], cluster_center[1], 'o',

markerfacecolor=color, markeredgecolor='k', markersize=6)
plt.title("Example cluster allocation with a single random init\n"

"with MiniBatchKMeans")

plt.show()

Total running time of the example: 4.50 seconds ( 0 minutes 4.50 seconds)

4.6.20 A demo of K-Means clustering on the handwritten digits data

In this example we compare the various initialization strategies for K-means in terms of runtime and quality of the
results.

As the ground truth is known here, we also apply different cluster quality metrics to judge the goodness of fit of the
cluster labels to the ground truth.

Cluster quality metrics evaluated (see Clustering performance evaluation for definitions and discussions of the met-
rics):

Shorthand full name
homo homogeneity score
compl completeness score
v-meas V measure
ARI adjusted Rand index
AMI adjusted mutual information
silhouette silhouette coefficient
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Script output:

n_digits: 10, n_samples 1797, n_features 64
_______________________________________________________________________________
init time inertia homo compl v-meas ARI AMI silhouette
k-means++ 0.60s 69432 0.602 0.650 0.625 0.465 0.598 0.146

random 0.43s 69694 0.669 0.710 0.689 0.553 0.666 0.147
PCA-based 0.03s 71820 0.673 0.715 0.693 0.567 0.670 0.150
_______________________________________________________________________________

Python source code: plot_kmeans_digits.py

print(__doc__)

from time import time
import numpy as np
import matplotlib.pyplot as plt

from sklearn import metrics
from sklearn.cluster import KMeans
from sklearn.datasets import load_digits
from sklearn.decomposition import PCA
from sklearn.preprocessing import scale

np.random.seed(42)
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digits = load_digits()
data = scale(digits.data)

n_samples, n_features = data.shape
n_digits = len(np.unique(digits.target))
labels = digits.target

sample_size = 300

print("n_digits: %d, \t n_samples %d, \t n_features %d"
% (n_digits, n_samples, n_features))

print(79 * '_')
print('% 9s' % 'init'

' time inertia homo compl v-meas ARI AMI silhouette')

def bench_k_means(estimator, name, data):
t0 = time()
estimator.fit(data)
print('% 9s %.2fs %i %.3f %.3f %.3f %.3f %.3f %.3f'

% (name, (time() - t0), estimator.inertia_,
metrics.homogeneity_score(labels, estimator.labels_),
metrics.completeness_score(labels, estimator.labels_),
metrics.v_measure_score(labels, estimator.labels_),
metrics.adjusted_rand_score(labels, estimator.labels_),
metrics.adjusted_mutual_info_score(labels, estimator.labels_),
metrics.silhouette_score(data, estimator.labels_,

metric='euclidean',
sample_size=sample_size)))

bench_k_means(KMeans(init='k-means++', n_clusters=n_digits, n_init=10),
name="k-means++", data=data)

bench_k_means(KMeans(init='random', n_clusters=n_digits, n_init=10),
name="random", data=data)

# in this case the seeding of the centers is deterministic, hence we run the
# kmeans algorithm only once with n_init=1
pca = PCA(n_components=n_digits).fit(data)
bench_k_means(KMeans(init=pca.components_, n_clusters=n_digits, n_init=1),

name="PCA-based",
data=data)

print(79 * '_')

###############################################################################
# Visualize the results on PCA-reduced data

reduced_data = PCA(n_components=2).fit_transform(data)
kmeans = KMeans(init='k-means++', n_clusters=n_digits, n_init=10)
kmeans.fit(reduced_data)

# Step size of the mesh. Decrease to increase the quality of the VQ.
h = .02 # point in the mesh [x_min, m_max]x[y_min, y_max].

# Plot the decision boundary. For that, we will assign a color to each
x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1
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y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

# Obtain labels for each point in mesh. Use last trained model.
Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure(1)
plt.clf()
plt.imshow(Z, interpolation='nearest',

extent=(xx.min(), xx.max(), yy.min(), yy.max()),
cmap=plt.cm.Paired,
aspect='auto', origin='lower')

plt.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2)
# Plot the centroids as a white X
centroids = kmeans.cluster_centers_
plt.scatter(centroids[:, 0], centroids[:, 1],

marker='x', s=169, linewidths=3,
color='w', zorder=10)

plt.title('K-means clustering on the digits dataset (PCA-reduced data)\n'
'Centroids are marked with white cross')

plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xticks(())
plt.yticks(())
plt.show()

Total running time of the example: 2.33 seconds ( 0 minutes 2.33 seconds)

4.6.21 Adjustment for chance in clustering performance evaluation

The following plots demonstrate the impact of the number of clusters and number of samples on various clustering
performance evaluation metrics.

Non-adjusted measures such as the V-Measure show a dependency between the number of clusters and the number of
samples: the mean V-Measure of random labeling increases significantly as the number of clusters is closer to the total
number of samples used to compute the measure.

Adjusted for chance measure such as ARI display some random variations centered around a mean score of 0.0 for
any number of samples and clusters.

Only adjusted measures can hence safely be used as a consensus index to evaluate the average stability of clustering
algorithms for a given value of k on various overlapping sub-samples of the dataset.
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Script output:

Computing adjusted_rand_score for 10 values of n_clusters and n_samples=100
done in 0.147s
Computing v_measure_score for 10 values of n_clusters and n_samples=100
done in 0.034s
Computing adjusted_mutual_info_score for 10 values of n_clusters and n_samples=100
done in 0.576s
Computing mutual_info_score for 10 values of n_clusters and n_samples=100
done in 0.017s
Computing adjusted_rand_score for 10 values of n_clusters and n_samples=1000
done in 0.089s
Computing v_measure_score for 10 values of n_clusters and n_samples=1000
done in 0.052s
Computing adjusted_mutual_info_score for 10 values of n_clusters and n_samples=1000
done in 0.382s
Computing mutual_info_score for 10 values of n_clusters and n_samples=1000
done in 0.037s

Python source code: plot_adjusted_for_chance_measures.py

print(__doc__)

# Author: Olivier Grisel <olivier.grisel@ensta.org>
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from time import time
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from sklearn import metrics

def uniform_labelings_scores(score_func, n_samples, n_clusters_range,
fixed_n_classes=None, n_runs=5, seed=42):

"""Compute score for 2 random uniform cluster labelings.

Both random labelings have the same number of clusters for each value
possible value in ``n_clusters_range``.

When fixed_n_classes is not None the first labeling is considered a ground
truth class assignment with fixed number of classes.
"""
random_labels = np.random.RandomState(seed).random_integers
scores = np.zeros((len(n_clusters_range), n_runs))

if fixed_n_classes is not None:
labels_a = random_labels(low=0, high=fixed_n_classes - 1,

size=n_samples)

for i, k in enumerate(n_clusters_range):
for j in range(n_runs):

if fixed_n_classes is None:
labels_a = random_labels(low=0, high=k - 1, size=n_samples)

labels_b = random_labels(low=0, high=k - 1, size=n_samples)
scores[i, j] = score_func(labels_a, labels_b)

return scores

score_funcs = [
metrics.adjusted_rand_score,
metrics.v_measure_score,
metrics.adjusted_mutual_info_score,
metrics.mutual_info_score,

]

# 2 independent random clusterings with equal cluster number

n_samples = 100
n_clusters_range = np.linspace(2, n_samples, 10).astype(np.int)

plt.figure(1)

plots = []
names = []
for score_func in score_funcs:

print("Computing %s for %d values of n_clusters and n_samples=%d"
% (score_func.__name__, len(n_clusters_range), n_samples))

t0 = time()
scores = uniform_labelings_scores(score_func, n_samples, n_clusters_range)
print("done in %0.3fs" % (time() - t0))
plots.append(plt.errorbar(

n_clusters_range, np.median(scores, axis=1), scores.std(axis=1))[0])
names.append(score_func.__name__)

plt.title("Clustering measures for 2 random uniform labelings\n"
"with equal number of clusters")

plt.xlabel('Number of clusters (Number of samples is fixed to %d)' % n_samples)
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plt.ylabel('Score value')
plt.legend(plots, names)
plt.ylim(ymin=-0.05, ymax=1.05)

# Random labeling with varying n_clusters against ground class labels
# with fixed number of clusters

n_samples = 1000
n_clusters_range = np.linspace(2, 100, 10).astype(np.int)
n_classes = 10

plt.figure(2)

plots = []
names = []
for score_func in score_funcs:

print("Computing %s for %d values of n_clusters and n_samples=%d"
% (score_func.__name__, len(n_clusters_range), n_samples))

t0 = time()
scores = uniform_labelings_scores(score_func, n_samples, n_clusters_range,

fixed_n_classes=n_classes)
print("done in %0.3fs" % (time() - t0))
plots.append(plt.errorbar(

n_clusters_range, scores.mean(axis=1), scores.std(axis=1))[0])
names.append(score_func.__name__)

plt.title("Clustering measures for random uniform labeling\n"
"against reference assignment with %d classes" % n_classes)

plt.xlabel('Number of clusters (Number of samples is fixed to %d)' % n_samples)
plt.ylabel('Score value')
plt.ylim(ymin=-0.05, ymax=1.05)
plt.legend(plots, names)
plt.show()

Total running time of the example: 1.54 seconds ( 0 minutes 1.54 seconds)

4.6.22 Comparing different clustering algorithms on toy datasets

This example aims at showing characteristics of different clustering algorithms on datasets that are “interesting” but
still in 2D. The last dataset is an example of a ‘null’ situation for clustering: the data is homogeneous, and there is no
good clustering.

While these examples give some intuition about the algorithms, this intuition might not apply to very high dimensional
data.

The results could be improved by tweaking the parameters for each clustering strategy, for instance setting the number
of clusters for the methods that needs this parameter specified. Note that affinity propagation has a tendency to create
many clusters. Thus in this example its two parameters (damping and per-point preference) were set to to mitigate this
behavior.
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Python source code: plot_cluster_comparison.py

print(__doc__)

import time

import numpy as np
import matplotlib.pyplot as plt

from sklearn import cluster, datasets
from sklearn.neighbors import kneighbors_graph
from sklearn.preprocessing import StandardScaler

np.random.seed(0)

# Generate datasets. We choose the size big enough to see the scalability
# of the algorithms, but not too big to avoid too long running times
n_samples = 1500
noisy_circles = datasets.make_circles(n_samples=n_samples, factor=.5,

noise=.05)
noisy_moons = datasets.make_moons(n_samples=n_samples, noise=.05)
blobs = datasets.make_blobs(n_samples=n_samples, random_state=8)
no_structure = np.random.rand(n_samples, 2), None

colors = np.array([x for x in 'bgrcmykbgrcmykbgrcmykbgrcmyk'])
colors = np.hstack([colors] * 20)

clustering_names = [
'MiniBatchKMeans', 'AffinityPropagation', 'MeanShift',
'SpectralClustering', 'Ward', 'AgglomerativeClustering',
'DBSCAN', 'Birch']

plt.figure(figsize=(len(clustering_names) * 2 + 3, 9.5))
plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05,

hspace=.01)

plot_num = 1
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datasets = [noisy_circles, noisy_moons, blobs, no_structure]
for i_dataset, dataset in enumerate(datasets):

X, y = dataset
# normalize dataset for easier parameter selection
X = StandardScaler().fit_transform(X)

# estimate bandwidth for mean shift
bandwidth = cluster.estimate_bandwidth(X, quantile=0.3)

# connectivity matrix for structured Ward
connectivity = kneighbors_graph(X, n_neighbors=10, include_self=False)
# make connectivity symmetric
connectivity = 0.5 * (connectivity + connectivity.T)

# create clustering estimators
ms = cluster.MeanShift(bandwidth=bandwidth, bin_seeding=True)
two_means = cluster.MiniBatchKMeans(n_clusters=2)
ward = cluster.AgglomerativeClustering(n_clusters=2, linkage='ward',

connectivity=connectivity)
spectral = cluster.SpectralClustering(n_clusters=2,

eigen_solver='arpack',
affinity="nearest_neighbors")

dbscan = cluster.DBSCAN(eps=.2)
affinity_propagation = cluster.AffinityPropagation(damping=.9,

preference=-200)

average_linkage = cluster.AgglomerativeClustering(
linkage="average", affinity="cityblock", n_clusters=2,
connectivity=connectivity)

birch = cluster.Birch(n_clusters=2)
clustering_algorithms = [

two_means, affinity_propagation, ms, spectral, ward, average_linkage,
dbscan, birch]

for name, algorithm in zip(clustering_names, clustering_algorithms):
# predict cluster memberships
t0 = time.time()
algorithm.fit(X)
t1 = time.time()
if hasattr(algorithm, 'labels_'):

y_pred = algorithm.labels_.astype(np.int)
else:

y_pred = algorithm.predict(X)

# plot
plt.subplot(4, len(clustering_algorithms), plot_num)
if i_dataset == 0:

plt.title(name, size=18)
plt.scatter(X[:, 0], X[:, 1], color=colors[y_pred].tolist(), s=10)

if hasattr(algorithm, 'cluster_centers_'):
centers = algorithm.cluster_centers_
center_colors = colors[:len(centers)]
plt.scatter(centers[:, 0], centers[:, 1], s=100, c=center_colors)

plt.xlim(-2, 2)
plt.ylim(-2, 2)
plt.xticks(())
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plt.yticks(())
plt.text(.99, .01, ('%.2fs' % (t1 - t0)).lstrip('0'),

transform=plt.gca().transAxes, size=15,
horizontalalignment='right')

plot_num += 1

plt.show()

Total running time of the example: 33.96 seconds ( 0 minutes 33.96 seconds)

4.6.23 Comparison of the K-Means and MiniBatchKMeans clustering algorithms

We want to compare the performance of the MiniBatchKMeans and KMeans: the MiniBatchKMeans is faster, but
gives slightly different results (see Mini Batch K-Means).

We will cluster a set of data, first with KMeans and then with MiniBatchKMeans, and plot the results. We will also
plot the points that are labelled differently between the two algorithms.

Python source code: plot_mini_batch_kmeans.py

print(__doc__)

import time

import numpy as np
import matplotlib.pyplot as plt

from sklearn.cluster import MiniBatchKMeans, KMeans
from sklearn.metrics.pairwise import pairwise_distances_argmin
from sklearn.datasets.samples_generator import make_blobs

##############################################################################
# Generate sample data
np.random.seed(0)

batch_size = 45
centers = [[1, 1], [-1, -1], [1, -1]]
n_clusters = len(centers)
X, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=0.7)

##############################################################################
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# Compute clustering with Means

k_means = KMeans(init='k-means++', n_clusters=3, n_init=10)
t0 = time.time()
k_means.fit(X)
t_batch = time.time() - t0
k_means_labels = k_means.labels_
k_means_cluster_centers = k_means.cluster_centers_
k_means_labels_unique = np.unique(k_means_labels)

##############################################################################
# Compute clustering with MiniBatchKMeans

mbk = MiniBatchKMeans(init='k-means++', n_clusters=3, batch_size=batch_size,
n_init=10, max_no_improvement=10, verbose=0)

t0 = time.time()
mbk.fit(X)
t_mini_batch = time.time() - t0
mbk_means_labels = mbk.labels_
mbk_means_cluster_centers = mbk.cluster_centers_
mbk_means_labels_unique = np.unique(mbk_means_labels)

##############################################################################
# Plot result

fig = plt.figure(figsize=(8, 3))
fig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9)
colors = ['#4EACC5', '#FF9C34', '#4E9A06']

# We want to have the same colors for the same cluster from the
# MiniBatchKMeans and the KMeans algorithm. Let's pair the cluster centers per
# closest one.

order = pairwise_distances_argmin(k_means_cluster_centers,
mbk_means_cluster_centers)

# KMeans
ax = fig.add_subplot(1, 3, 1)
for k, col in zip(range(n_clusters), colors):

my_members = k_means_labels == k
cluster_center = k_means_cluster_centers[k]
ax.plot(X[my_members, 0], X[my_members, 1], 'w',

markerfacecolor=col, marker='.')
ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col,

markeredgecolor='k', markersize=6)
ax.set_title('KMeans')
ax.set_xticks(())
ax.set_yticks(())
plt.text(-3.5, 1.8, 'train time: %.2fs\ninertia: %f' % (

t_batch, k_means.inertia_))

# MiniBatchKMeans
ax = fig.add_subplot(1, 3, 2)
for k, col in zip(range(n_clusters), colors):

my_members = mbk_means_labels == order[k]
cluster_center = mbk_means_cluster_centers[order[k]]
ax.plot(X[my_members, 0], X[my_members, 1], 'w',

markerfacecolor=col, marker='.')
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ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col,
markeredgecolor='k', markersize=6)

ax.set_title('MiniBatchKMeans')
ax.set_xticks(())
ax.set_yticks(())
plt.text(-3.5, 1.8, 'train time: %.2fs\ninertia: %f' %

(t_mini_batch, mbk.inertia_))

# Initialise the different array to all False
different = (mbk_means_labels == 4)
ax = fig.add_subplot(1, 3, 3)

for l in range(n_clusters):
different += ((k_means_labels == k) != (mbk_means_labels == order[k]))

identic = np.logical_not(different)
ax.plot(X[identic, 0], X[identic, 1], 'w',

markerfacecolor='#bbbbbb', marker='.')
ax.plot(X[different, 0], X[different, 1], 'w',

markerfacecolor='m', marker='.')
ax.set_title('Difference')
ax.set_xticks(())
ax.set_yticks(())

plt.show()

Total running time of the example: 0.29 seconds ( 0 minutes 0.29 seconds)

4.6.24 Selecting the number of clusters with silhouette analysis on KMeans clus-
tering

Silhouette analysis can be used to study the separation distance between the resulting clusters. The silhouette plot
displays a measure of how close each point in one cluster is to points in the neighboring clusters and thus provides a
way to assess parameters like number of clusters visually. This measure has a range of [-1, 1].

Silhoette coefficients (as these values are referred to as) near +1 indicate that the sample is far away from the neigh-
boring clusters. A value of 0 indicates that the sample is on or very close to the decision boundary between two
neighboring clusters and negative values indicate that those samples might have been assigned to the wrong cluster.

In this example the silhouette analysis is used to choose an optimal value for n_clusters. The silhouette plot shows
that the n_clusters value of 3, 5 and 6 are a bad pick for the given data due to the presence of clusters with below
average silhouette scores and also due to wide fluctuations in the size of the silhouette plots. Silhouette analysis is
more ambivalent in deciding between 2 and 4.

Also from the thickness of the silhouette plot the cluster size can be visualized. The silhouette plot for cluster 0 when
n_clusters is equal to 2, is bigger in size owing to the grouping of the 3 sub clusters into one big cluster. However
when the n_clusters is equal to 4, all the plots are more or less of similar thickness and hence are of similar sizes
as can be also verified from the labelled scatter plot on the right.

•
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Script output:

For n_clusters = 2 The average silhouette_score is : 0.704978749608
For n_clusters = 3 The average silhouette_score is : 0.588200401213
For n_clusters = 4 The average silhouette_score is : 0.650518663273
For n_clusters = 5 The average silhouette_score is : 0.563764690262
For n_clusters = 6 The average silhouette_score is : 0.450466629437

Python source code: plot_kmeans_silhouette_analysis.py

from __future__ import print_function

from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_samples, silhouette_score

import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np

print(__doc__)

# Generating the sample data from make_blobs
# This particular setting has one distict cluster and 3 clusters placed close
# together.
X, y = make_blobs(n_samples=500,

n_features=2,
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centers=4,
cluster_std=1,
center_box=(-10.0, 10.0),
shuffle=True,
random_state=1) # For reproducibility

range_n_clusters = [2, 3, 4, 5, 6]

for n_clusters in range_n_clusters:
# Create a subplot with 1 row and 2 columns
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set_size_inches(18, 7)

# The 1st subplot is the silhouette plot
# The silhouette coefficient can range from -1, 1 but in this example all
# lie within [-0.1, 1]
ax1.set_xlim([-0.1, 1])
# The (n_clusters+1)*10 is for inserting blank space between silhouette
# plots of individual clusters, to demarcate them clearly.
ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10])

# Initialize the clusterer with n_clusters value and a random generator
# seed of 10 for reproducibility.
clusterer = KMeans(n_clusters=n_clusters, random_state=10)
cluster_labels = clusterer.fit_predict(X)

# The silhouette_score gives the average value for all the samples.
# This gives a perspective into the density and separation of the formed
# clusters
silhouette_avg = silhouette_score(X, cluster_labels)
print("For n_clusters =", n_clusters,

"The average silhouette_score is :", silhouette_avg)

# Compute the silhouette scores for each sample
sample_silhouette_values = silhouette_samples(X, cluster_labels)

y_lower = 10
for i in range(n_clusters):

# Aggregate the silhouette scores for samples belonging to
# cluster i, and sort them
ith_cluster_silhouette_values = \

sample_silhouette_values[cluster_labels == i]

ith_cluster_silhouette_values.sort()

size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i

color = cm.spectral(float(i) / n_clusters)
ax1.fill_betweenx(np.arange(y_lower, y_upper),

0, ith_cluster_silhouette_values,
facecolor=color, edgecolor=color, alpha=0.7)

# Label the silhouette plots with their cluster numbers at the middle
ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))

# Compute the new y_lower for next plot
y_lower = y_upper + 10 # 10 for the 0 samples
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ax1.set_title("The silhouette plot for the various clusters.")
ax1.set_xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")

# The vertical line for average silhoutte score of all the values
ax1.axvline(x=silhouette_avg, color="red", linestyle="--")

ax1.set_yticks([]) # Clear the yaxis labels / ticks
ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])

# 2nd Plot showing the actual clusters formed
colors = cm.spectral(cluster_labels.astype(float) / n_clusters)
ax2.scatter(X[:, 0], X[:, 1], marker='.', s=30, lw=0, alpha=0.7,

c=colors)

# Labeling the clusters
centers = clusterer.cluster_centers_
# Draw white circles at cluster centers
ax2.scatter(centers[:, 0], centers[:, 1],

marker='o', c="white", alpha=1, s=200)

for i, c in enumerate(centers):
ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1, s=50)

ax2.set_title("The visualization of the clustered data.")
ax2.set_xlabel("Feature space for the 1st feature")
ax2.set_ylabel("Feature space for the 2nd feature")

plt.suptitle(("Silhouette analysis for KMeans clustering on sample data "
"with n_clusters = %d" % n_clusters),

fontsize=14, fontweight='bold')

plt.show()

Total running time of the example: 2.83 seconds ( 0 minutes 2.83 seconds)

4.7 Covariance estimation

Examples concerning the sklearn.covariance module.

4.7.1 Ledoit-Wolf vs OAS estimation

The usual covariance maximum likelihood estimate can be regularized using shrinkage. Ledoit and Wolf proposed a
close formula to compute the asymptotically optimal shrinkage parameter (minimizing a MSE criterion), yielding the
Ledoit-Wolf covariance estimate.

Chen et al. proposed an improvement of the Ledoit-Wolf shrinkage parameter, the OAS coefficient, whose convergence
is significantly better under the assumption that the data are Gaussian.

This example, inspired from Chen’s publication [1], shows a comparison of the estimated MSE of the LW and OAS
methods, using Gaussian distributed data.

[1] “Shrinkage Algorithms for MMSE Covariance Estimation” Chen et al., IEEE Trans. on Sign. Proc., Volume 58,
Issue 10, October 2010.
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Python source code: plot_lw_vs_oas.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from scipy.linalg import toeplitz, cholesky

from sklearn.covariance import LedoitWolf, OAS

np.random.seed(0)
###############################################################################
n_features = 100
# simulation covariance matrix (AR(1) process)
r = 0.1
real_cov = toeplitz(r ** np.arange(n_features))
coloring_matrix = cholesky(real_cov)

n_samples_range = np.arange(6, 31, 1)
repeat = 100
lw_mse = np.zeros((n_samples_range.size, repeat))
oa_mse = np.zeros((n_samples_range.size, repeat))
lw_shrinkage = np.zeros((n_samples_range.size, repeat))
oa_shrinkage = np.zeros((n_samples_range.size, repeat))
for i, n_samples in enumerate(n_samples_range):

for j in range(repeat):
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X = np.dot(
np.random.normal(size=(n_samples, n_features)), coloring_matrix.T)

lw = LedoitWolf(store_precision=False, assume_centered=True)
lw.fit(X)
lw_mse[i, j] = lw.error_norm(real_cov, scaling=False)
lw_shrinkage[i, j] = lw.shrinkage_

oa = OAS(store_precision=False, assume_centered=True)
oa.fit(X)
oa_mse[i, j] = oa.error_norm(real_cov, scaling=False)
oa_shrinkage[i, j] = oa.shrinkage_

# plot MSE
plt.subplot(2, 1, 1)
plt.errorbar(n_samples_range, lw_mse.mean(1), yerr=lw_mse.std(1),

label='Ledoit-Wolf', color='g')
plt.errorbar(n_samples_range, oa_mse.mean(1), yerr=oa_mse.std(1),

label='OAS', color='r')
plt.ylabel("Squared error")
plt.legend(loc="upper right")
plt.title("Comparison of covariance estimators")
plt.xlim(5, 31)

# plot shrinkage coefficient
plt.subplot(2, 1, 2)
plt.errorbar(n_samples_range, lw_shrinkage.mean(1), yerr=lw_shrinkage.std(1),

label='Ledoit-Wolf', color='g')
plt.errorbar(n_samples_range, oa_shrinkage.mean(1), yerr=oa_shrinkage.std(1),

label='OAS', color='r')
plt.xlabel("n_samples")
plt.ylabel("Shrinkage")
plt.legend(loc="lower right")
plt.ylim(plt.ylim()[0], 1. + (plt.ylim()[1] - plt.ylim()[0]) / 10.)
plt.xlim(5, 31)

plt.show()

Total running time of the example: 4.05 seconds ( 0 minutes 4.05 seconds)

4.7.2 Outlier detection with several methods.

When the amount of contamination is known, this example illustrates two different ways of performing Novelty and
Outlier Detection:

• based on a robust estimator of covariance, which is assuming that the data are Gaussian distributed and performs
better than the One-Class SVM in that case.

• using the One-Class SVM and its ability to capture the shape of the data set, hence performing better when the
data is strongly non-Gaussian, i.e. with two well-separated clusters;

The ground truth about inliers and outliers is given by the points colors while the orange-filled area indicates which
points are reported as inliers by each method.

Here, we assume that we know the fraction of outliers in the datasets. Thus rather than using the ‘predict’ method of
the objects, we set the threshold on the decision_function to separate out the corresponding fraction.
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•

•

•

Python source code: plot_outlier_detection.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.font_manager
from scipy import stats

from sklearn import svm
from sklearn.covariance import EllipticEnvelope

# Example settings
n_samples = 200
outliers_fraction = 0.25
clusters_separation = [0, 1, 2]

# define two outlier detection tools to be compared
classifiers = {

"One-Class SVM": svm.OneClassSVM(nu=0.95 * outliers_fraction + 0.05,
kernel="rbf", gamma=0.1),

"robust covariance estimator": EllipticEnvelope(contamination=.1)}

# Compare given classifiers under given settings
xx, yy = np.meshgrid(np.linspace(-7, 7, 500), np.linspace(-7, 7, 500))
n_inliers = int((1. - outliers_fraction) * n_samples)
n_outliers = int(outliers_fraction * n_samples)
ground_truth = np.ones(n_samples, dtype=int)
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ground_truth[-n_outliers:] = 0

# Fit the problem with varying cluster separation
for i, offset in enumerate(clusters_separation):

np.random.seed(42)
# Data generation
X1 = 0.3 * np.random.randn(0.5 * n_inliers, 2) - offset
X2 = 0.3 * np.random.randn(0.5 * n_inliers, 2) + offset
X = np.r_[X1, X2]
# Add outliers
X = np.r_[X, np.random.uniform(low=-6, high=6, size=(n_outliers, 2))]

# Fit the model with the One-Class SVM
plt.figure(figsize=(10, 5))
for i, (clf_name, clf) in enumerate(classifiers.items()):

# fit the data and tag outliers
clf.fit(X)
y_pred = clf.decision_function(X).ravel()
threshold = stats.scoreatpercentile(y_pred,

100 * outliers_fraction)
y_pred = y_pred > threshold
n_errors = (y_pred != ground_truth).sum()
# plot the levels lines and the points
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
subplot = plt.subplot(1, 2, i + 1)
subplot.set_title("Outlier detection")
subplot.contourf(xx, yy, Z, levels=np.linspace(Z.min(), threshold, 7),

cmap=plt.cm.Blues_r)
a = subplot.contour(xx, yy, Z, levels=[threshold],

linewidths=2, colors='red')
subplot.contourf(xx, yy, Z, levels=[threshold, Z.max()],

colors='orange')
b = subplot.scatter(X[:-n_outliers, 0], X[:-n_outliers, 1], c='white')
c = subplot.scatter(X[-n_outliers:, 0], X[-n_outliers:, 1], c='black')
subplot.axis('tight')
subplot.legend(

[a.collections[0], b, c],
['learned decision function', 'true inliers', 'true outliers'],
prop=matplotlib.font_manager.FontProperties(size=11))

subplot.set_xlabel("%d. %s (errors: %d)" % (i + 1, clf_name, n_errors))
subplot.set_xlim((-7, 7))
subplot.set_ylim((-7, 7))

plt.subplots_adjust(0.04, 0.1, 0.96, 0.94, 0.1, 0.26)

plt.show()

Total running time of the example: 2.69 seconds ( 0 minutes 2.69 seconds)

4.7.3 Sparse inverse covariance estimation

Using the GraphLasso estimator to learn a covariance and sparse precision from a small number of samples.

To estimate a probabilistic model (e.g. a Gaussian model), estimating the precision matrix, that is the inverse covari-
ance matrix, is as important as estimating the covariance matrix. Indeed a Gaussian model is parametrized by the
precision matrix.

To be in favorable recovery conditions, we sample the data from a model with a sparse inverse covariance matrix. In
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addition, we ensure that the data is not too much correlated (limiting the largest coefficient of the precision matrix) and
that there a no small coefficients in the precision matrix that cannot be recovered. In addition, with a small number of
observations, it is easier to recover a correlation matrix rather than a covariance, thus we scale the time series.

Here, the number of samples is slightly larger than the number of dimensions, thus the empirical covariance is still
invertible. However, as the observations are strongly correlated, the empirical covariance matrix is ill-conditioned and
as a result its inverse –the empirical precision matrix– is very far from the ground truth.

If we use l2 shrinkage, as with the Ledoit-Wolf estimator, as the number of samples is small, we need to shrink a lot.
As a result, the Ledoit-Wolf precision is fairly close to the ground truth precision, that is not far from being diagonal,
but the off-diagonal structure is lost.

The l1-penalized estimator can recover part of this off-diagonal structure. It learns a sparse precision. It is not
able to recover the exact sparsity pattern: it detects too many non-zero coefficients. However, the highest non-zero
coefficients of the l1 estimated correspond to the non-zero coefficients in the ground truth. Finally, the coefficients of
the l1 precision estimate are biased toward zero: because of the penalty, they are all smaller than the corresponding
ground truth value, as can be seen on the figure.

Note that, the color range of the precision matrices is tweaked to improve readability of the figure. The full range of
values of the empirical precision is not displayed.

The alpha parameter of the GraphLasso setting the sparsity of the model is set by internal cross-validation in the
GraphLassoCV. As can be seen on figure 2, the grid to compute the cross-validation score is iteratively refined in the
neighborhood of the maximum.

•

•

Python source code: plot_sparse_cov.py

print(__doc__)
# author: Gael Varoquaux <gael.varoquaux@inria.fr>
# License: BSD 3 clause
# Copyright: INRIA

import numpy as np
from scipy import linalg
from sklearn.datasets import make_sparse_spd_matrix
from sklearn.covariance import GraphLassoCV, ledoit_wolf
import matplotlib.pyplot as plt
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##############################################################################
# Generate the data
n_samples = 60
n_features = 20

prng = np.random.RandomState(1)
prec = make_sparse_spd_matrix(n_features, alpha=.98,

smallest_coef=.4,
largest_coef=.7,
random_state=prng)

cov = linalg.inv(prec)
d = np.sqrt(np.diag(cov))
cov /= d
cov /= d[:, np.newaxis]
prec *= d
prec *= d[:, np.newaxis]
X = prng.multivariate_normal(np.zeros(n_features), cov, size=n_samples)
X -= X.mean(axis=0)
X /= X.std(axis=0)

##############################################################################
# Estimate the covariance
emp_cov = np.dot(X.T, X) / n_samples

model = GraphLassoCV()
model.fit(X)
cov_ = model.covariance_
prec_ = model.precision_

lw_cov_, _ = ledoit_wolf(X)
lw_prec_ = linalg.inv(lw_cov_)

##############################################################################
# Plot the results
plt.figure(figsize=(10, 6))
plt.subplots_adjust(left=0.02, right=0.98)

# plot the covariances
covs = [('Empirical', emp_cov), ('Ledoit-Wolf', lw_cov_),

('GraphLasso', cov_), ('True', cov)]
vmax = cov_.max()
for i, (name, this_cov) in enumerate(covs):

plt.subplot(2, 4, i + 1)
plt.imshow(this_cov, interpolation='nearest', vmin=-vmax, vmax=vmax,

cmap=plt.cm.RdBu_r)
plt.xticks(())
plt.yticks(())
plt.title('%s covariance' % name)

# plot the precisions
precs = [('Empirical', linalg.inv(emp_cov)), ('Ledoit-Wolf', lw_prec_),

('GraphLasso', prec_), ('True', prec)]
vmax = .9 * prec_.max()
for i, (name, this_prec) in enumerate(precs):

ax = plt.subplot(2, 4, i + 5)
plt.imshow(np.ma.masked_equal(this_prec, 0),

interpolation='nearest', vmin=-vmax, vmax=vmax,
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cmap=plt.cm.RdBu_r)
plt.xticks(())
plt.yticks(())
plt.title('%s precision' % name)
ax.set_axis_bgcolor('.7')

# plot the model selection metric
plt.figure(figsize=(4, 3))
plt.axes([.2, .15, .75, .7])
plt.plot(model.cv_alphas_, np.mean(model.grid_scores, axis=1), 'o-')
plt.axvline(model.alpha_, color='.5')
plt.title('Model selection')
plt.ylabel('Cross-validation score')
plt.xlabel('alpha')

plt.show()

Total running time of the example: 1.46 seconds ( 0 minutes 1.46 seconds)

4.7.4 Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood

When working with covariance estimation, the usual approach is to use a maximum likelihood estimator, such as
the sklearn.covariance.EmpiricalCovariance. It is unbiased, i.e. it converges to the true (population)
covariance when given many observations. However, it can also be beneficial to regularize it, in order to reduce
its variance; this, in turn, introduces some bias. This example illustrates the simple regularization used in Shrunk
Covariance estimators. In particular, it focuses on how to set the amount of regularization, i.e. how to choose the
bias-variance trade-off.

Here we compare 3 approaches:

• Setting the parameter by cross-validating the likelihood on three folds according to a grid of potential shrinkage
parameters.

• A close formula proposed by Ledoit and Wolf to compute the asymptotically optimal regularization parameter
(minimizing a MSE criterion), yielding the sklearn.covariance.LedoitWolf covariance estimate.

• An improvement of the Ledoit-Wolf shrinkage, the sklearn.covariance.OAS, proposed by Chen et al.
Its convergence is significantly better under the assumption that the data are Gaussian, in particular for small
samples.

To quantify estimation error, we plot the likelihood of unseen data for different values of the shrinkage parameter. We
also show the choices by cross-validation, or with the LedoitWolf and OAS estimates.

Note that the maximum likelihood estimate corresponds to no shrinkage, and thus performs poorly. The Ledoit-Wolf
estimate performs really well, as it is close to the optimal and is computational not costly. In this example, the OAS
estimate is a bit further away. Interestingly, both approaches outperform cross-validation, which is significantly most
computationally costly.
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Python source code: plot_covariance_estimation.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from scipy import linalg

from sklearn.covariance import LedoitWolf, OAS, ShrunkCovariance, \
log_likelihood, empirical_covariance

from sklearn.grid_search import GridSearchCV

###############################################################################
# Generate sample data
n_features, n_samples = 40, 20
np.random.seed(42)
base_X_train = np.random.normal(size=(n_samples, n_features))
base_X_test = np.random.normal(size=(n_samples, n_features))

# Color samples
coloring_matrix = np.random.normal(size=(n_features, n_features))
X_train = np.dot(base_X_train, coloring_matrix)
X_test = np.dot(base_X_test, coloring_matrix)

###############################################################################
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# Compute the likelihood on test data

# spanning a range of possible shrinkage coefficient values
shrinkages = np.logspace(-2, 0, 30)
negative_logliks = [-ShrunkCovariance(shrinkage=s).fit(X_train).score(X_test)

for s in shrinkages]

# under the ground-truth model, which we would not have access to in real
# settings
real_cov = np.dot(coloring_matrix.T, coloring_matrix)
emp_cov = empirical_covariance(X_train)
loglik_real = -log_likelihood(emp_cov, linalg.inv(real_cov))

###############################################################################
# Compare different approaches to setting the parameter

# GridSearch for an optimal shrinkage coefficient
tuned_parameters = [{'shrinkage': shrinkages}]
cv = GridSearchCV(ShrunkCovariance(), tuned_parameters)
cv.fit(X_train)

# Ledoit-Wolf optimal shrinkage coefficient estimate
lw = LedoitWolf()
loglik_lw = lw.fit(X_train).score(X_test)

# OAS coefficient estimate
oa = OAS()
loglik_oa = oa.fit(X_train).score(X_test)

###############################################################################
# Plot results
fig = plt.figure()
plt.title("Regularized covariance: likelihood and shrinkage coefficient")
plt.xlabel('Regularizaton parameter: shrinkage coefficient')
plt.ylabel('Error: negative log-likelihood on test data')
# range shrinkage curve
plt.loglog(shrinkages, negative_logliks, label="Negative log-likelihood")

plt.plot(plt.xlim(), 2 * [loglik_real], '--r',
label="Real covariance likelihood")

# adjust view
lik_max = np.amax(negative_logliks)
lik_min = np.amin(negative_logliks)
ymin = lik_min - 6. * np.log((plt.ylim()[1] - plt.ylim()[0]))
ymax = lik_max + 10. * np.log(lik_max - lik_min)
xmin = shrinkages[0]
xmax = shrinkages[-1]
# LW likelihood
plt.vlines(lw.shrinkage_, ymin, -loglik_lw, color='magenta',

linewidth=3, label='Ledoit-Wolf estimate')
# OAS likelihood
plt.vlines(oa.shrinkage_, ymin, -loglik_oa, color='purple',

linewidth=3, label='OAS estimate')
# best CV estimator likelihood
plt.vlines(cv.best_estimator_.shrinkage, ymin,

-cv.best_estimator_.score(X_test), color='cyan',
linewidth=3, label='Cross-validation best estimate')
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plt.ylim(ymin, ymax)
plt.xlim(xmin, xmax)
plt.legend()

plt.show()

Total running time of the example: 0.82 seconds ( 0 minutes 0.82 seconds)

4.7.5 Robust covariance estimation and Mahalanobis distances relevance

An example to show covariance estimation with the Mahalanobis distances on Gaussian distributed data.

For Gaussian distributed data, the distance of an observation 𝑥𝑖 to the mode of the distribution can be computed using
its Mahalanobis distance: 𝑑(𝜇,Σ)(𝑥𝑖)

2 = (𝑥𝑖 − 𝜇)′Σ−1(𝑥𝑖 − 𝜇) where 𝜇 and Σ are the location and the covariance of
the underlying Gaussian distribution.

In practice, 𝜇 and Σ are replaced by some estimates. The usual covariance maximum likelihood estimate is very
sensitive to the presence of outliers in the data set and therefor, the corresponding Mahalanobis distances are. One
would better have to use a robust estimator of covariance to guarantee that the estimation is resistant to “erroneous”
observations in the data set and that the associated Mahalanobis distances accurately reflect the true organisation of
the observations.

The Minimum Covariance Determinant estimator is a robust, high-breakdown point (i.e. it can be used to estimate the
covariance matrix of highly contaminated datasets, up to 𝑛samples−𝑛features−1

2 outliers) estimator of covariance. The idea is
to find 𝑛samples+𝑛features+1

2 observations whose empirical covariance has the smallest determinant, yielding a “pure” subset
of observations from which to compute standards estimates of location and covariance.

The Minimum Covariance Determinant estimator (MCD) has been introduced by P.J.Rousseuw in [1].

This example illustrates how the Mahalanobis distances are affected by outlying data: observations drawn from a con-
taminating distribution are not distinguishable from the observations coming from the real, Gaussian distribution that
one may want to work with. Using MCD-based Mahalanobis distances, the two populations become distinguishable.
Associated applications are outliers detection, observations ranking, clustering, ... For visualization purpose, the cubic
root of the Mahalanobis distances are represented in the boxplot, as Wilson and Hilferty suggest [2]

[1] P. J. Rousseeuw. Least median of squares regression. J. Am Stat Ass, 79:871, 1984.

[2] Wilson, E. B., & Hilferty, M. M. (1931). The distribution of chi-square. Proceedings of the National
Academy of Sciences of the United States of America, 17, 684-688.
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Python source code: plot_mahalanobis_distances.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.covariance import EmpiricalCovariance, MinCovDet

n_samples = 125
n_outliers = 25
n_features = 2

# generate data
gen_cov = np.eye(n_features)
gen_cov[0, 0] = 2.
X = np.dot(np.random.randn(n_samples, n_features), gen_cov)
# add some outliers
outliers_cov = np.eye(n_features)
outliers_cov[np.arange(1, n_features), np.arange(1, n_features)] = 7.
X[-n_outliers:] = np.dot(np.random.randn(n_outliers, n_features), outliers_cov)

# fit a Minimum Covariance Determinant (MCD) robust estimator to data
robust_cov = MinCovDet().fit(X)

# compare estimators learnt from the full data set with true parameters
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emp_cov = EmpiricalCovariance().fit(X)

###############################################################################
# Display results
fig = plt.figure()
plt.subplots_adjust(hspace=-.1, wspace=.4, top=.95, bottom=.05)

# Show data set
subfig1 = plt.subplot(3, 1, 1)
inlier_plot = subfig1.scatter(X[:, 0], X[:, 1],

color='black', label='inliers')
outlier_plot = subfig1.scatter(X[:, 0][-n_outliers:], X[:, 1][-n_outliers:],

color='red', label='outliers')
subfig1.set_xlim(subfig1.get_xlim()[0], 11.)
subfig1.set_title("Mahalanobis distances of a contaminated data set:")

# Show contours of the distance functions
xx, yy = np.meshgrid(np.linspace(plt.xlim()[0], plt.xlim()[1], 100),

np.linspace(plt.ylim()[0], plt.ylim()[1], 100))
zz = np.c_[xx.ravel(), yy.ravel()]

mahal_emp_cov = emp_cov.mahalanobis(zz)
mahal_emp_cov = mahal_emp_cov.reshape(xx.shape)
emp_cov_contour = subfig1.contour(xx, yy, np.sqrt(mahal_emp_cov),

cmap=plt.cm.PuBu_r,
linestyles='dashed')

mahal_robust_cov = robust_cov.mahalanobis(zz)
mahal_robust_cov = mahal_robust_cov.reshape(xx.shape)
robust_contour = subfig1.contour(xx, yy, np.sqrt(mahal_robust_cov),

cmap=plt.cm.YlOrBr_r, linestyles='dotted')

subfig1.legend([emp_cov_contour.collections[1], robust_contour.collections[1],
inlier_plot, outlier_plot],

['MLE dist', 'robust dist', 'inliers', 'outliers'],
loc="upper right", borderaxespad=0)

plt.xticks(())
plt.yticks(())

# Plot the scores for each point
emp_mahal = emp_cov.mahalanobis(X - np.mean(X, 0)) ** (0.33)
subfig2 = plt.subplot(2, 2, 3)
subfig2.boxplot([emp_mahal[:-n_outliers], emp_mahal[-n_outliers:]], widths=.25)
subfig2.plot(1.26 * np.ones(n_samples - n_outliers),

emp_mahal[:-n_outliers], '+k', markeredgewidth=1)
subfig2.plot(2.26 * np.ones(n_outliers),

emp_mahal[-n_outliers:], '+k', markeredgewidth=1)
subfig2.axes.set_xticklabels(('inliers', 'outliers'), size=15)
subfig2.set_ylabel(r"$\sqrt[3]{\rm{(Mahal. dist.)}}$", size=16)
subfig2.set_title("1. from non-robust estimates\n(Maximum Likelihood)")
plt.yticks(())

robust_mahal = robust_cov.mahalanobis(X - robust_cov.location_) ** (0.33)
subfig3 = plt.subplot(2, 2, 4)
subfig3.boxplot([robust_mahal[:-n_outliers], robust_mahal[-n_outliers:]],

widths=.25)
subfig3.plot(1.26 * np.ones(n_samples - n_outliers),

robust_mahal[:-n_outliers], '+k', markeredgewidth=1)
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subfig3.plot(2.26 * np.ones(n_outliers),
robust_mahal[-n_outliers:], '+k', markeredgewidth=1)

subfig3.axes.set_xticklabels(('inliers', 'outliers'), size=15)
subfig3.set_ylabel(r"$\sqrt[3]{\rm{(Mahal. dist.)}}$", size=16)
subfig3.set_title("2. from robust estimates\n(Minimum Covariance Determinant)")
plt.yticks(())

plt.show()

Total running time of the example: 0.36 seconds ( 0 minutes 0.36 seconds)

4.7.6 Robust vs Empirical covariance estimate

The usual covariance maximum likelihood estimate is very sensitive to the presence of outliers in the data set. In
such a case, it would be better to use a robust estimator of covariance to guarantee that the estimation is resistant to
“erroneous” observations in the data set.

Minimum Covariance Determinant Estimator

The Minimum Covariance Determinant estimator is a robust, high-breakdown point (i.e. it can be used to estimate the
covariance matrix of highly contaminated datasets, up to 𝑛samples−𝑛features−1

2 outliers) estimator of covariance. The idea is
to find 𝑛samples+𝑛features+1

2 observations whose empirical covariance has the smallest determinant, yielding a “pure” subset
of observations from which to compute standards estimates of location and covariance. After a correction step aiming
at compensating the fact that the estimates were learned from only a portion of the initial data, we end up with robust
estimates of the data set location and covariance.

The Minimum Covariance Determinant estimator (MCD) has been introduced by P.J.Rousseuw in 1.

Evaluation

In this example, we compare the estimation errors that are made when using various types of location and covariance
estimates on contaminated Gaussian distributed data sets:

• The mean and the empirical covariance of the full dataset, which break down as soon as there are outliers in the
data set

• The robust MCD, that has a low error provided 𝑛samples > 5𝑛features

• The mean and the empirical covariance of the observations that are known to be good ones. This can be consid-
ered as a “perfect” MCD estimation, so one can trust our implementation by comparing to this case.

1 P. J. Rousseeuw. Least median of squares regression. J. Am Stat Ass, 79:871, 1984.
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Python source code: plot_robust_vs_empirical_covariance.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.font_manager

from sklearn.covariance import EmpiricalCovariance, MinCovDet

# example settings
n_samples = 80
n_features = 5
repeat = 10

range_n_outliers = np.concatenate(
(np.linspace(0, n_samples / 8, 5),
np.linspace(n_samples / 8, n_samples / 2, 5)[1:-1]))

# definition of arrays to store results
err_loc_mcd = np.zeros((range_n_outliers.size, repeat))
err_cov_mcd = np.zeros((range_n_outliers.size, repeat))
err_loc_emp_full = np.zeros((range_n_outliers.size, repeat))
err_cov_emp_full = np.zeros((range_n_outliers.size, repeat))
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err_loc_emp_pure = np.zeros((range_n_outliers.size, repeat))
err_cov_emp_pure = np.zeros((range_n_outliers.size, repeat))

# computation
for i, n_outliers in enumerate(range_n_outliers):

for j in range(repeat):

rng = np.random.RandomState(i * j)

# generate data
X = rng.randn(n_samples, n_features)
# add some outliers
outliers_index = rng.permutation(n_samples)[:n_outliers]
outliers_offset = 10. * \

(np.random.randint(2, size=(n_outliers, n_features)) - 0.5)
X[outliers_index] += outliers_offset
inliers_mask = np.ones(n_samples).astype(bool)
inliers_mask[outliers_index] = False

# fit a Minimum Covariance Determinant (MCD) robust estimator to data
mcd = MinCovDet().fit(X)
# compare raw robust estimates with the true location and covariance
err_loc_mcd[i, j] = np.sum(mcd.location_ ** 2)
err_cov_mcd[i, j] = mcd.error_norm(np.eye(n_features))

# compare estimators learned from the full data set with true
# parameters
err_loc_emp_full[i, j] = np.sum(X.mean(0) ** 2)
err_cov_emp_full[i, j] = EmpiricalCovariance().fit(X).error_norm(

np.eye(n_features))

# compare with an empirical covariance learned from a pure data set
# (i.e. "perfect" mcd)
pure_X = X[inliers_mask]
pure_location = pure_X.mean(0)
pure_emp_cov = EmpiricalCovariance().fit(pure_X)
err_loc_emp_pure[i, j] = np.sum(pure_location ** 2)
err_cov_emp_pure[i, j] = pure_emp_cov.error_norm(np.eye(n_features))

# Display results
font_prop = matplotlib.font_manager.FontProperties(size=11)
plt.subplot(2, 1, 1)
plt.errorbar(range_n_outliers, err_loc_mcd.mean(1),

yerr=err_loc_mcd.std(1) / np.sqrt(repeat),
label="Robust location", color='m')

plt.errorbar(range_n_outliers, err_loc_emp_full.mean(1),
yerr=err_loc_emp_full.std(1) / np.sqrt(repeat),
label="Full data set mean", color='green')

plt.errorbar(range_n_outliers, err_loc_emp_pure.mean(1),
yerr=err_loc_emp_pure.std(1) / np.sqrt(repeat),
label="Pure data set mean", color='black')

plt.title("Influence of outliers on the location estimation")
plt.ylabel(r"Error ($||\mu - \hat{\mu}||_2^2$)")
plt.legend(loc="upper left", prop=font_prop)

plt.subplot(2, 1, 2)
x_size = range_n_outliers.size
plt.errorbar(range_n_outliers, err_cov_mcd.mean(1),
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yerr=err_cov_mcd.std(1),
label="Robust covariance (mcd)", color='m')

plt.errorbar(range_n_outliers[:(x_size / 5 + 1)],
err_cov_emp_full.mean(1)[:(x_size / 5 + 1)],
yerr=err_cov_emp_full.std(1)[:(x_size / 5 + 1)],
label="Full data set empirical covariance", color='green')

plt.plot(range_n_outliers[(x_size / 5):(x_size / 2 - 1)],
err_cov_emp_full.mean(1)[(x_size / 5):(x_size / 2 - 1)], color='green',
ls='--')

plt.errorbar(range_n_outliers, err_cov_emp_pure.mean(1),
yerr=err_cov_emp_pure.std(1),
label="Pure data set empirical covariance", color='black')

plt.title("Influence of outliers on the covariance estimation")
plt.xlabel("Amount of contamination (%)")
plt.ylabel("RMSE")
plt.legend(loc="upper center", prop=font_prop)

plt.show()

Total running time of the example: 4.15 seconds ( 0 minutes 4.15 seconds)

4.8 Cross decomposition

Examples concerning the sklearn.cross_decomposition module.

4.8.1 Compare cross decomposition methods

Simple usage of various cross decomposition algorithms: - PLSCanonical - PLSRegression, with multivariate re-
sponse, a.k.a. PLS2 - PLSRegression, with univariate response, a.k.a. PLS1 - CCA

Given 2 multivariate covarying two-dimensional datasets, X, and Y, PLS extracts the ‘directions of covariance’, i.e.
the components of each datasets that explain the most shared variance between both datasets. This is apparent on the
scatterplot matrix display: components 1 in dataset X and dataset Y are maximally correlated (points lie around the
first diagonal). This is also true for components 2 in both dataset, however, the correlation across datasets for different
components is weak: the point cloud is very spherical.
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Script output:

Corr(X)
[[ 1. 0.51 0.07 -0.05]
[ 0.51 1. 0.11 -0.01]
[ 0.07 0.11 1. 0.49]
[-0.05 -0.01 0.49 1. ]]

Corr(Y)
[[ 1. 0.48 0.05 0.03]
[ 0.48 1. 0.04 0.12]
[ 0.05 0.04 1. 0.51]
[ 0.03 0.12 0.51 1. ]]

True B (such that: Y = XB + Err)
[[1 1 1]
[2 2 2]
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]]

Estimated B
[[ 1. 1. 1. ]
[ 1.9 2. 2. ]
[-0. -0. 0. ]
[ 0. 0. 0. ]
[ 0. 0. 0. ]
[ 0. 0. -0. ]
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[-0. -0. -0.1]
[-0. -0. 0. ]
[ 0. 0. 0.1]
[ 0. 0. -0. ]]

Estimated betas
[[ 1.]
[ 2.]
[ 0.]
[ 0.]
[ 0.]
[-0.]
[-0.]
[ 0.]
[-0.]
[-0.]]

Python source code: plot_compare_cross_decomposition.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.cross_decomposition import PLSCanonical, PLSRegression, CCA

###############################################################################
# Dataset based latent variables model

n = 500
# 2 latents vars:
l1 = np.random.normal(size=n)
l2 = np.random.normal(size=n)

latents = np.array([l1, l1, l2, l2]).T
X = latents + np.random.normal(size=4 * n).reshape((n, 4))
Y = latents + np.random.normal(size=4 * n).reshape((n, 4))

X_train = X[:n / 2]
Y_train = Y[:n / 2]
X_test = X[n / 2:]
Y_test = Y[n / 2:]

print("Corr(X)")
print(np.round(np.corrcoef(X.T), 2))
print("Corr(Y)")
print(np.round(np.corrcoef(Y.T), 2))

###############################################################################
# Canonical (symmetric) PLS

# Transform data
# ~~~~~~~~~~~~~~
plsca = PLSCanonical(n_components=2)
plsca.fit(X_train, Y_train)
X_train_r, Y_train_r = plsca.transform(X_train, Y_train)
X_test_r, Y_test_r = plsca.transform(X_test, Y_test)

# Scatter plot of scores
# ~~~~~~~~~~~~~~~~~~~~~~
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# 1) On diagonal plot X vs Y scores on each components
plt.figure(figsize=(12, 8))
plt.subplot(221)
plt.plot(X_train_r[:, 0], Y_train_r[:, 0], "ob", label="train")
plt.plot(X_test_r[:, 0], Y_test_r[:, 0], "or", label="test")
plt.xlabel("x scores")
plt.ylabel("y scores")
plt.title('Comp. 1: X vs Y (test corr = %.2f)' %

np.corrcoef(X_test_r[:, 0], Y_test_r[:, 0])[0, 1])
plt.xticks(())
plt.yticks(())
plt.legend(loc="best")

plt.subplot(224)
plt.plot(X_train_r[:, 1], Y_train_r[:, 1], "ob", label="train")
plt.plot(X_test_r[:, 1], Y_test_r[:, 1], "or", label="test")
plt.xlabel("x scores")
plt.ylabel("y scores")
plt.title('Comp. 2: X vs Y (test corr = %.2f)' %

np.corrcoef(X_test_r[:, 1], Y_test_r[:, 1])[0, 1])
plt.xticks(())
plt.yticks(())
plt.legend(loc="best")

# 2) Off diagonal plot components 1 vs 2 for X and Y
plt.subplot(222)
plt.plot(X_train_r[:, 0], X_train_r[:, 1], "*b", label="train")
plt.plot(X_test_r[:, 0], X_test_r[:, 1], "*r", label="test")
plt.xlabel("X comp. 1")
plt.ylabel("X comp. 2")
plt.title('X comp. 1 vs X comp. 2 (test corr = %.2f)'

% np.corrcoef(X_test_r[:, 0], X_test_r[:, 1])[0, 1])
plt.legend(loc="best")
plt.xticks(())
plt.yticks(())

plt.subplot(223)
plt.plot(Y_train_r[:, 0], Y_train_r[:, 1], "*b", label="train")
plt.plot(Y_test_r[:, 0], Y_test_r[:, 1], "*r", label="test")
plt.xlabel("Y comp. 1")
plt.ylabel("Y comp. 2")
plt.title('Y comp. 1 vs Y comp. 2 , (test corr = %.2f)'

% np.corrcoef(Y_test_r[:, 0], Y_test_r[:, 1])[0, 1])
plt.legend(loc="best")
plt.xticks(())
plt.yticks(())
plt.show()

###############################################################################
# PLS regression, with multivariate response, a.k.a. PLS2

n = 1000
q = 3
p = 10
X = np.random.normal(size=n * p).reshape((n, p))
B = np.array([[1, 2] + [0] * (p - 2)] * q).T
# each Yj = 1*X1 + 2*X2 + noize
Y = np.dot(X, B) + np.random.normal(size=n * q).reshape((n, q)) + 5
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pls2 = PLSRegression(n_components=3)
pls2.fit(X, Y)
print("True B (such that: Y = XB + Err)")
print(B)
# compare pls2.coef_ with B
print("Estimated B")
print(np.round(pls2.coef_, 1))
pls2.predict(X)

###############################################################################
# PLS regression, with univariate response, a.k.a. PLS1

n = 1000
p = 10
X = np.random.normal(size=n * p).reshape((n, p))
y = X[:, 0] + 2 * X[:, 1] + np.random.normal(size=n * 1) + 5
pls1 = PLSRegression(n_components=3)
pls1.fit(X, y)
# note that the number of compements exceeds 1 (the dimension of y)
print("Estimated betas")
print(np.round(pls1.coef_, 1))

###############################################################################
# CCA (PLS mode B with symmetric deflation)

cca = CCA(n_components=2)
cca.fit(X_train, Y_train)
X_train_r, Y_train_r = plsca.transform(X_train, Y_train)
X_test_r, Y_test_r = plsca.transform(X_test, Y_test)

Total running time of the example: 0.30 seconds ( 0 minutes 0.30 seconds)

4.9 Dataset examples

Examples concerning the sklearn.datasets module.

4.9.1 The Digit Dataset

This dataset is made up of 1797 8x8 images. Each image, like the one shown below, is of a hand-written digit. In order
to utilize an 8x8 figure like this, we’d have to first transform it into a feature vector with length 64.

See here for more information about this dataset.
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Python source code: plot_digits_last_image.py

print(__doc__)

# Code source: Gaël Varoquaux
# Modified for documentation by Jaques Grobler
# License: BSD 3 clause

from sklearn import datasets

import matplotlib.pyplot as plt

#Load the digits dataset
digits = datasets.load_digits()

#Display the first digit
plt.figure(1, figsize=(3, 3))
plt.imshow(digits.images[-1], cmap=plt.cm.gray_r, interpolation='nearest')
plt.show()

Total running time of the example: 0.32 seconds ( 0 minutes 0.32 seconds)

4.9.2 Plot randomly generated classification dataset

Plot several randomly generated 2D classification datasets. This example il-
lustrates the datasets.make_classification datasets.make_blobs and
datasets.make_gaussian_quantiles functions.

For make_classification, three binary and two multi-class classification datasets are generated, with different
numbers of informative features and clusters per class.
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Python source code: plot_random_dataset.py

print(__doc__)

import matplotlib.pyplot as plt

from sklearn.datasets import make_classification
from sklearn.datasets import make_blobs
from sklearn.datasets import make_gaussian_quantiles

plt.figure(figsize=(8, 8))
plt.subplots_adjust(bottom=.05, top=.9, left=.05, right=.95)

plt.subplot(321)
plt.title("One informative feature, one cluster per class", fontsize='small')
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X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=1,
n_clusters_per_class=1)

plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1)

plt.subplot(322)
plt.title("Two informative features, one cluster per class", fontsize='small')
X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2,

n_clusters_per_class=1)
plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1)

plt.subplot(323)
plt.title("Two informative features, two clusters per class", fontsize='small')
X2, Y2 = make_classification(n_features=2, n_redundant=0, n_informative=2)
plt.scatter(X2[:, 0], X2[:, 1], marker='o', c=Y2)

plt.subplot(324)
plt.title("Multi-class, two informative features, one cluster",

fontsize='small')
X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2,

n_clusters_per_class=1, n_classes=3)
plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1)

plt.subplot(325)
plt.title("Three blobs", fontsize='small')
X1, Y1 = make_blobs(n_features=2, centers=3)
plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1)

plt.subplot(326)
plt.title("Gaussian divided into three quantiles", fontsize='small')
X1, Y1 = make_gaussian_quantiles(n_features=2, n_classes=3)
plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1)

plt.show()

Total running time of the example: 0.55 seconds ( 0 minutes 0.55 seconds)

4.9.3 The Iris Dataset

This data sets consists of 3 different types of irises’ (Setosa, Versicolour, and Virginica) petal and sepal length, stored
in a 150x4 numpy.ndarray

The rows being the samples and the columns being: Sepal Length, Sepal Width, Petal Length and Petal Width.

The below plot uses the first two features. See here for more information on this dataset.
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•

•

Python source code: plot_iris_dataset.py

print(__doc__)

# Code source: Gaël Varoquaux
# Modified for documentation by Jaques Grobler
# License: BSD 3 clause

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn import datasets
from sklearn.decomposition import PCA

# import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features.
Y = iris.target

x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5

plt.figure(2, figsize=(8, 6))
plt.clf()

# Plot the training points
plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
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plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xticks(())
plt.yticks(())

# To getter a better understanding of interaction of the dimensions
# plot the first three PCA dimensions
fig = plt.figure(1, figsize=(8, 6))
ax = Axes3D(fig, elev=-150, azim=110)
X_reduced = PCA(n_components=3).fit_transform(iris.data)
ax.scatter(X_reduced[:, 0], X_reduced[:, 1], X_reduced[:, 2], c=Y,

cmap=plt.cm.Paired)
ax.set_title("First three PCA directions")
ax.set_xlabel("1st eigenvector")
ax.w_xaxis.set_ticklabels([])
ax.set_ylabel("2nd eigenvector")
ax.w_yaxis.set_ticklabels([])
ax.set_zlabel("3rd eigenvector")
ax.w_zaxis.set_ticklabels([])

plt.show()

Total running time of the example: 0.17 seconds ( 0 minutes 0.17 seconds)

4.9.4 Plot randomly generated multilabel dataset

This illustrates the datasets.make_multilabel_classification dataset generator. Each sample consists of counts of two
features (up to 50 in total), which are differently distributed in each of two classes.

Points are labeled as follows, where Y means the class is present:

1 2 3 Color
Y N N Red
N Y N Blue
N N Y Yellow
Y Y N Purple
Y N Y Orange
Y Y N Green
Y Y Y Brown

A star marks the expected sample for each class; its size reflects the probability of selecting that class label.

The left and right examples highlight the n_labels parameter: more of the samples in the right plot have 2 or 3
labels.

Note that this two-dimensional example is very degenerate: generally the number of features would be much greater
than the “document length”, while here we have much larger documents than vocabulary. Similarly, with n_classes
> n_features, it is much less likely that a feature distinguishes a particular class.
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Script output:

The data was generated from (random_state=268):
Class P(C) P(w0|C) P(w1|C)
red 0.08 0.93 0.07
blue 0.38 0.99 0.01
yellow 0.54 0.47 0.53

Python source code: plot_random_multilabel_dataset.py

from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import make_multilabel_classification as make_ml_clf

print(__doc__)

COLORS = np.array(['!',
'#FF3333', # red
'#0198E1', # blue
'#BF5FFF', # purple
'#FCD116', # yellow
'#FF7216', # orange
'#4DBD33', # green
'#87421F' # brown
])

# Use same random seed for multiple calls to make_multilabel_classification to
# ensure same distributions
RANDOM_SEED = np.random.randint(2 ** 10)

def plot_2d(ax, n_labels=1, n_classes=3, length=50):
X, Y, p_c, p_w_c = make_ml_clf(n_samples=150, n_features=2,

n_classes=n_classes, n_labels=n_labels,
length=length, allow_unlabeled=False,
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return_distributions=True,
random_state=RANDOM_SEED)

ax.scatter(X[:, 0], X[:, 1], color=COLORS.take((Y * [1, 2, 4]
).sum(axis=1)),

marker='.')
ax.scatter(p_w_c[0] * length, p_w_c[1] * length,

marker='*', linewidth=.5, edgecolor='black',
s=20 + 1500 * p_c ** 2,
color=COLORS.take([1, 2, 4]))

ax.set_xlabel('Feature 0 count')
return p_c, p_w_c

_, (ax1, ax2) = plt.subplots(1, 2, sharex='row', sharey='row', figsize=(8, 4))
plt.subplots_adjust(bottom=.15)

p_c, p_w_c = plot_2d(ax1, n_labels=1)
ax1.set_title('n_labels=1, length=50')
ax1.set_ylabel('Feature 1 count')

plot_2d(ax2, n_labels=3)
ax2.set_title('n_labels=3, length=50')
ax2.set_xlim(left=0, auto=True)
ax2.set_ylim(bottom=0, auto=True)

plt.show()

print('The data was generated from (random_state=%d):' % RANDOM_SEED)
print('Class', 'P(C)', 'P(w0|C)', 'P(w1|C)', sep='\t')
for k, p, p_w in zip(['red', 'blue', 'yellow'], p_c, p_w_c.T):

print('%s\t%0.2f\t%0.2f\t%0.2f' % (k, p, p_w[0], p_w[1]))

Total running time of the example: 0.21 seconds ( 0 minutes 0.21 seconds)

4.10 Decomposition

Examples concerning the sklearn.decomposition module.

4.10.1 Comparison of LDA and PCA 2D projection of Iris dataset

The Iris dataset represents 3 kind of Iris flowers (Setosa, Versicolour and Virginica) with 4 attributes: sepal length,
sepal width, petal length and petal width.

Principal Component Analysis (PCA) applied to this data identifies the combination of attributes (principal compo-
nents, or directions in the feature space) that account for the most variance in the data. Here we plot the different
samples on the 2 first principal components.

Linear Discriminant Analysis (LDA) tries to identify attributes that account for the most variance between classes. In
particular, LDA, in contrast to PCA, is a supervised method, using known class labels.
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•

•

Script output:

explained variance ratio (first two components): [ 0.92461621 0.05301557]

Python source code: plot_pca_vs_lda.py

print(__doc__)

import matplotlib.pyplot as plt

from sklearn import datasets
from sklearn.decomposition import PCA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

iris = datasets.load_iris()

X = iris.data
y = iris.target
target_names = iris.target_names

pca = PCA(n_components=2)
X_r = pca.fit(X).transform(X)

lda = LinearDiscriminantAnalysis(n_components=2)
X_r2 = lda.fit(X, y).transform(X)

# Percentage of variance explained for each components
print('explained variance ratio (first two components): %s'

% str(pca.explained_variance_ratio_))
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plt.figure()
for c, i, target_name in zip("rgb", [0, 1, 2], target_names):

plt.scatter(X_r[y == i, 0], X_r[y == i, 1], c=c, label=target_name)
plt.legend()
plt.title('PCA of IRIS dataset')

plt.figure()
for c, i, target_name in zip("rgb", [0, 1, 2], target_names):

plt.scatter(X_r2[y == i, 0], X_r2[y == i, 1], c=c, label=target_name)
plt.legend()
plt.title('LDA of IRIS dataset')

plt.show()

Total running time of the example: 0.19 seconds ( 0 minutes 0.19 seconds)

4.10.2 Incremental PCA

Incremental principal component analysis (IPCA) is typically used as a replacement for principal component analysis
(PCA) when the dataset to be decomposed is too large to fit in memory. IPCA builds a low-rank approximation for the
input data using an amount of memory which is independent of the number of input data samples. It is still dependent
on the input data features, but changing the batch size allows for control of memory usage.

This example serves as a visual check that IPCA is able to find a similar projection of the data to PCA (to a sign flip),
while only processing a few samples at a time. This can be considered a “toy example”, as IPCA is intended for large
datasets which do not fit in main memory, requiring incremental approaches.

•
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•

Python source code: plot_incremental_pca.py

print(__doc__)

# Authors: Kyle Kastner
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import load_iris
from sklearn.decomposition import PCA, IncrementalPCA

iris = load_iris()
X = iris.data
y = iris.target

n_components = 2
ipca = IncrementalPCA(n_components=n_components, batch_size=10)
X_ipca = ipca.fit_transform(X)

pca = PCA(n_components=n_components)
X_pca = pca.fit_transform(X)

for X_transformed, title in [(X_ipca, "Incremental PCA"), (X_pca, "PCA")]:
plt.figure(figsize=(8, 8))
for c, i, target_name in zip("rgb", [0, 1, 2], iris.target_names):

plt.scatter(X_transformed[y == i, 0], X_transformed[y == i, 1],
c=c, label=target_name)

if "Incremental" in title:
err = np.abs(np.abs(X_pca) - np.abs(X_ipca)).mean()
plt.title(title + " of iris dataset\nMean absolute unsigned error "

"%.6f" % err)
else:

plt.title(title + " of iris dataset")
plt.legend(loc="best")
plt.axis([-4, 4, -1.5, 1.5])
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plt.show()

Total running time of the example: 0.13 seconds ( 0 minutes 0.13 seconds)

4.10.3 PCA example with Iris Data-set

Principal Component Analysis applied to the Iris dataset.

See here for more information on this dataset.

Python source code: plot_pca_iris.py

print(__doc__)

# Code source: Gaël Varoquaux
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

from sklearn import decomposition
from sklearn import datasets

np.random.seed(5)

centers = [[1, 1], [-1, -1], [1, -1]]
iris = datasets.load_iris()
X = iris.data
y = iris.target

fig = plt.figure(1, figsize=(4, 3))
plt.clf()
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)

plt.cla()
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pca = decomposition.PCA(n_components=3)
pca.fit(X)
X = pca.transform(X)

for name, label in [('Setosa', 0), ('Versicolour', 1), ('Virginica', 2)]:
ax.text3D(X[y == label, 0].mean(),

X[y == label, 1].mean() + 1.5,
X[y == label, 2].mean(), name,
horizontalalignment='center',
bbox=dict(alpha=.5, edgecolor='w', facecolor='w'))

# Reorder the labels to have colors matching the cluster results
y = np.choose(y, [1, 2, 0]).astype(np.float)
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=y, cmap=plt.cm.spectral)

x_surf = [X[:, 0].min(), X[:, 0].max(),
X[:, 0].min(), X[:, 0].max()]

y_surf = [X[:, 0].max(), X[:, 0].max(),
X[:, 0].min(), X[:, 0].min()]

x_surf = np.array(x_surf)
y_surf = np.array(y_surf)
v0 = pca.transform(pca.components_[[0]])
v0 /= v0[-1]
v1 = pca.transform(pca.components_[[1]])
v1 /= v1[-1]

ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])

plt.show()

Total running time of the example: 0.11 seconds ( 0 minutes 0.11 seconds)

4.10.4 Blind source separation using FastICA

An example of estimating sources from noisy data.

Independent component analysis (ICA) is used to estimate sources given noisy measurements. Imagine 3 instruments
playing simultaneously and 3 microphones recording the mixed signals. ICA is used to recover the sources ie. what
is played by each instrument. Importantly, PCA fails at recovering our instruments since the related signals reflect
non-Gaussian processes.
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Python source code: plot_ica_blind_source_separation.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from scipy import signal

from sklearn.decomposition import FastICA, PCA

###############################################################################
# Generate sample data
np.random.seed(0)
n_samples = 2000
time = np.linspace(0, 8, n_samples)

s1 = np.sin(2 * time) # Signal 1 : sinusoidal signal
s2 = np.sign(np.sin(3 * time)) # Signal 2 : square signal
s3 = signal.sawtooth(2 * np.pi * time) # Signal 3: saw tooth signal

S = np.c_[s1, s2, s3]
S += 0.2 * np.random.normal(size=S.shape) # Add noise

S /= S.std(axis=0) # Standardize data
# Mix data
A = np.array([[1, 1, 1], [0.5, 2, 1.0], [1.5, 1.0, 2.0]]) # Mixing matrix
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X = np.dot(S, A.T) # Generate observations

# Compute ICA
ica = FastICA(n_components=3)
S_ = ica.fit_transform(X) # Reconstruct signals
A_ = ica.mixing_ # Get estimated mixing matrix

# We can `prove` that the ICA model applies by reverting the unmixing.
assert np.allclose(X, np.dot(S_, A_.T) + ica.mean_)

# For comparison, compute PCA
pca = PCA(n_components=3)
H = pca.fit_transform(X) # Reconstruct signals based on orthogonal components

###############################################################################
# Plot results

plt.figure()

models = [X, S, S_, H]
names = ['Observations (mixed signal)',

'True Sources',
'ICA recovered signals',
'PCA recovered signals']

colors = ['red', 'steelblue', 'orange']

for ii, (model, name) in enumerate(zip(models, names), 1):
plt.subplot(4, 1, ii)
plt.title(name)
for sig, color in zip(model.T, colors):

plt.plot(sig, color=color)

plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.46)
plt.show()

Total running time of the example: 0.36 seconds ( 0 minutes 0.36 seconds)

4.10.5 Kernel PCA

This example shows that Kernel PCA is able to find a projection of the data that makes data linearly separable.
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Python source code: plot_kernel_pca.py

print(__doc__)

# Authors: Mathieu Blondel
# Andreas Mueller
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.decomposition import PCA, KernelPCA
from sklearn.datasets import make_circles

np.random.seed(0)

X, y = make_circles(n_samples=400, factor=.3, noise=.05)

kpca = KernelPCA(kernel="rbf", fit_inverse_transform=True, gamma=10)
X_kpca = kpca.fit_transform(X)
X_back = kpca.inverse_transform(X_kpca)
pca = PCA()
X_pca = pca.fit_transform(X)

# Plot results
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plt.figure()
plt.subplot(2, 2, 1, aspect='equal')
plt.title("Original space")
reds = y == 0
blues = y == 1

plt.plot(X[reds, 0], X[reds, 1], "ro")
plt.plot(X[blues, 0], X[blues, 1], "bo")
plt.xlabel("$x_1$")
plt.ylabel("$x_2$")

X1, X2 = np.meshgrid(np.linspace(-1.5, 1.5, 50), np.linspace(-1.5, 1.5, 50))
X_grid = np.array([np.ravel(X1), np.ravel(X2)]).T
# projection on the first principal component (in the phi space)
Z_grid = kpca.transform(X_grid)[:, 0].reshape(X1.shape)
plt.contour(X1, X2, Z_grid, colors='grey', linewidths=1, origin='lower')

plt.subplot(2, 2, 2, aspect='equal')
plt.plot(X_pca[reds, 0], X_pca[reds, 1], "ro")
plt.plot(X_pca[blues, 0], X_pca[blues, 1], "bo")
plt.title("Projection by PCA")
plt.xlabel("1st principal component")
plt.ylabel("2nd component")

plt.subplot(2, 2, 3, aspect='equal')
plt.plot(X_kpca[reds, 0], X_kpca[reds, 1], "ro")
plt.plot(X_kpca[blues, 0], X_kpca[blues, 1], "bo")
plt.title("Projection by KPCA")
plt.xlabel("1st principal component in space induced by $\phi$")
plt.ylabel("2nd component")

plt.subplot(2, 2, 4, aspect='equal')
plt.plot(X_back[reds, 0], X_back[reds, 1], "ro")
plt.plot(X_back[blues, 0], X_back[blues, 1], "bo")
plt.title("Original space after inverse transform")
plt.xlabel("$x_1$")
plt.ylabel("$x_2$")

plt.subplots_adjust(0.02, 0.10, 0.98, 0.94, 0.04, 0.35)

plt.show()

Total running time of the example: 0.71 seconds ( 0 minutes 0.71 seconds)

4.10.6 FastICA on 2D point clouds

This example illustrates visually in the feature space a comparison by results using two different component analysis
techniques.

Independent component analysis (ICA) vs Principal component analysis (PCA).

Representing ICA in the feature space gives the view of ‘geometric ICA’: ICA is an algorithm that finds directions in
the feature space corresponding to projections with high non-Gaussianity. These directions need not be orthogonal in
the original feature space, but they are orthogonal in the whitened feature space, in which all directions correspond to
the same variance.

PCA, on the other hand, finds orthogonal directions in the raw feature space that correspond to directions accounting
for maximum variance.
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Here we simulate independent sources using a highly non-Gaussian process, 2 student T with a low number of degrees
of freedom (top left figure). We mix them to create observations (top right figure). In this raw observation space,
directions identified by PCA are represented by orange vectors. We represent the signal in the PCA space, after
whitening by the variance corresponding to the PCA vectors (lower left). Running ICA corresponds to finding a
rotation in this space to identify the directions of largest non-Gaussianity (lower right).

Python source code: plot_ica_vs_pca.py

print(__doc__)

# Authors: Alexandre Gramfort, Gael Varoquaux
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.decomposition import PCA, FastICA

###############################################################################
# Generate sample data
rng = np.random.RandomState(42)
S = rng.standard_t(1.5, size=(20000, 2))
S[:, 0] *= 2.

# Mix data
A = np.array([[1, 1], [0, 2]]) # Mixing matrix

4.10. Decomposition 693



scikit-learn user guide, Release 0.17

X = np.dot(S, A.T) # Generate observations

pca = PCA()
S_pca_ = pca.fit(X).transform(X)

ica = FastICA(random_state=rng)
S_ica_ = ica.fit(X).transform(X) # Estimate the sources

S_ica_ /= S_ica_.std(axis=0)

###############################################################################
# Plot results

def plot_samples(S, axis_list=None):
plt.scatter(S[:, 0], S[:, 1], s=2, marker='o', zorder=10,

color='steelblue', alpha=0.5)
if axis_list is not None:

colors = ['orange', 'red']
for color, axis in zip(colors, axis_list):

axis /= axis.std()
x_axis, y_axis = axis
# Trick to get legend to work
plt.plot(0.1 * x_axis, 0.1 * y_axis, linewidth=2, color=color)
plt.quiver(0, 0, x_axis, y_axis, zorder=11, width=0.01, scale=6,

color=color)

plt.hlines(0, -3, 3)
plt.vlines(0, -3, 3)
plt.xlim(-3, 3)
plt.ylim(-3, 3)
plt.xlabel('x')
plt.ylabel('y')

plt.figure()
plt.subplot(2, 2, 1)
plot_samples(S / S.std())
plt.title('True Independent Sources')

axis_list = [pca.components_.T, ica.mixing_]
plt.subplot(2, 2, 2)
plot_samples(X / np.std(X), axis_list=axis_list)
legend = plt.legend(['PCA', 'ICA'], loc='upper right')
legend.set_zorder(100)

plt.title('Observations')

plt.subplot(2, 2, 3)
plot_samples(S_pca_ / np.std(S_pca_, axis=0))
plt.title('PCA recovered signals')

plt.subplot(2, 2, 4)
plot_samples(S_ica_ / np.std(S_ica_))
plt.title('ICA recovered signals')

plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.36)
plt.show()
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Total running time of the example: 0.34 seconds ( 0 minutes 0.34 seconds)

4.10.7 Sparse coding with a precomputed dictionary

Transform a signal as a sparse combination of Ricker wavelets. This example visually compares different sparse coding
methods using the sklearn.decomposition.SparseCoder estimator. The Ricker (also known as Mexican
hat or the second derivative of a Gaussian) is not a particularly good kernel to represent piecewise constant signals
like this one. It can therefore be seen how much adding different widths of atoms matters and it therefore motivates
learning the dictionary to best fit your type of signals.

The richer dictionary on the right is not larger in size, heavier subsampling is performed in order to stay on the same
order of magnitude.

Python source code: plot_sparse_coding.py

print(__doc__)

import numpy as np
import matplotlib.pylab as pl

from sklearn.decomposition import SparseCoder

def ricker_function(resolution, center, width):
"""Discrete sub-sampled Ricker (Mexican hat) wavelet"""
x = np.linspace(0, resolution - 1, resolution)
x = ((2 / ((np.sqrt(3 * width) * np.pi ** 1 / 4)))

* (1 - ((x - center) ** 2 / width ** 2))

* np.exp((-(x - center) ** 2) / (2 * width ** 2)))
return x

def ricker_matrix(width, resolution, n_components):
"""Dictionary of Ricker (Mexican hat) wavelets"""
centers = np.linspace(0, resolution - 1, n_components)
D = np.empty((n_components, resolution))
for i, center in enumerate(centers):
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D[i] = ricker_function(resolution, center, width)
D /= np.sqrt(np.sum(D ** 2, axis=1))[:, np.newaxis]
return D

resolution = 1024
subsampling = 3 # subsampling factor
width = 100
n_components = resolution / subsampling

# Compute a wavelet dictionary
D_fixed = ricker_matrix(width=width, resolution=resolution,

n_components=n_components)
D_multi = np.r_[tuple(ricker_matrix(width=w, resolution=resolution,

n_components=np.floor(n_components / 5))
for w in (10, 50, 100, 500, 1000))]

# Generate a signal
y = np.linspace(0, resolution - 1, resolution)
first_quarter = y < resolution / 4
y[first_quarter] = 3.
y[np.logical_not(first_quarter)] = -1.

# List the different sparse coding methods in the following format:
# (title, transform_algorithm, transform_alpha, transform_n_nozero_coefs)
estimators = [('OMP', 'omp', None, 15), ('Lasso', 'lasso_cd', 2, None), ]

pl.figure(figsize=(13, 6))
for subplot, (D, title) in enumerate(zip((D_fixed, D_multi),

('fixed width', 'multiple widths'))):
pl.subplot(1, 2, subplot + 1)
pl.title('Sparse coding against %s dictionary' % title)
pl.plot(y, ls='dotted', label='Original signal')
# Do a wavelet approximation
for title, algo, alpha, n_nonzero in estimators:

coder = SparseCoder(dictionary=D, transform_n_nonzero_coefs=n_nonzero,
transform_alpha=alpha, transform_algorithm=algo)

x = coder.transform(y.reshape(1, -1))
density = len(np.flatnonzero(x))
x = np.ravel(np.dot(x, D))
squared_error = np.sum((y - x) ** 2)
pl.plot(x, label='%s: %s nonzero coefs,\n%.2f error'

% (title, density, squared_error))

# Soft thresholding debiasing
coder = SparseCoder(dictionary=D, transform_algorithm='threshold',

transform_alpha=20)
x = coder.transform(y.reshape(1, -1))
_, idx = np.where(x != 0)
x[0, idx], _, _, _ = np.linalg.lstsq(D[idx, :].T, y)
x = np.ravel(np.dot(x, D))
squared_error = np.sum((y - x) ** 2)
pl.plot(x,

label='Thresholding w/ debiasing:\n%d nonzero coefs, %.2f error' %
(len(idx), squared_error))

pl.axis('tight')
pl.legend()

pl.subplots_adjust(.04, .07, .97, .90, .09, .2)
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pl.show()

Total running time of the example: 0.60 seconds ( 0 minutes 0.60 seconds)

4.10.8 Principal components analysis (PCA)

These figures aid in illustrating how a point cloud can be very flat in one direction–which is where PCA comes in to
choose a direction that is not flat.

•

•

Python source code: plot_pca_3d.py

print(__doc__)

# Authors: Gael Varoquaux
# Jaques Grobler
# Kevin Hughes
# License: BSD 3 clause

from sklearn.decomposition import PCA

from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

###############################################################################
# Create the data

e = np.exp(1)
np.random.seed(4)

def pdf(x):
return 0.5 * (stats.norm(scale=0.25 / e).pdf(x)

+ stats.norm(scale=4 / e).pdf(x))

y = np.random.normal(scale=0.5, size=(30000))
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x = np.random.normal(scale=0.5, size=(30000))
z = np.random.normal(scale=0.1, size=len(x))

density = pdf(x) * pdf(y)
pdf_z = pdf(5 * z)

density *= pdf_z

a = x + y
b = 2 * y
c = a - b + z

norm = np.sqrt(a.var() + b.var())
a /= norm
b /= norm

###############################################################################
# Plot the figures
def plot_figs(fig_num, elev, azim):

fig = plt.figure(fig_num, figsize=(4, 3))
plt.clf()
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=elev, azim=azim)

ax.scatter(a[::10], b[::10], c[::10], c=density[::10], marker='+', alpha=.4)
Y = np.c_[a, b, c]

# Using SciPy's SVD, this would be:
# _, pca_score, V = scipy.linalg.svd(Y, full_matrices=False)

pca = PCA(n_components=3)
pca.fit(Y)
pca_score = pca.explained_variance_ratio_
V = pca.components_

x_pca_axis, y_pca_axis, z_pca_axis = V.T * pca_score / pca_score.min()

x_pca_axis, y_pca_axis, z_pca_axis = 3 * V.T
x_pca_plane = np.r_[x_pca_axis[:2], - x_pca_axis[1::-1]]
y_pca_plane = np.r_[y_pca_axis[:2], - y_pca_axis[1::-1]]
z_pca_plane = np.r_[z_pca_axis[:2], - z_pca_axis[1::-1]]
x_pca_plane.shape = (2, 2)
y_pca_plane.shape = (2, 2)
z_pca_plane.shape = (2, 2)
ax.plot_surface(x_pca_plane, y_pca_plane, z_pca_plane)
ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])

elev = -40
azim = -80
plot_figs(1, elev, azim)

elev = 30
azim = 20
plot_figs(2, elev, azim)
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plt.show()

Total running time of the example: 0.41 seconds ( 0 minutes 0.41 seconds)

4.10.9 Model selection with Probabilistic PCA and Factor Analysis (FA)

Probabilistic PCA and Factor Analysis are probabilistic models. The consequence is that the likelihood of new data
can be used for model selection and covariance estimation. Here we compare PCA and FA with cross-validation on
low rank data corrupted with homoscedastic noise (noise variance is the same for each feature) or heteroscedastic noise
(noise variance is the different for each feature). In a second step we compare the model likelihood to the likelihoods
obtained from shrinkage covariance estimators.

One can observe that with homoscedastic noise both FA and PCA succeed in recovering the size of the low rank
subspace. The likelihood with PCA is higher than FA in this case. However PCA fails and overestimates the rank
when heteroscedastic noise is present. Under appropriate circumstances the low rank models are more likely than
shrinkage models.

The automatic estimation from Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604 by Thomas P.
Minka is also compared.

•

•

Script output:

best n_components by PCA CV = 10
best n_components by FactorAnalysis CV = 10
best n_components by PCA MLE = 10
best n_components by PCA CV = 40
best n_components by FactorAnalysis CV = 10
best n_components by PCA MLE = 38
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Python source code: plot_pca_vs_fa_model_selection.py

print(__doc__)

# Authors: Alexandre Gramfort
# Denis A. Engemann
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from scipy import linalg

from sklearn.decomposition import PCA, FactorAnalysis
from sklearn.covariance import ShrunkCovariance, LedoitWolf
from sklearn.cross_validation import cross_val_score
from sklearn.grid_search import GridSearchCV

###############################################################################
# Create the data

n_samples, n_features, rank = 1000, 50, 10
sigma = 1.
rng = np.random.RandomState(42)
U, _, _ = linalg.svd(rng.randn(n_features, n_features))
X = np.dot(rng.randn(n_samples, rank), U[:, :rank].T)

# Adding homoscedastic noise
X_homo = X + sigma * rng.randn(n_samples, n_features)

# Adding heteroscedastic noise
sigmas = sigma * rng.rand(n_features) + sigma / 2.
X_hetero = X + rng.randn(n_samples, n_features) * sigmas

###############################################################################
# Fit the models

n_components = np.arange(0, n_features, 5) # options for n_components

def compute_scores(X):
pca = PCA()
fa = FactorAnalysis()

pca_scores, fa_scores = [], []
for n in n_components:

pca.n_components = n
fa.n_components = n
pca_scores.append(np.mean(cross_val_score(pca, X)))
fa_scores.append(np.mean(cross_val_score(fa, X)))

return pca_scores, fa_scores

def shrunk_cov_score(X):
shrinkages = np.logspace(-2, 0, 30)
cv = GridSearchCV(ShrunkCovariance(), {'shrinkage': shrinkages})
return np.mean(cross_val_score(cv.fit(X).best_estimator_, X))
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def lw_score(X):
return np.mean(cross_val_score(LedoitWolf(), X))

for X, title in [(X_homo, 'Homoscedastic Noise'),
(X_hetero, 'Heteroscedastic Noise')]:

pca_scores, fa_scores = compute_scores(X)
n_components_pca = n_components[np.argmax(pca_scores)]
n_components_fa = n_components[np.argmax(fa_scores)]

pca = PCA(n_components='mle')
pca.fit(X)
n_components_pca_mle = pca.n_components_

print("best n_components by PCA CV = %d" % n_components_pca)
print("best n_components by FactorAnalysis CV = %d" % n_components_fa)
print("best n_components by PCA MLE = %d" % n_components_pca_mle)

plt.figure()
plt.plot(n_components, pca_scores, 'b', label='PCA scores')
plt.plot(n_components, fa_scores, 'r', label='FA scores')
plt.axvline(rank, color='g', label='TRUTH: %d' % rank, linestyle='-')
plt.axvline(n_components_pca, color='b',

label='PCA CV: %d' % n_components_pca, linestyle='--')
plt.axvline(n_components_fa, color='r',

label='FactorAnalysis CV: %d' % n_components_fa, linestyle='--')
plt.axvline(n_components_pca_mle, color='k',

label='PCA MLE: %d' % n_components_pca_mle, linestyle='--')

# compare with other covariance estimators
plt.axhline(shrunk_cov_score(X), color='violet',

label='Shrunk Covariance MLE', linestyle='-.')
plt.axhline(lw_score(X), color='orange',

label='LedoitWolf MLE' % n_components_pca_mle, linestyle='-.')

plt.xlabel('nb of components')
plt.ylabel('CV scores')
plt.legend(loc='lower right')
plt.title(title)

plt.show()

Total running time of the example: 35.59 seconds ( 0 minutes 35.59 seconds)

4.10.10 Faces dataset decompositions

This example applies to The Olivetti faces dataset different unsupervised matrix decomposition (dimension reduction)
methods from the module sklearn.decomposition (see the documentation chapter Decomposing signals in
components (matrix factorization problems)) .
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Script output:

Dataset consists of 400 faces
Extracting the top 6 Eigenfaces - RandomizedPCA...
done in 0.194s
Extracting the top 6 Non-negative components - NMF...
done in 1.248s
Extracting the top 6 Independent components - FastICA...
done in 0.637s
Extracting the top 6 Sparse comp. - MiniBatchSparsePCA...
done in 1.076s
Extracting the top 6 MiniBatchDictionaryLearning...
done in 2.015s
Extracting the top 6 Cluster centers - MiniBatchKMeans...
done in 0.149s
Extracting the top 6 Factor Analysis components - FA...
done in 0.309s

Python source code: plot_faces_decomposition.py

print(__doc__)

# Authors: Vlad Niculae, Alexandre Gramfort
# License: BSD 3 clause

import logging
from time import time

from numpy.random import RandomState
import matplotlib.pyplot as plt

from sklearn.datasets import fetch_olivetti_faces
from sklearn.cluster import MiniBatchKMeans
from sklearn import decomposition

# Display progress logs on stdout
logging.basicConfig(level=logging.INFO,

format='%(asctime)s %(levelname)s %(message)s')
n_row, n_col = 2, 3
n_components = n_row * n_col
image_shape = (64, 64)
rng = RandomState(0)

###############################################################################
# Load faces data
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dataset = fetch_olivetti_faces(shuffle=True, random_state=rng)
faces = dataset.data

n_samples, n_features = faces.shape

# global centering
faces_centered = faces - faces.mean(axis=0)

# local centering
faces_centered -= faces_centered.mean(axis=1).reshape(n_samples, -1)

print("Dataset consists of %d faces" % n_samples)

###############################################################################
def plot_gallery(title, images, n_col=n_col, n_row=n_row):

plt.figure(figsize=(2. * n_col, 2.26 * n_row))
plt.suptitle(title, size=16)
for i, comp in enumerate(images):

plt.subplot(n_row, n_col, i + 1)
vmax = max(comp.max(), -comp.min())
plt.imshow(comp.reshape(image_shape), cmap=plt.cm.gray,

interpolation='nearest',
vmin=-vmax, vmax=vmax)

plt.xticks(())
plt.yticks(())

plt.subplots_adjust(0.01, 0.05, 0.99, 0.93, 0.04, 0.)

###############################################################################
# List of the different estimators, whether to center and transpose the
# problem, and whether the transformer uses the clustering API.
estimators = [

('Eigenfaces - RandomizedPCA',
decomposition.RandomizedPCA(n_components=n_components, whiten=True),
True),

('Non-negative components - NMF',
decomposition.NMF(n_components=n_components, init='nndsvda', tol=5e-3),
False),

('Independent components - FastICA',
decomposition.FastICA(n_components=n_components, whiten=True),
True),

('Sparse comp. - MiniBatchSparsePCA',
decomposition.MiniBatchSparsePCA(n_components=n_components, alpha=0.8,

n_iter=100, batch_size=3,
random_state=rng),

True),

('MiniBatchDictionaryLearning',
decomposition.MiniBatchDictionaryLearning(n_components=15, alpha=0.1,

n_iter=50, batch_size=3,
random_state=rng),

True),

('Cluster centers - MiniBatchKMeans',
MiniBatchKMeans(n_clusters=n_components, tol=1e-3, batch_size=20,
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max_iter=50, random_state=rng),
True),

('Factor Analysis components - FA',
decomposition.FactorAnalysis(n_components=n_components, max_iter=2),
True),

]

###############################################################################
# Plot a sample of the input data

plot_gallery("First centered Olivetti faces", faces_centered[:n_components])

###############################################################################
# Do the estimation and plot it

for name, estimator, center in estimators:
print("Extracting the top %d %s..." % (n_components, name))
t0 = time()
data = faces
if center:

data = faces_centered
estimator.fit(data)
train_time = (time() - t0)
print("done in %0.3fs" % train_time)
if hasattr(estimator, 'cluster_centers_'):

components_ = estimator.cluster_centers_
else:

components_ = estimator.components_
if hasattr(estimator, 'noise_variance_'):

plot_gallery("Pixelwise variance",
estimator.noise_variance_.reshape(1, -1), n_col=1,
n_row=1)

plot_gallery('%s - Train time %.1fs' % (name, train_time),
components_[:n_components])

plt.show()

Total running time of the example: 8.86 seconds ( 0 minutes 8.86 seconds)

4.10.11 Image denoising using dictionary learning

An example comparing the effect of reconstructing noisy fragments of the Lena image using firstly online Dictionary
Learning and various transform methods.

The dictionary is fitted on the distorted left half of the image, and subsequently used to reconstruct the right half. Note
that even better performance could be achieved by fitting to an undistorted (i.e. noiseless) image, but here we start
from the assumption that it is not available.

A common practice for evaluating the results of image denoising is by looking at the difference between the recon-
struction and the original image. If the reconstruction is perfect this will look like Gaussian noise.

It can be seen from the plots that the results of Orthogonal Matching Pursuit (OMP) with two non-zero coefficients is
a bit less biased than when keeping only one (the edges look less prominent). It is in addition closer from the ground
truth in Frobenius norm.
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The result of Least Angle Regression is much more strongly biased: the difference is reminiscent of the local intensity
value of the original image.

Thresholding is clearly not useful for denoising, but it is here to show that it can produce a suggestive output with
very high speed, and thus be useful for other tasks such as object classification, where performance is not necessarily
related to visualisation.

•

•

•

•
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Script output:

Distorting image...
Extracting reference patches...
done in 0.03s.
Learning the dictionary...
done in 12.31s.
Extracting noisy patches...
done in 0.01s.
Orthogonal Matching Pursuit
1 atom...
done in 3.18s.
Orthogonal Matching Pursuit
2 atoms...
done in 7.09s.
Least-angle regression
5 atoms...
done in 34.39s.
Thresholding
alpha=0.1...

done in 0.42s.

Python source code: plot_image_denoising.py

print(__doc__)

from time import time

import matplotlib.pyplot as plt
import numpy as np

from scipy.misc import lena

from sklearn.decomposition import MiniBatchDictionaryLearning
from sklearn.feature_extraction.image import extract_patches_2d
from sklearn.feature_extraction.image import reconstruct_from_patches_2d

###############################################################################
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# Load Lena image and extract patches
lena = lena() / 256.0

# downsample for higher speed
lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2]
lena /= 4.0
height, width = lena.shape

# Distort the right half of the image
print('Distorting image...')
distorted = lena.copy()
distorted[:, height // 2:] += 0.075 * np.random.randn(width, height // 2)

# Extract all reference patches from the left half of the image
print('Extracting reference patches...')
t0 = time()
patch_size = (7, 7)
data = extract_patches_2d(distorted[:, :height // 2], patch_size)
data = data.reshape(data.shape[0], -1)
data -= np.mean(data, axis=0)
data /= np.std(data, axis=0)
print('done in %.2fs.' % (time() - t0))

###############################################################################
# Learn the dictionary from reference patches

print('Learning the dictionary...')
t0 = time()
dico = MiniBatchDictionaryLearning(n_components=100, alpha=1, n_iter=500)
V = dico.fit(data).components_
dt = time() - t0
print('done in %.2fs.' % dt)

plt.figure(figsize=(4.2, 4))
for i, comp in enumerate(V[:100]):

plt.subplot(10, 10, i + 1)
plt.imshow(comp.reshape(patch_size), cmap=plt.cm.gray_r,

interpolation='nearest')
plt.xticks(())
plt.yticks(())

plt.suptitle('Dictionary learned from Lena patches\n' +
'Train time %.1fs on %d patches' % (dt, len(data)),
fontsize=16)

plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23)

###############################################################################
# Display the distorted image

def show_with_diff(image, reference, title):
"""Helper function to display denoising"""
plt.figure(figsize=(5, 3.3))
plt.subplot(1, 2, 1)
plt.title('Image')
plt.imshow(image, vmin=0, vmax=1, cmap=plt.cm.gray, interpolation='nearest')
plt.xticks(())
plt.yticks(())
plt.subplot(1, 2, 2)
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difference = image - reference

plt.title('Difference (norm: %.2f)' % np.sqrt(np.sum(difference ** 2)))
plt.imshow(difference, vmin=-0.5, vmax=0.5, cmap=plt.cm.PuOr,

interpolation='nearest')
plt.xticks(())
plt.yticks(())
plt.suptitle(title, size=16)
plt.subplots_adjust(0.02, 0.02, 0.98, 0.79, 0.02, 0.2)

show_with_diff(distorted, lena, 'Distorted image')

###############################################################################
# Extract noisy patches and reconstruct them using the dictionary

print('Extracting noisy patches... ')
t0 = time()
data = extract_patches_2d(distorted[:, height // 2:], patch_size)
data = data.reshape(data.shape[0], -1)
intercept = np.mean(data, axis=0)
data -= intercept
print('done in %.2fs.' % (time() - t0))

transform_algorithms = [
('Orthogonal Matching Pursuit\n1 atom', 'omp',
{'transform_n_nonzero_coefs': 1}),

('Orthogonal Matching Pursuit\n2 atoms', 'omp',
{'transform_n_nonzero_coefs': 2}),

('Least-angle regression\n5 atoms', 'lars',
{'transform_n_nonzero_coefs': 5}),

('Thresholding\n alpha=0.1', 'threshold', {'transform_alpha': .1})]

reconstructions = {}
for title, transform_algorithm, kwargs in transform_algorithms:

print(title + '...')
reconstructions[title] = lena.copy()
t0 = time()
dico.set_params(transform_algorithm=transform_algorithm, **kwargs)
code = dico.transform(data)
patches = np.dot(code, V)

if transform_algorithm == 'threshold':
patches -= patches.min()
patches /= patches.max()

patches += intercept
patches = patches.reshape(len(data), *patch_size)
if transform_algorithm == 'threshold':

patches -= patches.min()
patches /= patches.max()

reconstructions[title][:, height // 2:] = reconstruct_from_patches_2d(
patches, (width, height // 2))

dt = time() - t0
print('done in %.2fs.' % dt)
show_with_diff(reconstructions[title], lena,

title + ' (time: %.1fs)' % dt)

plt.show()
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Total running time of the example: 64.31 seconds ( 1 minutes 4.31 seconds)

4.11 Ensemble methods

Examples concerning the sklearn.ensemble module.

4.11.1 Pixel importances with a parallel forest of trees

This example shows the use of forests of trees to evaluate the importance of the pixels in an image classification task
(faces). The hotter the pixel, the more important.

The code below also illustrates how the construction and the computation of the predictions can be parallelized within
multiple jobs.

Script output:
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Fitting ExtraTreesClassifier on faces data with 1 cores...
done in 1.356s

Python source code: plot_forest_importances_faces.py

print(__doc__)

from time import time
import matplotlib.pyplot as plt

from sklearn.datasets import fetch_olivetti_faces
from sklearn.ensemble import ExtraTreesClassifier

# Number of cores to use to perform parallel fitting of the forest model
n_jobs = 1

# Load the faces dataset
data = fetch_olivetti_faces()
X = data.images.reshape((len(data.images), -1))
y = data.target

mask = y < 5 # Limit to 5 classes
X = X[mask]
y = y[mask]

# Build a forest and compute the pixel importances
print("Fitting ExtraTreesClassifier on faces data with %d cores..." % n_jobs)
t0 = time()
forest = ExtraTreesClassifier(n_estimators=1000,

max_features=128,
n_jobs=n_jobs,
random_state=0)

forest.fit(X, y)
print("done in %0.3fs" % (time() - t0))
importances = forest.feature_importances_
importances = importances.reshape(data.images[0].shape)

# Plot pixel importances
plt.matshow(importances, cmap=plt.cm.hot)
plt.title("Pixel importances with forests of trees")
plt.show()

Total running time of the example: 1.50 seconds ( 0 minutes 1.50 seconds)

4.11.2 Decision Tree Regression with AdaBoost

A decision tree is boosted using the AdaBoost.R2 [1] algorithm on a 1D sinusoidal dataset with a small amount of
Gaussian noise. 299 boosts (300 decision trees) is compared with a single decision tree regressor. As the number of
boosts is increased the regressor can fit more detail.
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Python source code: plot_adaboost_regression.py

print(__doc__)

# Author: Noel Dawe <noel.dawe@gmail.com>
#
# License: BSD 3 clause

# importing necessary libraries
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import AdaBoostRegressor

# Create the dataset
rng = np.random.RandomState(1)
X = np.linspace(0, 6, 100)[:, np.newaxis]
y = np.sin(X).ravel() + np.sin(6 * X).ravel() + rng.normal(0, 0.1, X.shape[0])

# Fit regression model
regr_1 = DecisionTreeRegressor(max_depth=4)

regr_2 = AdaBoostRegressor(DecisionTreeRegressor(max_depth=4),
n_estimators=300, random_state=rng)

regr_1.fit(X, y)
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regr_2.fit(X, y)

# Predict
y_1 = regr_1.predict(X)
y_2 = regr_2.predict(X)

# Plot the results
plt.figure()
plt.scatter(X, y, c="k", label="training samples")
plt.plot(X, y_1, c="g", label="n_estimators=1", linewidth=2)
plt.plot(X, y_2, c="r", label="n_estimators=300", linewidth=2)
plt.xlabel("data")
plt.ylabel("target")
plt.title("Boosted Decision Tree Regression")
plt.legend()
plt.show()

Total running time of the example: 0.41 seconds ( 0 minutes 0.41 seconds)

4.11.3 Feature importances with forests of trees

This examples shows the use of forests of trees to evaluate the importance of features on an artificial classification
task. The red bars are the feature importances of the forest, along with their inter-trees variability.

As expected, the plot suggests that 3 features are informative, while the remaining are not.
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Script output:

Feature ranking:
1. feature 0 (0.250402)
2. feature 1 (0.231094)
3. feature 2 (0.148057)
4. feature 3 (0.055632)
5. feature 5 (0.054583)
6. feature 8 (0.054573)
7. feature 6 (0.052606)
8. feature 7 (0.051109)
9. feature 9 (0.051010)
10. feature 4 (0.050934)

Python source code: plot_forest_importances.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import make_classification
from sklearn.ensemble import ExtraTreesClassifier

# Build a classification task using 3 informative features
X, y = make_classification(n_samples=1000,

n_features=10,
n_informative=3,
n_redundant=0,
n_repeated=0,
n_classes=2,
random_state=0,
shuffle=False)

# Build a forest and compute the feature importances
forest = ExtraTreesClassifier(n_estimators=250,

random_state=0)

forest.fit(X, y)
importances = forest.feature_importances_
std = np.std([tree.feature_importances_ for tree in forest.estimators_],

axis=0)
indices = np.argsort(importances)[::-1]

# Print the feature ranking
print("Feature ranking:")

for f in range(X.shape[1]):
print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]]))

# Plot the feature importances of the forest
plt.figure()
plt.title("Feature importances")
plt.bar(range(X.shape[1]), importances[indices],

color="r", yerr=std[indices], align="center")
plt.xticks(range(X.shape[1]), indices)
plt.xlim([-1, X.shape[1]])
plt.show()
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Total running time of the example: 0.46 seconds ( 0 minutes 0.46 seconds)

4.11.4 Plot the decision boundaries of a VotingClassifier

Plot the decision boundaries of a VotingClassifier for two features of the Iris dataset.

Plot the class probabilities of the first sample in a toy dataset predicted by three different classifiers and averaged by
the VotingClassifier.

First, three examplary classifiers are initialized (DecisionTreeClassifier, KNeighborsClassifier, and SVC) and used to
initialize a soft-voting VotingClassifier with weights [2, 1, 2], which means that the predicted probabilities of the
DecisionTreeClassifier and SVC count 5 times as much as the weights of the KNeighborsClassifier classifier when the
averaged probability is calculated.

Python source code: plot_voting_decision_regions.py

print(__doc__)

from itertools import product

import numpy as np
import matplotlib.pyplot as plt
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from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.ensemble import VotingClassifier

# Loading some example data
iris = datasets.load_iris()
X = iris.data[:, [0, 2]]
y = iris.target

# Training classifiers
clf1 = DecisionTreeClassifier(max_depth=4)
clf2 = KNeighborsClassifier(n_neighbors=7)
clf3 = SVC(kernel='rbf', probability=True)
eclf = VotingClassifier(estimators=[('dt', clf1), ('knn', clf2),

('svc', clf3)],
voting='soft', weights=[2, 1, 2])

clf1.fit(X, y)
clf2.fit(X, y)
clf3.fit(X, y)
eclf.fit(X, y)

# Plotting decision regions
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),

np.arange(y_min, y_max, 0.1))

f, axarr = plt.subplots(2, 2, sharex='col', sharey='row', figsize=(10, 8))

for idx, clf, tt in zip(product([0, 1], [0, 1]),
[clf1, clf2, clf3, eclf],
['Decision Tree (depth=4)', 'KNN (k=7)',
'Kernel SVM', 'Soft Voting']):

Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

axarr[idx[0], idx[1]].contourf(xx, yy, Z, alpha=0.4)
axarr[idx[0], idx[1]].scatter(X[:, 0], X[:, 1], c=y, alpha=0.8)
axarr[idx[0], idx[1]].set_title(tt)

plt.show()

Total running time of the example: 0.27 seconds ( 0 minutes 0.27 seconds)

4.11.5 Plot class probabilities calculated by the VotingClassifier

Plot the class probabilities of the first sample in a toy dataset predicted by three different classifiers and averaged by
the VotingClassifier.

First, three examplary classifiers are initialized (LogisticRegression, GaussianNB, and RandomForestClassifier) and
used to initialize a soft-voting VotingClassifier with weights [1, 1, 5], which means that the predicted probabilities of
the RandomForestClassifier count 5 times as much as the weights of the other classifiers when the averaged probability
is calculated.
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To visualize the probability weighting, we fit each classifier on the training set and plot the predicted class probabilities
for the first sample in this example dataset.

Python source code: plot_voting_probas.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier

clf1 = LogisticRegression(random_state=123)
clf2 = RandomForestClassifier(random_state=123)
clf3 = GaussianNB()
X = np.array([[-1.0, -1.0], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]])
y = np.array([1, 1, 2, 2])

eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)],
voting='soft',
weights=[1, 1, 5])

# predict class probabilities for all classifiers
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probas = [c.fit(X, y).predict_proba(X) for c in (clf1, clf2, clf3, eclf)]

# get class probabilities for the first sample in the dataset
class1_1 = [pr[0, 0] for pr in probas]
class2_1 = [pr[0, 1] for pr in probas]

# plotting

N = 4 # number of groups
ind = np.arange(N) # group positions
width = 0.35 # bar width

fig, ax = plt.subplots()

# bars for classifier 1-3
p1 = ax.bar(ind, np.hstack(([class1_1[:-1], [0]])), width, color='green')
p2 = ax.bar(ind + width, np.hstack(([class2_1[:-1], [0]])), width, color='lightgreen')

# bars for VotingClassifier
p3 = ax.bar(ind, [0, 0, 0, class1_1[-1]], width, color='blue')
p4 = ax.bar(ind + width, [0, 0, 0, class2_1[-1]], width, color='steelblue')

# plot annotations
plt.axvline(2.8, color='k', linestyle='dashed')
ax.set_xticks(ind + width)
ax.set_xticklabels(['LogisticRegression\nweight 1',

'GaussianNB\nweight 1',
'RandomForestClassifier\nweight 5',
'VotingClassifier\n(average probabilities)'],
rotation=40,
ha='right')

plt.ylim([0, 1])
plt.title('Class probabilities for sample 1 by different classifiers')
plt.legend([p1[0], p2[0]], ['class 1', 'class 2'], loc='upper left')
plt.show()

Total running time of the example: 0.08 seconds ( 0 minutes 0.08 seconds)

4.11.6 Gradient Boosting regularization

Illustration of the effect of different regularization strategies for Gradient Boosting. The example is taken from Hastie
et al 2009.

The loss function used is binomial deviance. Regularization via shrinkage (learning_rate < 1.0) improves
performance considerably. In combination with shrinkage, stochastic gradient boosting (subsample < 1.0) can
produce more accurate models by reducing the variance via bagging. Subsampling without shrinkage usually does
poorly. Another strategy to reduce the variance is by subsampling the features analogous to the random splits in
Random Forests (via the max_features parameter).
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Python source code: plot_gradient_boosting_regularization.py

print(__doc__)

# Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
#
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn import ensemble
from sklearn import datasets

X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1)
X = X.astype(np.float32)

# map labels from {-1, 1} to {0, 1}
labels, y = np.unique(y, return_inverse=True)

X_train, X_test = X[:2000], X[2000:]
y_train, y_test = y[:2000], y[2000:]

original_params = {'n_estimators': 1000, 'max_leaf_nodes': 4, 'max_depth': None, 'random_state': 2,
'min_samples_split': 5}
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plt.figure()

for label, color, setting in [('No shrinkage', 'orange',
{'learning_rate': 1.0, 'subsample': 1.0}),
('learning_rate=0.1', 'turquoise',
{'learning_rate': 0.1, 'subsample': 1.0}),
('subsample=0.5', 'blue',
{'learning_rate': 1.0, 'subsample': 0.5}),
('learning_rate=0.1, subsample=0.5', 'gray',
{'learning_rate': 0.1, 'subsample': 0.5}),
('learning_rate=0.1, max_features=2', 'magenta',
{'learning_rate': 0.1, 'max_features': 2})]:

params = dict(original_params)
params.update(setting)

clf = ensemble.GradientBoostingClassifier(**params)
clf.fit(X_train, y_train)

# compute test set deviance
test_deviance = np.zeros((params['n_estimators'],), dtype=np.float64)

for i, y_pred in enumerate(clf.staged_decision_function(X_test)):
# clf.loss_ assumes that y_test[i] in {0, 1}
test_deviance[i] = clf.loss_(y_test, y_pred)

plt.plot((np.arange(test_deviance.shape[0]) + 1)[::5], test_deviance[::5],
'-', color=color, label=label)

plt.legend(loc='upper left')
plt.xlabel('Boosting Iterations')
plt.ylabel('Test Set Deviance')

plt.show()

Total running time of the example: 19.51 seconds ( 0 minutes 19.51 seconds)

4.11.7 OOB Errors for Random Forests

The RandomForestClassifier is trained using bootstrap aggregation, where each new tree is fit from a boot-
strap sample of the training observations 𝑧𝑖 = (𝑥𝑖, 𝑦𝑖). The out-of-bag (OOB) error is the average error for each 𝑧𝑖
calculated using predictions from the trees that do not contain 𝑧𝑖 in their respective bootstrap sample. This allows the
RandomForestClassifier to be fit and validated whilst being trained [1].

The example below demonstrates how the OOB error can be measured at the addition of each new tree during train-
ing. The resulting plot allows a practitioner to approximate a suitable value of n_estimators at which the error
stabilizes.
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Python source code: plot_ensemble_oob.py

import matplotlib.pyplot as plt

from collections import OrderedDict
from sklearn.datasets import make_classification
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier

# Author: Kian Ho <hui.kian.ho@gmail.com>
# Gilles Louppe <g.louppe@gmail.com>
# Andreas Mueller <amueller@ais.uni-bonn.de>
#
# License: BSD 3 Clause

print(__doc__)

RANDOM_STATE = 123

# Generate a binary classification dataset.
X, y = make_classification(n_samples=500, n_features=25,

n_clusters_per_class=1, n_informative=15,
random_state=RANDOM_STATE)

# NOTE: Setting the `warm_start` construction parameter to `True` disables
# support for paralellised ensembles but is necessary for tracking the OOB
# error trajectory during training.
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ensemble_clfs = [
("RandomForestClassifier, max_features='sqrt'",

RandomForestClassifier(warm_start=True, oob_score=True,
max_features="sqrt",
random_state=RANDOM_STATE)),

("RandomForestClassifier, max_features='log2'",
RandomForestClassifier(warm_start=True, max_features='log2',

oob_score=True,
random_state=RANDOM_STATE)),

("RandomForestClassifier, max_features=None",
RandomForestClassifier(warm_start=True, max_features=None,

oob_score=True,
random_state=RANDOM_STATE))

]

# Map a classifier name to a list of (<n_estimators>, <error rate>) pairs.
error_rate = OrderedDict((label, []) for label, _ in ensemble_clfs)

# Range of `n_estimators` values to explore.
min_estimators = 15
max_estimators = 175

for label, clf in ensemble_clfs:
for i in range(min_estimators, max_estimators + 1):

clf.set_params(n_estimators=i)
clf.fit(X, y)

# Record the OOB error for each `n_estimators=i` setting.
oob_error = 1 - clf.oob_score_
error_rate[label].append((i, oob_error))

# Generate the "OOB error rate" vs. "n_estimators" plot.
for label, clf_err in error_rate.items():

xs, ys = zip(*clf_err)
plt.plot(xs, ys, label=label)

plt.xlim(min_estimators, max_estimators)
plt.xlabel("n_estimators")
plt.ylabel("OOB error rate")
plt.legend(loc="upper right")
plt.show()

Total running time of the example: 7.43 seconds ( 0 minutes 7.43 seconds)

4.11.8 Partial Dependence Plots

Partial dependence plots show the dependence between the target function 2 and a set of ‘target’ features, marginalizing
over the values of all other features (the complement features). Due to the limits of human perception the size of the
target feature set must be small (usually, one or two) thus the target features are usually chosen among the most
important features (see feature_importances_).

This example shows how to obtain partial dependence plots from a GradientBoostingRegressor trained on
the California housing dataset. The example is taken from 3.

The plot shows four one-way and one two-way partial dependence plots. The target variables for the one-way PDP

2 For classification you can think of it as the regression score before the link function.
3 T. Hastie, R. Tibshirani and J. Friedman, “Elements of Statistical Learning Ed. 2”, Springer, 2009.
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are: median income (MedInc), avg. occupants per household (AvgOccup), median house age (HouseAge), and avg.
rooms per household (AveRooms).

We can clearly see that the median house price shows a linear relationship with the median income (top left) and that
the house price drops when the avg. occupants per household increases (top middle). The top right plot shows that the
house age in a district does not have a strong influence on the (median) house price; so does the average rooms per
household. The tick marks on the x-axis represent the deciles of the feature values in the training data.

Partial dependence plots with two target features enable us to visualize interactions among them. The two-way partial
dependence plot shows the dependence of median house price on joint values of house age and avg. occupants per
household. We can clearly see an interaction between the two features: For an avg. occupancy greater than two, the
house price is nearly independent of the house age, whereas for values less than two there is a strong dependence on
age.

•

•

Script output:
________________________________________________________________________________
Training GBRT...
done.
________________________________________________________________________________
Convenience plot with ``partial_dependence_plots``
________________________________________________________________________________
Custom 3d plot via ``partial_dependence``

Python source code: plot_partial_dependence.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
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from mpl_toolkits.mplot3d import Axes3D

from sklearn.cross_validation import train_test_split
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.ensemble.partial_dependence import plot_partial_dependence
from sklearn.ensemble.partial_dependence import partial_dependence
from sklearn.datasets.california_housing import fetch_california_housing

# fetch California housing dataset
cal_housing = fetch_california_housing()

# split 80/20 train-test
X_train, X_test, y_train, y_test = train_test_split(cal_housing.data,

cal_housing.target,
test_size=0.2,
random_state=1)

names = cal_housing.feature_names

print('_' * 80)
print("Training GBRT...")
clf = GradientBoostingRegressor(n_estimators=100, max_depth=4,

learning_rate=0.1, loss='huber',
random_state=1)

clf.fit(X_train, y_train)
print("done.")

print('_' * 80)
print('Convenience plot with ``partial_dependence_plots``')
print

features = [0, 5, 1, 2, (5, 1)]
fig, axs = plot_partial_dependence(clf, X_train, features, feature_names=names,

n_jobs=3, grid_resolution=50)
fig.suptitle('Partial dependence of house value on nonlocation features\n'

'for the California housing dataset')
plt.subplots_adjust(top=0.9) # tight_layout causes overlap with suptitle

print('_' * 80)
print('Custom 3d plot via ``partial_dependence``')
print
fig = plt.figure()

target_feature = (1, 5)
pdp, (x_axis, y_axis) = partial_dependence(clf, target_feature,

X=X_train, grid_resolution=50)
XX, YY = np.meshgrid(x_axis, y_axis)
Z = pdp.T.reshape(XX.shape).T
ax = Axes3D(fig)
surf = ax.plot_surface(XX, YY, Z, rstride=1, cstride=1, cmap=plt.cm.BuPu)
ax.set_xlabel(names[target_feature[0]])
ax.set_ylabel(names[target_feature[1]])
ax.set_zlabel('Partial dependence')
# pretty init view
ax.view_init(elev=22, azim=122)
plt.colorbar(surf)
plt.suptitle('Partial dependence of house value on median age and '

'average occupancy')
plt.subplots_adjust(top=0.9)
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plt.show()

Total running time of the example: 4.26 seconds ( 0 minutes 4.26 seconds)

4.11.9 Gradient Boosting regression

Demonstrate Gradient Boosting on the Boston housing dataset.

This example fits a Gradient Boosting model with least squares loss and 500 regression trees of depth 4.

Script output:

MSE: 6.6466

Python source code: plot_gradient_boosting_regression.py

print(__doc__)

# Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
#
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn import ensemble
from sklearn import datasets
from sklearn.utils import shuffle
from sklearn.metrics import mean_squared_error

###############################################################################
# Load data
boston = datasets.load_boston()
X, y = shuffle(boston.data, boston.target, random_state=13)
X = X.astype(np.float32)
offset = int(X.shape[0] * 0.9)

726 Chapter 4. Examples



scikit-learn user guide, Release 0.17

X_train, y_train = X[:offset], y[:offset]
X_test, y_test = X[offset:], y[offset:]

###############################################################################
# Fit regression model
params = {'n_estimators': 500, 'max_depth': 4, 'min_samples_split': 1,

'learning_rate': 0.01, 'loss': 'ls'}
clf = ensemble.GradientBoostingRegressor(**params)

clf.fit(X_train, y_train)
mse = mean_squared_error(y_test, clf.predict(X_test))
print("MSE: %.4f" % mse)

###############################################################################
# Plot training deviance

# compute test set deviance
test_score = np.zeros((params['n_estimators'],), dtype=np.float64)

for i, y_pred in enumerate(clf.staged_predict(X_test)):
test_score[i] = clf.loss_(y_test, y_pred)

plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.title('Deviance')
plt.plot(np.arange(params['n_estimators']) + 1, clf.train_score_, 'b-',

label='Training Set Deviance')
plt.plot(np.arange(params['n_estimators']) + 1, test_score, 'r-',

label='Test Set Deviance')
plt.legend(loc='upper right')
plt.xlabel('Boosting Iterations')
plt.ylabel('Deviance')

###############################################################################
# Plot feature importance
feature_importance = clf.feature_importances_
# make importances relative to max importance
feature_importance = 100.0 * (feature_importance / feature_importance.max())
sorted_idx = np.argsort(feature_importance)
pos = np.arange(sorted_idx.shape[0]) + .5
plt.subplot(1, 2, 2)
plt.barh(pos, feature_importance[sorted_idx], align='center')
plt.yticks(pos, boston.feature_names[sorted_idx])
plt.xlabel('Relative Importance')
plt.title('Variable Importance')
plt.show()

Total running time of the example: 0.67 seconds ( 0 minutes 0.67 seconds)

4.11.10 Prediction Intervals for Gradient Boosting Regression

This example shows how quantile regression can be used to create prediction intervals.
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Python source code: plot_gradient_boosting_quantile.py

import numpy as np
import matplotlib.pyplot as plt

from sklearn.ensemble import GradientBoostingRegressor

np.random.seed(1)

def f(x):
"""The function to predict."""
return x * np.sin(x)

#----------------------------------------------------------------------
# First the noiseless case
X = np.atleast_2d(np.random.uniform(0, 10.0, size=100)).T
X = X.astype(np.float32)

# Observations
y = f(X).ravel()

dy = 1.5 + 1.0 * np.random.random(y.shape)
noise = np.random.normal(0, dy)
y += noise
y = y.astype(np.float32)
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# Mesh the input space for evaluations of the real function, the prediction and
# its MSE
xx = np.atleast_2d(np.linspace(0, 10, 1000)).T
xx = xx.astype(np.float32)

alpha = 0.95

clf = GradientBoostingRegressor(loss='quantile', alpha=alpha,
n_estimators=250, max_depth=3,
learning_rate=.1, min_samples_leaf=9,
min_samples_split=9)

clf.fit(X, y)

# Make the prediction on the meshed x-axis
y_upper = clf.predict(xx)

clf.set_params(alpha=1.0 - alpha)
clf.fit(X, y)

# Make the prediction on the meshed x-axis
y_lower = clf.predict(xx)

clf.set_params(loss='ls')
clf.fit(X, y)

# Make the prediction on the meshed x-axis
y_pred = clf.predict(xx)

# Plot the function, the prediction and the 90% confidence interval based on
# the MSE
fig = plt.figure()
plt.plot(xx, f(xx), 'g:', label=u'$f(x) = x\,\sin(x)$')
plt.plot(X, y, 'b.', markersize=10, label=u'Observations')
plt.plot(xx, y_pred, 'r-', label=u'Prediction')
plt.plot(xx, y_upper, 'k-')
plt.plot(xx, y_lower, 'k-')
plt.fill(np.concatenate([xx, xx[::-1]]),

np.concatenate([y_upper, y_lower[::-1]]),
alpha=.5, fc='b', ec='None', label='90% prediction interval')

plt.xlabel('$x$')
plt.ylabel('$f(x)$')
plt.ylim(-10, 20)
plt.legend(loc='upper left')
plt.show()

Total running time of the example: 0.25 seconds ( 0 minutes 0.25 seconds)

4.11.11 Hashing feature transformation using Totally Random Trees

RandomTreesEmbedding provides a way to map data to a very high-dimensional, sparse representation, which might
be beneficial for classification. The mapping is completely unsupervised and very efficient.

This example visualizes the partitions given by several trees and shows how the transformation can also be used for
non-linear dimensionality reduction or non-linear classification.

Points that are neighboring often share the same leaf of a tree and therefore share large parts of their hashed repre-
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sentation. This allows to separate two concentric circles simply based on the principal components of the transformed
data.

In high-dimensional spaces, linear classifiers often achieve excellent accuracy. For sparse binary data, BernoulliNB is
particularly well-suited. The bottom row compares the decision boundary obtained by BernoulliNB in the transformed
space with an ExtraTreesClassifier forests learned on the original data.

Python source code: plot_random_forest_embedding.py

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import make_circles
from sklearn.ensemble import RandomTreesEmbedding, ExtraTreesClassifier
from sklearn.decomposition import TruncatedSVD
from sklearn.naive_bayes import BernoulliNB

# make a synthetic dataset
X, y = make_circles(factor=0.5, random_state=0, noise=0.05)
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# use RandomTreesEmbedding to transform data
hasher = RandomTreesEmbedding(n_estimators=10, random_state=0, max_depth=3)
X_transformed = hasher.fit_transform(X)

# Visualize result using PCA
pca = TruncatedSVD(n_components=2)
X_reduced = pca.fit_transform(X_transformed)

# Learn a Naive Bayes classifier on the transformed data
nb = BernoulliNB()
nb.fit(X_transformed, y)

# Learn an ExtraTreesClassifier for comparison
trees = ExtraTreesClassifier(max_depth=3, n_estimators=10, random_state=0)
trees.fit(X, y)

# scatter plot of original and reduced data
fig = plt.figure(figsize=(9, 8))

ax = plt.subplot(221)
ax.scatter(X[:, 0], X[:, 1], c=y, s=50)
ax.set_title("Original Data (2d)")
ax.set_xticks(())
ax.set_yticks(())

ax = plt.subplot(222)
ax.scatter(X_reduced[:, 0], X_reduced[:, 1], c=y, s=50)
ax.set_title("PCA reduction (2d) of transformed data (%dd)" %

X_transformed.shape[1])
ax.set_xticks(())
ax.set_yticks(())

# Plot the decision in original space. For that, we will assign a color to each
# point in the mesh [x_min, m_max] x [y_min, y_max].
h = .01
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

# transform grid using RandomTreesEmbedding
transformed_grid = hasher.transform(np.c_[xx.ravel(), yy.ravel()])
y_grid_pred = nb.predict_proba(transformed_grid)[:, 1]

ax = plt.subplot(223)
ax.set_title("Naive Bayes on Transformed data")
ax.pcolormesh(xx, yy, y_grid_pred.reshape(xx.shape))
ax.scatter(X[:, 0], X[:, 1], c=y, s=50)
ax.set_ylim(-1.4, 1.4)
ax.set_xlim(-1.4, 1.4)
ax.set_xticks(())
ax.set_yticks(())

# transform grid using ExtraTreesClassifier
y_grid_pred = trees.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]

ax = plt.subplot(224)
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ax.set_title("ExtraTrees predictions")
ax.pcolormesh(xx, yy, y_grid_pred.reshape(xx.shape))
ax.scatter(X[:, 0], X[:, 1], c=y, s=50)
ax.set_ylim(-1.4, 1.4)
ax.set_xlim(-1.4, 1.4)
ax.set_xticks(())
ax.set_yticks(())

plt.tight_layout()
plt.show()

Total running time of the example: 0.56 seconds ( 0 minutes 0.56 seconds)

4.11.12 Two-class AdaBoost

This example fits an AdaBoosted decision stump on a non-linearly separable classification dataset composed of two
“Gaussian quantiles” clusters (see sklearn.datasets.make_gaussian_quantiles) and plots the decision
boundary and decision scores. The distributions of decision scores are shown separately for samples of class A and B.
The predicted class label for each sample is determined by the sign of the decision score. Samples with decision scores
greater than zero are classified as B, and are otherwise classified as A. The magnitude of a decision score determines
the degree of likeness with the predicted class label. Additionally, a new dataset could be constructed containing a
desired purity of class B, for example, by only selecting samples with a decision score above some value.

Python source code: plot_adaboost_twoclass.py

print(__doc__)

# Author: Noel Dawe <noel.dawe@gmail.com>
#
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.ensemble import AdaBoostClassifier
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from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import make_gaussian_quantiles

# Construct dataset
X1, y1 = make_gaussian_quantiles(cov=2.,

n_samples=200, n_features=2,
n_classes=2, random_state=1)

X2, y2 = make_gaussian_quantiles(mean=(3, 3), cov=1.5,
n_samples=300, n_features=2,
n_classes=2, random_state=1)

X = np.concatenate((X1, X2))
y = np.concatenate((y1, - y2 + 1))

# Create and fit an AdaBoosted decision tree
bdt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=1),

algorithm="SAMME",
n_estimators=200)

bdt.fit(X, y)

plot_colors = "br"
plot_step = 0.02
class_names = "AB"

plt.figure(figsize=(10, 5))

# Plot the decision boundaries
plt.subplot(121)
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),

np.arange(y_min, y_max, plot_step))

Z = bdt.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)
plt.axis("tight")

# Plot the training points
for i, n, c in zip(range(2), class_names, plot_colors):

idx = np.where(y == i)
plt.scatter(X[idx, 0], X[idx, 1],

c=c, cmap=plt.cm.Paired,
label="Class %s" % n)

plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.legend(loc='upper right')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Decision Boundary')

# Plot the two-class decision scores
twoclass_output = bdt.decision_function(X)
plot_range = (twoclass_output.min(), twoclass_output.max())
plt.subplot(122)
for i, n, c in zip(range(2), class_names, plot_colors):

plt.hist(twoclass_output[y == i],
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bins=10,
range=plot_range,
facecolor=c,
label='Class %s' % n,
alpha=.5)

x1, x2, y1, y2 = plt.axis()
plt.axis((x1, x2, y1, y2 * 1.2))
plt.legend(loc='upper right')
plt.ylabel('Samples')
plt.xlabel('Score')
plt.title('Decision Scores')

plt.tight_layout()
plt.subplots_adjust(wspace=0.35)
plt.show()

Total running time of the example: 4.23 seconds ( 0 minutes 4.23 seconds)

4.11.13 Discrete versus Real AdaBoost

This example is based on Figure 10.2 from Hastie et al 2009 [1] and illustrates the difference in performance between
the discrete SAMME [2] boosting algorithm and real SAMME.R boosting algorithm. Both algorithms are evaluated
on a binary classification task where the target Y is a non-linear function of 10 input features.

Discrete SAMME AdaBoost adapts based on errors in predicted class labels whereas real SAMME.R uses the pre-
dicted class probabilities.
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Python source code: plot_adaboost_hastie_10_2.py

print(__doc__)

# Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>,
# Noel Dawe <noel.dawe@gmail.com>
#
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import zero_one_loss
from sklearn.ensemble import AdaBoostClassifier

n_estimators = 400
# A learning rate of 1. may not be optimal for both SAMME and SAMME.R
learning_rate = 1.

X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1)

X_test, y_test = X[2000:], y[2000:]
X_train, y_train = X[:2000], y[:2000]
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dt_stump = DecisionTreeClassifier(max_depth=1, min_samples_leaf=1)
dt_stump.fit(X_train, y_train)
dt_stump_err = 1.0 - dt_stump.score(X_test, y_test)

dt = DecisionTreeClassifier(max_depth=9, min_samples_leaf=1)
dt.fit(X_train, y_train)
dt_err = 1.0 - dt.score(X_test, y_test)

ada_discrete = AdaBoostClassifier(
base_estimator=dt_stump,
learning_rate=learning_rate,
n_estimators=n_estimators,
algorithm="SAMME")

ada_discrete.fit(X_train, y_train)

ada_real = AdaBoostClassifier(
base_estimator=dt_stump,
learning_rate=learning_rate,
n_estimators=n_estimators,
algorithm="SAMME.R")

ada_real.fit(X_train, y_train)

fig = plt.figure()
ax = fig.add_subplot(111)

ax.plot([1, n_estimators], [dt_stump_err] * 2, 'k-',
label='Decision Stump Error')

ax.plot([1, n_estimators], [dt_err] * 2, 'k--',
label='Decision Tree Error')

ada_discrete_err = np.zeros((n_estimators,))
for i, y_pred in enumerate(ada_discrete.staged_predict(X_test)):

ada_discrete_err[i] = zero_one_loss(y_pred, y_test)

ada_discrete_err_train = np.zeros((n_estimators,))
for i, y_pred in enumerate(ada_discrete.staged_predict(X_train)):

ada_discrete_err_train[i] = zero_one_loss(y_pred, y_train)

ada_real_err = np.zeros((n_estimators,))
for i, y_pred in enumerate(ada_real.staged_predict(X_test)):

ada_real_err[i] = zero_one_loss(y_pred, y_test)

ada_real_err_train = np.zeros((n_estimators,))
for i, y_pred in enumerate(ada_real.staged_predict(X_train)):

ada_real_err_train[i] = zero_one_loss(y_pred, y_train)

ax.plot(np.arange(n_estimators) + 1, ada_discrete_err,
label='Discrete AdaBoost Test Error',
color='red')

ax.plot(np.arange(n_estimators) + 1, ada_discrete_err_train,
label='Discrete AdaBoost Train Error',
color='blue')

ax.plot(np.arange(n_estimators) + 1, ada_real_err,
label='Real AdaBoost Test Error',
color='orange')

ax.plot(np.arange(n_estimators) + 1, ada_real_err_train,
label='Real AdaBoost Train Error',
color='green')
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ax.set_ylim((0.0, 0.5))
ax.set_xlabel('n_estimators')
ax.set_ylabel('error rate')

leg = ax.legend(loc='upper right', fancybox=True)
leg.get_frame().set_alpha(0.7)

plt.show()

Total running time of the example: 5.03 seconds ( 0 minutes 5.03 seconds)

4.11.14 Multi-class AdaBoosted Decision Trees

This example reproduces Figure 1 of Zhu et al [1] and shows how boosting can improve prediction accuracy on a
multi-class problem. The classification dataset is constructed by taking a ten-dimensional standard normal distribution
and defining three classes separated by nested concentric ten-dimensional spheres such that roughly equal numbers of
samples are in each class (quantiles of the 𝜒2 distribution).

The performance of the SAMME and SAMME.R [1] algorithms are compared. SAMME.R uses the probability
estimates to update the additive model, while SAMME uses the classifications only. As the example illustrates,
the SAMME.R algorithm typically converges faster than SAMME, achieving a lower test error with fewer boosting
iterations. The error of each algorithm on the test set after each boosting iteration is shown on the left, the classification
error on the test set of each tree is shown in the middle, and the boost weight of each tree is shown on the right. All
trees have a weight of one in the SAMME.R algorithm and therefore are not shown.

Python source code: plot_adaboost_multiclass.py

print(__doc__)

# Author: Noel Dawe <noel.dawe@gmail.com>
#
# License: BSD 3 clause

from sklearn.externals.six.moves import zip

import matplotlib.pyplot as plt

from sklearn.datasets import make_gaussian_quantiles
from sklearn.ensemble import AdaBoostClassifier
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier
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X, y = make_gaussian_quantiles(n_samples=13000, n_features=10,
n_classes=3, random_state=1)

n_split = 3000

X_train, X_test = X[:n_split], X[n_split:]
y_train, y_test = y[:n_split], y[n_split:]

bdt_real = AdaBoostClassifier(
DecisionTreeClassifier(max_depth=2),
n_estimators=600,
learning_rate=1)

bdt_discrete = AdaBoostClassifier(
DecisionTreeClassifier(max_depth=2),
n_estimators=600,
learning_rate=1.5,
algorithm="SAMME")

bdt_real.fit(X_train, y_train)
bdt_discrete.fit(X_train, y_train)

real_test_errors = []
discrete_test_errors = []

for real_test_predict, discrete_train_predict in zip(
bdt_real.staged_predict(X_test), bdt_discrete.staged_predict(X_test)):

real_test_errors.append(
1. - accuracy_score(real_test_predict, y_test))

discrete_test_errors.append(
1. - accuracy_score(discrete_train_predict, y_test))

n_trees_discrete = len(bdt_discrete)
n_trees_real = len(bdt_real)

# Boosting might terminate early, but the following arrays are always
# n_estimators long. We crop them to the actual number of trees here:
discrete_estimator_errors = bdt_discrete.estimator_errors_[:n_trees_discrete]
real_estimator_errors = bdt_real.estimator_errors_[:n_trees_real]
discrete_estimator_weights = bdt_discrete.estimator_weights_[:n_trees_discrete]

plt.figure(figsize=(15, 5))

plt.subplot(131)
plt.plot(range(1, n_trees_discrete + 1),

discrete_test_errors, c='black', label='SAMME')
plt.plot(range(1, n_trees_real + 1),

real_test_errors, c='black',
linestyle='dashed', label='SAMME.R')

plt.legend()
plt.ylim(0.18, 0.62)
plt.ylabel('Test Error')
plt.xlabel('Number of Trees')

plt.subplot(132)
plt.plot(range(1, n_trees_discrete + 1), discrete_estimator_errors,

"b", label='SAMME', alpha=.5)
plt.plot(range(1, n_trees_real + 1), real_estimator_errors,
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"r", label='SAMME.R', alpha=.5)
plt.legend()
plt.ylabel('Error')
plt.xlabel('Number of Trees')
plt.ylim((.2,

max(real_estimator_errors.max(),
discrete_estimator_errors.max()) * 1.2))

plt.xlim((-20, len(bdt_discrete) + 20))

plt.subplot(133)
plt.plot(range(1, n_trees_discrete + 1), discrete_estimator_weights,

"b", label='SAMME')
plt.legend()
plt.ylabel('Weight')
plt.xlabel('Number of Trees')
plt.ylim((0, discrete_estimator_weights.max() * 1.2))
plt.xlim((-20, n_trees_discrete + 20))

# prevent overlapping y-axis labels
plt.subplots_adjust(wspace=0.25)
plt.show()

Total running time of the example: 13.23 seconds ( 0 minutes 13.23 seconds)

4.11.15 Feature transformations with ensembles of trees

Transform your features into a higher dimensional, sparse space. Then train a linear model on these features.

First fit an ensemble of trees (totally random trees, a random forest, or gradient boosted trees) on the training set. Then
each leaf of each tree in the ensemble is assigned a fixed arbitrary feature index in a new feature space. These leaf
indices are then encoded in a one-hot fashion.

Each sample goes through the decisions of each tree of the ensemble and ends up in one leaf per tree. The sample is
encoded by setting feature values for these leaves to 1 and the other feature values to 0.

The resulting transformer has then learned a supervised, sparse, high-dimensional categorical embedding of the data.

•
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•

Python source code: plot_feature_transformation.py

# Author: Tim Head <betatim@gmail.com>
#
# License: BSD 3 clause

import numpy as np
np.random.seed(10)

import matplotlib.pyplot as plt

from sklearn.datasets import make_classification
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import (RandomTreesEmbedding, RandomForestClassifier,

GradientBoostingClassifier)
from sklearn.preprocessing import OneHotEncoder
from sklearn.cross_validation import train_test_split
from sklearn.metrics import roc_curve
from sklearn.pipeline import make_pipeline

n_estimator = 10
X, y = make_classification(n_samples=80000)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5)
# It is important to train the ensemble of trees on a different subset
# of the training data than the linear regression model to avoid
# overfitting, in particular if the total number of leaves is
# similar to the number of training samples
X_train, X_train_lr, y_train, y_train_lr = train_test_split(X_train,

y_train,
test_size=0.5)

# Unsupervised transformation based on totally random trees
rt = RandomTreesEmbedding(max_depth=3, n_estimators=n_estimator,

random_state=0)

rt_lm = LogisticRegression()
pipeline = make_pipeline(rt, rt_lm)
pipeline.fit(X_train, y_train)
y_pred_rt = pipeline.predict_proba(X_test)[:, 1]
fpr_rt_lm, tpr_rt_lm, _ = roc_curve(y_test, y_pred_rt)

# Supervised transformation based on random forests
rf = RandomForestClassifier(max_depth=3, n_estimators=n_estimator)
rf_enc = OneHotEncoder()
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rf_lm = LogisticRegression()
rf.fit(X_train, y_train)
rf_enc.fit(rf.apply(X_train))
rf_lm.fit(rf_enc.transform(rf.apply(X_train_lr)), y_train_lr)

y_pred_rf_lm = rf_lm.predict_proba(rf_enc.transform(rf.apply(X_test)))[:, 1]
fpr_rf_lm, tpr_rf_lm, _ = roc_curve(y_test, y_pred_rf_lm)

grd = GradientBoostingClassifier(n_estimators=n_estimator)
grd_enc = OneHotEncoder()
grd_lm = LogisticRegression()
grd.fit(X_train, y_train)
grd_enc.fit(grd.apply(X_train)[:, :, 0])
grd_lm.fit(grd_enc.transform(grd.apply(X_train_lr)[:, :, 0]), y_train_lr)

y_pred_grd_lm = grd_lm.predict_proba(
grd_enc.transform(grd.apply(X_test)[:, :, 0]))[:, 1]

fpr_grd_lm, tpr_grd_lm, _ = roc_curve(y_test, y_pred_grd_lm)

# The gradient boosted model by itself
y_pred_grd = grd.predict_proba(X_test)[:, 1]
fpr_grd, tpr_grd, _ = roc_curve(y_test, y_pred_grd)

# The random forest model by itself
y_pred_rf = rf.predict_proba(X_test)[:, 1]
fpr_rf, tpr_rf, _ = roc_curve(y_test, y_pred_rf)

plt.figure(1)
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr_rt_lm, tpr_rt_lm, label='RT + LR')
plt.plot(fpr_rf, tpr_rf, label='RF')
plt.plot(fpr_rf_lm, tpr_rf_lm, label='RF + LR')
plt.plot(fpr_grd, tpr_grd, label='GBT')
plt.plot(fpr_grd_lm, tpr_grd_lm, label='GBT + LR')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC curve')
plt.legend(loc='best')
plt.show()

plt.figure(2)
plt.xlim(0, 0.2)
plt.ylim(0.8, 1)
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr_rt_lm, tpr_rt_lm, label='RT + LR')
plt.plot(fpr_rf, tpr_rf, label='RF')
plt.plot(fpr_rf_lm, tpr_rf_lm, label='RF + LR')
plt.plot(fpr_grd, tpr_grd, label='GBT')
plt.plot(fpr_grd_lm, tpr_grd_lm, label='GBT + LR')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC curve (zoomed in at top left)')
plt.legend(loc='best')
plt.show()

Total running time of the example: 2.27 seconds ( 0 minutes 2.27 seconds)
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4.11.16 Gradient Boosting Out-of-Bag estimates

Out-of-bag (OOB) estimates can be a useful heuristic to estimate the “optimal” number of boosting iterations. OOB
estimates are almost identical to cross-validation estimates but they can be computed on-the-fly without the need for
repeated model fitting. OOB estimates are only available for Stochastic Gradient Boosting (i.e. subsample <
1.0), the estimates are derived from the improvement in loss based on the examples not included in the bootstrap
sample (the so-called out-of-bag examples). The OOB estimator is a pessimistic estimator of the true test loss, but
remains a fairly good approximation for a small number of trees.

The figure shows the cumulative sum of the negative OOB improvements as a function of the boosting iteration. As
you can see, it tracks the test loss for the first hundred iterations but then diverges in a pessimistic way. The figure
also shows the performance of 3-fold cross validation which usually gives a better estimate of the test loss but is
computationally more demanding.

Script output:

Accuracy: 0.6800

Python source code: plot_gradient_boosting_oob.py

print(__doc__)

# Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
#
# License: BSD 3 clause
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import numpy as np
import matplotlib.pyplot as plt

from sklearn import ensemble
from sklearn.cross_validation import KFold
from sklearn.cross_validation import train_test_split

# Generate data (adapted from G. Ridgeway's gbm example)
n_samples = 1000
random_state = np.random.RandomState(13)
x1 = random_state.uniform(size=n_samples)
x2 = random_state.uniform(size=n_samples)
x3 = random_state.randint(0, 4, size=n_samples)

p = 1 / (1.0 + np.exp(-(np.sin(3 * x1) - 4 * x2 + x3)))
y = random_state.binomial(1, p, size=n_samples)

X = np.c_[x1, x2, x3]

X = X.astype(np.float32)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5,

random_state=9)

# Fit classifier with out-of-bag estimates
params = {'n_estimators': 1200, 'max_depth': 3, 'subsample': 0.5,

'learning_rate': 0.01, 'min_samples_leaf': 1, 'random_state': 3}
clf = ensemble.GradientBoostingClassifier(**params)

clf.fit(X_train, y_train)
acc = clf.score(X_test, y_test)
print("Accuracy: {:.4f}".format(acc))

n_estimators = params['n_estimators']
x = np.arange(n_estimators) + 1

def heldout_score(clf, X_test, y_test):
"""compute deviance scores on ``X_test`` and ``y_test``. """
score = np.zeros((n_estimators,), dtype=np.float64)
for i, y_pred in enumerate(clf.staged_decision_function(X_test)):

score[i] = clf.loss_(y_test, y_pred)
return score

def cv_estimate(n_folds=3):
cv = KFold(n=X_train.shape[0], n_folds=n_folds)
cv_clf = ensemble.GradientBoostingClassifier(**params)
val_scores = np.zeros((n_estimators,), dtype=np.float64)
for train, test in cv:

cv_clf.fit(X_train[train], y_train[train])
val_scores += heldout_score(cv_clf, X_train[test], y_train[test])

val_scores /= n_folds
return val_scores

# Estimate best n_estimator using cross-validation
cv_score = cv_estimate(3)
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# Compute best n_estimator for test data
test_score = heldout_score(clf, X_test, y_test)

# negative cumulative sum of oob improvements
cumsum = -np.cumsum(clf.oob_improvement_)

# min loss according to OOB
oob_best_iter = x[np.argmin(cumsum)]

# min loss according to test (normalize such that first loss is 0)
test_score -= test_score[0]
test_best_iter = x[np.argmin(test_score)]

# min loss according to cv (normalize such that first loss is 0)
cv_score -= cv_score[0]
cv_best_iter = x[np.argmin(cv_score)]

# color brew for the three curves
oob_color = list(map(lambda x: x / 256.0, (190, 174, 212)))
test_color = list(map(lambda x: x / 256.0, (127, 201, 127)))
cv_color = list(map(lambda x: x / 256.0, (253, 192, 134)))

# plot curves and vertical lines for best iterations
plt.plot(x, cumsum, label='OOB loss', color=oob_color)
plt.plot(x, test_score, label='Test loss', color=test_color)
plt.plot(x, cv_score, label='CV loss', color=cv_color)
plt.axvline(x=oob_best_iter, color=oob_color)
plt.axvline(x=test_best_iter, color=test_color)
plt.axvline(x=cv_best_iter, color=cv_color)

# add three vertical lines to xticks
xticks = plt.xticks()
xticks_pos = np.array(xticks[0].tolist() +

[oob_best_iter, cv_best_iter, test_best_iter])
xticks_label = np.array(list(map(lambda t: int(t), xticks[0])) +

['OOB', 'CV', 'Test'])
ind = np.argsort(xticks_pos)
xticks_pos = xticks_pos[ind]
xticks_label = xticks_label[ind]
plt.xticks(xticks_pos, xticks_label)

plt.legend(loc='upper right')
plt.ylabel('normalized loss')
plt.xlabel('number of iterations')

plt.show()

Total running time of the example: 3.72 seconds ( 0 minutes 3.72 seconds)

4.11.17 Plot the decision surfaces of ensembles of trees on the iris dataset

Plot the decision surfaces of forests of randomized trees trained on pairs of features of the iris dataset.

This plot compares the decision surfaces learned by a decision tree classifier (first column), by a random forest classi-
fier (second column), by an extra- trees classifier (third column) and by an AdaBoost classifier (fourth column).

In the first row, the classifiers are built using the sepal width and the sepal length features only, on the second row
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using the petal length and sepal length only, and on the third row using the petal width and the petal length only.

In descending order of quality, when trained (outside of this example) on all 4 features using 30 estimators and scored
using 10 fold cross validation, we see:

ExtraTreesClassifier() # 0.95 score
RandomForestClassifier() # 0.94 score
AdaBoost(DecisionTree(max_depth=3)) # 0.94 score
DecisionTree(max_depth=None) # 0.94 score

Increasing max_depth for AdaBoost lowers the standard deviation of the scores (but the average score does not im-
prove).

See the console’s output for further details about each model.

In this example you might try to:

1. vary the max_depth for the DecisionTreeClassifier and AdaBoostClassifier,
perhaps try max_depth=3 for the DecisionTreeClassifier or max_depth=None for
AdaBoostClassifier

2. vary n_estimators

It is worth noting that RandomForests and ExtraTrees can be fitted in parallel on many cores as each tree is built
independently of the others. AdaBoost’s samples are built sequentially and so do not use multiple cores.

Script output:
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DecisionTree with features [0, 1] has a score of 0.926666666667
RandomForest with 30 estimators with features [0, 1] has a score of 0.926666666667
ExtraTrees with 30 estimators with features [0, 1] has a score of 0.926666666667
AdaBoost with 30 estimators with features [0, 1] has a score of 0.84
DecisionTree with features [0, 2] has a score of 0.993333333333
RandomForest with 30 estimators with features [0, 2] has a score of 0.993333333333
ExtraTrees with 30 estimators with features [0, 2] has a score of 0.993333333333
AdaBoost with 30 estimators with features [0, 2] has a score of 0.993333333333
DecisionTree with features [2, 3] has a score of 0.993333333333
RandomForest with 30 estimators with features [2, 3] has a score of 0.993333333333
ExtraTrees with 30 estimators with features [2, 3] has a score of 0.993333333333
AdaBoost with 30 estimators with features [2, 3] has a score of 0.993333333333

Python source code: plot_forest_iris.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn import clone
from sklearn.datasets import load_iris
from sklearn.ensemble import (RandomForestClassifier, ExtraTreesClassifier,

AdaBoostClassifier)
from sklearn.externals.six.moves import xrange
from sklearn.tree import DecisionTreeClassifier

# Parameters
n_classes = 3
n_estimators = 30
plot_colors = "ryb"
cmap = plt.cm.RdYlBu
plot_step = 0.02 # fine step width for decision surface contours
plot_step_coarser = 0.5 # step widths for coarse classifier guesses
RANDOM_SEED = 13 # fix the seed on each iteration

# Load data
iris = load_iris()

plot_idx = 1

models = [DecisionTreeClassifier(max_depth=None),
RandomForestClassifier(n_estimators=n_estimators),
ExtraTreesClassifier(n_estimators=n_estimators),
AdaBoostClassifier(DecisionTreeClassifier(max_depth=3),

n_estimators=n_estimators)]

for pair in ([0, 1], [0, 2], [2, 3]):
for model in models:

# We only take the two corresponding features
X = iris.data[:, pair]
y = iris.target

# Shuffle
idx = np.arange(X.shape[0])
np.random.seed(RANDOM_SEED)
np.random.shuffle(idx)
X = X[idx]

746 Chapter 4. Examples



scikit-learn user guide, Release 0.17

y = y[idx]

# Standardize
mean = X.mean(axis=0)
std = X.std(axis=0)
X = (X - mean) / std

# Train
clf = clone(model)
clf = model.fit(X, y)

scores = clf.score(X, y)
# Create a title for each column and the console by using str() and
# slicing away useless parts of the string
model_title = str(type(model)).split(".")[-1][:-2][:-len("Classifier")]
model_details = model_title
if hasattr(model, "estimators_"):

model_details += " with {} estimators".format(len(model.estimators_))
print( model_details + " with features", pair, "has a score of", scores )

plt.subplot(3, 4, plot_idx)
if plot_idx <= len(models):

# Add a title at the top of each column
plt.title(model_title)

# Now plot the decision boundary using a fine mesh as input to a
# filled contour plot
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),

np.arange(y_min, y_max, plot_step))

# Plot either a single DecisionTreeClassifier or alpha blend the
# decision surfaces of the ensemble of classifiers
if isinstance(model, DecisionTreeClassifier):

Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
cs = plt.contourf(xx, yy, Z, cmap=cmap)

else:
# Choose alpha blend level with respect to the number of estimators
# that are in use (noting that AdaBoost can use fewer estimators
# than its maximum if it achieves a good enough fit early on)
estimator_alpha = 1.0 / len(model.estimators_)
for tree in model.estimators_:

Z = tree.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
cs = plt.contourf(xx, yy, Z, alpha=estimator_alpha, cmap=cmap)

# Build a coarser grid to plot a set of ensemble classifications
# to show how these are different to what we see in the decision
# surfaces. These points are regularly space and do not have a black outline
xx_coarser, yy_coarser = np.meshgrid(np.arange(x_min, x_max, plot_step_coarser),

np.arange(y_min, y_max, plot_step_coarser))
Z_points_coarser = model.predict(np.c_[xx_coarser.ravel(), yy_coarser.ravel()]).reshape(xx_coarser.shape)
cs_points = plt.scatter(xx_coarser, yy_coarser, s=15, c=Z_points_coarser, cmap=cmap, edgecolors="none")

# Plot the training points, these are clustered together and have a
# black outline
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for i, c in zip(xrange(n_classes), plot_colors):
idx = np.where(y == i)
plt.scatter(X[idx, 0], X[idx, 1], c=c, label=iris.target_names[i],

cmap=cmap)

plot_idx += 1 # move on to the next plot in sequence

plt.suptitle("Classifiers on feature subsets of the Iris dataset")
plt.axis("tight")

plt.show()

Total running time of the example: 7.07 seconds ( 0 minutes 7.07 seconds)

4.11.18 Single estimator versus bagging: bias-variance decomposition

This example illustrates and compares the bias-variance decomposition of the expected mean squared error of a single
estimator against a bagging ensemble.

In regression, the expected mean squared error of an estimator can be decomposed in terms of bias, variance and
noise. On average over datasets of the regression problem, the bias term measures the average amount by which the
predictions of the estimator differ from the predictions of the best possible estimator for the problem (i.e., the Bayes
model). The variance term measures the variability of the predictions of the estimator when fit over different instances
LS of the problem. Finally, the noise measures the irreducible part of the error which is due the variability in the data.

The upper left figure illustrates the predictions (in dark red) of a single decision tree trained over a random dataset LS
(the blue dots) of a toy 1d regression problem. It also illustrates the predictions (in light red) of other single decision
trees trained over other (and different) randomly drawn instances LS of the problem. Intuitively, the variance term
here corresponds to the width of the beam of predictions (in light red) of the individual estimators. The larger the
variance, the more sensitive are the predictions for x to small changes in the training set. The bias term corresponds to
the difference between the average prediction of the estimator (in cyan) and the best possible model (in dark blue). On
this problem, we can thus observe that the bias is quite low (both the cyan and the blue curves are close to each other)
while the variance is large (the red beam is rather wide).

The lower left figure plots the pointwise decomposition of the expected mean squared error of a single decision tree.
It confirms that the bias term (in blue) is low while the variance is large (in green). It also illustrates the noise part of
the error which, as expected, appears to be constant and around 0.01.

The right figures correspond to the same plots but using instead a bagging ensemble of decision trees. In both figures,
we can observe that the bias term is larger than in the previous case. In the upper right figure, the difference between
the average prediction (in cyan) and the best possible model is larger (e.g., notice the offset around x=2). In the lower
right figure, the bias curve is also slightly higher than in the lower left figure. In terms of variance however, the beam
of predictions is narrower, which suggests that the variance is lower. Indeed, as the lower right figure confirms, the
variance term (in green) is lower than for single decision trees. Overall, the bias- variance decomposition is therefore
no longer the same. The tradeoff is better for bagging: averaging several decision trees fit on bootstrap copies of the
dataset slightly increases the bias term but allows for a larger reduction of the variance, which results in a lower overall
mean squared error (compare the red curves int the lower figures). The script output also confirms this intuition. The
total error of the bagging ensemble is lower than the total error of a single decision tree, and this difference indeed
mainly stems from a reduced variance.

For further details on bias-variance decomposition, see section 7.3 of 4.

4 T. Hastie, R. Tibshirani and J. Friedman, “Elements of Statistical Learning”, Springer, 2009.
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Script output:

Tree: 0.0255 (error) = 0.0003 (bias^2) + 0.0152 (var) + 0.0098 (noise)
Bagging(Tree): 0.0196 (error) = 0.0004 (bias^2) + 0.0092 (var) + 0.0098 (noise)

Python source code: plot_bias_variance.py

print(__doc__)

# Author: Gilles Louppe <g.louppe@gmail.com>
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.ensemble import BaggingRegressor
from sklearn.tree import DecisionTreeRegressor

# Settings
n_repeat = 50 # Number of iterations for computing expectations
n_train = 50 # Size of the training set
n_test = 1000 # Size of the test set
noise = 0.1 # Standard deviation of the noise
np.random.seed(0)
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# Change this for exploring the bias-variance decomposition of other
# estimators. This should work well for estimators with high variance (e.g.,
# decision trees or KNN), but poorly for estimators with low variance (e.g.,
# linear models).
estimators = [("Tree", DecisionTreeRegressor()),

("Bagging(Tree)", BaggingRegressor(DecisionTreeRegressor()))]

n_estimators = len(estimators)

# Generate data
def f(x):

x = x.ravel()

return np.exp(-x ** 2) + 1.5 * np.exp(-(x - 2) ** 2)

def generate(n_samples, noise, n_repeat=1):
X = np.random.rand(n_samples) * 10 - 5
X = np.sort(X)

if n_repeat == 1:
y = f(X) + np.random.normal(0.0, noise, n_samples)

else:
y = np.zeros((n_samples, n_repeat))

for i in range(n_repeat):
y[:, i] = f(X) + np.random.normal(0.0, noise, n_samples)

X = X.reshape((n_samples, 1))

return X, y

X_train = []
y_train = []

for i in range(n_repeat):
X, y = generate(n_samples=n_train, noise=noise)
X_train.append(X)
y_train.append(y)

X_test, y_test = generate(n_samples=n_test, noise=noise, n_repeat=n_repeat)

# Loop over estimators to compare
for n, (name, estimator) in enumerate(estimators):

# Compute predictions
y_predict = np.zeros((n_test, n_repeat))

for i in range(n_repeat):
estimator.fit(X_train[i], y_train[i])
y_predict[:, i] = estimator.predict(X_test)

# Bias^2 + Variance + Noise decomposition of the mean squared error
y_error = np.zeros(n_test)

for i in range(n_repeat):
for j in range(n_repeat):

y_error += (y_test[:, j] - y_predict[:, i]) ** 2

y_error /= (n_repeat * n_repeat)

750 Chapter 4. Examples



scikit-learn user guide, Release 0.17

y_noise = np.var(y_test, axis=1)
y_bias = (f(X_test) - np.mean(y_predict, axis=1)) ** 2
y_var = np.var(y_predict, axis=1)

print("{0}: {1:.4f} (error) = {2:.4f} (bias^2) "
" + {3:.4f} (var) + {4:.4f} (noise)".format(name,

np.mean(y_error),
np.mean(y_bias),
np.mean(y_var),
np.mean(y_noise)))

# Plot figures
plt.subplot(2, n_estimators, n + 1)
plt.plot(X_test, f(X_test), "b", label="$f(x)$")
plt.plot(X_train[0], y_train[0], ".b", label="LS ~ $y = f(x)+noise$")

for i in range(n_repeat):
if i == 0:

plt.plot(X_test, y_predict[:, i], "r", label="$\^y(x)$")
else:

plt.plot(X_test, y_predict[:, i], "r", alpha=0.05)

plt.plot(X_test, np.mean(y_predict, axis=1), "c",
label="$\mathbb{E}_{LS} \^y(x)$")

plt.xlim([-5, 5])
plt.title(name)

if n == 0:
plt.legend(loc="upper left", prop={"size": 11})

plt.subplot(2, n_estimators, n_estimators + n + 1)
plt.plot(X_test, y_error, "r", label="$error(x)$")
plt.plot(X_test, y_bias, "b", label="$bias^2(x)$"),
plt.plot(X_test, y_var, "g", label="$variance(x)$"),
plt.plot(X_test, y_noise, "c", label="$noise(x)$")

plt.xlim([-5, 5])
plt.ylim([0, 0.1])

if n == 0:
plt.legend(loc="upper left", prop={"size": 11})

plt.show()

Total running time of the example: 0.99 seconds ( 0 minutes 0.99 seconds)

4.12 Tutorial exercises

Exercises for the tutorials

4.12.1 Digits Classification Exercise

A tutorial exercise regarding the use of classification techniques on the Digits dataset.
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This exercise is used in the Classification part of the Supervised learning: predicting an output variable from high-
dimensional observations section of the A tutorial on statistical-learning for scientific data processing.

Python source code: digits_classification_exercise.py

print(__doc__)

from sklearn import datasets, neighbors, linear_model

digits = datasets.load_digits()
X_digits = digits.data
y_digits = digits.target

n_samples = len(X_digits)

X_train = X_digits[:.9 * n_samples]
y_train = y_digits[:.9 * n_samples]
X_test = X_digits[.9 * n_samples:]
y_test = y_digits[.9 * n_samples:]

knn = neighbors.KNeighborsClassifier()
logistic = linear_model.LogisticRegression()

print('KNN score: %f' % knn.fit(X_train, y_train).score(X_test, y_test))
print('LogisticRegression score: %f'

% logistic.fit(X_train, y_train).score(X_test, y_test))

4.12.2 Cross-validation on Digits Dataset Exercise

A tutorial exercise using Cross-validation with an SVM on the Digits dataset.

This exercise is used in the Cross-validation generators part of the Model selection: choosing estimators and their
parameters section of the A tutorial on statistical-learning for scientific data processing.

Python source code: plot_cv_digits.py

print(__doc__)
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import numpy as np
from sklearn import cross_validation, datasets, svm

digits = datasets.load_digits()
X = digits.data
y = digits.target

svc = svm.SVC(kernel='linear')
C_s = np.logspace(-10, 0, 10)

scores = list()
scores_std = list()
for C in C_s:

svc.C = C
this_scores = cross_validation.cross_val_score(svc, X, y, n_jobs=1)
scores.append(np.mean(this_scores))
scores_std.append(np.std(this_scores))

# Do the plotting
import matplotlib.pyplot as plt
plt.figure(1, figsize=(4, 3))
plt.clf()
plt.semilogx(C_s, scores)
plt.semilogx(C_s, np.array(scores) + np.array(scores_std), 'b--')
plt.semilogx(C_s, np.array(scores) - np.array(scores_std), 'b--')
locs, labels = plt.yticks()
plt.yticks(locs, list(map(lambda x: "%g" % x, locs)))
plt.ylabel('CV score')
plt.xlabel('Parameter C')
plt.ylim(0, 1.1)
plt.show()

Total running time of the example: 5.06 seconds ( 0 minutes 5.06 seconds)

4.12.3 SVM Exercise

A tutorial exercise for using different SVM kernels.

This exercise is used in the Using kernels part of the Supervised learning: predicting an output variable from high-
dimensional observations section of the A tutorial on statistical-learning for scientific data processing.

•
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•

•

Python source code: plot_iris_exercise.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets, svm

iris = datasets.load_iris()
X = iris.data
y = iris.target

X = X[y != 0, :2]
y = y[y != 0]

n_sample = len(X)

np.random.seed(0)
order = np.random.permutation(n_sample)
X = X[order]
y = y[order].astype(np.float)

X_train = X[:.9 * n_sample]
y_train = y[:.9 * n_sample]
X_test = X[.9 * n_sample:]
y_test = y[.9 * n_sample:]

# fit the model
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for fig_num, kernel in enumerate(('linear', 'rbf', 'poly')):
clf = svm.SVC(kernel=kernel, gamma=10)
clf.fit(X_train, y_train)

plt.figure(fig_num)
plt.clf()
plt.scatter(X[:, 0], X[:, 1], c=y, zorder=10, cmap=plt.cm.Paired)

# Circle out the test data
plt.scatter(X_test[:, 0], X_test[:, 1], s=80, facecolors='none', zorder=10)

plt.axis('tight')
x_min = X[:, 0].min()
x_max = X[:, 0].max()
y_min = X[:, 1].min()
y_max = X[:, 1].max()

XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()])

# Put the result into a color plot
Z = Z.reshape(XX.shape)
plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired)
plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'],

levels=[-.5, 0, .5])

plt.title(kernel)
plt.show()

Total running time of the example: 7.74 seconds ( 0 minutes 7.74 seconds)

4.12.4 Cross-validation on diabetes Dataset Exercise

A tutorial exercise which uses cross-validation with linear models.

This exercise is used in the Cross-validated estimators part of the Model selection: choosing estimators and their
parameters section of the A tutorial on statistical-learning for scientific data processing.
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Script output:

Answer to the bonus question: how much can you trust the selection of alpha?

Alpha parameters maximising the generalization score on different
subsets of the data:
[fold 0] alpha: 0.10405, score: 0.53573
[fold 1] alpha: 0.05968, score: 0.16278
[fold 2] alpha: 0.10405, score: 0.44437

Answer: Not very much since we obtained different alphas for different
subsets of the data and moreover, the scores for these alphas differ
quite substantially.

Python source code: plot_cv_diabetes.py

from __future__ import print_function
print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn import cross_validation, datasets, linear_model

diabetes = datasets.load_diabetes()
X = diabetes.data[:150]
y = diabetes.target[:150]

lasso = linear_model.Lasso()
alphas = np.logspace(-4, -.5, 30)

scores = list()
scores_std = list()

for alpha in alphas:
lasso.alpha = alpha
this_scores = cross_validation.cross_val_score(lasso, X, y, n_jobs=1)
scores.append(np.mean(this_scores))
scores_std.append(np.std(this_scores))

plt.figure(figsize=(4, 3))
plt.semilogx(alphas, scores)
# plot error lines showing +/- std. errors of the scores
plt.semilogx(alphas, np.array(scores) + np.array(scores_std) / np.sqrt(len(X)),

'b--')
plt.semilogx(alphas, np.array(scores) - np.array(scores_std) / np.sqrt(len(X)),

'b--')
plt.ylabel('CV score')
plt.xlabel('alpha')
plt.axhline(np.max(scores), linestyle='--', color='.5')

##############################################################################
# Bonus: how much can you trust the selection of alpha?

# To answer this question we use the LassoCV object that sets its alpha
# parameter automatically from the data by internal cross-validation (i.e. it
# performs cross-validation on the training data it receives).
# We use external cross-validation to see how much the automatically obtained
# alphas differ across different cross-validation folds.
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lasso_cv = linear_model.LassoCV(alphas=alphas)
k_fold = cross_validation.KFold(len(X), 3)

print("Answer to the bonus question:",
"how much can you trust the selection of alpha?")

print()
print("Alpha parameters maximising the generalization score on different")
print("subsets of the data:")
for k, (train, test) in enumerate(k_fold):

lasso_cv.fit(X[train], y[train])
print("[fold {0}] alpha: {1:.5f}, score: {2:.5f}".

format(k, lasso_cv.alpha_, lasso_cv.score(X[test], y[test])))
print()
print("Answer: Not very much since we obtained different alphas for different")
print("subsets of the data and moreover, the scores for these alphas differ")
print("quite substantially.")

plt.show()

Total running time of the example: 0.29 seconds ( 0 minutes 0.29 seconds)

4.13 Feature Selection

Examples concerning the sklearn.feature_selection module.

4.13.1 Pipeline Anova SVM

Simple usage of Pipeline that runs successively a univariate feature selection with anova and then a C-SVM of the
selected features.

Python source code: feature_selection_pipeline.py

print(__doc__)

from sklearn import svm
from sklearn.datasets import samples_generator
from sklearn.feature_selection import SelectKBest, f_regression
from sklearn.pipeline import make_pipeline

# import some data to play with
X, y = samples_generator.make_classification(

n_features=20, n_informative=3, n_redundant=0, n_classes=4,
n_clusters_per_class=2)

# ANOVA SVM-C
# 1) anova filter, take 3 best ranked features
anova_filter = SelectKBest(f_regression, k=3)
# 2) svm
clf = svm.SVC(kernel='linear')

anova_svm = make_pipeline(anova_filter, clf)
anova_svm.fit(X, y)
anova_svm.predict(X)

4.13. Feature Selection 757



scikit-learn user guide, Release 0.17

4.13.2 Recursive feature elimination

A recursive feature elimination example showing the relevance of pixels in a digit classification task.

Note: See also Recursive feature elimination with cross-validation

Python source code: plot_rfe_digits.py

print(__doc__)

from sklearn.svm import SVC
from sklearn.datasets import load_digits
from sklearn.feature_selection import RFE
import matplotlib.pyplot as plt

# Load the digits dataset
digits = load_digits()
X = digits.images.reshape((len(digits.images), -1))
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y = digits.target

# Create the RFE object and rank each pixel
svc = SVC(kernel="linear", C=1)
rfe = RFE(estimator=svc, n_features_to_select=1, step=1)
rfe.fit(X, y)
ranking = rfe.ranking_.reshape(digits.images[0].shape)

# Plot pixel ranking
plt.matshow(ranking)
plt.colorbar()
plt.title("Ranking of pixels with RFE")
plt.show()

Total running time of the example: 4.38 seconds ( 0 minutes 4.38 seconds)

4.13.3 Recursive feature elimination with cross-validation

A recursive feature elimination example with automatic tuning of the number of features selected with cross-validation.

Script output:

Optimal number of features : 3

Python source code: plot_rfe_with_cross_validation.py
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print(__doc__)

import matplotlib.pyplot as plt
from sklearn.svm import SVC
from sklearn.cross_validation import StratifiedKFold
from sklearn.feature_selection import RFECV
from sklearn.datasets import make_classification

# Build a classification task using 3 informative features
X, y = make_classification(n_samples=1000, n_features=25, n_informative=3,

n_redundant=2, n_repeated=0, n_classes=8,
n_clusters_per_class=1, random_state=0)

# Create the RFE object and compute a cross-validated score.
svc = SVC(kernel="linear")
# The "accuracy" scoring is proportional to the number of correct
# classifications
rfecv = RFECV(estimator=svc, step=1, cv=StratifiedKFold(y, 2),

scoring='accuracy')
rfecv.fit(X, y)

print("Optimal number of features : %d" % rfecv.n_features_)

# Plot number of features VS. cross-validation scores
plt.figure()
plt.xlabel("Number of features selected")
plt.ylabel("Cross validation score (nb of correct classifications)")
plt.plot(range(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_)
plt.show()

Total running time of the example: 2.03 seconds ( 0 minutes 2.03 seconds)

4.13.4 Feature selection using SelectFromModel and LassoCV

Use SelectFromModel meta-transformer along with Lasso to select the best couple of features from the Boston dataset.
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Python source code: plot_select_from_model_boston.py

# Author: Manoj Kumar <mks542@nyu.edu>
# License: BSD 3 clause

print(__doc__)

import matplotlib.pyplot as plt
import numpy as np

from sklearn.datasets import load_boston
from sklearn.feature_selection import SelectFromModel
from sklearn.linear_model import LassoCV

# Load the boston dataset.
boston = load_boston()
X, y = boston['data'], boston['target']

# We use the base estimator LassoCV since the L1 norm promotes sparsity of features.
clf = LassoCV()

# Set a minimum threshold of 0.25
sfm = SelectFromModel(clf, threshold=0.25)
sfm.fit(X, y)
n_features = sfm.transform(X).shape[1]
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# Reset the threshold till the number of features equals two.
# Note that the attribute can be set directly instead of repeatedly
# fitting the metatransformer.
while n_features > 2:

sfm.threshold += 0.1
X_transform = sfm.transform(X)
n_features = X_transform.shape[1]

# Plot the selected two features from X.
plt.title(

"Features selected from Boston using SelectFromModel with "
"threshold %0.3f." % sfm.threshold)

feature1 = X_transform[:, 0]
feature2 = X_transform[:, 1]
plt.plot(feature1, feature2, 'r.')
plt.xlabel("Feature number 1")
plt.ylabel("Feature number 2")
plt.ylim([np.min(feature2), np.max(feature2)])
plt.show()

Total running time of the example: 0.06 seconds ( 0 minutes 0.06 seconds)

4.13.5 Test with permutations the significance of a classification score

In order to test if a classification score is significative a technique in repeating the classification procedure after ran-
domizing, permuting, the labels. The p-value is then given by the percentage of runs for which the score obtained is
greater than the classification score obtained in the first place.
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Script output:

Classification score 0.513333333333 (pvalue : 0.00990099009901)

Python source code: plot_permutation_test_for_classification.py

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# License: BSD 3 clause

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.svm import SVC
from sklearn.cross_validation import StratifiedKFold, permutation_test_score
from sklearn import datasets

##############################################################################
# Loading a dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target
n_classes = np.unique(y).size
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# Some noisy data not correlated
random = np.random.RandomState(seed=0)
E = random.normal(size=(len(X), 2200))

# Add noisy data to the informative features for make the task harder
X = np.c_[X, E]

svm = SVC(kernel='linear')
cv = StratifiedKFold(y, 2)

score, permutation_scores, pvalue = permutation_test_score(
svm, X, y, scoring="accuracy", cv=cv, n_permutations=100, n_jobs=1)

print("Classification score %s (pvalue : %s)" % (score, pvalue))

###############################################################################
# View histogram of permutation scores
plt.hist(permutation_scores, 20, label='Permutation scores')
ylim = plt.ylim()
# BUG: vlines(..., linestyle='--') fails on older versions of matplotlib
#plt.vlines(score, ylim[0], ylim[1], linestyle='--',
# color='g', linewidth=3, label='Classification Score'
# ' (pvalue %s)' % pvalue)
#plt.vlines(1.0 / n_classes, ylim[0], ylim[1], linestyle='--',
# color='k', linewidth=3, label='Luck')
plt.plot(2 * [score], ylim, '--g', linewidth=3,

label='Classification Score'
' (pvalue %s)' % pvalue)

plt.plot(2 * [1. / n_classes], ylim, '--k', linewidth=3, label='Luck')

plt.ylim(ylim)
plt.legend()
plt.xlabel('Score')
plt.show()

Total running time of the example: 6.85 seconds ( 0 minutes 6.85 seconds)

4.13.6 Univariate Feature Selection

An example showing univariate feature selection.

Noisy (non informative) features are added to the iris data and univariate feature selection is applied. For each feature,
we plot the p-values for the univariate feature selection and the corresponding weights of an SVM. We can see that
univariate feature selection selects the informative features and that these have larger SVM weights.

In the total set of features, only the 4 first ones are significant. We can see that they have the highest score with
univariate feature selection. The SVM assigns a large weight to one of these features, but also Selects many of the
non-informative features. Applying univariate feature selection before the SVM increases the SVM weight attributed
to the significant features, and will thus improve classification.
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Python source code: plot_feature_selection.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn import datasets, svm
from sklearn.feature_selection import SelectPercentile, f_classif

###############################################################################
# import some data to play with

# The iris dataset
iris = datasets.load_iris()

# Some noisy data not correlated
E = np.random.uniform(0, 0.1, size=(len(iris.data), 20))

# Add the noisy data to the informative features
X = np.hstack((iris.data, E))
y = iris.target

###############################################################################
plt.figure(1)
plt.clf()
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X_indices = np.arange(X.shape[-1])

###############################################################################
# Univariate feature selection with F-test for feature scoring
# We use the default selection function: the 10% most significant features
selector = SelectPercentile(f_classif, percentile=10)
selector.fit(X, y)
scores = -np.log10(selector.pvalues_)
scores /= scores.max()
plt.bar(X_indices - .45, scores, width=.2,

label=r'Univariate score ($-Log(p_{value})$)', color='g')

###############################################################################
# Compare to the weights of an SVM
clf = svm.SVC(kernel='linear')
clf.fit(X, y)

svm_weights = (clf.coef_ ** 2).sum(axis=0)
svm_weights /= svm_weights.max()

plt.bar(X_indices - .25, svm_weights, width=.2, label='SVM weight', color='r')

clf_selected = svm.SVC(kernel='linear')
clf_selected.fit(selector.transform(X), y)

svm_weights_selected = (clf_selected.coef_ ** 2).sum(axis=0)
svm_weights_selected /= svm_weights_selected.max()

plt.bar(X_indices[selector.get_support()] - .05, svm_weights_selected,
width=.2, label='SVM weights after selection', color='b')

plt.title("Comparing feature selection")
plt.xlabel('Feature number')
plt.yticks(())
plt.axis('tight')
plt.legend(loc='upper right')
plt.show()

Total running time of the example: 0.08 seconds ( 0 minutes 0.08 seconds)

4.14 Gaussian Process for Machine Learning

Examples concerning the sklearn.gaussian_process module.

4.14.1 Gaussian Processes regression: goodness-of-fit on the ‘diabetes’ dataset

In this example, we fit a Gaussian Process model onto the diabetes dataset.

We determine the correlation parameters with maximum likelihood estimation (MLE). We use an anisotropic squared
exponential correlation model with a constant regression model. We also use a nugget of 1e-2 to account for the
(strong) noise in the targets.

We compute a cross-validation estimate of the coefficient of determination (R2) without reperforming MLE, using the
set of correlation parameters found on the whole dataset.
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Python source code: gp_diabetes_dataset.py

print(__doc__)

# Author: Vincent Dubourg <vincent.dubourg@gmail.com>
# Licence: BSD 3 clause

from sklearn import datasets
from sklearn.gaussian_process import GaussianProcess
from sklearn.cross_validation import cross_val_score, KFold

# Load the dataset from scikit's data sets
diabetes = datasets.load_diabetes()
X, y = diabetes.data, diabetes.target

# Instanciate a GP model
gp = GaussianProcess(regr='constant', corr='absolute_exponential',

theta0=[1e-4] * 10, thetaL=[1e-12] * 10,
thetaU=[1e-2] * 10, nugget=1e-2, optimizer='Welch')

# Fit the GP model to the data performing maximum likelihood estimation
gp.fit(X, y)

# Deactivate maximum likelihood estimation for the cross-validation loop
gp.theta0 = gp.theta_ # Given correlation parameter = MLE
gp.thetaL, gp.thetaU = None, None # None bounds deactivate MLE

# Perform a cross-validation estimate of the coefficient of determination using
# the cross_validation module using all CPUs available on the machine
K = 20 # folds
R2 = cross_val_score(gp, X, y=y, cv=KFold(y.size, K), n_jobs=1).mean()
print("The %d-Folds estimate of the coefficient of determination is R2 = %s"

% (K, R2))

4.14.2 Gaussian Processes classification example: exploiting the probabilistic out-
put

A two-dimensional regression exercise with a post-processing allowing for probabilistic classification thanks to the
Gaussian property of the prediction.

The figure illustrates the probability that the prediction is negative with respect to the remaining uncertainty in the
prediction. The red and blue lines corresponds to the 95% confidence interval on the prediction of the zero level set.
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Python source code: plot_gp_probabilistic_classification_after_regression.py

print(__doc__)

# Author: Vincent Dubourg <vincent.dubourg@gmail.com>
# Licence: BSD 3 clause

import numpy as np
from scipy import stats
from sklearn.gaussian_process import GaussianProcess
from matplotlib import pyplot as pl
from matplotlib import cm

# Standard normal distribution functions
phi = stats.distributions.norm().pdf
PHI = stats.distributions.norm().cdf
PHIinv = stats.distributions.norm().ppf

# A few constants
lim = 8

def g(x):
"""The function to predict (classification will then consist in predicting
whether g(x) <= 0 or not)"""
return 5. - x[:, 1] - .5 * x[:, 0] ** 2.
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# Design of experiments
X = np.array([[-4.61611719, -6.00099547],

[4.10469096, 5.32782448],
[0.00000000, -0.50000000],
[-6.17289014, -4.6984743],
[1.3109306, -6.93271427],
[-5.03823144, 3.10584743],
[-2.87600388, 6.74310541],
[5.21301203, 4.26386883]])

# Observations
y = g(X)

# Instanciate and fit Gaussian Process Model
gp = GaussianProcess(theta0=5e-1)

# Don't perform MLE or you'll get a perfect prediction for this simple example!
gp.fit(X, y)

# Evaluate real function, the prediction and its MSE on a grid
res = 50
x1, x2 = np.meshgrid(np.linspace(- lim, lim, res),

np.linspace(- lim, lim, res))
xx = np.vstack([x1.reshape(x1.size), x2.reshape(x2.size)]).T

y_true = g(xx)
y_pred, MSE = gp.predict(xx, eval_MSE=True)
sigma = np.sqrt(MSE)
y_true = y_true.reshape((res, res))
y_pred = y_pred.reshape((res, res))
sigma = sigma.reshape((res, res))
k = PHIinv(.975)

# Plot the probabilistic classification iso-values using the Gaussian property
# of the prediction
fig = pl.figure(1)
ax = fig.add_subplot(111)
ax.axes.set_aspect('equal')
pl.xticks([])
pl.yticks([])
ax.set_xticklabels([])
ax.set_yticklabels([])
pl.xlabel('$x_1$')
pl.ylabel('$x_2$')

cax = pl.imshow(np.flipud(PHI(- y_pred / sigma)), cmap=cm.gray_r, alpha=0.8,
extent=(- lim, lim, - lim, lim))

norm = pl.matplotlib.colors.Normalize(vmin=0., vmax=0.9)
cb = pl.colorbar(cax, ticks=[0., 0.2, 0.4, 0.6, 0.8, 1.], norm=norm)
cb.set_label('${\\rm \mathbb{P}}\left[\widehat{G}(\mathbf{x}) \leq 0\\right]$')

pl.plot(X[y <= 0, 0], X[y <= 0, 1], 'r.', markersize=12)

pl.plot(X[y > 0, 0], X[y > 0, 1], 'b.', markersize=12)

cs = pl.contour(x1, x2, y_true, [0.], colors='k', linestyles='dashdot')

cs = pl.contour(x1, x2, PHI(- y_pred / sigma), [0.025], colors='b',
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linestyles='solid')
pl.clabel(cs, fontsize=11)

cs = pl.contour(x1, x2, PHI(- y_pred / sigma), [0.5], colors='k',
linestyles='dashed')

pl.clabel(cs, fontsize=11)

cs = pl.contour(x1, x2, PHI(- y_pred / sigma), [0.975], colors='r',
linestyles='solid')

pl.clabel(cs, fontsize=11)

pl.show()

Total running time of the example: 0.16 seconds ( 0 minutes 0.16 seconds)

4.14.3 Gaussian Processes regression: basic introductory example

A simple one-dimensional regression exercise computed in two different ways:

1. A noise-free case with a cubic correlation model

2. A noisy case with a squared Euclidean correlation model

In both cases, the model parameters are estimated using the maximum likelihood principle.

The figures illustrate the interpolating property of the Gaussian Process model as well as its probabilistic nature in the
form of a pointwise 95% confidence interval.

Note that the parameter nugget is applied as a Tikhonov regularization of the assumed covariance between the
training points. In the special case of the squared euclidean correlation model, nugget is mathematically equivalent to
a normalized variance: That is

nugget𝑖 =

[︂
𝜎𝑖
𝑦𝑖

]︂2

•
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•

Python source code: plot_gp_regression.py

print(__doc__)

# Author: Vincent Dubourg <vincent.dubourg@gmail.com>
# Jake Vanderplas <vanderplas@astro.washington.edu>
# Licence: BSD 3 clause

import numpy as np
from sklearn.gaussian_process import GaussianProcess
from matplotlib import pyplot as pl

np.random.seed(1)

def f(x):
"""The function to predict."""
return x * np.sin(x)

#----------------------------------------------------------------------
# First the noiseless case
X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T

# Observations
y = f(X).ravel()

# Mesh the input space for evaluations of the real function, the prediction and
# its MSE
x = np.atleast_2d(np.linspace(0, 10, 1000)).T

# Instanciate a Gaussian Process model
gp = GaussianProcess(corr='cubic', theta0=1e-2, thetaL=1e-4, thetaU=1e-1,

random_start=100)

# Fit to data using Maximum Likelihood Estimation of the parameters
gp.fit(X, y)

# Make the prediction on the meshed x-axis (ask for MSE as well)
y_pred, MSE = gp.predict(x, eval_MSE=True)
sigma = np.sqrt(MSE)

# Plot the function, the prediction and the 95% confidence interval based on
# the MSE
fig = pl.figure()
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pl.plot(x, f(x), 'r:', label=u'$f(x) = x\,\sin(x)$')
pl.plot(X, y, 'r.', markersize=10, label=u'Observations')
pl.plot(x, y_pred, 'b-', label=u'Prediction')
pl.fill(np.concatenate([x, x[::-1]]),

np.concatenate([y_pred - 1.9600 * sigma,
(y_pred + 1.9600 * sigma)[::-1]]),

alpha=.5, fc='b', ec='None', label='95% confidence interval')
pl.xlabel('$x$')
pl.ylabel('$f(x)$')
pl.ylim(-10, 20)
pl.legend(loc='upper left')

#----------------------------------------------------------------------
# now the noisy case
X = np.linspace(0.1, 9.9, 20)
X = np.atleast_2d(X).T

# Observations and noise
y = f(X).ravel()
dy = 0.5 + 1.0 * np.random.random(y.shape)
noise = np.random.normal(0, dy)
y += noise

# Mesh the input space for evaluations of the real function, the prediction and
# its MSE
x = np.atleast_2d(np.linspace(0, 10, 1000)).T

# Instanciate a Gaussian Process model
gp = GaussianProcess(corr='squared_exponential', theta0=1e-1,

thetaL=1e-3, thetaU=1,
nugget=(dy / y) ** 2,
random_start=100)

# Fit to data using Maximum Likelihood Estimation of the parameters
gp.fit(X, y)

# Make the prediction on the meshed x-axis (ask for MSE as well)
y_pred, MSE = gp.predict(x, eval_MSE=True)
sigma = np.sqrt(MSE)

# Plot the function, the prediction and the 95% confidence interval based on
# the MSE
fig = pl.figure()
pl.plot(x, f(x), 'r:', label=u'$f(x) = x\,\sin(x)$')
pl.errorbar(X.ravel(), y, dy, fmt='r.', markersize=10, label=u'Observations')
pl.plot(x, y_pred, 'b-', label=u'Prediction')
pl.fill(np.concatenate([x, x[::-1]]),

np.concatenate([y_pred - 1.9600 * sigma,
(y_pred + 1.9600 * sigma)[::-1]]),

alpha=.5, fc='b', ec='None', label='95% confidence interval')
pl.xlabel('$x$')
pl.ylabel('$f(x)$')
pl.ylim(-10, 20)
pl.legend(loc='upper left')

pl.show()

Total running time of the example: 1.05 seconds ( 0 minutes 1.05 seconds)

772 Chapter 4. Examples



scikit-learn user guide, Release 0.17

4.15 Generalized Linear Models

Examples concerning the sklearn.linear_model module.

4.15.1 Lasso path using LARS

Computes Lasso Path along the regularization parameter using the LARS algorithm on the diabetes dataset. Each
color represents a different feature of the coefficient vector, and this is displayed as a function of the regularization
parameter.

Script output:

Computing regularization path using the LARS ...
.

Python source code: plot_lasso_lars.py

print(__doc__)

# Author: Fabian Pedregosa <fabian.pedregosa@inria.fr>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# License: BSD 3 clause

import numpy as np
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import matplotlib.pyplot as plt

from sklearn import linear_model
from sklearn import datasets

diabetes = datasets.load_diabetes()
X = diabetes.data
y = diabetes.target

print("Computing regularization path using the LARS ...")
alphas, _, coefs = linear_model.lars_path(X, y, method='lasso', verbose=True)

xx = np.sum(np.abs(coefs.T), axis=1)
xx /= xx[-1]

plt.plot(xx, coefs.T)
ymin, ymax = plt.ylim()
plt.vlines(xx, ymin, ymax, linestyle='dashed')
plt.xlabel('|coef| / max|coef|')
plt.ylabel('Coefficients')
plt.title('LASSO Path')
plt.axis('tight')
plt.show()

Total running time of the example: 0.07 seconds ( 0 minutes 0.07 seconds)

4.15.2 SGD: convex loss functions

A plot that compares the various convex loss functions supported by sklearn.linear_model.SGDClassifier
.
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Python source code: plot_sgd_loss_functions.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

def modified_huber_loss(y_true, y_pred):
z = y_pred * y_true
loss = -4 * z
loss[z >= -1] = (1 - z[z >= -1]) ** 2
loss[z >= 1.] = 0
return loss

xmin, xmax = -4, 4
xx = np.linspace(xmin, xmax, 100)
plt.plot([xmin, 0, 0, xmax], [1, 1, 0, 0], 'k-',

label="Zero-one loss")
plt.plot(xx, np.where(xx < 1, 1 - xx, 0), 'g-',

label="Hinge loss")
plt.plot(xx, -np.minimum(xx, 0), 'm-',

label="Perceptron loss")
plt.plot(xx, np.log2(1 + np.exp(-xx)), 'r-',

label="Log loss")
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plt.plot(xx, np.where(xx < 1, 1 - xx, 0) ** 2, 'b-',
label="Squared hinge loss")

plt.plot(xx, modified_huber_loss(xx, 1), 'y--',
label="Modified Huber loss")

plt.ylim((0, 8))
plt.legend(loc="upper right")
plt.xlabel(r"Decision function $f(x)$")
plt.ylabel("$L(y, f(x))$")
plt.show()

Total running time of the example: 0.05 seconds ( 0 minutes 0.05 seconds)

4.15.3 SGD: Maximum margin separating hyperplane

Plot the maximum margin separating hyperplane within a two-class separable dataset using a linear Support Vector
Machines classifier trained using SGD.

Python source code: plot_sgd_separating_hyperplane.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import SGDClassifier
from sklearn.datasets.samples_generator import make_blobs
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# we create 50 separable points
X, Y = make_blobs(n_samples=50, centers=2, random_state=0, cluster_std=0.60)

# fit the model
clf = SGDClassifier(loss="hinge", alpha=0.01, n_iter=200, fit_intercept=True)
clf.fit(X, Y)

# plot the line, the points, and the nearest vectors to the plane
xx = np.linspace(-1, 5, 10)
yy = np.linspace(-1, 5, 10)

X1, X2 = np.meshgrid(xx, yy)
Z = np.empty(X1.shape)
for (i, j), val in np.ndenumerate(X1):

x1 = val
x2 = X2[i, j]
p = clf.decision_function([[x1, x2]])
Z[i, j] = p[0]

levels = [-1.0, 0.0, 1.0]
linestyles = ['dashed', 'solid', 'dashed']
colors = 'k'
plt.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles)
plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired)

plt.axis('tight')
plt.show()

Total running time of the example: 0.05 seconds ( 0 minutes 0.05 seconds)

4.15.4 SGD: Weighted samples

Plot decision function of a weighted dataset, where the size of points is proportional to its weight.
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Python source code: plot_sgd_weighted_samples.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model

# we create 20 points
np.random.seed(0)
X = np.r_[np.random.randn(10, 2) + [1, 1], np.random.randn(10, 2)]
y = [1] * 10 + [-1] * 10
sample_weight = 100 * np.abs(np.random.randn(20))
# and assign a bigger weight to the last 10 samples
sample_weight[:10] *= 10

# plot the weighted data points
xx, yy = np.meshgrid(np.linspace(-4, 5, 500), np.linspace(-4, 5, 500))
plt.figure()
plt.scatter(X[:, 0], X[:, 1], c=y, s=sample_weight, alpha=0.9,

cmap=plt.cm.bone)

## fit the unweighted model
clf = linear_model.SGDClassifier(alpha=0.01, n_iter=100)
clf.fit(X, y)
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
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Z = Z.reshape(xx.shape)
no_weights = plt.contour(xx, yy, Z, levels=[0], linestyles=['solid'])

## fit the weighted model
clf = linear_model.SGDClassifier(alpha=0.01, n_iter=100)
clf.fit(X, y, sample_weight=sample_weight)
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
samples_weights = plt.contour(xx, yy, Z, levels=[0], linestyles=['dashed'])

plt.legend([no_weights.collections[0], samples_weights.collections[0]],
["no weights", "with weights"], loc="lower left")

plt.xticks(())
plt.yticks(())
plt.show()

Total running time of the example: 0.07 seconds ( 0 minutes 0.07 seconds)

4.15.5 Plot Ridge coefficients as a function of the regularization

Shows the effect of collinearity in the coefficients of an estimator.

Ridge Regression is the estimator used in this example. Each color represents a different feature of the coefficient
vector, and this is displayed as a function of the regularization parameter.

At the end of the path, as alpha tends toward zero and the solution tends towards the ordinary least squares, coefficients
exhibit big oscillations.
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Python source code: plot_ridge_path.py

# Author: Fabian Pedregosa -- <fabian.pedregosa@inria.fr>
# License: BSD 3 clause

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model

# X is the 10x10 Hilbert matrix
X = 1. / (np.arange(1, 11) + np.arange(0, 10)[:, np.newaxis])
y = np.ones(10)

###############################################################################
# Compute paths

n_alphas = 200
alphas = np.logspace(-10, -2, n_alphas)
clf = linear_model.Ridge(fit_intercept=False)

coefs = []
for a in alphas:

clf.set_params(alpha=a)
clf.fit(X, y)
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coefs.append(clf.coef_)

###############################################################################
# Display results

ax = plt.gca()
ax.set_color_cycle(['b', 'r', 'g', 'c', 'k', 'y', 'm'])

ax.plot(alphas, coefs)
ax.set_xscale('log')
ax.set_xlim(ax.get_xlim()[::-1]) # reverse axis
plt.xlabel('alpha')
plt.ylabel('weights')
plt.title('Ridge coefficients as a function of the regularization')
plt.axis('tight')
plt.show()

Total running time of the example: 0.13 seconds ( 0 minutes 0.13 seconds)

4.15.6 Robust linear model estimation using RANSAC

In this example we see how to robustly fit a linear model to faulty data using the RANSAC algorithm.

Script output:
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Estimated coefficients (true, normal, RANSAC):
82.1903908407869 [ 54.17236387] [ 82.08533159]

Python source code: plot_ransac.py

import numpy as np
from matplotlib import pyplot as plt

from sklearn import linear_model, datasets

n_samples = 1000
n_outliers = 50

X, y, coef = datasets.make_regression(n_samples=n_samples, n_features=1,
n_informative=1, noise=10,
coef=True, random_state=0)

# Add outlier data
np.random.seed(0)
X[:n_outliers] = 3 + 0.5 * np.random.normal(size=(n_outliers, 1))
y[:n_outliers] = -3 + 10 * np.random.normal(size=n_outliers)

# Fit line using all data
model = linear_model.LinearRegression()
model.fit(X, y)

# Robustly fit linear model with RANSAC algorithm
model_ransac = linear_model.RANSACRegressor(linear_model.LinearRegression())
model_ransac.fit(X, y)
inlier_mask = model_ransac.inlier_mask_
outlier_mask = np.logical_not(inlier_mask)

# Predict data of estimated models
line_X = np.arange(-5, 5)
line_y = model.predict(line_X[:, np.newaxis])
line_y_ransac = model_ransac.predict(line_X[:, np.newaxis])

# Compare estimated coefficients
print("Estimated coefficients (true, normal, RANSAC):")
print(coef, model.coef_, model_ransac.estimator_.coef_)

plt.plot(X[inlier_mask], y[inlier_mask], '.g', label='Inliers')
plt.plot(X[outlier_mask], y[outlier_mask], '.r', label='Outliers')
plt.plot(line_X, line_y, '-k', label='Linear regressor')
plt.plot(line_X, line_y_ransac, '-b', label='RANSAC regressor')
plt.legend(loc='lower right')
plt.show()

Total running time of the example: 0.07 seconds ( 0 minutes 0.07 seconds)

4.15.7 Polynomial interpolation

This example demonstrates how to approximate a function with a polynomial of degree n_degree by using ridge
regression. Concretely, from n_samples 1d points, it suffices to build the Vandermonde matrix, which is n_samples x
n_degree+1 and has the following form:
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[[1, x_1, x_1 ** 2, x_1 ** 3, ...], [1, x_2, x_2 ** 2, x_2 ** 3, ...], ...]

Intuitively, this matrix can be interpreted as a matrix of pseudo features (the points raised to some power). The matrix
is akin to (but different from) the matrix induced by a polynomial kernel.

This example shows that you can do non-linear regression with a linear model, using a pipeline to add non-linear
features. Kernel methods extend this idea and can induce very high (even infinite) dimensional feature spaces.

Python source code: plot_polynomial_interpolation.py

print(__doc__)

# Author: Mathieu Blondel
# Jake Vanderplas
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.linear_model import Ridge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline

def f(x):
""" function to approximate by polynomial interpolation"""
return x * np.sin(x)
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# generate points used to plot
x_plot = np.linspace(0, 10, 100)

# generate points and keep a subset of them
x = np.linspace(0, 10, 100)
rng = np.random.RandomState(0)
rng.shuffle(x)
x = np.sort(x[:20])
y = f(x)

# create matrix versions of these arrays
X = x[:, np.newaxis]
X_plot = x_plot[:, np.newaxis]

plt.plot(x_plot, f(x_plot), label="ground truth")
plt.scatter(x, y, label="training points")

for degree in [3, 4, 5]:
model = make_pipeline(PolynomialFeatures(degree), Ridge())
model.fit(X, y)
y_plot = model.predict(X_plot)
plt.plot(x_plot, y_plot, label="degree %d" % degree)

plt.legend(loc='lower left')

plt.show()

Total running time of the example: 0.05 seconds ( 0 minutes 0.05 seconds)

4.15.8 Logistic Regression 3-class Classifier

Show below is a logistic-regression classifiers decision boundaries on the iris dataset. The datapoints are colored
according to their labels.

Python source code: plot_iris_logistic.py
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print(__doc__)

# Code source: Gaël Varoquaux
# Modified for documentation by Jaques Grobler
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model, datasets

# import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features.
Y = iris.target

h = .02 # step size in the mesh

logreg = linear_model.LogisticRegression(C=1e5)

# we create an instance of Neighbours Classifier and fit the data.
logreg.fit(X, Y)

# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure(1, figsize=(4, 3))
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)

# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')

plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.xticks(())
plt.yticks(())

plt.show()

Total running time of the example: 0.05 seconds ( 0 minutes 0.05 seconds)

4.15.9 Path with L1- Logistic Regression

Computes path on IRIS dataset.
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Script output:

Computing regularization path ...
This took 0:00:00.039174

Python source code: plot_logistic_path.py

print(__doc__)

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# License: BSD 3 clause

from datetime import datetime
import numpy as np
import matplotlib.pyplot as plt

from sklearn import linear_model
from sklearn import datasets
from sklearn.svm import l1_min_c

iris = datasets.load_iris()
X = iris.data
y = iris.target

X = X[y != 2]
y = y[y != 2]
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X -= np.mean(X, 0)

###############################################################################
# Demo path functions

cs = l1_min_c(X, y, loss='log') * np.logspace(0, 3)

print("Computing regularization path ...")
start = datetime.now()
clf = linear_model.LogisticRegression(C=1.0, penalty='l1', tol=1e-6)
coefs_ = []
for c in cs:

clf.set_params(C=c)
clf.fit(X, y)
coefs_.append(clf.coef_.ravel().copy())

print("This took ", datetime.now() - start)

coefs_ = np.array(coefs_)
plt.plot(np.log10(cs), coefs_)
ymin, ymax = plt.ylim()
plt.xlabel('log(C)')
plt.ylabel('Coefficients')
plt.title('Logistic Regression Path')
plt.axis('tight')
plt.show()

Total running time of the example: 0.09 seconds ( 0 minutes 0.09 seconds)

4.15.10 Linear Regression Example

This example uses the only the first feature of the diabetes dataset, in order to illustrate a two-dimensional plot of
this regression technique. The straight line can be seen in the plot, showing how linear regression attempts to draw a
straight line that will best minimize the residual sum of squares between the observed responses in the dataset, and the
responses predicted by the linear approximation.

The coefficients, the residual sum of squares and the variance score are also calculated.
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Script output:

Coefficients:
[ 938.23786125]

Residual sum of squares: 2548.07
Variance score: 0.47

Python source code: plot_ols.py

print(__doc__)

# Code source: Jaques Grobler
# License: BSD 3 clause

import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model

# Load the diabetes dataset
diabetes = datasets.load_diabetes()

# Use only one feature
diabetes_X = diabetes.data[:, np.newaxis, 2]
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# Split the data into training/testing sets
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]

# Split the targets into training/testing sets
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]

# Create linear regression object
regr = linear_model.LinearRegression()

# Train the model using the training sets
regr.fit(diabetes_X_train, diabetes_y_train)

# The coefficients
print('Coefficients: \n', regr.coef_)
# The mean square error
print("Residual sum of squares: %.2f"

% np.mean((regr.predict(diabetes_X_test) - diabetes_y_test) ** 2))
# Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % regr.score(diabetes_X_test, diabetes_y_test))

# Plot outputs
plt.scatter(diabetes_X_test, diabetes_y_test, color='black')
plt.plot(diabetes_X_test, regr.predict(diabetes_X_test), color='blue',

linewidth=3)

plt.xticks(())
plt.yticks(())

plt.show()

Total running time of the example: 0.06 seconds ( 0 minutes 0.06 seconds)

4.15.11 Ordinary Least Squares and Ridge Regression Variance

Due to the few points in each dimension and the straight line that linear regression uses to follow these points as well
as it can, noise on the observations will cause great variance as shown in the first plot. Every line’s slope can vary
quite a bit for each prediction due to the noise induced in the observations.

Ridge regression is basically minimizing a penalised version of the least-squared function. The penalising shrinks the
value of the regression coefficients. Despite the few data points in each dimension, the slope of the prediction is much
more stable and the variance in the line itself is greatly reduced, in comparison to that of the standard linear regression

•
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•

Python source code: plot_ols_ridge_variance.py

print(__doc__)

# Code source: Gaël Varoquaux
# Modified for documentation by Jaques Grobler
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn import linear_model

X_train = np.c_[.5, 1].T
y_train = [.5, 1]
X_test = np.c_[0, 2].T

np.random.seed(0)

classifiers = dict(ols=linear_model.LinearRegression(),
ridge=linear_model.Ridge(alpha=.1))

fignum = 1
for name, clf in classifiers.items():

fig = plt.figure(fignum, figsize=(4, 3))
plt.clf()
plt.title(name)
ax = plt.axes([.12, .12, .8, .8])

for _ in range(6):
this_X = .1 * np.random.normal(size=(2, 1)) + X_train
clf.fit(this_X, y_train)

ax.plot(X_test, clf.predict(X_test), color='.5')
ax.scatter(this_X, y_train, s=3, c='.5', marker='o', zorder=10)

clf.fit(X_train, y_train)
ax.plot(X_test, clf.predict(X_test), linewidth=2, color='blue')
ax.scatter(X_train, y_train, s=30, c='r', marker='+', zorder=10)

ax.set_xticks(())
ax.set_yticks(())
ax.set_ylim((0, 1.6))
ax.set_xlabel('X')
ax.set_ylabel('y')
ax.set_xlim(0, 2)
fignum += 1
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plt.show()

Total running time of the example: 0.34 seconds ( 0 minutes 0.34 seconds)

4.15.12 Comparing various online solvers

An example showing how different online solvers perform on the hand-written digits dataset.

Script output:

training SGD
training ASGD
training Perceptron
training Passive-Aggressive I
training Passive-Aggressive II
training SAG

Python source code: plot_sgd_comparison.py

# Author: Rob Zinkov <rob at zinkov dot com>
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
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from sklearn import datasets

from sklearn.cross_validation import train_test_split
from sklearn.linear_model import SGDClassifier, Perceptron
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.linear_model import LogisticRegression

heldout = [0.95, 0.90, 0.75, 0.50, 0.01]
rounds = 20
digits = datasets.load_digits()
X, y = digits.data, digits.target

classifiers = [
("SGD", SGDClassifier()),
("ASGD", SGDClassifier(average=True)),
("Perceptron", Perceptron()),
("Passive-Aggressive I", PassiveAggressiveClassifier(loss='hinge',

C=1.0)),
("Passive-Aggressive II", PassiveAggressiveClassifier(loss='squared_hinge',

C=1.0)),
("SAG", LogisticRegression(solver='sag', tol=1e-1, C=1.e4 / X.shape[0]))

]

xx = 1. - np.array(heldout)

for name, clf in classifiers:
print("training %s" % name)
rng = np.random.RandomState(42)
yy = []
for i in heldout:

yy_ = []
for r in range(rounds):

X_train, X_test, y_train, y_test = \
train_test_split(X, y, test_size=i, random_state=rng)

clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
yy_.append(1 - np.mean(y_pred == y_test))

yy.append(np.mean(yy_))
plt.plot(xx, yy, label=name)

plt.legend(loc="upper right")
plt.xlabel("Proportion train")
plt.ylabel("Test Error Rate")
plt.show()

Total running time of the example: 6.41 seconds ( 0 minutes 6.41 seconds)

4.15.13 Logit function

Show in the plot is how the logistic regression would, in this synthetic dataset, classify values as either 0 or 1, i.e. class
one or two, using the logit-curve.
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Python source code: plot_logistic.py

print(__doc__)

# Code source: Gael Varoquaux
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn import linear_model

# this is our test set, it's just a straight line with some
# Gaussian noise
xmin, xmax = -5, 5
n_samples = 100
np.random.seed(0)
X = np.random.normal(size=n_samples)
y = (X > 0).astype(np.float)
X[X > 0] *= 4
X += .3 * np.random.normal(size=n_samples)

X = X[:, np.newaxis]
# run the classifier
clf = linear_model.LogisticRegression(C=1e5)
clf.fit(X, y)

# and plot the result
plt.figure(1, figsize=(4, 3))
plt.clf()
plt.scatter(X.ravel(), y, color='black', zorder=20)
X_test = np.linspace(-5, 10, 300)

def model(x):
return 1 / (1 + np.exp(-x))

loss = model(X_test * clf.coef_ + clf.intercept_).ravel()
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plt.plot(X_test, loss, color='blue', linewidth=3)

ols = linear_model.LinearRegression()
ols.fit(X, y)
plt.plot(X_test, ols.coef_ * X_test + ols.intercept_, linewidth=1)
plt.axhline(.5, color='.5')

plt.ylabel('y')
plt.xlabel('X')
plt.xticks(())
plt.yticks(())
plt.ylim(-.25, 1.25)
plt.xlim(-4, 10)

plt.show()

Total running time of the example: 0.04 seconds ( 0 minutes 0.04 seconds)

4.15.14 Joint feature selection with multi-task Lasso

The multi-task lasso allows to fit multiple regression problems jointly enforcing the selected features to be the same
across tasks. This example simulates sequential measurements, each task is a time instant, and the relevant features
vary in amplitude over time while being the same. The multi-task lasso imposes that features that are selected at one
time point are select for all time point. This makes feature selection by the Lasso more stable.

•

•

Python source code: plot_multi_task_lasso_support.py

print(__doc__)

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
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# License: BSD 3 clause

import matplotlib.pyplot as plt
import numpy as np

from sklearn.linear_model import MultiTaskLasso, Lasso

rng = np.random.RandomState(42)

# Generate some 2D coefficients with sine waves with random frequency and phase
n_samples, n_features, n_tasks = 100, 30, 40
n_relevant_features = 5
coef = np.zeros((n_tasks, n_features))
times = np.linspace(0, 2 * np.pi, n_tasks)
for k in range(n_relevant_features):

coef[:, k] = np.sin((1. + rng.randn(1)) * times + 3 * rng.randn(1))

X = rng.randn(n_samples, n_features)
Y = np.dot(X, coef.T) + rng.randn(n_samples, n_tasks)

coef_lasso_ = np.array([Lasso(alpha=0.5).fit(X, y).coef_ for y in Y.T])
coef_multi_task_lasso_ = MultiTaskLasso(alpha=1.).fit(X, Y).coef_

###############################################################################
# Plot support and time series
fig = plt.figure(figsize=(8, 5))
plt.subplot(1, 2, 1)
plt.spy(coef_lasso_)
plt.xlabel('Feature')
plt.ylabel('Time (or Task)')
plt.text(10, 5, 'Lasso')
plt.subplot(1, 2, 2)
plt.spy(coef_multi_task_lasso_)
plt.xlabel('Feature')
plt.ylabel('Time (or Task)')
plt.text(10, 5, 'MultiTaskLasso')
fig.suptitle('Coefficient non-zero location')

feature_to_plot = 0
plt.figure()
plt.plot(coef[:, feature_to_plot], 'k', label='Ground truth')
plt.plot(coef_lasso_[:, feature_to_plot], 'g', label='Lasso')
plt.plot(coef_multi_task_lasso_[:, feature_to_plot],

'r', label='MultiTaskLasso')
plt.legend(loc='upper center')
plt.axis('tight')
plt.ylim([-1.1, 1.1])
plt.show()

Total running time of the example: 0.18 seconds ( 0 minutes 0.18 seconds)

4.15.15 SGD: Penalties

Plot the contours of the three penalties.

All of the above are supported by sklearn.linear_model.stochastic_gradient.
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Python source code: plot_sgd_penalties.py

from __future__ import division
print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

def l1(xs):
return np.array([np.sqrt((1 - np.sqrt(x ** 2.0)) ** 2.0) for x in xs])

def l2(xs):
return np.array([np.sqrt(1.0 - x ** 2.0) for x in xs])

def el(xs, z):
return np.array([(2 - 2 * x - 2 * z + 4 * x * z -

(4 * z ** 2
- 8 * x * z ** 2
+ 8 * x ** 2 * z ** 2
- 16 * x ** 2 * z ** 3
+ 8 * x * z ** 3 + 4 * x ** 2 * z ** 4) ** (1. / 2)

- 2 * x * z ** 2) / (2 - 4 * z) for x in xs])
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def cross(ext):
plt.plot([-ext, ext], [0, 0], "k-")
plt.plot([0, 0], [-ext, ext], "k-")

xs = np.linspace(0, 1, 100)

alpha = 0.501 # 0.5 division throuh zero

cross(1.2)

plt.plot(xs, l1(xs), "r-", label="L1")
plt.plot(xs, -1.0 * l1(xs), "r-")
plt.plot(-1 * xs, l1(xs), "r-")
plt.plot(-1 * xs, -1.0 * l1(xs), "r-")

plt.plot(xs, l2(xs), "b-", label="L2")
plt.plot(xs, -1.0 * l2(xs), "b-")
plt.plot(-1 * xs, l2(xs), "b-")
plt.plot(-1 * xs, -1.0 * l2(xs), "b-")

plt.plot(xs, el(xs, alpha), "y-", label="Elastic Net")
plt.plot(xs, -1.0 * el(xs, alpha), "y-")
plt.plot(-1 * xs, el(xs, alpha), "y-")
plt.plot(-1 * xs, -1.0 * el(xs, alpha), "y-")

plt.xlabel(r"$w_0$")
plt.ylabel(r"$w_1$")
plt.legend()

plt.axis("equal")
plt.show()

Total running time of the example: 0.06 seconds ( 0 minutes 0.06 seconds)

4.15.16 Lasso on dense and sparse data

We show that linear_model.Lasso provides the same results for dense and sparse data and that in the case of sparse
data the speed is improved.

Python source code: lasso_dense_vs_sparse_data.py

print(__doc__)

from time import time
from scipy import sparse
from scipy import linalg

from sklearn.datasets.samples_generator import make_regression
from sklearn.linear_model import Lasso

###############################################################################
# The two Lasso implementations on Dense data
print("--- Dense matrices")

X, y = make_regression(n_samples=200, n_features=5000, random_state=0)
X_sp = sparse.coo_matrix(X)
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alpha = 1
sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000)
dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000)

t0 = time()
sparse_lasso.fit(X_sp, y)
print("Sparse Lasso done in %fs" % (time() - t0))

t0 = time()
dense_lasso.fit(X, y)
print("Dense Lasso done in %fs" % (time() - t0))

print("Distance between coefficients : %s"
% linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_))

###############################################################################
# The two Lasso implementations on Sparse data
print("--- Sparse matrices")

Xs = X.copy()
Xs[Xs < 2.5] = 0.0
Xs = sparse.coo_matrix(Xs)
Xs = Xs.tocsc()

print("Matrix density : %s %%" % (Xs.nnz / float(X.size) * 100))

alpha = 0.1
sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000)
dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000)

t0 = time()
sparse_lasso.fit(Xs, y)
print("Sparse Lasso done in %fs" % (time() - t0))

t0 = time()
dense_lasso.fit(Xs.toarray(), y)
print("Dense Lasso done in %fs" % (time() - t0))

print("Distance between coefficients : %s"
% linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_))

4.15.17 Lasso and Elastic Net for Sparse Signals

Estimates Lasso and Elastic-Net regression models on a manually generated sparse signal corrupted with an additive
noise. Estimated coefficients are compared with the ground-truth.
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Script output:

Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000,
normalize=False, positive=False, precompute=False, random_state=None,
selection='cyclic', tol=0.0001, warm_start=False)

r^2 on test data : 0.384710
ElasticNet(alpha=0.1, copy_X=True, fit_intercept=True, l1_ratio=0.7,

max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)

r^2 on test data : 0.240176

Python source code: plot_lasso_and_elasticnet.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.metrics import r2_score

###############################################################################
# generate some sparse data to play with
np.random.seed(42)

n_samples, n_features = 50, 200
X = np.random.randn(n_samples, n_features)
coef = 3 * np.random.randn(n_features)
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inds = np.arange(n_features)
np.random.shuffle(inds)
coef[inds[10:]] = 0 # sparsify coef
y = np.dot(X, coef)

# add noise
y += 0.01 * np.random.normal((n_samples,))

# Split data in train set and test set
n_samples = X.shape[0]
X_train, y_train = X[:n_samples / 2], y[:n_samples / 2]
X_test, y_test = X[n_samples / 2:], y[n_samples / 2:]

###############################################################################
# Lasso
from sklearn.linear_model import Lasso

alpha = 0.1
lasso = Lasso(alpha=alpha)

y_pred_lasso = lasso.fit(X_train, y_train).predict(X_test)
r2_score_lasso = r2_score(y_test, y_pred_lasso)
print(lasso)
print("r^2 on test data : %f" % r2_score_lasso)

###############################################################################
# ElasticNet
from sklearn.linear_model import ElasticNet

enet = ElasticNet(alpha=alpha, l1_ratio=0.7)

y_pred_enet = enet.fit(X_train, y_train).predict(X_test)
r2_score_enet = r2_score(y_test, y_pred_enet)
print(enet)
print("r^2 on test data : %f" % r2_score_enet)

plt.plot(enet.coef_, label='Elastic net coefficients')
plt.plot(lasso.coef_, label='Lasso coefficients')
plt.plot(coef, '--', label='original coefficients')
plt.legend(loc='best')
plt.title("Lasso R^2: %f, Elastic Net R^2: %f"

% (r2_score_lasso, r2_score_enet))
plt.show()

Total running time of the example: 0.08 seconds ( 0 minutes 0.08 seconds)

4.15.18 Bayesian Ridge Regression

Computes a Bayesian Ridge Regression on a synthetic dataset.

See Bayesian Ridge Regression for more information on the regressor.

Compared to the OLS (ordinary least squares) estimator, the coefficient weights are slightly shifted toward zeros,
which stabilises them.

As the prior on the weights is a Gaussian prior, the histogram of the estimated weights is Gaussian.

The estimation of the model is done by iteratively maximizing the marginal log-likelihood of the observations.
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•

•

•

Python source code: plot_bayesian_ridge.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

from sklearn.linear_model import BayesianRidge, LinearRegression
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###############################################################################
# Generating simulated data with Gaussian weigthts
np.random.seed(0)
n_samples, n_features = 100, 100
X = np.random.randn(n_samples, n_features) # Create Gaussian data
# Create weigts with a precision lambda_ of 4.
lambda_ = 4.
w = np.zeros(n_features)
# Only keep 10 weights of interest
relevant_features = np.random.randint(0, n_features, 10)
for i in relevant_features:

w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_))
# Create noise with a precision alpha of 50.
alpha_ = 50.
noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples)
# Create the target
y = np.dot(X, w) + noise

###############################################################################
# Fit the Bayesian Ridge Regression and an OLS for comparison
clf = BayesianRidge(compute_score=True)
clf.fit(X, y)

ols = LinearRegression()
ols.fit(X, y)

###############################################################################
# Plot true weights, estimated weights and histogram of the weights
plt.figure(figsize=(6, 5))
plt.title("Weights of the model")
plt.plot(clf.coef_, 'b-', label="Bayesian Ridge estimate")
plt.plot(w, 'g-', label="Ground truth")
plt.plot(ols.coef_, 'r--', label="OLS estimate")
plt.xlabel("Features")
plt.ylabel("Values of the weights")
plt.legend(loc="best", prop=dict(size=12))

plt.figure(figsize=(6, 5))
plt.title("Histogram of the weights")
plt.hist(clf.coef_, bins=n_features, log=True)
plt.plot(clf.coef_[relevant_features], 5 * np.ones(len(relevant_features)),

'ro', label="Relevant features")
plt.ylabel("Features")
plt.xlabel("Values of the weights")
plt.legend(loc="lower left")

plt.figure(figsize=(6, 5))
plt.title("Marginal log-likelihood")
plt.plot(clf.scores_)
plt.ylabel("Score")
plt.xlabel("Iterations")
plt.show()

Total running time of the example: 0.33 seconds ( 0 minutes 0.33 seconds)
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4.15.19 Sparsity Example: Fitting only features 1 and 2

Features 1 and 2 of the diabetes-dataset are fitted and plotted below. It illustrates that although feature 2 has a strong
coefficient on the full model, it does not give us much regarding y when compared to just feature 1

•

•

•

Python source code: plot_ols_3d.py

print(__doc__)

# Code source: Gaël Varoquaux
# Modified for documentation by Jaques Grobler
# License: BSD 3 clause

import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D

from sklearn import datasets, linear_model

diabetes = datasets.load_diabetes()
indices = (0, 1)

X_train = diabetes.data[:-20, indices]
X_test = diabetes.data[-20:, indices]
y_train = diabetes.target[:-20]
y_test = diabetes.target[-20:]

ols = linear_model.LinearRegression()
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ols.fit(X_train, y_train)

###############################################################################
# Plot the figure
def plot_figs(fig_num, elev, azim, X_train, clf):

fig = plt.figure(fig_num, figsize=(4, 3))
plt.clf()
ax = Axes3D(fig, elev=elev, azim=azim)

ax.scatter(X_train[:, 0], X_train[:, 1], y_train, c='k', marker='+')
ax.plot_surface(np.array([[-.1, -.1], [.15, .15]]),

np.array([[-.1, .15], [-.1, .15]]),
clf.predict(np.array([[-.1, -.1, .15, .15],

[-.1, .15, -.1, .15]]).T
).reshape((2, 2)),

alpha=.5)
ax.set_xlabel('X_1')
ax.set_ylabel('X_2')
ax.set_zlabel('Y')
ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])

#Generate the three different figures from different views
elev = 43.5
azim = -110
plot_figs(1, elev, azim, X_train, ols)

elev = -.5
azim = 0
plot_figs(2, elev, azim, X_train, ols)

elev = -.5
azim = 90
plot_figs(3, elev, azim, X_train, ols)

plt.show()

Total running time of the example: 0.27 seconds ( 0 minutes 0.27 seconds)

4.15.20 Robust linear estimator fitting

Here a sine function is fit with a polynomial of order 3, for values close to zero.

Robust fitting is demoed in different situations:

• No measurement errors, only modelling errors (fitting a sine with a polynomial)

• Measurement errors in X

• Measurement errors in y

The median absolute deviation to non corrupt new data is used to judge the quality of the prediction.

What we can see that:

• RANSAC is good for strong outliers in the y direction
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• TheilSen is good for small outliers, both in direction X and y, but has a break point above which it performs
worst than OLS.

•

•

•

•
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•

Python source code: plot_robust_fit.py

from matplotlib import pyplot as plt
import numpy as np

from sklearn import linear_model, metrics
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline

np.random.seed(42)

X = np.random.normal(size=400)
y = np.sin(X)
# Make sure that it X is 2D
X = X[:, np.newaxis]

X_test = np.random.normal(size=200)
y_test = np.sin(X_test)
X_test = X_test[:, np.newaxis]

y_errors = y.copy()
y_errors[::3] = 3

X_errors = X.copy()
X_errors[::3] = 3

y_errors_large = y.copy()
y_errors_large[::3] = 10

X_errors_large = X.copy()
X_errors_large[::3] = 10

estimators = [('OLS', linear_model.LinearRegression()),
('Theil-Sen', linear_model.TheilSenRegressor(random_state=42)),
('RANSAC', linear_model.RANSACRegressor(random_state=42)), ]

x_plot = np.linspace(X.min(), X.max())

for title, this_X, this_y in [
('Modeling errors only', X, y),
('Corrupt X, small deviants', X_errors, y),
('Corrupt y, small deviants', X, y_errors),
('Corrupt X, large deviants', X_errors_large, y),
('Corrupt y, large deviants', X, y_errors_large)]:

plt.figure(figsize=(5, 4))
plt.plot(this_X[:, 0], this_y, 'k+')
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for name, estimator in estimators:
model = make_pipeline(PolynomialFeatures(3), estimator)
model.fit(this_X, this_y)
mse = metrics.mean_squared_error(model.predict(X_test), y_test)
y_plot = model.predict(x_plot[:, np.newaxis])
plt.plot(x_plot, y_plot,

label='%s: error = %.3f' % (name, mse))

plt.legend(loc='best', frameon=False,
title='Error: mean absolute deviation\n to non corrupt data')

plt.xlim(-4, 10.2)
plt.ylim(-2, 10.2)
plt.title(title)

plt.show()

Total running time of the example: 5.42 seconds ( 0 minutes 5.42 seconds)

4.15.21 Automatic Relevance Determination Regression (ARD)

Fit regression model with Bayesian Ridge Regression.

See Bayesian Ridge Regression for more information on the regressor.

Compared to the OLS (ordinary least squares) estimator, the coefficient weights are slightly shifted toward zeros,
which stabilises them.

The histogram of the estimated weights is very peaked, as a sparsity-inducing prior is implied on the weights.

The estimation of the model is done by iteratively maximizing the marginal log-likelihood of the observations.

•

4.15. Generalized Linear Models 807



scikit-learn user guide, Release 0.17

•

•

Python source code: plot_ard.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

from sklearn.linear_model import ARDRegression, LinearRegression

###############################################################################
# Generating simulated data with Gaussian weights

# Parameters of the example
np.random.seed(0)
n_samples, n_features = 100, 100
# Create Gaussian data
X = np.random.randn(n_samples, n_features)
# Create weigts with a precision lambda_ of 4.
lambda_ = 4.
w = np.zeros(n_features)
# Only keep 10 weights of interest
relevant_features = np.random.randint(0, n_features, 10)
for i in relevant_features:

w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_))
# Create noite with a precision alpha of 50.
alpha_ = 50.
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noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples)
# Create the target
y = np.dot(X, w) + noise

###############################################################################
# Fit the ARD Regression
clf = ARDRegression(compute_score=True)
clf.fit(X, y)

ols = LinearRegression()
ols.fit(X, y)

###############################################################################
# Plot the true weights, the estimated weights and the histogram of the
# weights
plt.figure(figsize=(6, 5))
plt.title("Weights of the model")
plt.plot(clf.coef_, 'b-', label="ARD estimate")
plt.plot(ols.coef_, 'r--', label="OLS estimate")
plt.plot(w, 'g-', label="Ground truth")
plt.xlabel("Features")
plt.ylabel("Values of the weights")
plt.legend(loc=1)

plt.figure(figsize=(6, 5))
plt.title("Histogram of the weights")
plt.hist(clf.coef_, bins=n_features, log=True)
plt.plot(clf.coef_[relevant_features], 5 * np.ones(len(relevant_features)),

'ro', label="Relevant features")
plt.ylabel("Features")
plt.xlabel("Values of the weights")
plt.legend(loc=1)

plt.figure(figsize=(6, 5))
plt.title("Marginal log-likelihood")
plt.plot(clf.scores_)
plt.ylabel("Score")
plt.xlabel("Iterations")
plt.show()

Total running time of the example: 0.43 seconds ( 0 minutes 0.43 seconds)

4.15.22 L1 Penalty and Sparsity in Logistic Regression

Comparison of the sparsity (percentage of zero coefficients) of solutions when L1 and L2 penalty are used for different
values of C. We can see that large values of C give more freedom to the model. Conversely, smaller values of C
constrain the model more. In the L1 penalty case, this leads to sparser solutions.

We classify 8x8 images of digits into two classes: 0-4 against 5-9. The visualization shows coefficients of the models
for varying C.
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Script output:

C=100.00
Sparsity with L1 penalty: 6.25%
score with L1 penalty: 0.9104
Sparsity with L2 penalty: 4.69%
score with L2 penalty: 0.9098
C=1.00
Sparsity with L1 penalty: 10.94%
score with L1 penalty: 0.9098
Sparsity with L2 penalty: 4.69%
score with L2 penalty: 0.9093
C=0.01
Sparsity with L1 penalty: 85.94%
score with L1 penalty: 0.8614
Sparsity with L2 penalty: 4.69%
score with L2 penalty: 0.8915

Python source code: plot_logistic_l1_l2_sparsity.py

print(__doc__)

# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Mathieu Blondel <mathieu@mblondel.org>
# Andreas Mueller <amueller@ais.uni-bonn.de>
# License: BSD 3 clause
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import numpy as np
import matplotlib.pyplot as plt

from sklearn.linear_model import LogisticRegression
from sklearn import datasets
from sklearn.preprocessing import StandardScaler

digits = datasets.load_digits()

X, y = digits.data, digits.target
X = StandardScaler().fit_transform(X)

# classify small against large digits
y = (y > 4).astype(np.int)

# Set regularization parameter
for i, C in enumerate((100, 1, 0.01)):

# turn down tolerance for short training time
clf_l1_LR = LogisticRegression(C=C, penalty='l1', tol=0.01)
clf_l2_LR = LogisticRegression(C=C, penalty='l2', tol=0.01)
clf_l1_LR.fit(X, y)
clf_l2_LR.fit(X, y)

coef_l1_LR = clf_l1_LR.coef_.ravel()
coef_l2_LR = clf_l2_LR.coef_.ravel()

# coef_l1_LR contains zeros due to the
# L1 sparsity inducing norm

sparsity_l1_LR = np.mean(coef_l1_LR == 0) * 100
sparsity_l2_LR = np.mean(coef_l2_LR == 0) * 100

print("C=%.2f" % C)
print("Sparsity with L1 penalty: %.2f%%" % sparsity_l1_LR)
print("score with L1 penalty: %.4f" % clf_l1_LR.score(X, y))
print("Sparsity with L2 penalty: %.2f%%" % sparsity_l2_LR)
print("score with L2 penalty: %.4f" % clf_l2_LR.score(X, y))

l1_plot = plt.subplot(3, 2, 2 * i + 1)
l2_plot = plt.subplot(3, 2, 2 * (i + 1))
if i == 0:

l1_plot.set_title("L1 penalty")
l2_plot.set_title("L2 penalty")

l1_plot.imshow(np.abs(coef_l1_LR.reshape(8, 8)), interpolation='nearest',
cmap='binary', vmax=1, vmin=0)

l2_plot.imshow(np.abs(coef_l2_LR.reshape(8, 8)), interpolation='nearest',
cmap='binary', vmax=1, vmin=0)

plt.text(-8, 3, "C = %.2f" % C)

l1_plot.set_xticks(())
l1_plot.set_yticks(())
l2_plot.set_xticks(())
l2_plot.set_yticks(())

plt.show()
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Total running time of the example: 0.56 seconds ( 0 minutes 0.56 seconds)

4.15.23 Plot multi-class SGD on the iris dataset

Plot decision surface of multi-class SGD on iris dataset. The hyperplanes corresponding to the three one-versus-all
(OVA) classifiers are represented by the dashed lines.

Python source code: plot_sgd_iris.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.linear_model import SGDClassifier

# import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features. We could

# avoid this ugly slicing by using a two-dim dataset
y = iris.target
colors = "bry"

# shuffle
idx = np.arange(X.shape[0])
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np.random.seed(13)
np.random.shuffle(idx)
X = X[idx]
y = y[idx]

# standardize
mean = X.mean(axis=0)
std = X.std(axis=0)
X = (X - mean) / std

h = .02 # step size in the mesh

clf = SGDClassifier(alpha=0.001, n_iter=100).fit(X, y)

# create a mesh to plot in
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))

# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)
plt.axis('tight')

# Plot also the training points
for i, color in zip(clf.classes_, colors):

idx = np.where(y == i)
plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i],

cmap=plt.cm.Paired)
plt.title("Decision surface of multi-class SGD")
plt.axis('tight')

# Plot the three one-against-all classifiers
xmin, xmax = plt.xlim()
ymin, ymax = plt.ylim()
coef = clf.coef_
intercept = clf.intercept_

def plot_hyperplane(c, color):
def line(x0):

return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1]

plt.plot([xmin, xmax], [line(xmin), line(xmax)],
ls="--", color=color)

for i, color in zip(clf.classes_, colors):
plot_hyperplane(i, color)

plt.legend()
plt.show()

Total running time of the example: 0.24 seconds ( 0 minutes 0.24 seconds)
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4.15.24 Theil-Sen Regression

Computes a Theil-Sen Regression on a synthetic dataset.

See Theil-Sen estimator: generalized-median-based estimator for more information on the regressor.

Compared to the OLS (ordinary least squares) estimator, the Theil-Sen estimator is robust against outliers. It has
a breakdown point of about 29.3% in case of a simple linear regression which means that it can tolerate arbitrary
corrupted data (outliers) of up to 29.3% in the two-dimensional case.

The estimation of the model is done by calculating the slopes and intercepts of a subpopulation of all possible com-
binations of p subsample points. If an intercept is fitted, p must be greater than or equal to n_features + 1. The final
slope and intercept is then defined as the spatial median of these slopes and intercepts.

In certain cases Theil-Sen performs better than RANSAC which is also a robust method. This is illustrated in the second
example below where outliers with respect to the x-axis perturb RANSAC. Tuning the residual_threshold
parameter of RANSAC remedies this but in general a priori knowledge about the data and the nature of the outliers
is needed. Due to the computational complexity of Theil-Sen it is recommended to use it only for small problems in
terms of number of samples and features. For larger problems the max_subpopulation parameter restricts the
magnitude of all possible combinations of p subsample points to a randomly chosen subset and therefore also limits the
runtime. Therefore, Theil-Sen is applicable to larger problems with the drawback of losing some of its mathematical
properties since it then works on a random subset.

•

•

Python source code: plot_theilsen.py

# Author: Florian Wilhelm -- <florian.wilhelm@gmail.com>
# License: BSD 3 clause

import time
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import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression, TheilSenRegressor
from sklearn.linear_model import RANSACRegressor

print(__doc__)

estimators = [('OLS', LinearRegression()),
('Theil-Sen', TheilSenRegressor(random_state=42)),
('RANSAC', RANSACRegressor(random_state=42)), ]

##############################################################################
# Outliers only in the y direction

np.random.seed(0)
n_samples = 200
# Linear model y = 3*x + N(2, 0.1**2)
x = np.random.randn(n_samples)
w = 3.
c = 2.
noise = 0.1 * np.random.randn(n_samples)
y = w * x + c + noise
# 10% outliers
y[-20:] += -20 * x[-20:]
X = x[:, np.newaxis]

plt.plot(x, y, 'k+', mew=2, ms=8)
line_x = np.array([-3, 3])
for name, estimator in estimators:

t0 = time.time()
estimator.fit(X, y)
elapsed_time = time.time() - t0
y_pred = estimator.predict(line_x.reshape(2, 1))
plt.plot(line_x, y_pred,

label='%s (fit time: %.2fs)' % (name, elapsed_time))

plt.axis('tight')
plt.legend(loc='upper left')

##############################################################################
# Outliers in the X direction

np.random.seed(0)
# Linear model y = 3*x + N(2, 0.1**2)
x = np.random.randn(n_samples)
noise = 0.1 * np.random.randn(n_samples)
y = 3 * x + 2 + noise
# 10% outliers
x[-20:] = 9.9
y[-20:] += 22
X = x[:, np.newaxis]

plt.figure()
plt.plot(x, y, 'k+', mew=2, ms=8)

line_x = np.array([-3, 10])
for name, estimator in estimators:
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t0 = time.time()
estimator.fit(X, y)
elapsed_time = time.time() - t0
y_pred = estimator.predict(line_x.reshape(2, 1))
plt.plot(line_x, y_pred,

label='%s (fit time: %.2fs)' % (name, elapsed_time))

plt.axis('tight')
plt.legend(loc='upper left')
plt.show()

Total running time of the example: 1.22 seconds ( 0 minutes 1.22 seconds)

4.15.25 Orthogonal Matching Pursuit

Using orthogonal matching pursuit for recovering a sparse signal from a noisy measurement encoded with a dictionary
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Python source code: plot_omp.py

print(__doc__)

import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import OrthogonalMatchingPursuit
from sklearn.linear_model import OrthogonalMatchingPursuitCV
from sklearn.datasets import make_sparse_coded_signal

n_components, n_features = 512, 100
n_nonzero_coefs = 17

# generate the data
###################
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# y = Xw
# |x|_0 = n_nonzero_coefs

y, X, w = make_sparse_coded_signal(n_samples=1,
n_components=n_components,
n_features=n_features,
n_nonzero_coefs=n_nonzero_coefs,
random_state=0)

idx, = w.nonzero()

# distort the clean signal
##########################
y_noisy = y + 0.05 * np.random.randn(len(y))

# plot the sparse signal
########################
plt.figure(figsize=(7, 7))
plt.subplot(4, 1, 1)
plt.xlim(0, 512)
plt.title("Sparse signal")
plt.stem(idx, w[idx])

# plot the noise-free reconstruction
####################################

omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs)
omp.fit(X, y)
coef = omp.coef_
idx_r, = coef.nonzero()
plt.subplot(4, 1, 2)
plt.xlim(0, 512)
plt.title("Recovered signal from noise-free measurements")
plt.stem(idx_r, coef[idx_r])

# plot the noisy reconstruction
###############################
omp.fit(X, y_noisy)
coef = omp.coef_
idx_r, = coef.nonzero()
plt.subplot(4, 1, 3)
plt.xlim(0, 512)
plt.title("Recovered signal from noisy measurements")
plt.stem(idx_r, coef[idx_r])

# plot the noisy reconstruction with number of non-zeros set by CV
##################################################################
omp_cv = OrthogonalMatchingPursuitCV()
omp_cv.fit(X, y_noisy)
coef = omp_cv.coef_
idx_r, = coef.nonzero()
plt.subplot(4, 1, 4)
plt.xlim(0, 512)
plt.title("Recovered signal from noisy measurements with CV")
plt.stem(idx_r, coef[idx_r])

plt.subplots_adjust(0.06, 0.04, 0.94, 0.90, 0.20, 0.38)
plt.suptitle('Sparse signal recovery with Orthogonal Matching Pursuit',
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fontsize=16)
plt.show()

Total running time of the example: 0.44 seconds ( 0 minutes 0.44 seconds)

4.15.26 Lasso and Elastic Net

Lasso and elastic net (L1 and L2 penalisation) implemented using a coordinate descent.

The coefficients can be forced to be positive.

•

•

•

Script output:
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Computing regularization path using the lasso...
Computing regularization path using the positive lasso...
Computing regularization path using the elastic net...
Computing regularization path using the positve elastic net...

Python source code: plot_lasso_coordinate_descent_path.py

print(__doc__)

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.linear_model import lasso_path, enet_path
from sklearn import datasets

diabetes = datasets.load_diabetes()
X = diabetes.data
y = diabetes.target

X /= X.std(axis=0) # Standardize data (easier to set the l1_ratio parameter)

# Compute paths

eps = 5e-3 # the smaller it is the longer is the path

print("Computing regularization path using the lasso...")
alphas_lasso, coefs_lasso, _ = lasso_path(X, y, eps, fit_intercept=False)

print("Computing regularization path using the positive lasso...")
alphas_positive_lasso, coefs_positive_lasso, _ = lasso_path(

X, y, eps, positive=True, fit_intercept=False)
print("Computing regularization path using the elastic net...")
alphas_enet, coefs_enet, _ = enet_path(

X, y, eps=eps, l1_ratio=0.8, fit_intercept=False)

print("Computing regularization path using the positve elastic net...")
alphas_positive_enet, coefs_positive_enet, _ = enet_path(

X, y, eps=eps, l1_ratio=0.8, positive=True, fit_intercept=False)

# Display results

plt.figure(1)
ax = plt.gca()
ax.set_color_cycle(2 * ['b', 'r', 'g', 'c', 'k'])
l1 = plt.plot(-np.log10(alphas_lasso), coefs_lasso.T)
l2 = plt.plot(-np.log10(alphas_enet), coefs_enet.T, linestyle='--')

plt.xlabel('-Log(alpha)')
plt.ylabel('coefficients')
plt.title('Lasso and Elastic-Net Paths')
plt.legend((l1[-1], l2[-1]), ('Lasso', 'Elastic-Net'), loc='lower left')
plt.axis('tight')

plt.figure(2)
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ax = plt.gca()
ax.set_color_cycle(2 * ['b', 'r', 'g', 'c', 'k'])
l1 = plt.plot(-np.log10(alphas_lasso), coefs_lasso.T)
l2 = plt.plot(-np.log10(alphas_positive_lasso), coefs_positive_lasso.T,

linestyle='--')

plt.xlabel('-Log(alpha)')
plt.ylabel('coefficients')
plt.title('Lasso and positive Lasso')
plt.legend((l1[-1], l2[-1]), ('Lasso', 'positive Lasso'), loc='lower left')
plt.axis('tight')

plt.figure(3)
ax = plt.gca()
ax.set_color_cycle(2 * ['b', 'r', 'g', 'c', 'k'])
l1 = plt.plot(-np.log10(alphas_enet), coefs_enet.T)
l2 = plt.plot(-np.log10(alphas_positive_enet), coefs_positive_enet.T,

linestyle='--')

plt.xlabel('-Log(alpha)')
plt.ylabel('coefficients')
plt.title('Elastic-Net and positive Elastic-Net')
plt.legend((l1[-1], l2[-1]), ('Elastic-Net', 'positive Elastic-Net'),

loc='lower left')
plt.axis('tight')
plt.show()

Total running time of the example: 0.18 seconds ( 0 minutes 0.18 seconds)

4.15.27 Lasso model selection: Cross-Validation / AIC / BIC

Use the Akaike information criterion (AIC), the Bayes Information criterion (BIC) and cross-validation to select an
optimal value of the regularization parameter alpha of the Lasso estimator.

Results obtained with LassoLarsIC are based on AIC/BIC criteria.

Information-criterion based model selection is very fast, but it relies on a proper estimation of degrees of freedom, are
derived for large samples (asymptotic results) and assume the model is correct, i.e. that the data are actually generated
by this model. They also tend to break when the problem is badly conditioned (more features than samples).

For cross-validation, we use 20-fold with 2 algorithms to compute the Lasso path: coordinate descent, as implemented
by the LassoCV class, and Lars (least angle regression) as implemented by the LassoLarsCV class. Both algorithms
give roughly the same results. They differ with regards to their execution speed and sources of numerical errors.

Lars computes a path solution only for each kink in the path. As a result, it is very efficient when there are only of few
kinks, which is the case if there are few features or samples. Also, it is able to compute the full path without setting
any meta parameter. On the opposite, coordinate descent compute the path points on a pre-specified grid (here we use
the default). Thus it is more efficient if the number of grid points is smaller than the number of kinks in the path. Such
a strategy can be interesting if the number of features is really large and there are enough samples to select a large
amount. In terms of numerical errors, for heavily correlated variables, Lars will accumulate more errors, while the
coordinate descent algorithm will only sample the path on a grid.

Note how the optimal value of alpha varies for each fold. This illustrates why nested-cross validation is necessary
when trying to evaluate the performance of a method for which a parameter is chosen by cross-validation: this choice
of parameter may not be optimal for unseen data.
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•

•

•

Script output:

Computing regularization path using the coordinate descent lasso...
Computing regularization path using the Lars lasso...

Python source code: plot_lasso_model_selection.py

print(__doc__)

# Author: Olivier Grisel, Gael Varoquaux, Alexandre Gramfort
# License: BSD 3 clause

import time

822 Chapter 4. Examples



scikit-learn user guide, Release 0.17

import numpy as np
import matplotlib.pyplot as plt

from sklearn.linear_model import LassoCV, LassoLarsCV, LassoLarsIC
from sklearn import datasets

diabetes = datasets.load_diabetes()
X = diabetes.data
y = diabetes.target

rng = np.random.RandomState(42)
X = np.c_[X, rng.randn(X.shape[0], 14)] # add some bad features

# normalize data as done by Lars to allow for comparison
X /= np.sqrt(np.sum(X ** 2, axis=0))

##############################################################################
# LassoLarsIC: least angle regression with BIC/AIC criterion

model_bic = LassoLarsIC(criterion='bic')
t1 = time.time()
model_bic.fit(X, y)
t_bic = time.time() - t1
alpha_bic_ = model_bic.alpha_

model_aic = LassoLarsIC(criterion='aic')
model_aic.fit(X, y)
alpha_aic_ = model_aic.alpha_

def plot_ic_criterion(model, name, color):
alpha_ = model.alpha_
alphas_ = model.alphas_
criterion_ = model.criterion_
plt.plot(-np.log10(alphas_), criterion_, '--', color=color,

linewidth=3, label='%s criterion' % name)
plt.axvline(-np.log10(alpha_), color=color, linewidth=3,

label='alpha: %s estimate' % name)
plt.xlabel('-log(alpha)')
plt.ylabel('criterion')

plt.figure()
plot_ic_criterion(model_aic, 'AIC', 'b')
plot_ic_criterion(model_bic, 'BIC', 'r')
plt.legend()
plt.title('Information-criterion for model selection (training time %.3fs)'

% t_bic)

##############################################################################
# LassoCV: coordinate descent

# Compute paths
print("Computing regularization path using the coordinate descent lasso...")
t1 = time.time()
model = LassoCV(cv=20).fit(X, y)
t_lasso_cv = time.time() - t1

# Display results
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m_log_alphas = -np.log10(model.alphas_)

plt.figure()
ymin, ymax = 2300, 3800
plt.plot(m_log_alphas, model.mse_path_, ':')
plt.plot(m_log_alphas, model.mse_path_.mean(axis=-1), 'k',

label='Average across the folds', linewidth=2)
plt.axvline(-np.log10(model.alpha_), linestyle='--', color='k',

label='alpha: CV estimate')

plt.legend()

plt.xlabel('-log(alpha)')
plt.ylabel('Mean square error')
plt.title('Mean square error on each fold: coordinate descent '

'(train time: %.2fs)' % t_lasso_cv)
plt.axis('tight')
plt.ylim(ymin, ymax)

##############################################################################
# LassoLarsCV: least angle regression

# Compute paths
print("Computing regularization path using the Lars lasso...")
t1 = time.time()
model = LassoLarsCV(cv=20).fit(X, y)
t_lasso_lars_cv = time.time() - t1

# Display results
m_log_alphas = -np.log10(model.cv_alphas_)

plt.figure()
plt.plot(m_log_alphas, model.cv_mse_path_, ':')
plt.plot(m_log_alphas, model.cv_mse_path_.mean(axis=-1), 'k',

label='Average across the folds', linewidth=2)
plt.axvline(-np.log10(model.alpha_), linestyle='--', color='k',

label='alpha CV')
plt.legend()

plt.xlabel('-log(alpha)')
plt.ylabel('Mean square error')
plt.title('Mean square error on each fold: Lars (train time: %.2fs)'

% t_lasso_lars_cv)
plt.axis('tight')
plt.ylim(ymin, ymax)

plt.show()

Total running time of the example: 1.20 seconds ( 0 minutes 1.20 seconds)

4.15.28 Sparse recovery: feature selection for sparse linear models

Given a small number of observations, we want to recover which features of X are relevant to explain y. For this sparse
linear models can outperform standard statistical tests if the true model is sparse, i.e. if a small fraction of the features
are relevant.

As detailed in the compressive sensing notes, the ability of L1-based approach to identify the relevant variables de-
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pends on the sparsity of the ground truth, the number of samples, the number of features, the conditioning of the
design matrix on the signal subspace, the amount of noise, and the absolute value of the smallest non-zero coefficient
[Wainwright2006] (http://statistics.berkeley.edu/tech-reports/709.pdf).

Here we keep all parameters constant and vary the conditioning of the design matrix. For a well-conditioned design
matrix (small mutual incoherence) we are exactly in compressive sensing conditions (i.i.d Gaussian sensing matrix),
and L1-recovery with the Lasso performs very well. For an ill-conditioned matrix (high mutual incoherence), regres-
sors are very correlated, and the Lasso randomly selects one. However, randomized-Lasso can recover the ground
truth well.

In each situation, we first vary the alpha parameter setting the sparsity of the estimated model and look at the stability
scores of the randomized Lasso. This analysis, knowing the ground truth, shows an optimal regime in which relevant
features stand out from the irrelevant ones. If alpha is chosen too small, non-relevant variables enter the model. On
the opposite, if alpha is selected too large, the Lasso is equivalent to stepwise regression, and thus brings no advantage
over a univariate F-test.

In a second time, we set alpha and compare the performance of different feature selection methods, using the area
under curve (AUC) of the precision-recall.

•

•
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•

•

Python source code: plot_sparse_recovery.py

print(__doc__)

# Author: Alexandre Gramfort and Gael Varoquaux
# License: BSD 3 clause

import warnings

import matplotlib.pyplot as plt
import numpy as np
from scipy import linalg

from sklearn.linear_model import (RandomizedLasso, lasso_stability_path,
LassoLarsCV)

from sklearn.feature_selection import f_regression
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import auc, precision_recall_curve
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.utils.extmath import pinvh
from sklearn.utils import ConvergenceWarning

def mutual_incoherence(X_relevant, X_irelevant):
"""Mutual incoherence, as defined by formula (26a) of [Wainwright2006].
"""
projector = np.dot(np.dot(X_irelevant.T, X_relevant),

pinvh(np.dot(X_relevant.T, X_relevant)))
return np.max(np.abs(projector).sum(axis=1))
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for conditioning in (1, 1e-4):
###########################################################################
# Simulate regression data with a correlated design
n_features = 501
n_relevant_features = 3
noise_level = .2
coef_min = .2
# The Donoho-Tanner phase transition is around n_samples=25: below we
# will completely fail to recover in the well-conditioned case
n_samples = 25
block_size = n_relevant_features

rng = np.random.RandomState(42)

# The coefficients of our model
coef = np.zeros(n_features)
coef[:n_relevant_features] = coef_min + rng.rand(n_relevant_features)

# The correlation of our design: variables correlated by blocs of 3
corr = np.zeros((n_features, n_features))
for i in range(0, n_features, block_size):

corr[i:i + block_size, i:i + block_size] = 1 - conditioning
corr.flat[::n_features + 1] = 1
corr = linalg.cholesky(corr)

# Our design
X = rng.normal(size=(n_samples, n_features))
X = np.dot(X, corr)
# Keep [Wainwright2006] (26c) constant
X[:n_relevant_features] /= np.abs(

linalg.svdvals(X[:n_relevant_features])).max()
X = StandardScaler().fit_transform(X.copy())

# The output variable
y = np.dot(X, coef)
y /= np.std(y)
# We scale the added noise as a function of the average correlation
# between the design and the output variable
y += noise_level * rng.normal(size=n_samples)
mi = mutual_incoherence(X[:, :n_relevant_features],

X[:, n_relevant_features:])

###########################################################################
# Plot stability selection path, using a high eps for early stopping
# of the path, to save computation time
alpha_grid, scores_path = lasso_stability_path(X, y, random_state=42,

eps=0.05)

plt.figure()
# We plot the path as a function of alpha/alpha_max to the power 1/3: the
# power 1/3 scales the path less brutally than the log, and enables to
# see the progression along the path
hg = plt.plot(alpha_grid[1:] ** .333, scores_path[coef != 0].T[1:], 'r')
hb = plt.plot(alpha_grid[1:] ** .333, scores_path[coef == 0].T[1:], 'k')
ymin, ymax = plt.ylim()
plt.xlabel(r'$(\alpha / \alpha_{max})^{1/3}$')
plt.ylabel('Stability score: proportion of times selected')
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plt.title('Stability Scores Path - Mutual incoherence: %.1f' % mi)
plt.axis('tight')
plt.legend((hg[0], hb[0]), ('relevant features', 'irrelevant features'),

loc='best')

###########################################################################
# Plot the estimated stability scores for a given alpha

# Use 6-fold cross-validation rather than the default 3-fold: it leads to
# a better choice of alpha:
# Stop the user warnings outputs- they are not necessary for the example
# as it is specifically set up to be challenging.
with warnings.catch_warnings():

warnings.simplefilter('ignore', UserWarning)
warnings.simplefilter('ignore', ConvergenceWarning)
lars_cv = LassoLarsCV(cv=6).fit(X, y)

# Run the RandomizedLasso: we use a paths going down to .1*alpha_max
# to avoid exploring the regime in which very noisy variables enter
# the model
alphas = np.linspace(lars_cv.alphas_[0], .1 * lars_cv.alphas_[0], 6)
clf = RandomizedLasso(alpha=alphas, random_state=42).fit(X, y)
trees = ExtraTreesRegressor(100).fit(X, y)
# Compare with F-score
F, _ = f_regression(X, y)

plt.figure()
for name, score in [('F-test', F),

('Stability selection', clf.scores_),
('Lasso coefs', np.abs(lars_cv.coef_)),
('Trees', trees.feature_importances_),
]:

precision, recall, thresholds = precision_recall_curve(coef != 0,
score)

plt.semilogy(np.maximum(score / np.max(score), 1e-4),
label="%s. AUC: %.3f" % (name, auc(recall, precision)))

plt.plot(np.where(coef != 0)[0], [2e-4] * n_relevant_features, 'mo',
label="Ground truth")

plt.xlabel("Features")
plt.ylabel("Score")
# Plot only the 100 first coefficients
plt.xlim(0, 100)
plt.legend(loc='best')
plt.title('Feature selection scores - Mutual incoherence: %.1f'

% mi)

plt.show()

Total running time of the example: 9.63 seconds ( 0 minutes 9.63 seconds)

4.16 Manifold learning

Examples concerning the sklearn.manifold module.
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4.16.1 Swiss Roll reduction with LLE

An illustration of Swiss Roll reduction with locally linear embedding

Script output:

Computing LLE embedding
Done. Reconstruction error: 9.98045e-08

Python source code: plot_swissroll.py

# Author: Fabian Pedregosa -- <fabian.pedregosa@inria.fr>
# License: BSD 3 clause (C) INRIA 2011

print(__doc__)

import matplotlib.pyplot as plt

# This import is needed to modify the way figure behaves
from mpl_toolkits.mplot3d import Axes3D
Axes3D

#----------------------------------------------------------------------
# Locally linear embedding of the swiss roll

from sklearn import manifold, datasets
X, color = datasets.samples_generator.make_swiss_roll(n_samples=1500)
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print("Computing LLE embedding")
X_r, err = manifold.locally_linear_embedding(X, n_neighbors=12,

n_components=2)
print("Done. Reconstruction error: %g" % err)

#----------------------------------------------------------------------
# Plot result

fig = plt.figure()
try:

# compatibility matplotlib < 1.0
ax = fig.add_subplot(211, projection='3d')
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.cm.Spectral)

except:
ax = fig.add_subplot(211)
ax.scatter(X[:, 0], X[:, 2], c=color, cmap=plt.cm.Spectral)

ax.set_title("Original data")
ax = fig.add_subplot(212)
ax.scatter(X_r[:, 0], X_r[:, 1], c=color, cmap=plt.cm.Spectral)
plt.axis('tight')
plt.xticks([]), plt.yticks([])
plt.title('Projected data')
plt.show()

Total running time of the example: 0.30 seconds ( 0 minutes 0.30 seconds)

4.16.2 Multi-dimensional scaling

An illustration of the metric and non-metric MDS on generated noisy data.

The reconstructed points using the metric MDS and non metric MDS are slightly shifted to avoid overlapping.

830 Chapter 4. Examples



scikit-learn user guide, Release 0.17

Python source code: plot_mds.py

# Author: Nelle Varoquaux <nelle.varoquaux@gmail.com>
# Licence: BSD

print(__doc__)
import numpy as np

from matplotlib import pyplot as plt
from matplotlib.collections import LineCollection

from sklearn import manifold
from sklearn.metrics import euclidean_distances
from sklearn.decomposition import PCA

n_samples = 20
seed = np.random.RandomState(seed=3)
X_true = seed.randint(0, 20, 2 * n_samples).astype(np.float)
X_true = X_true.reshape((n_samples, 2))
# Center the data
X_true -= X_true.mean()

similarities = euclidean_distances(X_true)

# Add noise to the similarities
noise = np.random.rand(n_samples, n_samples)
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noise = noise + noise.T
noise[np.arange(noise.shape[0]), np.arange(noise.shape[0])] = 0
similarities += noise

mds = manifold.MDS(n_components=2, max_iter=3000, eps=1e-9, random_state=seed,
dissimilarity="precomputed", n_jobs=1)

pos = mds.fit(similarities).embedding_

nmds = manifold.MDS(n_components=2, metric=False, max_iter=3000, eps=1e-12,
dissimilarity="precomputed", random_state=seed, n_jobs=1,
n_init=1)

npos = nmds.fit_transform(similarities, init=pos)

# Rescale the data
pos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((pos ** 2).sum())
npos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((npos ** 2).sum())

# Rotate the data
clf = PCA(n_components=2)
X_true = clf.fit_transform(X_true)

pos = clf.fit_transform(pos)

npos = clf.fit_transform(npos)

fig = plt.figure(1)
ax = plt.axes([0., 0., 1., 1.])

plt.scatter(X_true[:, 0], X_true[:, 1], c='r', s=20)
plt.scatter(pos[:, 0], pos[:, 1], s=20, c='g')
plt.scatter(npos[:, 0], npos[:, 1], s=20, c='b')
plt.legend(('True position', 'MDS', 'NMDS'), loc='best')

similarities = similarities.max() / similarities * 100
similarities[np.isinf(similarities)] = 0

# Plot the edges
start_idx, end_idx = np.where(pos)
#a sequence of (*line0*, *line1*, *line2*), where::
# linen = (x0, y0), (x1, y1), ... (xm, ym)
segments = [[X_true[i, :], X_true[j, :]]

for i in range(len(pos)) for j in range(len(pos))]
values = np.abs(similarities)
lc = LineCollection(segments,

zorder=0, cmap=plt.cm.hot_r,
norm=plt.Normalize(0, values.max()))

lc.set_array(similarities.flatten())
lc.set_linewidths(0.5 * np.ones(len(segments)))
ax.add_collection(lc)

plt.show()

Total running time of the example: 0.10 seconds ( 0 minutes 0.10 seconds)

4.16.3 Comparison of Manifold Learning methods

An illustration of dimensionality reduction on the S-curve dataset with various manifold learning methods.
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For a discussion and comparison of these algorithms, see the manifold module page

For a similar example, where the methods are applied to a sphere dataset, see Manifold Learning methods on a severed
sphere

Note that the purpose of the MDS is to find a low-dimensional representation of the data (here 2D) in which the
distances respect well the distances in the original high-dimensional space, unlike other manifold-learning algorithms,
it does not seeks an isotropic representation of the data in the low-dimensional space.

Script output:

standard: 0.14 sec
ltsa: 0.28 sec
hessian: 0.34 sec
modified: 0.24 sec
Isomap: 0.45 sec
MDS: 3.2 sec
SpectralEmbedding: 0.18 sec
t-SNE: 3.5 sec

Python source code: plot_compare_methods.py

# Author: Jake Vanderplas -- <vanderplas@astro.washington.edu>

print(__doc__)

from time import time

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.ticker import NullFormatter

from sklearn import manifold, datasets

# Next line to silence pyflakes. This import is needed.
Axes3D
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n_points = 1000
X, color = datasets.samples_generator.make_s_curve(n_points, random_state=0)
n_neighbors = 10
n_components = 2

fig = plt.figure(figsize=(15, 8))
plt.suptitle("Manifold Learning with %i points, %i neighbors"

% (1000, n_neighbors), fontsize=14)

try:
# compatibility matplotlib < 1.0
ax = fig.add_subplot(251, projection='3d')
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.cm.Spectral)
ax.view_init(4, -72)

except:
ax = fig.add_subplot(251, projection='3d')
plt.scatter(X[:, 0], X[:, 2], c=color, cmap=plt.cm.Spectral)

methods = ['standard', 'ltsa', 'hessian', 'modified']
labels = ['LLE', 'LTSA', 'Hessian LLE', 'Modified LLE']

for i, method in enumerate(methods):
t0 = time()
Y = manifold.LocallyLinearEmbedding(n_neighbors, n_components,

eigen_solver='auto',
method=method).fit_transform(X)

t1 = time()
print("%s: %.2g sec" % (methods[i], t1 - t0))

ax = fig.add_subplot(252 + i)
plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral)
plt.title("%s (%.2g sec)" % (labels[i], t1 - t0))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
plt.axis('tight')

t0 = time()
Y = manifold.Isomap(n_neighbors, n_components).fit_transform(X)
t1 = time()
print("Isomap: %.2g sec" % (t1 - t0))
ax = fig.add_subplot(257)
plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral)
plt.title("Isomap (%.2g sec)" % (t1 - t0))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
plt.axis('tight')

t0 = time()
mds = manifold.MDS(n_components, max_iter=100, n_init=1)
Y = mds.fit_transform(X)
t1 = time()
print("MDS: %.2g sec" % (t1 - t0))
ax = fig.add_subplot(258)
plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral)
plt.title("MDS (%.2g sec)" % (t1 - t0))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
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plt.axis('tight')

t0 = time()
se = manifold.SpectralEmbedding(n_components=n_components,

n_neighbors=n_neighbors)
Y = se.fit_transform(X)
t1 = time()
print("SpectralEmbedding: %.2g sec" % (t1 - t0))
ax = fig.add_subplot(259)
plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral)
plt.title("SpectralEmbedding (%.2g sec)" % (t1 - t0))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
plt.axis('tight')

t0 = time()
tsne = manifold.TSNE(n_components=n_components, init='pca', random_state=0)
Y = tsne.fit_transform(X)
t1 = time()
print("t-SNE: %.2g sec" % (t1 - t0))
ax = fig.add_subplot(2, 5, 10)
plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral)
plt.title("t-SNE (%.2g sec)" % (t1 - t0))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
plt.axis('tight')

plt.show()

Total running time of the example: 8.99 seconds ( 0 minutes 8.99 seconds)

4.16.4 Manifold Learning methods on a severed sphere

An application of the different Manifold learning techniques on a spherical data-set. Here one can see the use of
dimensionality reduction in order to gain some intuition regarding the manifold learning methods. Regarding the
dataset, the poles are cut from the sphere, as well as a thin slice down its side. This enables the manifold learning
techniques to ‘spread it open’ whilst projecting it onto two dimensions.

For a similar example, where the methods are applied to the S-curve dataset, see Comparison of Manifold Learning
methods

Note that the purpose of the MDS is to find a low-dimensional representation of the data (here 2D) in which the
distances respect well the distances in the original high-dimensional space, unlike other manifold-learning algorithms,
it does not seeks an isotropic representation of the data in the low-dimensional space. Here the manifold problem
matches fairly that of representing a flat map of the Earth, as with map projection
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Script output:

standard: 0.11 sec
ltsa: 0.19 sec
hessian: 0.25 sec
modified: 0.2 sec
ISO: 0.26 sec
MDS: 1.7 sec
Spectral Embedding: 0.12 sec
t-SNE: 2.3 sec

Python source code: plot_manifold_sphere.py

# Author: Jaques Grobler <jaques.grobler@inria.fr>
# License: BSD 3 clause

print(__doc__)

from time import time

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.ticker import NullFormatter

from sklearn import manifold
from sklearn.utils import check_random_state

# Next line to silence pyflakes.
Axes3D

# Variables for manifold learning.
n_neighbors = 10
n_samples = 1000

# Create our sphere.
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random_state = check_random_state(0)
p = random_state.rand(n_samples) * (2 * np.pi - 0.55)
t = random_state.rand(n_samples) * np.pi

# Sever the poles from the sphere.
indices = ((t < (np.pi - (np.pi / 8))) & (t > ((np.pi / 8))))
colors = p[indices]
x, y, z = np.sin(t[indices]) * np.cos(p[indices]), \

np.sin(t[indices]) * np.sin(p[indices]), \
np.cos(t[indices])

# Plot our dataset.
fig = plt.figure(figsize=(15, 8))
plt.suptitle("Manifold Learning with %i points, %i neighbors"

% (1000, n_neighbors), fontsize=14)

ax = fig.add_subplot(251, projection='3d')
ax.scatter(x, y, z, c=p[indices], cmap=plt.cm.rainbow)
try:

# compatibility matplotlib < 1.0
ax.view_init(40, -10)

except:
pass

sphere_data = np.array([x, y, z]).T

# Perform Locally Linear Embedding Manifold learning
methods = ['standard', 'ltsa', 'hessian', 'modified']
labels = ['LLE', 'LTSA', 'Hessian LLE', 'Modified LLE']

for i, method in enumerate(methods):
t0 = time()
trans_data = manifold\

.LocallyLinearEmbedding(n_neighbors, 2,
method=method).fit_transform(sphere_data).T

t1 = time()
print("%s: %.2g sec" % (methods[i], t1 - t0))

ax = fig.add_subplot(252 + i)
plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow)
plt.title("%s (%.2g sec)" % (labels[i], t1 - t0))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
plt.axis('tight')

# Perform Isomap Manifold learning.
t0 = time()
trans_data = manifold.Isomap(n_neighbors, n_components=2)\

.fit_transform(sphere_data).T
t1 = time()
print("%s: %.2g sec" % ('ISO', t1 - t0))

ax = fig.add_subplot(257)
plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow)
plt.title("%s (%.2g sec)" % ('Isomap', t1 - t0))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
plt.axis('tight')
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# Perform Multi-dimensional scaling.
t0 = time()
mds = manifold.MDS(2, max_iter=100, n_init=1)
trans_data = mds.fit_transform(sphere_data).T
t1 = time()
print("MDS: %.2g sec" % (t1 - t0))

ax = fig.add_subplot(258)
plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow)
plt.title("MDS (%.2g sec)" % (t1 - t0))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
plt.axis('tight')

# Perform Spectral Embedding.
t0 = time()
se = manifold.SpectralEmbedding(n_components=2,

n_neighbors=n_neighbors)
trans_data = se.fit_transform(sphere_data).T
t1 = time()
print("Spectral Embedding: %.2g sec" % (t1 - t0))

ax = fig.add_subplot(259)
plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow)
plt.title("Spectral Embedding (%.2g sec)" % (t1 - t0))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
plt.axis('tight')

# Perform t-distributed stochastic neighbor embedding.
t0 = time()
tsne = manifold.TSNE(n_components=2, init='pca', random_state=0)
trans_data = tsne.fit_transform(sphere_data).T
t1 = time()
print("t-SNE: %.2g sec" % (t1 - t0))

ax = fig.add_subplot(2, 5, 10)
plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow)
plt.title("t-SNE (%.2g sec)" % (t1 - t0))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
plt.axis('tight')

plt.show()

Total running time of the example: 5.59 seconds ( 0 minutes 5.59 seconds)

4.16.5 Manifold learning on handwritten digits: Locally Linear Embedding,
Isomap...

An illustration of various embeddings on the digits dataset.

The RandomTreesEmbedding, from the sklearn.ensemble module, is not technically a manifold embedding
method, as it learn a high-dimensional representation on which we apply a dimensionality reduction method. However,
it is often useful to cast a dataset into a representation in which the classes are linearly-separable.

t-SNE will be initialized with the embedding that is generated by PCA in this example, which is not the default setting.
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It ensures global stability of the embedding, i.e., the embedding does not depend on random initialization.

•

•

•
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•

•

•

•
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•

•

•

•
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•

•

Script output:

Computing random projection
Computing PCA projection
Computing Linear Discriminant Analysis projection
Computing Isomap embedding
Done.
Computing LLE embedding
Done. Reconstruction error: 1.63524e-06
Computing modified LLE embedding
Done. Reconstruction error: 0.357231
Computing Hessian LLE embedding
Done. Reconstruction error: 0.21281
Computing LTSA embedding
Done. Reconstruction error: 0.212806
Computing MDS embedding
Done. Stress: 142099041.007367
Computing Totally Random Trees embedding
Computing Spectral embedding
Computing t-SNE embedding

Python source code: plot_lle_digits.py

# Authors: Fabian Pedregosa <fabian.pedregosa@inria.fr>
# Olivier Grisel <olivier.grisel@ensta.org>
# Mathieu Blondel <mathieu@mblondel.org>
# Gael Varoquaux
# License: BSD 3 clause (C) INRIA 2011
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print(__doc__)
from time import time

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import offsetbox
from sklearn import (manifold, datasets, decomposition, ensemble,

discriminant_analysis, random_projection)

digits = datasets.load_digits(n_class=6)
X = digits.data
y = digits.target
n_samples, n_features = X.shape
n_neighbors = 30

#----------------------------------------------------------------------
# Scale and visualize the embedding vectors
def plot_embedding(X, title=None):

x_min, x_max = np.min(X, 0), np.max(X, 0)
X = (X - x_min) / (x_max - x_min)

plt.figure()
ax = plt.subplot(111)
for i in range(X.shape[0]):

plt.text(X[i, 0], X[i, 1], str(digits.target[i]),
color=plt.cm.Set1(y[i] / 10.),
fontdict={'weight': 'bold', 'size': 9})

if hasattr(offsetbox, 'AnnotationBbox'):
# only print thumbnails with matplotlib > 1.0
shown_images = np.array([[1., 1.]]) # just something big
for i in range(digits.data.shape[0]):

dist = np.sum((X[i] - shown_images) ** 2, 1)
if np.min(dist) < 4e-3:

# don't show points that are too close
continue

shown_images = np.r_[shown_images, [X[i]]]
imagebox = offsetbox.AnnotationBbox(

offsetbox.OffsetImage(digits.images[i], cmap=plt.cm.gray_r),
X[i])

ax.add_artist(imagebox)
plt.xticks([]), plt.yticks([])
if title is not None:

plt.title(title)

#----------------------------------------------------------------------
# Plot images of the digits
n_img_per_row = 20
img = np.zeros((10 * n_img_per_row, 10 * n_img_per_row))
for i in range(n_img_per_row):

ix = 10 * i + 1
for j in range(n_img_per_row):

iy = 10 * j + 1
img[ix:ix + 8, iy:iy + 8] = X[i * n_img_per_row + j].reshape((8, 8))

plt.imshow(img, cmap=plt.cm.binary)
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plt.xticks([])
plt.yticks([])
plt.title('A selection from the 64-dimensional digits dataset')

#----------------------------------------------------------------------
# Random 2D projection using a random unitary matrix
print("Computing random projection")
rp = random_projection.SparseRandomProjection(n_components=2, random_state=42)
X_projected = rp.fit_transform(X)
plot_embedding(X_projected, "Random Projection of the digits")

#----------------------------------------------------------------------
# Projection on to the first 2 principal components

print("Computing PCA projection")
t0 = time()
X_pca = decomposition.TruncatedSVD(n_components=2).fit_transform(X)
plot_embedding(X_pca,

"Principal Components projection of the digits (time %.2fs)" %
(time() - t0))

#----------------------------------------------------------------------
# Projection on to the first 2 linear discriminant components

print("Computing Linear Discriminant Analysis projection")
X2 = X.copy()
X2.flat[::X.shape[1] + 1] += 0.01 # Make X invertible
t0 = time()
X_lda = discriminant_analysis.LinearDiscriminantAnalysis(n_components=2).fit_transform(X2, y)
plot_embedding(X_lda,

"Linear Discriminant projection of the digits (time %.2fs)" %
(time() - t0))

#----------------------------------------------------------------------
# Isomap projection of the digits dataset
print("Computing Isomap embedding")
t0 = time()
X_iso = manifold.Isomap(n_neighbors, n_components=2).fit_transform(X)
print("Done.")
plot_embedding(X_iso,

"Isomap projection of the digits (time %.2fs)" %
(time() - t0))

#----------------------------------------------------------------------
# Locally linear embedding of the digits dataset
print("Computing LLE embedding")
clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2,

method='standard')
t0 = time()
X_lle = clf.fit_transform(X)
print("Done. Reconstruction error: %g" % clf.reconstruction_error_)
plot_embedding(X_lle,

"Locally Linear Embedding of the digits (time %.2fs)" %
(time() - t0))
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#----------------------------------------------------------------------
# Modified Locally linear embedding of the digits dataset
print("Computing modified LLE embedding")
clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2,

method='modified')
t0 = time()
X_mlle = clf.fit_transform(X)
print("Done. Reconstruction error: %g" % clf.reconstruction_error_)
plot_embedding(X_mlle,

"Modified Locally Linear Embedding of the digits (time %.2fs)" %
(time() - t0))

#----------------------------------------------------------------------
# HLLE embedding of the digits dataset
print("Computing Hessian LLE embedding")
clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2,

method='hessian')
t0 = time()
X_hlle = clf.fit_transform(X)
print("Done. Reconstruction error: %g" % clf.reconstruction_error_)
plot_embedding(X_hlle,

"Hessian Locally Linear Embedding of the digits (time %.2fs)" %
(time() - t0))

#----------------------------------------------------------------------
# LTSA embedding of the digits dataset
print("Computing LTSA embedding")
clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2,

method='ltsa')
t0 = time()
X_ltsa = clf.fit_transform(X)
print("Done. Reconstruction error: %g" % clf.reconstruction_error_)
plot_embedding(X_ltsa,

"Local Tangent Space Alignment of the digits (time %.2fs)" %
(time() - t0))

#----------------------------------------------------------------------
# MDS embedding of the digits dataset
print("Computing MDS embedding")
clf = manifold.MDS(n_components=2, n_init=1, max_iter=100)
t0 = time()
X_mds = clf.fit_transform(X)
print("Done. Stress: %f" % clf.stress_)
plot_embedding(X_mds,

"MDS embedding of the digits (time %.2fs)" %
(time() - t0))

#----------------------------------------------------------------------
# Random Trees embedding of the digits dataset
print("Computing Totally Random Trees embedding")
hasher = ensemble.RandomTreesEmbedding(n_estimators=200, random_state=0,

max_depth=5)
t0 = time()
X_transformed = hasher.fit_transform(X)
pca = decomposition.TruncatedSVD(n_components=2)
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X_reduced = pca.fit_transform(X_transformed)

plot_embedding(X_reduced,
"Random forest embedding of the digits (time %.2fs)" %
(time() - t0))

#----------------------------------------------------------------------
# Spectral embedding of the digits dataset
print("Computing Spectral embedding")
embedder = manifold.SpectralEmbedding(n_components=2, random_state=0,

eigen_solver="arpack")
t0 = time()
X_se = embedder.fit_transform(X)

plot_embedding(X_se,
"Spectral embedding of the digits (time %.2fs)" %
(time() - t0))

#----------------------------------------------------------------------
# t-SNE embedding of the digits dataset
print("Computing t-SNE embedding")
tsne = manifold.TSNE(n_components=2, init='pca', random_state=0)
t0 = time()
X_tsne = tsne.fit_transform(X)

plot_embedding(X_tsne,
"t-SNE embedding of the digits (time %.2fs)" %
(time() - t0))

plt.show()

Total running time of the example: 22.98 seconds ( 0 minutes 22.98 seconds)

4.17 Gaussian Mixture Models

Examples concerning the sklearn.mixture module.

4.17.1 Density Estimation for a mixture of Gaussians

Plot the density estimation of a mixture of two Gaussians. Data is generated from two Gaussians with different centers
and covariance matrices.
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Python source code: plot_gmm_pdf.py

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
from sklearn import mixture

n_samples = 300

# generate random sample, two components
np.random.seed(0)

# generate spherical data centered on (20, 20)
shifted_gaussian = np.random.randn(n_samples, 2) + np.array([20, 20])

# generate zero centered stretched Gaussian data
C = np.array([[0., -0.7], [3.5, .7]])
stretched_gaussian = np.dot(np.random.randn(n_samples, 2), C)

# concatenate the two datasets into the final training set
X_train = np.vstack([shifted_gaussian, stretched_gaussian])

# fit a Gaussian Mixture Model with two components
clf = mixture.GMM(n_components=2, covariance_type='full')
clf.fit(X_train)
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# display predicted scores by the model as a contour plot
x = np.linspace(-20.0, 30.0)
y = np.linspace(-20.0, 40.0)
X, Y = np.meshgrid(x, y)
XX = np.array([X.ravel(), Y.ravel()]).T
Z = -clf.score_samples(XX)[0]
Z = Z.reshape(X.shape)

CS = plt.contour(X, Y, Z, norm=LogNorm(vmin=1.0, vmax=1000.0),
levels=np.logspace(0, 3, 10))

CB = plt.colorbar(CS, shrink=0.8, extend='both')
plt.scatter(X_train[:, 0], X_train[:, 1], .8)

plt.title('Negative log-likelihood predicted by a GMM')
plt.axis('tight')
plt.show()

Total running time of the example: 0.11 seconds ( 0 minutes 0.11 seconds)

4.17.2 Gaussian Mixture Model Ellipsoids

Plot the confidence ellipsoids of a mixture of two Gaussians with EM and variational Dirichlet process.

Both models have access to five components with which to fit the data. Note that the EM model will necessarily use all
five components while the DP model will effectively only use as many as are needed for a good fit. This is a property
of the Dirichlet Process prior. Here we can see that the EM model splits some components arbitrarily, because it is
trying to fit too many components, while the Dirichlet Process model adapts it number of state automatically.

This example doesn’t show it, as we’re in a low-dimensional space, but another advantage of the Dirichlet process
model is that it can fit full covariance matrices effectively even when there are less examples per cluster than there are
dimensions in the data, due to regularization properties of the inference algorithm.
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Python source code: plot_gmm.py

import itertools

import numpy as np
from scipy import linalg
import matplotlib.pyplot as plt
import matplotlib as mpl

from sklearn import mixture

# Number of samples per component
n_samples = 500

# Generate random sample, two components
np.random.seed(0)
C = np.array([[0., -0.1], [1.7, .4]])
X = np.r_[np.dot(np.random.randn(n_samples, 2), C),

.7 * np.random.randn(n_samples, 2) + np.array([-6, 3])]

# Fit a mixture of Gaussians with EM using five components
gmm = mixture.GMM(n_components=5, covariance_type='full')
gmm.fit(X)

# Fit a Dirichlet process mixture of Gaussians using five components
dpgmm = mixture.DPGMM(n_components=5, covariance_type='full')
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dpgmm.fit(X)

color_iter = itertools.cycle(['r', 'g', 'b', 'c', 'm'])

for i, (clf, title) in enumerate([(gmm, 'GMM'),
(dpgmm, 'Dirichlet Process GMM')]):

splot = plt.subplot(2, 1, 1 + i)
Y_ = clf.predict(X)
for i, (mean, covar, color) in enumerate(zip(

clf.means_, clf._get_covars(), color_iter)):
v, w = linalg.eigh(covar)
u = w[0] / linalg.norm(w[0])
# as the DP will not use every component it has access to
# unless it needs it, we shouldn't plot the redundant
# components.
if not np.any(Y_ == i):

continue
plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color)

# Plot an ellipse to show the Gaussian component
angle = np.arctan(u[1] / u[0])
angle = 180 * angle / np.pi # convert to degrees
ell = mpl.patches.Ellipse(mean, v[0], v[1], 180 + angle, color=color)
ell.set_clip_box(splot.bbox)
ell.set_alpha(0.5)
splot.add_artist(ell)

plt.xlim(-10, 10)
plt.ylim(-3, 6)
plt.xticks(())
plt.yticks(())
plt.title(title)

plt.show()

Total running time of the example: 0.21 seconds ( 0 minutes 0.21 seconds)

4.17.3 Gaussian Mixture Model Sine Curve

This example highlights the advantages of the Dirichlet Process: complexity control and dealing with sparse data.
The dataset is formed by 100 points loosely spaced following a noisy sine curve. The fit by the GMM class, using
the expectation-maximization algorithm to fit a mixture of 10 Gaussian components, finds too-small components and
very little structure. The fits by the Dirichlet process, however, show that the model can either learn a global structure
for the data (small alpha) or easily interpolate to finding relevant local structure (large alpha), never falling into the
problems shown by the GMM class.
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Python source code: plot_gmm_sin.py

import itertools

import numpy as np
from scipy import linalg
import matplotlib.pyplot as plt
import matplotlib as mpl

from sklearn import mixture
from sklearn.externals.six.moves import xrange

# Number of samples per component
n_samples = 100

# Generate random sample following a sine curve
np.random.seed(0)
X = np.zeros((n_samples, 2))
step = 4 * np.pi / n_samples

for i in xrange(X.shape[0]):
x = i * step - 6
X[i, 0] = x + np.random.normal(0, 0.1)
X[i, 1] = 3 * (np.sin(x) + np.random.normal(0, .2))
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color_iter = itertools.cycle(['r', 'g', 'b', 'c', 'm'])

for i, (clf, title) in enumerate([
(mixture.GMM(n_components=10, covariance_type='full', n_iter=100),
"Expectation-maximization"),
(mixture.DPGMM(n_components=10, covariance_type='full', alpha=0.01,

n_iter=100),
"Dirichlet Process,alpha=0.01"),
(mixture.DPGMM(n_components=10, covariance_type='diag', alpha=100.,

n_iter=100),
"Dirichlet Process,alpha=100.")]):

clf.fit(X)
splot = plt.subplot(3, 1, 1 + i)
Y_ = clf.predict(X)
for i, (mean, covar, color) in enumerate(zip(

clf.means_, clf._get_covars(), color_iter)):
v, w = linalg.eigh(covar)
u = w[0] / linalg.norm(w[0])
# as the DP will not use every component it has access to
# unless it needs it, we shouldn't plot the redundant
# components.
if not np.any(Y_ == i):

continue
plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color)

# Plot an ellipse to show the Gaussian component
angle = np.arctan(u[1] / u[0])
angle = 180 * angle / np.pi # convert to degrees
ell = mpl.patches.Ellipse(mean, v[0], v[1], 180 + angle, color=color)
ell.set_clip_box(splot.bbox)
ell.set_alpha(0.5)
splot.add_artist(ell)

plt.xlim(-6, 4 * np.pi - 6)
plt.ylim(-5, 5)
plt.title(title)
plt.xticks(())
plt.yticks(())

plt.show()

Total running time of the example: 0.40 seconds ( 0 minutes 0.40 seconds)

4.17.4 Gaussian Mixture Model Selection

This example shows that model selection can be performed with Gaussian Mixture Models using information-theoretic
criteria (BIC). Model selection concerns both the covariance type and the number of components in the model. In that
case, AIC also provides the right result (not shown to save time), but BIC is better suited if the problem is to identify
the right model. Unlike Bayesian procedures, such inferences are prior-free.

In that case, the model with 2 components and full covariance (which corresponds to the true generative model) is
selected.
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Python source code: plot_gmm_selection.py

print(__doc__)

import itertools

import numpy as np
from scipy import linalg
import matplotlib.pyplot as plt
import matplotlib as mpl

from sklearn import mixture

# Number of samples per component
n_samples = 500

# Generate random sample, two components
np.random.seed(0)
C = np.array([[0., -0.1], [1.7, .4]])
X = np.r_[np.dot(np.random.randn(n_samples, 2), C),

.7 * np.random.randn(n_samples, 2) + np.array([-6, 3])]

lowest_bic = np.infty
bic = []
n_components_range = range(1, 7)
cv_types = ['spherical', 'tied', 'diag', 'full']
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for cv_type in cv_types:
for n_components in n_components_range:

# Fit a mixture of Gaussians with EM
gmm = mixture.GMM(n_components=n_components, covariance_type=cv_type)
gmm.fit(X)
bic.append(gmm.bic(X))
if bic[-1] < lowest_bic:

lowest_bic = bic[-1]
best_gmm = gmm

bic = np.array(bic)
color_iter = itertools.cycle(['k', 'r', 'g', 'b', 'c', 'm', 'y'])
clf = best_gmm
bars = []

# Plot the BIC scores
spl = plt.subplot(2, 1, 1)
for i, (cv_type, color) in enumerate(zip(cv_types, color_iter)):

xpos = np.array(n_components_range) + .2 * (i - 2)
bars.append(plt.bar(xpos, bic[i * len(n_components_range):

(i + 1) * len(n_components_range)],
width=.2, color=color))

plt.xticks(n_components_range)
plt.ylim([bic.min() * 1.01 - .01 * bic.max(), bic.max()])
plt.title('BIC score per model')
xpos = np.mod(bic.argmin(), len(n_components_range)) + .65 +\

.2 * np.floor(bic.argmin() / len(n_components_range))
plt.text(xpos, bic.min() * 0.97 + .03 * bic.max(), '*', fontsize=14)
spl.set_xlabel('Number of components')
spl.legend([b[0] for b in bars], cv_types)

# Plot the winner
splot = plt.subplot(2, 1, 2)
Y_ = clf.predict(X)
for i, (mean, covar, color) in enumerate(zip(clf.means_, clf.covars_,

color_iter)):
v, w = linalg.eigh(covar)
if not np.any(Y_ == i):

continue
plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color)

# Plot an ellipse to show the Gaussian component
angle = np.arctan2(w[0][1], w[0][0])
angle = 180 * angle / np.pi # convert to degrees
v *= 4
ell = mpl.patches.Ellipse(mean, v[0], v[1], 180 + angle, color=color)
ell.set_clip_box(splot.bbox)
ell.set_alpha(.5)
splot.add_artist(ell)

plt.xlim(-10, 10)
plt.ylim(-3, 6)
plt.xticks(())
plt.yticks(())
plt.title('Selected GMM: full model, 2 components')
plt.subplots_adjust(hspace=.35, bottom=.02)
plt.show()
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Total running time of the example: 0.80 seconds ( 0 minutes 0.80 seconds)

4.17.5 GMM classification

Demonstration of Gaussian mixture models for classification.

See Gaussian mixture models for more information on the estimator.

Plots predicted labels on both training and held out test data using a variety of GMM classifiers on the iris dataset.

Compares GMMs with spherical, diagonal, full, and tied covariance matrices in increasing order of performance.
Although one would expect full covariance to perform best in general, it is prone to overfitting on small datasets and
does not generalize well to held out test data.

On the plots, train data is shown as dots, while test data is shown as crosses. The iris dataset is four-dimensional. Only
the first two dimensions are shown here, and thus some points are separated in other dimensions.

Python source code: plot_gmm_classifier.py
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print(__doc__)

# Author: Ron Weiss <ronweiss@gmail.com>, Gael Varoquaux
# License: BSD 3 clause

# $Id$

import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np

from sklearn import datasets
from sklearn.cross_validation import StratifiedKFold
from sklearn.externals.six.moves import xrange
from sklearn.mixture import GMM

def make_ellipses(gmm, ax):
for n, color in enumerate('rgb'):

v, w = np.linalg.eigh(gmm._get_covars()[n][:2, :2])
u = w[0] / np.linalg.norm(w[0])
angle = np.arctan2(u[1], u[0])
angle = 180 * angle / np.pi # convert to degrees
v *= 9
ell = mpl.patches.Ellipse(gmm.means_[n, :2], v[0], v[1],

180 + angle, color=color)
ell.set_clip_box(ax.bbox)
ell.set_alpha(0.5)
ax.add_artist(ell)

iris = datasets.load_iris()

# Break up the dataset into non-overlapping training (75%) and testing
# (25%) sets.
skf = StratifiedKFold(iris.target, n_folds=4)
# Only take the first fold.
train_index, test_index = next(iter(skf))

X_train = iris.data[train_index]
y_train = iris.target[train_index]
X_test = iris.data[test_index]
y_test = iris.target[test_index]

n_classes = len(np.unique(y_train))

# Try GMMs using different types of covariances.
classifiers = dict((covar_type, GMM(n_components=n_classes,

covariance_type=covar_type, init_params='wc', n_iter=20))
for covar_type in ['spherical', 'diag', 'tied', 'full'])

n_classifiers = len(classifiers)

plt.figure(figsize=(3 * n_classifiers / 2, 6))
plt.subplots_adjust(bottom=.01, top=0.95, hspace=.15, wspace=.05,

left=.01, right=.99)
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for index, (name, classifier) in enumerate(classifiers.items()):
# Since we have class labels for the training data, we can
# initialize the GMM parameters in a supervised manner.
classifier.means_ = np.array([X_train[y_train == i].mean(axis=0)

for i in xrange(n_classes)])

# Train the other parameters using the EM algorithm.
classifier.fit(X_train)

h = plt.subplot(2, n_classifiers / 2, index + 1)
make_ellipses(classifier, h)

for n, color in enumerate('rgb'):
data = iris.data[iris.target == n]
plt.scatter(data[:, 0], data[:, 1], 0.8, color=color,

label=iris.target_names[n])
# Plot the test data with crosses
for n, color in enumerate('rgb'):

data = X_test[y_test == n]
plt.plot(data[:, 0], data[:, 1], 'x', color=color)

y_train_pred = classifier.predict(X_train)
train_accuracy = np.mean(y_train_pred.ravel() == y_train.ravel()) * 100
plt.text(0.05, 0.9, 'Train accuracy: %.1f' % train_accuracy,

transform=h.transAxes)

y_test_pred = classifier.predict(X_test)
test_accuracy = np.mean(y_test_pred.ravel() == y_test.ravel()) * 100
plt.text(0.05, 0.8, 'Test accuracy: %.1f' % test_accuracy,

transform=h.transAxes)

plt.xticks(())
plt.yticks(())
plt.title(name)

plt.legend(loc='lower right', prop=dict(size=12))

plt.show()

Total running time of the example: 0.32 seconds ( 0 minutes 0.32 seconds)

4.18 Model Selection

Examples concerning model selection, mostly contained in the sklearn.grid_search and
sklearn.cross_validation modules.

4.18.1 Plotting Validation Curves

In this plot you can see the training scores and validation scores of an SVM for different values of the kernel parameter
gamma. For very low values of gamma, you can see that both the training score and the validation score are low.
This is called underfitting. Medium values of gamma will result in high values for both scores, i.e. the classifier is
performing fairly well. If gamma is too high, the classifier will overfit, which means that the training score is good but
the validation score is poor.
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Python source code: plot_validation_curve.py

print(__doc__)

import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import load_digits
from sklearn.svm import SVC
from sklearn.learning_curve import validation_curve

digits = load_digits()
X, y = digits.data, digits.target

param_range = np.logspace(-6, -1, 5)
train_scores, test_scores = validation_curve(

SVC(), X, y, param_name="gamma", param_range=param_range,
cv=10, scoring="accuracy", n_jobs=1)

train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)

plt.title("Validation Curve with SVM")
plt.xlabel("$\gamma$")
plt.ylabel("Score")
plt.ylim(0.0, 1.1)
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plt.semilogx(param_range, train_scores_mean, label="Training score", color="r")
plt.fill_between(param_range, train_scores_mean - train_scores_std,

train_scores_mean + train_scores_std, alpha=0.2, color="r")
plt.semilogx(param_range, test_scores_mean, label="Cross-validation score",

color="g")
plt.fill_between(param_range, test_scores_mean - test_scores_std,

test_scores_mean + test_scores_std, alpha=0.2, color="g")
plt.legend(loc="best")
plt.show()

Total running time of the example: 35.38 seconds ( 0 minutes 35.38 seconds)

4.18.2 Underfitting vs. Overfitting

This example demonstrates the problems of underfitting and overfitting and how we can use linear regression with
polynomial features to approximate nonlinear functions. The plot shows the function that we want to approximate,
which is a part of the cosine function. In addition, the samples from the real function and the approximations of
different models are displayed. The models have polynomial features of different degrees. We can see that a linear
function (polynomial with degree 1) is not sufficient to fit the training samples. This is called underfitting. A
polynomial of degree 4 approximates the true function almost perfectly. However, for higher degrees the model
will overfit the training data, i.e. it learns the noise of the training data. We evaluate quantitatively overfitting /
underfitting by using cross-validation. We calculate the mean squared error (MSE) on the validation set, the higher,
the less likely the model generalizes correctly from the training data.

Python source code: plot_underfitting_overfitting.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn import cross_validation

np.random.seed(0)

n_samples = 30
degrees = [1, 4, 15]

true_fun = lambda X: np.cos(1.5 * np.pi * X)
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X = np.sort(np.random.rand(n_samples))
y = true_fun(X) + np.random.randn(n_samples) * 0.1

plt.figure(figsize=(14, 5))
for i in range(len(degrees)):

ax = plt.subplot(1, len(degrees), i + 1)
plt.setp(ax, xticks=(), yticks=())

polynomial_features = PolynomialFeatures(degree=degrees[i],
include_bias=False)

linear_regression = LinearRegression()
pipeline = Pipeline([("polynomial_features", polynomial_features),

("linear_regression", linear_regression)])
pipeline.fit(X[:, np.newaxis], y)

# Evaluate the models using crossvalidation
scores = cross_validation.cross_val_score(pipeline,

X[:, np.newaxis], y, scoring="mean_squared_error", cv=10)

X_test = np.linspace(0, 1, 100)
plt.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), label="Model")
plt.plot(X_test, true_fun(X_test), label="True function")
plt.scatter(X, y, label="Samples")
plt.xlabel("x")
plt.ylabel("y")
plt.xlim((0, 1))
plt.ylim((-2, 2))
plt.legend(loc="best")
plt.title("Degree {}\nMSE = {:.2e}(+/- {:.2e})".format(

degrees[i], -scores.mean(), scores.std()))
plt.show()

Total running time of the example: 0.25 seconds ( 0 minutes 0.25 seconds)

4.18.3 Confusion matrix

Example of confusion matrix usage to evaluate the quality of the output of a classifier on the iris data set. The diagonal
elements represent the number of points for which the predicted label is equal to the true label, while off-diagonal
elements are those that are mislabeled by the classifier. The higher the diagonal values of the confusion matrix the
better, indicating many correct predictions.

The figures show the confusion matrix with and without normalization by class support size (number of elements in
each class). This kind of normalization can be interesting in case of class imbalance to have a more visual interpretation
of which class is being misclassified.

Here the results are not as good as they could be as our choice for the regularization parameter C was not the best. In
real life applications this parameter is usually chosen using Grid Search: Searching for estimator parameters.
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•

•

Script output:

Confusion matrix, without normalization
[[13 0 0]
[ 0 10 6]
[ 0 0 9]]

Normalized confusion matrix
[[ 1. 0. 0. ]
[ 0. 0.62 0.38]
[ 0. 0. 1. ]]

Python source code: plot_confusion_matrix.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn import svm, datasets
from sklearn.cross_validation import train_test_split
from sklearn.metrics import confusion_matrix

# import some data to play with
iris = datasets.load_iris()
X = iris.data
y = iris.target

# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
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# Run classifier, using a model that is too regularized (C too low) to see
# the impact on the results
classifier = svm.SVC(kernel='linear', C=0.01)
y_pred = classifier.fit(X_train, y_train).predict(X_test)

def plot_confusion_matrix(cm, title='Confusion matrix', cmap=plt.cm.Blues):
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(iris.target_names))
plt.xticks(tick_marks, iris.target_names, rotation=45)
plt.yticks(tick_marks, iris.target_names)
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')

# Compute confusion matrix
cm = confusion_matrix(y_test, y_pred)
np.set_printoptions(precision=2)
print('Confusion matrix, without normalization')
print(cm)
plt.figure()
plot_confusion_matrix(cm)

# Normalize the confusion matrix by row (i.e by the number of samples
# in each class)
cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print('Normalized confusion matrix')
print(cm_normalized)
plt.figure()
plot_confusion_matrix(cm_normalized, title='Normalized confusion matrix')

plt.show()

Total running time of the example: 0.25 seconds ( 0 minutes 0.25 seconds)

4.18.4 Receiver Operating Characteristic (ROC) with cross validation

Example of Receiver Operating Characteristic (ROC) metric to evaluate classifier output quality using cross-validation.

ROC curves typically feature true positive rate on the Y axis, and false positive rate on the X axis. This means that the
top left corner of the plot is the “ideal” point - a false positive rate of zero, and a true positive rate of one. This is not
very realistic, but it does mean that a larger area under the curve (AUC) is usually better.

The “steepness” of ROC curves is also important, since it is ideal to maximize the true positive rate while minimizing
the false positive rate.

This example shows the ROC response of different datasets, created from K-fold cross-validation. Taking all of these
curves, it is possible to calculate the mean area under curve, and see the variance of the curve when the training set
is split into different subsets. This roughly shows how the classifier output is affected by changes in the training data,
and how different the splits generated by K-fold cross-validation are from one another.

Note:
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See also sklearn.metrics.auc_score, sklearn.cross_validation.cross_val_score, Re-
ceiver Operating Characteristic (ROC),

Python source code: plot_roc_crossval.py

print(__doc__)

import numpy as np
from scipy import interp
import matplotlib.pyplot as plt

from sklearn import svm, datasets
from sklearn.metrics import roc_curve, auc
from sklearn.cross_validation import StratifiedKFold

###############################################################################
# Data IO and generation

# import some data to play with
iris = datasets.load_iris()
X = iris.data
y = iris.target
X, y = X[y != 2], y[y != 2]
n_samples, n_features = X.shape

# Add noisy features
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random_state = np.random.RandomState(0)
X = np.c_[X, random_state.randn(n_samples, 200 * n_features)]

###############################################################################
# Classification and ROC analysis

# Run classifier with cross-validation and plot ROC curves
cv = StratifiedKFold(y, n_folds=6)
classifier = svm.SVC(kernel='linear', probability=True,

random_state=random_state)

mean_tpr = 0.0
mean_fpr = np.linspace(0, 1, 100)
all_tpr = []

for i, (train, test) in enumerate(cv):
probas_ = classifier.fit(X[train], y[train]).predict_proba(X[test])
# Compute ROC curve and area the curve
fpr, tpr, thresholds = roc_curve(y[test], probas_[:, 1])
mean_tpr += interp(mean_fpr, fpr, tpr)
mean_tpr[0] = 0.0
roc_auc = auc(fpr, tpr)
plt.plot(fpr, tpr, lw=1, label='ROC fold %d (area = %0.2f)' % (i, roc_auc))

plt.plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Luck')

mean_tpr /= len(cv)
mean_tpr[-1] = 1.0
mean_auc = auc(mean_fpr, mean_tpr)
plt.plot(mean_fpr, mean_tpr, 'k--',

label='Mean ROC (area = %0.2f)' % mean_auc, lw=2)

plt.xlim([-0.05, 1.05])
plt.ylim([-0.05, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.show()

Total running time of the example: 0.25 seconds ( 0 minutes 0.25 seconds)

4.18.5 Parameter estimation using grid search with cross-validation

This examples shows how a classifier is optimized by cross-validation, which is done using the
sklearn.grid_search.GridSearchCV object on a development set that comprises only half of the available
labeled data.

The performance of the selected hyper-parameters and trained model is then measured on a dedicated evaluation set
that was not used during the model selection step.

More details on tools available for model selection can be found in the sections on Cross-validation: evaluating
estimator performance and Grid Search: Searching for estimator parameters.

Python source code: grid_search_digits.py

from __future__ import print_function
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from sklearn import datasets
from sklearn.cross_validation import train_test_split
from sklearn.grid_search import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.svm import SVC

print(__doc__)

# Loading the Digits dataset
digits = datasets.load_digits()

# To apply an classifier on this data, we need to flatten the image, to
# turn the data in a (samples, feature) matrix:
n_samples = len(digits.images)
X = digits.images.reshape((n_samples, -1))
y = digits.target

# Split the dataset in two equal parts
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.5, random_state=0)

# Set the parameters by cross-validation
tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4],

'C': [1, 10, 100, 1000]},
{'kernel': ['linear'], 'C': [1, 10, 100, 1000]}]

scores = ['precision', 'recall']

for score in scores:
print("# Tuning hyper-parameters for %s" % score)
print()

clf = GridSearchCV(SVC(C=1), tuned_parameters, cv=5,
scoring='%s_weighted' % score)

clf.fit(X_train, y_train)

print("Best parameters set found on development set:")
print()
print(clf.best_params_)
print()
print("Grid scores on development set:")
print()
for params, mean_score, scores in clf.grid_scores_:

print("%0.3f (+/-%0.03f) for %r"
% (mean_score, scores.std() * 2, params))

print()

print("Detailed classification report:")
print()
print("The model is trained on the full development set.")
print("The scores are computed on the full evaluation set.")
print()
y_true, y_pred = y_test, clf.predict(X_test)
print(classification_report(y_true, y_pred))
print()

# Note the problem is too easy: the hyperparameter plateau is too flat and the
# output model is the same for precision and recall with ties in quality.
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4.18.6 Train error vs Test error

Illustration of how the performance of an estimator on unseen data (test data) is not the same as the performance on
training data. As the regularization increases the performance on train decreases while the performance on test is
optimal within a range of values of the regularization parameter. The example with an Elastic-Net regression model
and the performance is measured using the explained variance a.k.a. R^2.

Script output:

Optimal regularization parameter : 0.000335292414925

Python source code: plot_train_error_vs_test_error.py

print(__doc__)

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# License: BSD 3 clause

import numpy as np
from sklearn import linear_model

###############################################################################
# Generate sample data
n_samples_train, n_samples_test, n_features = 75, 150, 500
np.random.seed(0)
coef = np.random.randn(n_features)
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coef[50:] = 0.0 # only the top 10 features are impacting the model
X = np.random.randn(n_samples_train + n_samples_test, n_features)
y = np.dot(X, coef)

# Split train and test data
X_train, X_test = X[:n_samples_train], X[n_samples_train:]
y_train, y_test = y[:n_samples_train], y[n_samples_train:]

###############################################################################
# Compute train and test errors
alphas = np.logspace(-5, 1, 60)
enet = linear_model.ElasticNet(l1_ratio=0.7)
train_errors = list()
test_errors = list()
for alpha in alphas:

enet.set_params(alpha=alpha)
enet.fit(X_train, y_train)
train_errors.append(enet.score(X_train, y_train))
test_errors.append(enet.score(X_test, y_test))

i_alpha_optim = np.argmax(test_errors)
alpha_optim = alphas[i_alpha_optim]
print("Optimal regularization parameter : %s" % alpha_optim)

# Estimate the coef_ on full data with optimal regularization parameter
enet.set_params(alpha=alpha_optim)
coef_ = enet.fit(X, y).coef_

###############################################################################
# Plot results functions

import matplotlib.pyplot as plt
plt.subplot(2, 1, 1)
plt.semilogx(alphas, train_errors, label='Train')
plt.semilogx(alphas, test_errors, label='Test')
plt.vlines(alpha_optim, plt.ylim()[0], np.max(test_errors), color='k',

linewidth=3, label='Optimum on test')
plt.legend(loc='lower left')
plt.ylim([0, 1.2])
plt.xlabel('Regularization parameter')
plt.ylabel('Performance')

# Show estimated coef_ vs true coef
plt.subplot(2, 1, 2)
plt.plot(coef, label='True coef')
plt.plot(coef_, label='Estimated coef')
plt.legend()
plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.26)
plt.show()

Total running time of the example: 2.42 seconds ( 0 minutes 2.42 seconds)

4.18.7 Comparing randomized search and grid search for hyperparameter estima-
tion

Compare randomized search and grid search for optimizing hyperparameters of a random forest. All parameters that
influence the learning are searched simultaneously (except for the number of estimators, which poses a time / quality
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tradeoff).

The randomized search and the grid search explore exactly the same space of parameters. The result in parameter
settings is quite similar, while the run time for randomized search is drastically lower.

The performance is slightly worse for the randomized search, though this is most likely a noise effect and would not
carry over to a held-out test set.

Note that in practice, one would not search over this many different parameters simultaneously using grid search, but
pick only the ones deemed most important.

Python source code: randomized_search.py

print(__doc__)

import numpy as np

from time import time
from operator import itemgetter
from scipy.stats import randint as sp_randint

from sklearn.grid_search import GridSearchCV, RandomizedSearchCV
from sklearn.datasets import load_digits
from sklearn.ensemble import RandomForestClassifier

# get some data
digits = load_digits()
X, y = digits.data, digits.target

# build a classifier
clf = RandomForestClassifier(n_estimators=20)

# Utility function to report best scores
def report(grid_scores, n_top=3):

top_scores = sorted(grid_scores, key=itemgetter(1), reverse=True)[:n_top]
for i, score in enumerate(top_scores):

print("Model with rank: {0}".format(i + 1))
print("Mean validation score: {0:.3f} (std: {1:.3f})".format(

score.mean_validation_score,
np.std(score.cv_validation_scores)))

print("Parameters: {0}".format(score.parameters))
print("")

# specify parameters and distributions to sample from
param_dist = {"max_depth": [3, None],

"max_features": sp_randint(1, 11),
"min_samples_split": sp_randint(1, 11),
"min_samples_leaf": sp_randint(1, 11),
"bootstrap": [True, False],
"criterion": ["gini", "entropy"]}

# run randomized search
n_iter_search = 20
random_search = RandomizedSearchCV(clf, param_distributions=param_dist,

n_iter=n_iter_search)

start = time()
random_search.fit(X, y)
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print("RandomizedSearchCV took %.2f seconds for %d candidates"
" parameter settings." % ((time() - start), n_iter_search))

report(random_search.grid_scores_)

# use a full grid over all parameters
param_grid = {"max_depth": [3, None],

"max_features": [1, 3, 10],
"min_samples_split": [1, 3, 10],
"min_samples_leaf": [1, 3, 10],
"bootstrap": [True, False],
"criterion": ["gini", "entropy"]}

# run grid search
grid_search = GridSearchCV(clf, param_grid=param_grid)
start = time()
grid_search.fit(X, y)

print("GridSearchCV took %.2f seconds for %d candidate parameter settings."
% (time() - start, len(grid_search.grid_scores_)))

report(grid_search.grid_scores_)

4.18.8 Precision-Recall

Example of Precision-Recall metric to evaluate classifier output quality.

In information retrieval, precision is a measure of result relevancy, while recall is a measure of how many truly relevant
results are returned. A high area under the curve represents both high recall and high precision, where high precision
relates to a low false positive rate, and high recall relates to a low false negative rate. High scores for both show that
the classifier is returning accurate results (high precision), as well as returning a majority of all positive results (high
recall).

A system with high recall but low precision returns many results, but most of its predicted labels are incorrect when
compared to the training labels. A system with high precision but low recall is just the opposite, returning very few
results, but most of its predicted labels are correct when compared to the training labels. An ideal system with high
precision and high recall will return many results, with all results labeled correctly.

Precision (𝑃 ) is defined as the number of true positives (𝑇𝑝) over the number of true positives plus the number of false
positives (𝐹𝑝).

𝑃 =
𝑇𝑝

𝑇𝑝+𝐹𝑝

Recall (𝑅) is defined as the number of true positives (𝑇𝑝) over the number of true positives plus the number of false
negatives (𝐹𝑛).

𝑅 =
𝑇𝑝

𝑇𝑝+𝐹𝑛

These quantities are also related to the (𝐹1) score, which is defined as the harmonic mean of precision and recall.

𝐹1 = 2𝑃×𝑅
𝑃+𝑅

It is important to note that the precision may not decrease with recall. The definition of precision ( 𝑇𝑝

𝑇𝑝+𝐹𝑝
) shows that

lowering the threshold of a classifier may increase the denominator, by increasing the number of results returned. If
the threshold was previously set too high, the new results may all be true positives, which will increase precision. If the
previous threshold was about right or too low, further lowering the threshold will introduce false positives, decreasing
precision.

Recall is defined as 𝑇𝑝

𝑇𝑝+𝐹𝑛
, where 𝑇𝑝 + 𝐹𝑛 does not depend on the classifier threshold. This means that lowering

the classifier threshold may increase recall, by increasing the number of true positive results. It is also possible that
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lowering the threshold may leave recall unchanged, while the precision fluctuates.

The relationship between recall and precision can be observed in the stairstep area of the plot - at the edges of these
steps a small change in the threshold considerably reduces precision, with only a minor gain in recall. See the corner
at recall = .59, precision = .8 for an example of this phenomenon.

Precision-recall curves are typically used in binary classification to study the output of a classifier. In order to extend
Precision-recall curve and average precision to multi-class or multi-label classification, it is necessary to binarize the
output. One curve can be drawn per label, but one can also draw a precision-recall curve by considering each element
of the label indicator matrix as a binary prediction (micro-averaging).

Note:
See also sklearn.metrics.average_precision_score, sklearn.metrics.recall_score,

sklearn.metrics.precision_score, sklearn.metrics.f1_score

Python source code: plot_precision_recall.py

print(__doc__)

import matplotlib.pyplot as plt
import numpy as np
from sklearn import svm, datasets
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import average_precision_score
from sklearn.cross_validation import train_test_split
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from sklearn.preprocessing import label_binarize
from sklearn.multiclass import OneVsRestClassifier

# import some data to play with
iris = datasets.load_iris()
X = iris.data
y = iris.target

# Binarize the output
y = label_binarize(y, classes=[0, 1, 2])
n_classes = y.shape[1]

# Add noisy features
random_state = np.random.RandomState(0)
n_samples, n_features = X.shape
X = np.c_[X, random_state.randn(n_samples, 200 * n_features)]

# Split into training and test
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5,

random_state=random_state)

# Run classifier
classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True,

random_state=random_state))
y_score = classifier.fit(X_train, y_train).decision_function(X_test)

# Compute Precision-Recall and plot curve
precision = dict()
recall = dict()
average_precision = dict()
for i in range(n_classes):

precision[i], recall[i], _ = precision_recall_curve(y_test[:, i],
y_score[:, i])

average_precision[i] = average_precision_score(y_test[:, i], y_score[:, i])

# Compute micro-average ROC curve and ROC area
precision["micro"], recall["micro"], _ = precision_recall_curve(y_test.ravel(),

y_score.ravel())
average_precision["micro"] = average_precision_score(y_test, y_score,

average="micro")

# Plot Precision-Recall curve
plt.clf()
plt.plot(recall[0], precision[0], label='Precision-Recall curve')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.title('Precision-Recall example: AUC={0:0.2f}'.format(average_precision[0]))
plt.legend(loc="lower left")
plt.show()

# Plot Precision-Recall curve for each class
plt.clf()
plt.plot(recall["micro"], precision["micro"],

label='micro-average Precision-recall curve (area = {0:0.2f})'
''.format(average_precision["micro"]))

for i in range(n_classes):

4.18. Model Selection 871



scikit-learn user guide, Release 0.17

plt.plot(recall[i], precision[i],
label='Precision-recall curve of class {0} (area = {1:0.2f})'

''.format(i, average_precision[i]))

plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.title('Extension of Precision-Recall curve to multi-class')
plt.legend(loc="lower right")
plt.show()

Total running time of the example: 0.20 seconds ( 0 minutes 0.20 seconds)

4.18.9 Sample pipeline for text feature extraction and evaluation

The dataset used in this example is the 20 newsgroups dataset which will be automatically downloaded and then cached
and reused for the document classification example.

You can adjust the number of categories by giving their names to the dataset loader or setting them to None to get the
20 of them.

Here is a sample output of a run on a quad-core machine:

Loading 20 newsgroups dataset for categories:
['alt.atheism', 'talk.religion.misc']
1427 documents
2 categories

Performing grid search...
pipeline: ['vect', 'tfidf', 'clf']
parameters:
{'clf__alpha': (1.0000000000000001e-05, 9.9999999999999995e-07),
'clf__n_iter': (10, 50, 80),
'clf__penalty': ('l2', 'elasticnet'),
'tfidf__use_idf': (True, False),
'vect__max_n': (1, 2),
'vect__max_df': (0.5, 0.75, 1.0),
'vect__max_features': (None, 5000, 10000, 50000)}

done in 1737.030s

Best score: 0.940
Best parameters set:

clf__alpha: 9.9999999999999995e-07
clf__n_iter: 50
clf__penalty: 'elasticnet'
tfidf__use_idf: True
vect__max_n: 2
vect__max_df: 0.75
vect__max_features: 50000

Python source code: grid_search_text_feature_extraction.py

# Author: Olivier Grisel <olivier.grisel@ensta.org>
# Peter Prettenhofer <peter.prettenhofer@gmail.com>
# Mathieu Blondel <mathieu@mblondel.org>
# License: BSD 3 clause
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from __future__ import print_function

from pprint import pprint
from time import time
import logging

from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.linear_model import SGDClassifier
from sklearn.grid_search import GridSearchCV
from sklearn.pipeline import Pipeline

print(__doc__)

# Display progress logs on stdout
logging.basicConfig(level=logging.INFO,

format='%(asctime)s %(levelname)s %(message)s')

###############################################################################
# Load some categories from the training set
categories = [

'alt.atheism',
'talk.religion.misc',

]
# Uncomment the following to do the analysis on all the categories
#categories = None

print("Loading 20 newsgroups dataset for categories:")
print(categories)

data = fetch_20newsgroups(subset='train', categories=categories)
print("%d documents" % len(data.filenames))
print("%d categories" % len(data.target_names))
print()

###############################################################################
# define a pipeline combining a text feature extractor with a simple
# classifier
pipeline = Pipeline([

('vect', CountVectorizer()),
('tfidf', TfidfTransformer()),
('clf', SGDClassifier()),

])

# uncommenting more parameters will give better exploring power but will
# increase processing time in a combinatorial way
parameters = {

'vect__max_df': (0.5, 0.75, 1.0),
#'vect__max_features': (None, 5000, 10000, 50000),
'vect__ngram_range': ((1, 1), (1, 2)), # unigrams or bigrams
#'tfidf__use_idf': (True, False),
#'tfidf__norm': ('l1', 'l2'),
'clf__alpha': (0.00001, 0.000001),
'clf__penalty': ('l2', 'elasticnet'),
#'clf__n_iter': (10, 50, 80),

}
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if __name__ == "__main__":
# multiprocessing requires the fork to happen in a __main__ protected
# block

# find the best parameters for both the feature extraction and the
# classifier
grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1, verbose=1)

print("Performing grid search...")
print("pipeline:", [name for name, _ in pipeline.steps])
print("parameters:")
pprint(parameters)
t0 = time()
grid_search.fit(data.data, data.target)
print("done in %0.3fs" % (time() - t0))
print()

print("Best score: %0.3f" % grid_search.best_score_)
print("Best parameters set:")
best_parameters = grid_search.best_estimator_.get_params()
for param_name in sorted(parameters.keys()):

print("\t%s: %r" % (param_name, best_parameters[param_name]))

4.18.10 Plotting Learning Curves

On the left side the learning curve of a naive Bayes classifier is shown for the digits dataset. Note that the training
score and the cross-validation score are both not very good at the end. However, the shape of the curve can be found
in more complex datasets very often: the training score is very high at the beginning and decreases and the cross-
validation score is very low at the beginning and increases. On the right side we see the learning curve of an SVM
with RBF kernel. We can see clearly that the training score is still around the maximum and the validation score could
be increased with more training samples.

•
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•

Python source code: plot_learning_curve.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import cross_validation
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.datasets import load_digits
from sklearn.learning_curve import learning_curve

def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)):

"""
Generate a simple plot of the test and traning learning curve.

Parameters
----------
estimator : object type that implements the "fit" and "predict" methods

An object of that type which is cloned for each validation.

title : string
Title for the chart.

X : array-like, shape (n_samples, n_features)
Training vector, where n_samples is the number of samples and
n_features is the number of features.

y : array-like, shape (n_samples) or (n_samples, n_features), optional
Target relative to X for classification or regression;
None for unsupervised learning.

ylim : tuple, shape (ymin, ymax), optional
Defines minimum and maximum yvalues plotted.

cv : integer, cross-validation generator, optional
If an integer is passed, it is the number of folds (defaults to 3).
Specific cross-validation objects can be passed, see
sklearn.cross_validation module for the list of possible objects

n_jobs : integer, optional
Number of jobs to run in parallel (default 1).
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"""
plt.figure()
plt.title(title)
if ylim is not None:

plt.ylim(*ylim)
plt.xlabel("Training examples")
plt.ylabel("Score")
train_sizes, train_scores, test_scores = learning_curve(

estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes)
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
plt.grid()

plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
train_scores_mean + train_scores_std, alpha=0.1,
color="r")

plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std, alpha=0.1, color="g")

plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
label="Training score")

plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
label="Cross-validation score")

plt.legend(loc="best")
return plt

digits = load_digits()
X, y = digits.data, digits.target

title = "Learning Curves (Naive Bayes)"
# Cross validation with 100 iterations to get smoother mean test and train
# score curves, each time with 20% data randomly selected as a validation set.
cv = cross_validation.ShuffleSplit(digits.data.shape[0], n_iter=100,

test_size=0.2, random_state=0)

estimator = GaussianNB()
plot_learning_curve(estimator, title, X, y, ylim=(0.7, 1.01), cv=cv, n_jobs=4)

title = "Learning Curves (SVM, RBF kernel, $\gamma=0.001$)"
# SVC is more expensive so we do a lower number of CV iterations:
cv = cross_validation.ShuffleSplit(digits.data.shape[0], n_iter=10,

test_size=0.2, random_state=0)
estimator = SVC(gamma=0.001)
plot_learning_curve(estimator, title, X, y, (0.7, 1.01), cv=cv, n_jobs=4)

plt.show()

Total running time of the example: 7.70 seconds ( 0 minutes 7.70 seconds)

4.18.11 Receiver Operating Characteristic (ROC)

Example of Receiver Operating Characteristic (ROC) metric to evaluate classifier output quality.

ROC curves typically feature true positive rate on the Y axis, and false positive rate on the X axis. This means that the
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top left corner of the plot is the “ideal” point - a false positive rate of zero, and a true positive rate of one. This is not
very realistic, but it does mean that a larger area under the curve (AUC) is usually better.

The “steepness” of ROC curves is also important, since it is ideal to maximize the true positive rate while minimizing
the false positive rate.

Multiclass settings

ROC curves are typically used in binary classification to study the output of a classifier. In order to extend ROC curve
and ROC area to multi-class or multi-label classification, it is necessary to binarize the output. One ROC curve can
be drawn per label, but one can also draw a ROC curve by considering each element of the label indicator matrix as a
binary prediction (micro-averaging).

Another evaluation measure for multi-class classification is macro-averaging, which gives equal weight to the classi-
fication of each label.

Note:
See also sklearn.metrics.roc_auc_score, Receiver Operating Characteristic (ROC) with cross valida-

tion.

•

•

Python source code: plot_roc.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets
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from sklearn.metrics import roc_curve, auc
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import label_binarize
from sklearn.multiclass import OneVsRestClassifier
from scipy import interp

# Import some data to play with
iris = datasets.load_iris()
X = iris.data
y = iris.target

# Binarize the output
y = label_binarize(y, classes=[0, 1, 2])
n_classes = y.shape[1]

# Add noisy features to make the problem harder
random_state = np.random.RandomState(0)
n_samples, n_features = X.shape
X = np.c_[X, random_state.randn(n_samples, 200 * n_features)]

# shuffle and split training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5,

random_state=0)

# Learn to predict each class against the other
classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True,

random_state=random_state))
y_score = classifier.fit(X_train, y_train).decision_function(X_test)

# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):

fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])

# Compute micro-average ROC curve and ROC area
fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])

##############################################################################
# Plot of a ROC curve for a specific class
plt.figure()
plt.plot(fpr[2], tpr[2], label='ROC curve (area = %0.2f)' % roc_auc[2])
plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.show()

##############################################################################
# Plot ROC curves for the multiclass problem
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# Compute macro-average ROC curve and ROC area

# First aggregate all false positive rates
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))

# Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
for i in range(n_classes):

mean_tpr += interp(all_fpr, fpr[i], tpr[i])

# Finally average it and compute AUC
mean_tpr /= n_classes

fpr["macro"] = all_fpr
tpr["macro"] = mean_tpr
roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])

# Plot all ROC curves
plt.figure()
plt.plot(fpr["micro"], tpr["micro"],

label='micro-average ROC curve (area = {0:0.2f})'
''.format(roc_auc["micro"]),

linewidth=2)

plt.plot(fpr["macro"], tpr["macro"],
label='macro-average ROC curve (area = {0:0.2f})'

''.format(roc_auc["macro"]),
linewidth=2)

for i in range(n_classes):
plt.plot(fpr[i], tpr[i], label='ROC curve of class {0} (area = {1:0.2f})'

''.format(i, roc_auc[i]))

plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Some extension of Receiver operating characteristic to multi-class')
plt.legend(loc="lower right")
plt.show()

Total running time of the example: 0.20 seconds ( 0 minutes 0.20 seconds)

4.19 Nearest Neighbors

Examples concerning the sklearn.neighbors module.

4.19.1 Nearest Neighbors regression

Demonstrate the resolution of a regression problem using a k-Nearest Neighbor and the interpolation of the target
using both barycenter and constant weights.
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Python source code: plot_regression.py

print(__doc__)

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Fabian Pedregosa <fabian.pedregosa@inria.fr>
#
# License: BSD 3 clause (C) INRIA

###############################################################################
# Generate sample data
import numpy as np
import matplotlib.pyplot as plt
from sklearn import neighbors

np.random.seed(0)
X = np.sort(5 * np.random.rand(40, 1), axis=0)
T = np.linspace(0, 5, 500)[:, np.newaxis]
y = np.sin(X).ravel()

# Add noise to targets
y[::5] += 1 * (0.5 - np.random.rand(8))

###############################################################################
# Fit regression model
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n_neighbors = 5

for i, weights in enumerate(['uniform', 'distance']):
knn = neighbors.KNeighborsRegressor(n_neighbors, weights=weights)
y_ = knn.fit(X, y).predict(T)

plt.subplot(2, 1, i + 1)
plt.scatter(X, y, c='k', label='data')
plt.plot(T, y_, c='g', label='prediction')
plt.axis('tight')
plt.legend()
plt.title("KNeighborsRegressor (k = %i, weights = '%s')" % (n_neighbors,

weights))

plt.show()

Total running time of the example: 0.11 seconds ( 0 minutes 0.11 seconds)

4.19.2 Nearest Neighbors Classification

Sample usage of Nearest Neighbors classification. It will plot the decision boundaries for each class.

•

•

Python source code: plot_classification.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
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from matplotlib.colors import ListedColormap
from sklearn import neighbors, datasets

n_neighbors = 15

# import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features. We could

# avoid this ugly slicing by using a two-dim dataset
y = iris.target

h = .02 # step size in the mesh

# Create color maps
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])

for weights in ['uniform', 'distance']:
# we create an instance of Neighbours Classifier and fit the data.
clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
clf.fit(X, y)

# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)

# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.title("3-Class classification (k = %i, weights = '%s')"

% (n_neighbors, weights))

plt.show()

Total running time of the example: 0.41 seconds ( 0 minutes 0.41 seconds)

4.19.3 Nearest Centroid Classification

Sample usage of Nearest Centroid classification. It will plot the decision boundaries for each class.
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•

•

Script output:

None 0.813333333333
0.1 0.813333333333

Python source code: plot_nearest_centroid.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn import datasets
from sklearn.neighbors import NearestCentroid

n_neighbors = 15

# import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features. We could

# avoid this ugly slicing by using a two-dim dataset
y = iris.target

h = .02 # step size in the mesh

# Create color maps
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])
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for shrinkage in [None, 0.1]:
# we create an instance of Neighbours Classifier and fit the data.
clf = NearestCentroid(shrink_threshold=shrinkage)
clf.fit(X, y)
y_pred = clf.predict(X)
print(shrinkage, np.mean(y == y_pred))
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)

# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
plt.title("3-Class classification (shrink_threshold=%r)"

% shrinkage)
plt.axis('tight')

plt.show()

Total running time of the example: 0.13 seconds ( 0 minutes 0.13 seconds)

4.19.4 Kernel Density Estimation

This example shows how kernel density estimation (KDE), a powerful non-parametric density estimation technique,
can be used to learn a generative model for a dataset. With this generative model in place, new samples can be drawn.
These new samples reflect the underlying model of the data.
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Script output:

best bandwidth: 3.79269019073225

Python source code: plot_digits_kde_sampling.py

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import load_digits
from sklearn.neighbors import KernelDensity
from sklearn.decomposition import PCA
from sklearn.grid_search import GridSearchCV

# load the data
digits = load_digits()
data = digits.data

# project the 64-dimensional data to a lower dimension
pca = PCA(n_components=15, whiten=False)
data = pca.fit_transform(digits.data)

# use grid search cross-validation to optimize the bandwidth
params = {'bandwidth': np.logspace(-1, 1, 20)}
grid = GridSearchCV(KernelDensity(), params)
grid.fit(data)
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print("best bandwidth: {0}".format(grid.best_estimator_.bandwidth))

# use the best estimator to compute the kernel density estimate
kde = grid.best_estimator_

# sample 44 new points from the data
new_data = kde.sample(44, random_state=0)
new_data = pca.inverse_transform(new_data)

# turn data into a 4x11 grid
new_data = new_data.reshape((4, 11, -1))
real_data = digits.data[:44].reshape((4, 11, -1))

# plot real digits and resampled digits
fig, ax = plt.subplots(9, 11, subplot_kw=dict(xticks=[], yticks=[]))
for j in range(11):

ax[4, j].set_visible(False)
for i in range(4):

im = ax[i, j].imshow(real_data[i, j].reshape((8, 8)),
cmap=plt.cm.binary, interpolation='nearest')

im.set_clim(0, 16)
im = ax[i + 5, j].imshow(new_data[i, j].reshape((8, 8)),

cmap=plt.cm.binary, interpolation='nearest')
im.set_clim(0, 16)

ax[0, 5].set_title('Selection from the input data')
ax[5, 5].set_title('"New" digits drawn from the kernel density model')

plt.show()

Total running time of the example: 7.11 seconds ( 0 minutes 7.11 seconds)

4.19.5 Kernel Density Estimate of Species Distributions

This shows an example of a neighbors-based query (in particular a kernel density estimate) on geospatial data, using
a Ball Tree built upon the Haversine distance metric – i.e. distances over points in latitude/longitude. The dataset
is provided by Phillips et. al. (2006). If available, the example uses basemap to plot the coast lines and national
boundaries of South America.

This example does not perform any learning over the data (see Species distribution modeling for an example of classi-
fication based on the attributes in this dataset). It simply shows the kernel density estimate of observed data points in
geospatial coordinates.

The two species are:

• “Bradypus variegatus” , the Brown-throated Sloth.

• “Microryzomys minutus” , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia,
Ecuador, Peru, and Venezuela.

References

• “Maximum entropy modeling of species geographic distributions” S. J. Phillips, R. P. Anderson, R. E. Schapire
- Ecological Modelling, 190:231-259, 2006.
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Script output:

- computing KDE in spherical coordinates
- plot coastlines from coverage
- computing KDE in spherical coordinates
- plot coastlines from coverage

Python source code: plot_species_kde.py

# Author: Jake Vanderplas <jakevdp@cs.washington.edu>
#
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_species_distributions
from sklearn.datasets.species_distributions import construct_grids
from sklearn.neighbors import KernelDensity

# if basemap is available, we'll use it.
# otherwise, we'll improvise later...
try:

from mpl_toolkits.basemap import Basemap
basemap = True

except ImportError:
basemap = False

4.19. Nearest Neighbors 887



scikit-learn user guide, Release 0.17

# Get matrices/arrays of species IDs and locations
data = fetch_species_distributions()
species_names = ['Bradypus Variegatus', 'Microryzomys Minutus']

Xtrain = np.vstack([data['train']['dd lat'],
data['train']['dd long']]).T

ytrain = np.array([d.decode('ascii').startswith('micro')
for d in data['train']['species']], dtype='int')

Xtrain *= np.pi / 180. # Convert lat/long to radians

# Set up the data grid for the contour plot
xgrid, ygrid = construct_grids(data)
X, Y = np.meshgrid(xgrid[::5], ygrid[::5][::-1])
land_reference = data.coverages[6][::5, ::5]
land_mask = (land_reference > -9999).ravel()

xy = np.vstack([Y.ravel(), X.ravel()]).T
xy = xy[land_mask]
xy *= np.pi / 180.

# Plot map of South America with distributions of each species
fig = plt.figure()
fig.subplots_adjust(left=0.05, right=0.95, wspace=0.05)

for i in range(2):
plt.subplot(1, 2, i + 1)

# construct a kernel density estimate of the distribution
print(" - computing KDE in spherical coordinates")
kde = KernelDensity(bandwidth=0.04, metric='haversine',

kernel='gaussian', algorithm='ball_tree')
kde.fit(Xtrain[ytrain == i])

# evaluate only on the land: -9999 indicates ocean
Z = -9999 + np.zeros(land_mask.shape[0])
Z[land_mask] = np.exp(kde.score_samples(xy))
Z = Z.reshape(X.shape)

# plot contours of the density
levels = np.linspace(0, Z.max(), 25)
plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds)

if basemap:
print(" - plot coastlines using basemap")
m = Basemap(projection='cyl', llcrnrlat=Y.min(),

urcrnrlat=Y.max(), llcrnrlon=X.min(),
urcrnrlon=X.max(), resolution='c')

m.drawcoastlines()
m.drawcountries()

else:
print(" - plot coastlines from coverage")
plt.contour(X, Y, land_reference,

levels=[-9999], colors="k",
linestyles="solid")

plt.xticks([])
plt.yticks([])

plt.title(species_names[i])
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plt.show()

Total running time of the example: 6.77 seconds ( 0 minutes 6.77 seconds)

4.19.6 Hyper-parameters of Approximate Nearest Neighbors

This example demonstrates the behaviour of the accuracy of the nearest neighbor queries of Locality Sensitive Hashing
Forest as the number of candidates and the number of estimators (trees) vary.

In the first plot, accuracy is measured with the number of candidates. Here, the term “number of candidates” refers to
maximum bound for the number of distinct points retrieved from each tree to calculate the distances. Nearest neighbors
are selected from this pool of candidates. Number of estimators is maintained at three fixed levels (1, 5, 10).

In the second plot, the number of candidates is fixed at 50. Number of trees is varied and the accuracy
is plotted against those values. To measure the accuracy, the true nearest neighbors are required, therefore
sklearn.neighbors.NearestNeighbors is used to compute the exact neighbors.

•

•

Python source code: plot_approximate_nearest_neighbors_hyperparameters.py

from __future__ import division
print(__doc__)

# Author: Maheshakya Wijewardena <maheshakya.10@cse.mrt.ac.lk>
#
# License: BSD 3 clause
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###############################################################################
import numpy as np
from sklearn.datasets.samples_generator import make_blobs
from sklearn.neighbors import LSHForest
from sklearn.neighbors import NearestNeighbors
import matplotlib.pyplot as plt

# Initialize size of the database, iterations and required neighbors.
n_samples = 10000
n_features = 100
n_queries = 30
rng = np.random.RandomState(42)

# Generate sample data
X, _ = make_blobs(n_samples=n_samples + n_queries,

n_features=n_features, centers=10,
random_state=0)

X_index = X[:n_samples]
X_query = X[n_samples:]
# Get exact neighbors
nbrs = NearestNeighbors(n_neighbors=1, algorithm='brute',

metric='cosine').fit(X_index)
neighbors_exact = nbrs.kneighbors(X_query, return_distance=False)

# Set `n_candidate` values
n_candidates_values = np.linspace(10, 500, 5).astype(np.int)
n_estimators_for_candidate_value = [1, 5, 10]
n_iter = 10
stds_accuracies = np.zeros((len(n_estimators_for_candidate_value),

n_candidates_values.shape[0]),
dtype=float)

accuracies_c = np.zeros((len(n_estimators_for_candidate_value),
n_candidates_values.shape[0]), dtype=float)

# LSH Forest is a stochastic index: perform several iteration to estimate
# expected accuracy and standard deviation displayed as error bars in
# the plots
for j, value in enumerate(n_estimators_for_candidate_value):

for i, n_candidates in enumerate(n_candidates_values):
accuracy_c = []
for seed in range(n_iter):

lshf = LSHForest(n_estimators=value,
n_candidates=n_candidates, n_neighbors=1,
random_state=seed)

# Build the LSH Forest index
lshf.fit(X_index)
# Get neighbors
neighbors_approx = lshf.kneighbors(X_query,

return_distance=False)
accuracy_c.append(np.sum(np.equal(neighbors_approx,

neighbors_exact)) /
n_queries)

stds_accuracies[j, i] = np.std(accuracy_c)
accuracies_c[j, i] = np.mean(accuracy_c)

# Set `n_estimators` values
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n_estimators_values = [1, 5, 10, 20, 30, 40, 50]
accuracies_trees = np.zeros(len(n_estimators_values), dtype=float)

# Calculate average accuracy for each value of `n_estimators`
for i, n_estimators in enumerate(n_estimators_values):

lshf = LSHForest(n_estimators=n_estimators, n_neighbors=1)
# Build the LSH Forest index
lshf.fit(X_index)
# Get neighbors
neighbors_approx = lshf.kneighbors(X_query, return_distance=False)
accuracies_trees[i] = np.sum(np.equal(neighbors_approx,

neighbors_exact))/n_queries

###############################################################################
# Plot the accuracy variation with `n_candidates`
plt.figure()
colors = ['c', 'm', 'y']
for i, n_estimators in enumerate(n_estimators_for_candidate_value):

label = 'n_estimators = %d ' % n_estimators
plt.plot(n_candidates_values, accuracies_c[i, :],

'o-', c=colors[i], label=label)
plt.errorbar(n_candidates_values, accuracies_c[i, :],

stds_accuracies[i, :], c=colors[i])

plt.legend(loc='upper left', fontsize='small')
plt.ylim([0, 1.2])
plt.xlim(min(n_candidates_values), max(n_candidates_values))
plt.ylabel("Accuracy")
plt.xlabel("n_candidates")
plt.grid(which='both')
plt.title("Accuracy variation with n_candidates")

# Plot the accuracy variation with `n_estimators`
plt.figure()
plt.scatter(n_estimators_values, accuracies_trees, c='k')
plt.plot(n_estimators_values, accuracies_trees, c='g')
plt.ylim([0, 1.2])
plt.xlim(min(n_estimators_values), max(n_estimators_values))
plt.ylabel("Accuracy")
plt.xlabel("n_estimators")
plt.grid(which='both')
plt.title("Accuracy variation with n_estimators")

plt.show()

Total running time of the example: 35.33 seconds ( 0 minutes 35.33 seconds)

4.19.7 Simple 1D Kernel Density Estimation

This example uses the sklearn.neighbors.KernelDensity class to demonstrate the principles of Kernel
Density Estimation in one dimension.

The first plot shows one of the problems with using histograms to visualize the density of points in 1D. Intuitively, a
histogram can be thought of as a scheme in which a unit “block” is stacked above each point on a regular grid. As
the top two panels show, however, the choice of gridding for these blocks can lead to wildly divergent ideas about
the underlying shape of the density distribution. If we instead center each block on the point it represents, we get the
estimate shown in the bottom left panel. This is a kernel density estimation with a “top hat” kernel. This idea can be
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generalized to other kernel shapes: the bottom-right panel of the first figure shows a Gaussian kernel density estimate
over the same distribution.

Scikit-learn implements efficient kernel density estimation using either a Ball Tree or KD Tree structure, through the
sklearn.neighbors.KernelDensity estimator. The available kernels are shown in the second figure of this
example.

The third figure compares kernel density estimates for a distribution of 100 samples in 1 dimension. Though this
example uses 1D distributions, kernel density estimation is easily and efficiently extensible to higher dimensions as
well.

•

•

•

Python source code: plot_kde_1d.py

# Author: Jake Vanderplas <jakevdp@cs.washington.edu>
#
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import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
from sklearn.neighbors import KernelDensity

#----------------------------------------------------------------------
# Plot the progression of histograms to kernels
np.random.seed(1)
N = 20
X = np.concatenate((np.random.normal(0, 1, 0.3 * N),

np.random.normal(5, 1, 0.7 * N)))[:, np.newaxis]
X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis]
bins = np.linspace(-5, 10, 10)

fig, ax = plt.subplots(2, 2, sharex=True, sharey=True)
fig.subplots_adjust(hspace=0.05, wspace=0.05)

# histogram 1
ax[0, 0].hist(X[:, 0], bins=bins, fc='#AAAAFF', normed=True)
ax[0, 0].text(-3.5, 0.31, "Histogram")

# histogram 2
ax[0, 1].hist(X[:, 0], bins=bins + 0.75, fc='#AAAAFF', normed=True)
ax[0, 1].text(-3.5, 0.31, "Histogram, bins shifted")

# tophat KDE
kde = KernelDensity(kernel='tophat', bandwidth=0.75).fit(X)
log_dens = kde.score_samples(X_plot)
ax[1, 0].fill(X_plot[:, 0], np.exp(log_dens), fc='#AAAAFF')
ax[1, 0].text(-3.5, 0.31, "Tophat Kernel Density")

# Gaussian KDE
kde = KernelDensity(kernel='gaussian', bandwidth=0.75).fit(X)
log_dens = kde.score_samples(X_plot)
ax[1, 1].fill(X_plot[:, 0], np.exp(log_dens), fc='#AAAAFF')
ax[1, 1].text(-3.5, 0.31, "Gaussian Kernel Density")

for axi in ax.ravel():
axi.plot(X[:, 0], np.zeros(X.shape[0]) - 0.01, '+k')
axi.set_xlim(-4, 9)
axi.set_ylim(-0.02, 0.34)

for axi in ax[:, 0]:
axi.set_ylabel('Normalized Density')

for axi in ax[1, :]:
axi.set_xlabel('x')

#----------------------------------------------------------------------
# Plot all available kernels
X_plot = np.linspace(-6, 6, 1000)[:, None]
X_src = np.zeros((1, 1))

fig, ax = plt.subplots(2, 3, sharex=True, sharey=True)
fig.subplots_adjust(left=0.05, right=0.95, hspace=0.05, wspace=0.05)
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def format_func(x, loc):
if x == 0:

return '0'
elif x == 1:

return 'h'
elif x == -1:

return '-h'
else:

return '%ih' % x

for i, kernel in enumerate(['gaussian', 'tophat', 'epanechnikov',
'exponential', 'linear', 'cosine']):

axi = ax.ravel()[i]
log_dens = KernelDensity(kernel=kernel).fit(X_src).score_samples(X_plot)
axi.fill(X_plot[:, 0], np.exp(log_dens), '-k', fc='#AAAAFF')
axi.text(-2.6, 0.95, kernel)

axi.xaxis.set_major_formatter(plt.FuncFormatter(format_func))
axi.xaxis.set_major_locator(plt.MultipleLocator(1))
axi.yaxis.set_major_locator(plt.NullLocator())

axi.set_ylim(0, 1.05)
axi.set_xlim(-2.9, 2.9)

ax[0, 1].set_title('Available Kernels')

#----------------------------------------------------------------------
# Plot a 1D density example
N = 100
np.random.seed(1)
X = np.concatenate((np.random.normal(0, 1, 0.3 * N),

np.random.normal(5, 1, 0.7 * N)))[:, np.newaxis]

X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis]

true_dens = (0.3 * norm(0, 1).pdf(X_plot[:, 0])
+ 0.7 * norm(5, 1).pdf(X_plot[:, 0]))

fig, ax = plt.subplots()
ax.fill(X_plot[:, 0], true_dens, fc='black', alpha=0.2,

label='input distribution')

for kernel in ['gaussian', 'tophat', 'epanechnikov']:
kde = KernelDensity(kernel=kernel, bandwidth=0.5).fit(X)
log_dens = kde.score_samples(X_plot)
ax.plot(X_plot[:, 0], np.exp(log_dens), '-',

label="kernel = '{0}'".format(kernel))

ax.text(6, 0.38, "N={0} points".format(N))

ax.legend(loc='upper left')
ax.plot(X[:, 0], -0.005 - 0.01 * np.random.random(X.shape[0]), '+k')

ax.set_xlim(-4, 9)
ax.set_ylim(-0.02, 0.4)
plt.show()

Total running time of the example: 0.52 seconds ( 0 minutes 0.52 seconds)
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4.19.8 Scalability of Approximate Nearest Neighbors

This example studies the scalability profile of approximate 10-neighbors queries using the LSHForest with
n_estimators=20 and n_candidates=200 when varying the number of samples in the dataset.

The first plot demonstrates the relationship between query time and index size of LSHForest. Query time is compared
with the brute force method in exact nearest neighbor search for the same index sizes. The brute force queries have
a very predictable linear scalability with the index (full scan). LSHForest index have sub-linear scalability profile but
can be slower for small datasets.

The second plot shows the speedup when using approximate queries vs brute force exact queries. The speedup tends
to increase with the dataset size but should reach a plateau typically when doing queries on datasets with millions
of samples and a few hundreds of dimensions. Higher dimensional datasets tends to benefit more from LSHForest
indexing.

The break even point (speedup = 1) depends on the dimensionality and structure of the indexed data and the parameters
of the LSHForest index.

The precision of approximate queries should decrease slowly with the dataset size. The speed of the decrease depends
mostly on the LSHForest parameters and the dimensionality of the data.

•

•
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•

Script output:

Index size: 1000, exact: 0.002s, LSHF: 0.018s, speedup: 0.1, accuracy: 1.00 +/-0.00
Index size: 2511, exact: 0.006s, LSHF: 0.047s, speedup: 0.1, accuracy: 1.00 +/-0.00
Index size: 6309, exact: 0.019s, LSHF: 0.039s, speedup: 0.5, accuracy: 1.00 +/-0.00
Index size: 15848, exact: 0.023s, LSHF: 0.029s, speedup: 0.9, accuracy: 1.00 +/-0.00
Index size: 39810, exact: 0.055s, LSHF: 0.026s, speedup: 2.1, accuracy: 1.00 +/-0.00
Index size: 100000, exact: 0.132s, LSHF: 0.033s, speedup: 4.1, accuracy: 0.94 +/-0.08

Python source code: plot_approximate_nearest_neighbors_scalability.py

from __future__ import division
print(__doc__)

# Authors: Maheshakya Wijewardena <maheshakya.10@cse.mrt.ac.lk>
# Olivier Grisel <olivier.grisel@ensta.org>
#
# License: BSD 3 clause

###############################################################################
import time
import numpy as np
from sklearn.datasets.samples_generator import make_blobs
from sklearn.neighbors import LSHForest
from sklearn.neighbors import NearestNeighbors
import matplotlib.pyplot as plt

# Parameters of the study
n_samples_min = int(1e3)
n_samples_max = int(1e5)
n_features = 100
n_centers = 100
n_queries = 100
n_steps = 6
n_iter = 5

# Initialize the range of `n_samples`
n_samples_values = np.logspace(np.log10(n_samples_min),

np.log10(n_samples_max),
n_steps).astype(np.int)

# Generate some structured data
rng = np.random.RandomState(42)
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all_data, _ = make_blobs(n_samples=n_samples_max + n_queries,
n_features=n_features, centers=n_centers, shuffle=True,
random_state=0)

queries = all_data[:n_queries]
index_data = all_data[n_queries:]

# Metrics to collect for the plots
average_times_exact = []
average_times_approx = []
std_times_approx = []
accuracies = []
std_accuracies = []
average_speedups = []
std_speedups = []

# Calculate the average query time
for n_samples in n_samples_values:

X = index_data[:n_samples]
# Initialize LSHForest for queries of a single neighbor
lshf = LSHForest(n_estimators=20, n_candidates=200,

n_neighbors=10).fit(X)
nbrs = NearestNeighbors(algorithm='brute', metric='cosine',

n_neighbors=10).fit(X)
time_approx = []
time_exact = []
accuracy = []

for i in range(n_iter):
# pick one query at random to study query time variability in LSHForest
query = queries[[rng.randint(0, n_queries)]]

t0 = time.time()
exact_neighbors = nbrs.kneighbors(query, return_distance=False)
time_exact.append(time.time() - t0)

t0 = time.time()
approx_neighbors = lshf.kneighbors(query, return_distance=False)
time_approx.append(time.time() - t0)

accuracy.append(np.in1d(approx_neighbors, exact_neighbors).mean())

average_time_exact = np.mean(time_exact)
average_time_approx = np.mean(time_approx)
speedup = np.array(time_exact) / np.array(time_approx)
average_speedup = np.mean(speedup)
mean_accuracy = np.mean(accuracy)
std_accuracy = np.std(accuracy)
print("Index size: %d, exact: %0.3fs, LSHF: %0.3fs, speedup: %0.1f, "

"accuracy: %0.2f +/-%0.2f" %
(n_samples, average_time_exact, average_time_approx, average_speedup,
mean_accuracy, std_accuracy))

accuracies.append(mean_accuracy)
std_accuracies.append(std_accuracy)
average_times_exact.append(average_time_exact)
average_times_approx.append(average_time_approx)
std_times_approx.append(np.std(time_approx))
average_speedups.append(average_speedup)
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std_speedups.append(np.std(speedup))

# Plot average query time against n_samples
plt.figure()
plt.errorbar(n_samples_values, average_times_approx, yerr=std_times_approx,

fmt='o-', c='r', label='LSHForest')
plt.plot(n_samples_values, average_times_exact, c='b',

label="NearestNeighbors(algorithm='brute', metric='cosine')")
plt.legend(loc='upper left', fontsize='small')
plt.ylim(0, None)
plt.ylabel("Average query time in seconds")
plt.xlabel("n_samples")
plt.grid(which='both')
plt.title("Impact of index size on response time for first "

"nearest neighbors queries")

# Plot average query speedup versus index size
plt.figure()
plt.errorbar(n_samples_values, average_speedups, yerr=std_speedups,

fmt='o-', c='r')
plt.ylim(0, None)
plt.ylabel("Average speedup")
plt.xlabel("n_samples")
plt.grid(which='both')
plt.title("Speedup of the approximate NN queries vs brute force")

# Plot average precision versus index size
plt.figure()
plt.errorbar(n_samples_values, accuracies, std_accuracies, fmt='o-', c='c')
plt.ylim(0, 1.1)
plt.ylabel("precision@10")
plt.xlabel("n_samples")
plt.grid(which='both')
plt.title("precision of 10-nearest-neighbors queries with index size")

plt.show()

Total running time of the example: 10.38 seconds ( 0 minutes 10.38 seconds)

4.20 Neural Networks

Examples concerning the sklearn.neural_network module.

4.20.1 Restricted Boltzmann Machine features for digit classification

For greyscale image data where pixel values can be interpreted as degrees of blackness on a white background, like
handwritten digit recognition, the Bernoulli Restricted Boltzmann machine model (BernoulliRBM) can perform
effective non-linear feature extraction.

In order to learn good latent representations from a small dataset, we artificially generate more labeled data by per-
turbing the training data with linear shifts of 1 pixel in each direction.

This example shows how to build a classification pipeline with a BernoulliRBM feature extractor and a
LogisticRegression classifier. The hyperparameters of the entire model (learning rate, hidden layer size, regu-
larization) were optimized by grid search, but the search is not reproduced here because of runtime constraints.
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Logistic regression on raw pixel values is presented for comparison. The example shows that the features extracted by
the BernoulliRBM help improve the classification accuracy.

Script output:

[BernoulliRBM] Iteration 1, pseudo-likelihood = -25.39, time = 0.28s
[BernoulliRBM] Iteration 2, pseudo-likelihood = -23.77, time = 0.42s
[BernoulliRBM] Iteration 3, pseudo-likelihood = -22.94, time = 0.43s
[BernoulliRBM] Iteration 4, pseudo-likelihood = -21.91, time = 0.46s
[BernoulliRBM] Iteration 5, pseudo-likelihood = -21.69, time = 0.46s
[BernoulliRBM] Iteration 6, pseudo-likelihood = -21.06, time = 0.43s
[BernoulliRBM] Iteration 7, pseudo-likelihood = -20.89, time = 0.53s
[BernoulliRBM] Iteration 8, pseudo-likelihood = -20.64, time = 0.43s
[BernoulliRBM] Iteration 9, pseudo-likelihood = -20.36, time = 0.42s
[BernoulliRBM] Iteration 10, pseudo-likelihood = -20.09, time = 0.46s
[BernoulliRBM] Iteration 11, pseudo-likelihood = -20.08, time = 0.44s
[BernoulliRBM] Iteration 12, pseudo-likelihood = -19.82, time = 0.54s
[BernoulliRBM] Iteration 13, pseudo-likelihood = -19.64, time = 0.40s
[BernoulliRBM] Iteration 14, pseudo-likelihood = -19.61, time = 0.48s
[BernoulliRBM] Iteration 15, pseudo-likelihood = -19.57, time = 0.41s
[BernoulliRBM] Iteration 16, pseudo-likelihood = -19.41, time = 0.43s
[BernoulliRBM] Iteration 17, pseudo-likelihood = -19.30, time = 0.40s
[BernoulliRBM] Iteration 18, pseudo-likelihood = -19.25, time = 0.40s
[BernoulliRBM] Iteration 19, pseudo-likelihood = -19.27, time = 0.42s
[BernoulliRBM] Iteration 20, pseudo-likelihood = -19.01, time = 0.42s

Logistic regression using RBM features:
precision recall f1-score support

0 0.99 0.99 0.99 174
1 0.92 0.95 0.93 184
2 0.95 0.98 0.97 166
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3 0.97 0.91 0.94 194
4 0.97 0.95 0.96 186
5 0.93 0.93 0.93 181
6 0.98 0.97 0.97 207
7 0.95 1.00 0.97 154
8 0.90 0.88 0.89 182
9 0.91 0.93 0.92 169

avg / total 0.95 0.95 0.95 1797

Logistic regression using raw pixel features:
precision recall f1-score support

0 0.85 0.94 0.89 174
1 0.57 0.55 0.56 184
2 0.72 0.85 0.78 166
3 0.76 0.74 0.75 194
4 0.85 0.82 0.84 186
5 0.74 0.75 0.75 181
6 0.93 0.88 0.91 207
7 0.86 0.90 0.88 154
8 0.68 0.55 0.61 182
9 0.71 0.74 0.72 169

avg / total 0.77 0.77 0.77 1797

Python source code: plot_rbm_logistic_classification.py

from __future__ import print_function

print(__doc__)

# Authors: Yann N. Dauphin, Vlad Niculae, Gabriel Synnaeve
# License: BSD

import numpy as np
import matplotlib.pyplot as plt

from scipy.ndimage import convolve
from sklearn import linear_model, datasets, metrics
from sklearn.cross_validation import train_test_split
from sklearn.neural_network import BernoulliRBM
from sklearn.pipeline import Pipeline

###############################################################################
# Setting up

def nudge_dataset(X, Y):
"""
This produces a dataset 5 times bigger than the original one,
by moving the 8x8 images in X around by 1px to left, right, down, up
"""
direction_vectors = [

[[0, 1, 0],
[0, 0, 0],
[0, 0, 0]],
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[[0, 0, 0],
[1, 0, 0],
[0, 0, 0]],

[[0, 0, 0],
[0, 0, 1],
[0, 0, 0]],

[[0, 0, 0],
[0, 0, 0],
[0, 1, 0]]]

shift = lambda x, w: convolve(x.reshape((8, 8)), mode='constant',
weights=w).ravel()

X = np.concatenate([X] +
[np.apply_along_axis(shift, 1, X, vector)
for vector in direction_vectors])

Y = np.concatenate([Y for _ in range(5)], axis=0)
return X, Y

# Load Data
digits = datasets.load_digits()
X = np.asarray(digits.data, 'float32')
X, Y = nudge_dataset(X, digits.target)
X = (X - np.min(X, 0)) / (np.max(X, 0) + 0.0001) # 0-1 scaling

X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
test_size=0.2,
random_state=0)

# Models we will use
logistic = linear_model.LogisticRegression()
rbm = BernoulliRBM(random_state=0, verbose=True)

classifier = Pipeline(steps=[('rbm', rbm), ('logistic', logistic)])

###############################################################################
# Training

# Hyper-parameters. These were set by cross-validation,
# using a GridSearchCV. Here we are not performing cross-validation to
# save time.
rbm.learning_rate = 0.06
rbm.n_iter = 20
# More components tend to give better prediction performance, but larger
# fitting time
rbm.n_components = 100
logistic.C = 6000.0

# Training RBM-Logistic Pipeline
classifier.fit(X_train, Y_train)

# Training Logistic regression
logistic_classifier = linear_model.LogisticRegression(C=100.0)
logistic_classifier.fit(X_train, Y_train)

###############################################################################
# Evaluation
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print()
print("Logistic regression using RBM features:\n%s\n" % (

metrics.classification_report(
Y_test,
classifier.predict(X_test))))

print("Logistic regression using raw pixel features:\n%s\n" % (
metrics.classification_report(

Y_test,
logistic_classifier.predict(X_test))))

###############################################################################
# Plotting

plt.figure(figsize=(4.2, 4))
for i, comp in enumerate(rbm.components_):

plt.subplot(10, 10, i + 1)
plt.imshow(comp.reshape((8, 8)), cmap=plt.cm.gray_r,

interpolation='nearest')
plt.xticks(())
plt.yticks(())

plt.suptitle('100 components extracted by RBM', fontsize=16)
plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23)

plt.show()

Total running time of the example: 48.46 seconds ( 0 minutes 48.46 seconds)

4.21 Preprocessing

Examples concerning the sklearn.preprocessing module.

4.21.1 Using FunctionTransformer to select columns

Shows how to use a function transformer in a pipeline. If you know your dataset’s first principle component is irrelevant
for a classification task, you can use the FunctionTransformer to select all but the first column of the PCA transformed
data.

Python source code: plot_function_transformer.py

import matplotlib.pyplot as plt
import numpy as np

from sklearn.cross_validation import train_test_split
from sklearn.decomposition import PCA
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import FunctionTransformer

def _generate_vector(shift=0.5, noise=15):
return np.arange(1000) + (np.random.rand(1000) - shift) * noise

def generate_dataset():
"""
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This dataset is two lines with a slope ~ 1, where one has
a y offset of ~100
"""
return np.vstack((

np.vstack((
_generate_vector(),
_generate_vector() + 100,

)).T,
np.vstack((

_generate_vector(),
_generate_vector(),

)).T,
)), np.hstack((np.zeros(1000), np.ones(1000)))

def all_but_first_column(X):
return X[:, 1:]

def drop_first_component(X, y):
"""
Create a pipeline with PCA and the column selector and use it to
transform the dataset.
"""
pipeline = make_pipeline(

PCA(), FunctionTransformer(all_but_first_column),
)
X_train, X_test, y_train, y_test = train_test_split(X, y)
pipeline.fit(X_train, y_train)
return pipeline.transform(X_test), y_test

if __name__ == '__main__':
X, y = generate_dataset()
plt.scatter(X[:, 0], X[:, 1], c=y, s=50)
plt.show()
X_transformed, y_transformed = drop_first_component(*generate_dataset())
plt.scatter(

X_transformed[:, 0],
np.zeros(len(X_transformed)),
c=y_transformed,
s=50,

)
plt.show()

Total running time of the example: 0.00 seconds ( 0 minutes 0.00 seconds)

4.21.2 Robust Scaling on Toy Data

Making sure that each Feature has approximately the same scale can be a crucial preprocessing step. However, when
data contains outliers, StandardScaler can often be mislead. In such cases, it is better to use a scaler that is robust
against outliers.

Here, we demonstrate this on a toy dataset, where one single datapoint is a large outlier.
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Script output:

Testset accuracy using standard scaler: 0.545
Testset accuracy using robust scaler: 0.700

Python source code: plot_robust_scaling.py

from __future__ import print_function
print(__doc__)

# Code source: Thomas Unterthiner
# License: BSD 3 clause

import matplotlib.pyplot as plt
import numpy as np
from sklearn.preprocessing import StandardScaler, RobustScaler

# Create training and test data
np.random.seed(42)
n_datapoints = 100
Cov = [[0.9, 0.0], [0.0, 20.0]]
mu1 = [100.0, -3.0]
mu2 = [101.0, -3.0]
X1 = np.random.multivariate_normal(mean=mu1, cov=Cov, size=n_datapoints)
X2 = np.random.multivariate_normal(mean=mu2, cov=Cov, size=n_datapoints)
Y_train = np.hstack([[-1]*n_datapoints, [1]*n_datapoints])
X_train = np.vstack([X1, X2])

X1 = np.random.multivariate_normal(mean=mu1, cov=Cov, size=n_datapoints)
X2 = np.random.multivariate_normal(mean=mu2, cov=Cov, size=n_datapoints)
Y_test = np.hstack([[-1]*n_datapoints, [1]*n_datapoints])
X_test = np.vstack([X1, X2])

X_train[0, 0] = -1000 # a fairly large outlier

# Scale data
standard_scaler = StandardScaler()
Xtr_s = standard_scaler.fit_transform(X_train)
Xte_s = standard_scaler.transform(X_test)

robust_scaler = RobustScaler()
Xtr_r = robust_scaler.fit_transform(X_train)

904 Chapter 4. Examples



scikit-learn user guide, Release 0.17

Xte_r = robust_scaler.fit_transform(X_test)

# Plot data
fig, ax = plt.subplots(1, 3, figsize=(12, 4))
ax[0].scatter(X_train[:, 0], X_train[:, 1],

color=np.where(Y_train > 0, 'r', 'b'))
ax[1].scatter(Xtr_s[:, 0], Xtr_s[:, 1], color=np.where(Y_train > 0, 'r', 'b'))
ax[2].scatter(Xtr_r[:, 0], Xtr_r[:, 1], color=np.where(Y_train > 0, 'r', 'b'))
ax[0].set_title("Unscaled data")
ax[1].set_title("After standard scaling (zoomed in)")
ax[2].set_title("After robust scaling (zoomed in)")
# for the scaled data, we zoom in to the data center (outlier can't be seen!)
for a in ax[1:]:

a.set_xlim(-3, 3)
a.set_ylim(-3, 3)

plt.tight_layout()
plt.show()

# Classify using k-NN
from sklearn.neighbors import KNeighborsClassifier

knn = KNeighborsClassifier()
knn.fit(Xtr_s, Y_train)
acc_s = knn.score(Xte_s, Y_test)
print("Testset accuracy using standard scaler: %.3f" % acc_s)
knn.fit(Xtr_r, Y_train)
acc_r = knn.score(Xte_r, Y_test)
print("Testset accuracy using robust scaler: %.3f" % acc_r)

Total running time of the example: 0.31 seconds ( 0 minutes 0.31 seconds)

4.22 Semi Supervised Classification

Examples concerning the sklearn.semi_supervised module.

4.22.1 Label Propagation learning a complex structure

Example of LabelPropagation learning a complex internal structure to demonstrate “manifold learning”. The outer
circle should be labeled “red” and the inner circle “blue”. Because both label groups lie inside their own distinct
shape, we can see that the labels propagate correctly around the circle.
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Python source code: plot_label_propagation_structure.py

print(__doc__)

# Authors: Clay Woolam <clay@woolam.org>
# Andreas Mueller <amueller@ais.uni-bonn.de>
# Licence: BSD

import numpy as np
import matplotlib.pyplot as plt
from sklearn.semi_supervised import label_propagation
from sklearn.datasets import make_circles

# generate ring with inner box
n_samples = 200
X, y = make_circles(n_samples=n_samples, shuffle=False)
outer, inner = 0, 1
labels = -np.ones(n_samples)
labels[0] = outer
labels[-1] = inner

###############################################################################
# Learn with LabelSpreading
label_spread = label_propagation.LabelSpreading(kernel='knn', alpha=1.0)
label_spread.fit(X, labels)

###############################################################################
# Plot output labels
output_labels = label_spread.transduction_
plt.figure(figsize=(8.5, 4))
plt.subplot(1, 2, 1)
plot_outer_labeled, = plt.plot(X[labels == outer, 0],

X[labels == outer, 1], 'rs')
plot_unlabeled, = plt.plot(X[labels == -1, 0], X[labels == -1, 1], 'g.')
plot_inner_labeled, = plt.plot(X[labels == inner, 0],

X[labels == inner, 1], 'bs')
plt.legend((plot_outer_labeled, plot_inner_labeled, plot_unlabeled),

('Outer Labeled', 'Inner Labeled', 'Unlabeled'), loc='upper left',
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numpoints=1, shadow=False)
plt.title("Raw data (2 classes=red and blue)")

plt.subplot(1, 2, 2)
output_label_array = np.asarray(output_labels)
outer_numbers = np.where(output_label_array == outer)[0]
inner_numbers = np.where(output_label_array == inner)[0]
plot_outer, = plt.plot(X[outer_numbers, 0], X[outer_numbers, 1], 'rs')
plot_inner, = plt.plot(X[inner_numbers, 0], X[inner_numbers, 1], 'bs')
plt.legend((plot_outer, plot_inner), ('Outer Learned', 'Inner Learned'),

loc='upper left', numpoints=1, shadow=False)
plt.title("Labels learned with Label Spreading (KNN)")

plt.subplots_adjust(left=0.07, bottom=0.07, right=0.93, top=0.92)
plt.show()

Total running time of the example: 0.15 seconds ( 0 minutes 0.15 seconds)

4.22.2 Decision boundary of label propagation versus SVM on the Iris dataset

Comparison for decision boundary generated on iris dataset between Label Propagation and SVM.

This demonstrates Label Propagation learning a good boundary even with a small amount of labeled data.

Python source code: plot_label_propagation_versus_svm_iris.py
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print(__doc__)

# Authors: Clay Woolam <clay@woolam.org>
# Licence: BSD

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn import svm
from sklearn.semi_supervised import label_propagation

rng = np.random.RandomState(0)

iris = datasets.load_iris()

X = iris.data[:, :2]
y = iris.target

# step size in the mesh
h = .02

y_30 = np.copy(y)
y_30[rng.rand(len(y)) < 0.3] = -1
y_50 = np.copy(y)
y_50[rng.rand(len(y)) < 0.5] = -1
# we create an instance of SVM and fit out data. We do not scale our
# data since we want to plot the support vectors
ls30 = (label_propagation.LabelSpreading().fit(X, y_30),

y_30)
ls50 = (label_propagation.LabelSpreading().fit(X, y_50),

y_50)
ls100 = (label_propagation.LabelSpreading().fit(X, y), y)
rbf_svc = (svm.SVC(kernel='rbf').fit(X, y), y)

# create a mesh to plot in
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))

# title for the plots
titles = ['Label Spreading 30% data',

'Label Spreading 50% data',
'Label Spreading 100% data',
'SVC with rbf kernel']

color_map = {-1: (1, 1, 1), 0: (0, 0, .9), 1: (1, 0, 0), 2: (.8, .6, 0)}

for i, (clf, y_train) in enumerate((ls30, ls50, ls100, rbf_svc)):
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
plt.subplot(2, 2, i + 1)
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)
plt.axis('off')
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# Plot also the training points
colors = [color_map[y] for y in y_train]
plt.scatter(X[:, 0], X[:, 1], c=colors, cmap=plt.cm.Paired)

plt.title(titles[i])

plt.text(.90, 0, "Unlabeled points are colored white")
plt.show()

Total running time of the example: 1.83 seconds ( 0 minutes 1.83 seconds)

4.22.3 Label Propagation digits: Demonstrating performance

This example demonstrates the power of semisupervised learning by training a Label Spreading model to classify
handwritten digits with sets of very few labels.

The handwritten digit dataset has 1797 total points. The model will be trained using all points, but only 30 will be
labeled. Results in the form of a confusion matrix and a series of metrics over each class will be very good.

At the end, the top 10 most uncertain predictions will be shown.

Script output:

Label Spreading model: 30 labeled & 300 unlabeled points (330 total)
precision recall f1-score support
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0 1.00 1.00 1.00 23
1 0.58 0.54 0.56 28
2 0.96 0.93 0.95 29
3 0.00 0.00 0.00 28
4 0.91 0.80 0.85 25
5 0.96 0.79 0.87 33
6 0.97 0.97 0.97 36
7 0.89 1.00 0.94 34
8 0.48 0.83 0.61 29
9 0.54 0.77 0.64 35

avg / total 0.73 0.77 0.74 300

Confusion matrix
[[23 0 0 0 0 0 0 0 0]
[ 0 15 1 0 0 1 0 11 0]
[ 0 0 27 0 0 0 2 0 0]
[ 0 5 0 20 0 0 0 0 0]
[ 0 0 0 0 26 0 0 1 6]
[ 0 1 0 0 0 35 0 0 0]
[ 0 0 0 0 0 0 34 0 0]
[ 0 5 0 0 0 0 0 24 0]
[ 0 0 0 2 1 0 2 3 27]]

Python source code: plot_label_propagation_digits.py

print(__doc__)

# Authors: Clay Woolam <clay@woolam.org>
# Licence: BSD

import numpy as np
import matplotlib.pyplot as plt

from scipy import stats

from sklearn import datasets
from sklearn.semi_supervised import label_propagation

from sklearn.metrics import confusion_matrix, classification_report

digits = datasets.load_digits()
rng = np.random.RandomState(0)
indices = np.arange(len(digits.data))
rng.shuffle(indices)

X = digits.data[indices[:330]]
y = digits.target[indices[:330]]
images = digits.images[indices[:330]]

n_total_samples = len(y)
n_labeled_points = 30

indices = np.arange(n_total_samples)

unlabeled_set = indices[n_labeled_points:]

# shuffle everything around
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y_train = np.copy(y)
y_train[unlabeled_set] = -1

###############################################################################
# Learn with LabelSpreading
lp_model = label_propagation.LabelSpreading(gamma=0.25, max_iter=5)
lp_model.fit(X, y_train)
predicted_labels = lp_model.transduction_[unlabeled_set]
true_labels = y[unlabeled_set]

cm = confusion_matrix(true_labels, predicted_labels, labels=lp_model.classes_)

print("Label Spreading model: %d labeled & %d unlabeled points (%d total)" %
(n_labeled_points, n_total_samples - n_labeled_points, n_total_samples))

print(classification_report(true_labels, predicted_labels))

print("Confusion matrix")
print(cm)

# calculate uncertainty values for each transduced distribution
pred_entropies = stats.distributions.entropy(lp_model.label_distributions_.T)

# pick the top 10 most uncertain labels
uncertainty_index = np.argsort(pred_entropies)[-10:]

###############################################################################
# plot
f = plt.figure(figsize=(7, 5))
for index, image_index in enumerate(uncertainty_index):

image = images[image_index]

sub = f.add_subplot(2, 5, index + 1)
sub.imshow(image, cmap=plt.cm.gray_r)
plt.xticks([])
plt.yticks([])
sub.set_title('predict: %i\ntrue: %i' % (

lp_model.transduction_[image_index], y[image_index]))

f.suptitle('Learning with small amount of labeled data')
plt.show()

Total running time of the example: 1.03 seconds ( 0 minutes 1.03 seconds)

4.22.4 Label Propagation digits active learning

Demonstrates an active learning technique to learn handwritten digits using label propagation.

We start by training a label propagation model with only 10 labeled points, then we select the top five most uncertain
points to label. Next, we train with 15 labeled points (original 10 + 5 new ones). We repeat this process four times to
have a model trained with 30 labeled examples.

A plot will appear showing the top 5 most uncertain digits for each iteration of training. These may or may not contain
mistakes, but we will train the next model with their true labels.
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Script output:

Iteration 0 ______________________________________________________________________
Label Spreading model: 10 labeled & 320 unlabeled (330 total)

precision recall f1-score support

0 0.00 0.00 0.00 24
1 0.49 0.90 0.63 29
2 0.88 0.97 0.92 31
3 0.00 0.00 0.00 28
4 0.00 0.00 0.00 27
5 0.89 0.49 0.63 35
6 0.86 0.95 0.90 40
7 0.75 0.92 0.83 36
8 0.54 0.79 0.64 33
9 0.41 0.86 0.56 37

avg / total 0.52 0.63 0.55 320

Confusion matrix
[[26 1 0 0 1 0 1]
[ 1 30 0 0 0 0 0]
[ 0 0 17 6 0 2 10]
[ 2 0 0 38 0 0 0]
[ 0 3 0 0 33 0 0]
[ 7 0 0 0 0 26 0]
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[ 0 0 2 0 0 3 32]]
Iteration 1 ______________________________________________________________________
Label Spreading model: 15 labeled & 315 unlabeled (330 total)

precision recall f1-score support

0 1.00 1.00 1.00 23
1 0.61 0.59 0.60 29
2 0.91 0.97 0.94 31
3 1.00 0.56 0.71 27
4 0.79 0.88 0.84 26
5 0.89 0.46 0.60 35
6 0.86 0.95 0.90 40
7 0.97 0.92 0.94 36
8 0.54 0.84 0.66 31
9 0.70 0.81 0.75 37

avg / total 0.82 0.80 0.79 315

Confusion matrix
[[23 0 0 0 0 0 0 0 0 0]
[ 0 17 1 0 2 0 0 1 7 1]
[ 0 1 30 0 0 0 0 0 0 0]
[ 0 0 0 15 0 0 0 0 10 2]
[ 0 3 0 0 23 0 0 0 0 0]
[ 0 0 0 0 1 16 6 0 2 10]
[ 0 2 0 0 0 0 38 0 0 0]
[ 0 0 2 0 1 0 0 33 0 0]
[ 0 5 0 0 0 0 0 0 26 0]
[ 0 0 0 0 2 2 0 0 3 30]]

Iteration 2 ______________________________________________________________________
Label Spreading model: 20 labeled & 310 unlabeled (330 total)

precision recall f1-score support

0 1.00 1.00 1.00 23
1 0.68 0.59 0.63 29
2 0.91 0.97 0.94 31
3 0.96 1.00 0.98 23
4 0.81 1.00 0.89 25
5 0.89 0.46 0.60 35
6 0.86 0.95 0.90 40
7 0.97 0.92 0.94 36
8 0.68 0.84 0.75 31
9 0.75 0.81 0.78 37

avg / total 0.85 0.84 0.83 310

Confusion matrix
[[23 0 0 0 0 0 0 0 0 0]
[ 0 17 1 0 2 0 0 1 7 1]
[ 0 1 30 0 0 0 0 0 0 0]
[ 0 0 0 23 0 0 0 0 0 0]
[ 0 0 0 0 25 0 0 0 0 0]
[ 0 0 0 1 1 16 6 0 2 9]
[ 0 2 0 0 0 0 38 0 0 0]
[ 0 0 2 0 1 0 0 33 0 0]
[ 0 5 0 0 0 0 0 0 26 0]
[ 0 0 0 0 2 2 0 0 3 30]]

Iteration 3 ______________________________________________________________________
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Label Spreading model: 25 labeled & 305 unlabeled (330 total)
precision recall f1-score support

0 1.00 1.00 1.00 23
1 0.70 0.85 0.77 27
2 1.00 0.90 0.95 31
3 1.00 1.00 1.00 23
4 1.00 1.00 1.00 25
5 0.96 0.74 0.83 34
6 1.00 0.95 0.97 40
7 0.90 1.00 0.95 35
8 0.83 0.81 0.82 31
9 0.75 0.83 0.79 36

avg / total 0.91 0.90 0.90 305

Confusion matrix
[[23 0 0 0 0 0 0 0 0 0]
[ 0 23 0 0 0 0 0 0 4 0]
[ 0 1 28 0 0 0 0 2 0 0]
[ 0 0 0 23 0 0 0 0 0 0]
[ 0 0 0 0 25 0 0 0 0 0]
[ 0 0 0 0 0 25 0 0 0 9]
[ 0 2 0 0 0 0 38 0 0 0]
[ 0 0 0 0 0 0 0 35 0 0]
[ 0 5 0 0 0 0 0 0 25 1]
[ 0 2 0 0 0 1 0 2 1 30]]

Iteration 4 ______________________________________________________________________
Label Spreading model: 30 labeled & 300 unlabeled (330 total)

precision recall f1-score support

0 1.00 1.00 1.00 23
1 0.77 0.88 0.82 26
2 1.00 0.90 0.95 31
3 1.00 1.00 1.00 23
4 1.00 1.00 1.00 25
5 0.94 0.97 0.95 32
6 1.00 0.97 0.99 39
7 0.90 1.00 0.95 35
8 0.89 0.81 0.85 31
9 0.94 0.89 0.91 35

avg / total 0.94 0.94 0.94 300

Confusion matrix
[[23 0 0 0 0 0 0 0 0 0]
[ 0 23 0 0 0 0 0 0 3 0]
[ 0 1 28 0 0 0 0 2 0 0]
[ 0 0 0 23 0 0 0 0 0 0]
[ 0 0 0 0 25 0 0 0 0 0]
[ 0 0 0 0 0 31 0 0 0 1]
[ 0 1 0 0 0 0 38 0 0 0]
[ 0 0 0 0 0 0 0 35 0 0]
[ 0 5 0 0 0 0 0 0 25 1]
[ 0 0 0 0 0 2 0 2 0 31]]

Python source code: plot_label_propagation_digits_active_learning.py
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print(__doc__)

# Authors: Clay Woolam <clay@woolam.org>
# Licence: BSD

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

from sklearn import datasets
from sklearn.semi_supervised import label_propagation
from sklearn.metrics import classification_report, confusion_matrix

digits = datasets.load_digits()
rng = np.random.RandomState(0)
indices = np.arange(len(digits.data))
rng.shuffle(indices)

X = digits.data[indices[:330]]
y = digits.target[indices[:330]]
images = digits.images[indices[:330]]

n_total_samples = len(y)
n_labeled_points = 10

unlabeled_indices = np.arange(n_total_samples)[n_labeled_points:]
f = plt.figure()

for i in range(5):
y_train = np.copy(y)
y_train[unlabeled_indices] = -1

lp_model = label_propagation.LabelSpreading(gamma=0.25, max_iter=5)
lp_model.fit(X, y_train)

predicted_labels = lp_model.transduction_[unlabeled_indices]
true_labels = y[unlabeled_indices]

cm = confusion_matrix(true_labels, predicted_labels,
labels=lp_model.classes_)

print('Iteration %i %s' % (i, 70 * '_'))
print("Label Spreading model: %d labeled & %d unlabeled (%d total)"

% (n_labeled_points, n_total_samples - n_labeled_points, n_total_samples))

print(classification_report(true_labels, predicted_labels))

print("Confusion matrix")
print(cm)

# compute the entropies of transduced label distributions
pred_entropies = stats.distributions.entropy(

lp_model.label_distributions_.T)

# select five digit examples that the classifier is most uncertain about
uncertainty_index = uncertainty_index = np.argsort(pred_entropies)[-5:]

# keep track of indices that we get labels for
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delete_indices = np.array([])

f.text(.05, (1 - (i + 1) * .183),
"model %d\n\nfit with\n%d labels" % ((i + 1), i * 5 + 10), size=10)

for index, image_index in enumerate(uncertainty_index):
image = images[image_index]

sub = f.add_subplot(5, 5, index + 1 + (5 * i))
sub.imshow(image, cmap=plt.cm.gray_r)
sub.set_title('predict: %i\ntrue: %i' % (

lp_model.transduction_[image_index], y[image_index]), size=10)
sub.axis('off')

# labeling 5 points, remote from labeled set
delete_index, = np.where(unlabeled_indices == image_index)
delete_indices = np.concatenate((delete_indices, delete_index))

unlabeled_indices = np.delete(unlabeled_indices, delete_indices)
n_labeled_points += 5

f.suptitle("Active learning with Label Propagation.\nRows show 5 most "
"uncertain labels to learn with the next model.")

plt.subplots_adjust(0.12, 0.03, 0.9, 0.8, 0.2, 0.45)
plt.show()

Total running time of the example: 1.68 seconds ( 0 minutes 1.68 seconds)

4.23 Support Vector Machines

Examples concerning the sklearn.svm module.

4.23.1 Non-linear SVM

Perform binary classification using non-linear SVC with RBF kernel. The target to predict is a XOR of the inputs.

The color map illustrates the decision function learned by the SVC.
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Python source code: plot_svm_nonlinear.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm

xx, yy = np.meshgrid(np.linspace(-3, 3, 500),
np.linspace(-3, 3, 500))

np.random.seed(0)
X = np.random.randn(300, 2)
Y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0)

# fit the model
clf = svm.NuSVC()
clf.fit(X, Y)

# plot the decision function for each datapoint on the grid
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

plt.imshow(Z, interpolation='nearest',
extent=(xx.min(), xx.max(), yy.min(), yy.max()), aspect='auto',
origin='lower', cmap=plt.cm.PuOr_r)

contours = plt.contour(xx, yy, Z, levels=[0], linewidths=2,
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linetypes='--')
plt.scatter(X[:, 0], X[:, 1], s=30, c=Y, cmap=plt.cm.Paired)
plt.xticks(())
plt.yticks(())
plt.axis([-3, 3, -3, 3])
plt.show()

Total running time of the example: 1.48 seconds ( 0 minutes 1.48 seconds)

4.23.2 Support Vector Regression (SVR) using linear and non-linear kernels

Toy example of 1D regression using linear, polynomial and RBF kernels.

Python source code: plot_svm_regression.py

print(__doc__)

import numpy as np
from sklearn.svm import SVR
import matplotlib.pyplot as plt

###############################################################################
# Generate sample data
X = np.sort(5 * np.random.rand(40, 1), axis=0)
y = np.sin(X).ravel()
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###############################################################################
# Add noise to targets
y[::5] += 3 * (0.5 - np.random.rand(8))

###############################################################################
# Fit regression model
svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1)
svr_lin = SVR(kernel='linear', C=1e3)
svr_poly = SVR(kernel='poly', C=1e3, degree=2)
y_rbf = svr_rbf.fit(X, y).predict(X)
y_lin = svr_lin.fit(X, y).predict(X)
y_poly = svr_poly.fit(X, y).predict(X)

###############################################################################
# look at the results
plt.scatter(X, y, c='k', label='data')
plt.hold('on')
plt.plot(X, y_rbf, c='g', label='RBF model')
plt.plot(X, y_lin, c='r', label='Linear model')
plt.plot(X, y_poly, c='b', label='Polynomial model')
plt.xlabel('data')
plt.ylabel('target')
plt.title('Support Vector Regression')
plt.legend()
plt.show()

Total running time of the example: 0.86 seconds ( 0 minutes 0.86 seconds)

4.23.3 SVM: Maximum margin separating hyperplane

Plot the maximum margin separating hyperplane within a two-class separable dataset using a Support Vector Machine
classifier with linear kernel.
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Python source code: plot_separating_hyperplane.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm

# we create 40 separable points
np.random.seed(0)
X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]]
Y = [0] * 20 + [1] * 20

# fit the model
clf = svm.SVC(kernel='linear')
clf.fit(X, Y)

# get the separating hyperplane
w = clf.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(-5, 5)
yy = a * xx - (clf.intercept_[0]) / w[1]

# plot the parallels to the separating hyperplane that pass through the
# support vectors
b = clf.support_vectors_[0]
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yy_down = a * xx + (b[1] - a * b[0])
b = clf.support_vectors_[-1]
yy_up = a * xx + (b[1] - a * b[0])

# plot the line, the points, and the nearest vectors to the plane
plt.plot(xx, yy, 'k-')
plt.plot(xx, yy_down, 'k--')
plt.plot(xx, yy_up, 'k--')

plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1],
s=80, facecolors='none')

plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired)

plt.axis('tight')
plt.show()

Total running time of the example: 0.06 seconds ( 0 minutes 0.06 seconds)

4.23.4 SVM: Separating hyperplane for unbalanced classes

Find the optimal separating hyperplane using an SVC for classes that are unbalanced.

We first find the separating plane with a plain SVC and then plot (dashed) the separating hyperplane with automatically
correction for unbalanced classes.

Note: This example will also work by replacing SVC(kernel="linear") with
SGDClassifier(loss="hinge"). Setting the loss parameter of the SGDClassifier equal to hinge will
yield behaviour such as that of a SVC with a linear kernel.

For example try instead of the SVC:

clf = SGDClassifier(n_iter=100, alpha=0.01)
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Python source code: plot_separating_hyperplane_unbalanced.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
#from sklearn.linear_model import SGDClassifier

# we create 40 separable points
rng = np.random.RandomState(0)
n_samples_1 = 1000
n_samples_2 = 100
X = np.r_[1.5 * rng.randn(n_samples_1, 2),

0.5 * rng.randn(n_samples_2, 2) + [2, 2]]
y = [0] * (n_samples_1) + [1] * (n_samples_2)

# fit the model and get the separating hyperplane
clf = svm.SVC(kernel='linear', C=1.0)
clf.fit(X, y)

w = clf.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(-5, 5)
yy = a * xx - clf.intercept_[0] / w[1]
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# get the separating hyperplane using weighted classes
wclf = svm.SVC(kernel='linear', class_weight={1: 10})
wclf.fit(X, y)

ww = wclf.coef_[0]
wa = -ww[0] / ww[1]
wyy = wa * xx - wclf.intercept_[0] / ww[1]

# plot separating hyperplanes and samples
h0 = plt.plot(xx, yy, 'k-', label='no weights')
h1 = plt.plot(xx, wyy, 'k--', label='with weights')
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired)
plt.legend()

plt.axis('tight')
plt.show()

Total running time of the example: 0.07 seconds ( 0 minutes 0.07 seconds)

4.23.5 SVM with custom kernel

Simple usage of Support Vector Machines to classify a sample. It will plot the decision surface and the support vectors.

Python source code: plot_custom_kernel.py
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print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets

# import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features. We could

# avoid this ugly slicing by using a two-dim dataset
Y = iris.target

def my_kernel(X, Y):
"""
We create a custom kernel:

(2 0)
k(X, Y) = X ( ) Y.T

(0 1)
"""
M = np.array([[2, 0], [0, 1.0]])
return np.dot(np.dot(X, M), Y.T)

h = .02 # step size in the mesh

# we create an instance of SVM and fit out data.
clf = svm.SVC(kernel=my_kernel)
clf.fit(X, Y)

# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)

# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired)
plt.title('3-Class classification using Support Vector Machine with custom'

' kernel')
plt.axis('tight')
plt.show()

Total running time of the example: 0.20 seconds ( 0 minutes 0.20 seconds)

4.23.6 SVM-Anova: SVM with univariate feature selection

This example shows how to perform univariate feature before running a SVC (support vector classifier) to improve the
classification scores.
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Python source code: plot_svm_anova.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets, feature_selection, cross_validation
from sklearn.pipeline import Pipeline

###############################################################################
# Import some data to play with
digits = datasets.load_digits()
y = digits.target
# Throw away data, to be in the curse of dimension settings
y = y[:200]
X = digits.data[:200]
n_samples = len(y)
X = X.reshape((n_samples, -1))
# add 200 non-informative features
X = np.hstack((X, 2 * np.random.random((n_samples, 200))))

###############################################################################
# Create a feature-selection transform and an instance of SVM that we
# combine together to have an full-blown estimator

transform = feature_selection.SelectPercentile(feature_selection.f_classif)
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clf = Pipeline([('anova', transform), ('svc', svm.SVC(C=1.0))])

###############################################################################
# Plot the cross-validation score as a function of percentile of features
score_means = list()
score_stds = list()
percentiles = (1, 3, 6, 10, 15, 20, 30, 40, 60, 80, 100)

for percentile in percentiles:
clf.set_params(anova__percentile=percentile)
# Compute cross-validation score using all CPUs
this_scores = cross_validation.cross_val_score(clf, X, y, n_jobs=1)
score_means.append(this_scores.mean())
score_stds.append(this_scores.std())

plt.errorbar(percentiles, score_means, np.array(score_stds))

plt.title(
'Performance of the SVM-Anova varying the percentile of features selected')

plt.xlabel('Percentile')
plt.ylabel('Prediction rate')

plt.axis('tight')
plt.show()

Total running time of the example: 0.80 seconds ( 0 minutes 0.80 seconds)

4.23.7 SVM: Weighted samples

Plot decision function of a weighted dataset, where the size of points is proportional to its weight.

The sample weighting rescales the C parameter, which means that the classifier puts more emphasis on getting these
points right. The effect might often be subtle. To emphasize the effect here, we particularly weight outliers, making
the deformation of the decision boundary very visible.

Python source code: plot_weighted_samples.py
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print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm

def plot_decision_function(classifier, sample_weight, axis, title):
# plot the decision function
xx, yy = np.meshgrid(np.linspace(-4, 5, 500), np.linspace(-4, 5, 500))

Z = classifier.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

# plot the line, the points, and the nearest vectors to the plane
axis.contourf(xx, yy, Z, alpha=0.75, cmap=plt.cm.bone)
axis.scatter(X[:, 0], X[:, 1], c=Y, s=100 * sample_weight, alpha=0.9,

cmap=plt.cm.bone)

axis.axis('off')
axis.set_title(title)

# we create 20 points
np.random.seed(0)
X = np.r_[np.random.randn(10, 2) + [1, 1], np.random.randn(10, 2)]
Y = [1] * 10 + [-1] * 10
sample_weight_last_ten = abs(np.random.randn(len(X)))
sample_weight_constant = np.ones(len(X))
# and bigger weights to some outliers
sample_weight_last_ten[15:] *= 5
sample_weight_last_ten[9] *= 15

# for reference, first fit without class weights

# fit the model
clf_weights = svm.SVC()
clf_weights.fit(X, Y, sample_weight=sample_weight_last_ten)

clf_no_weights = svm.SVC()
clf_no_weights.fit(X, Y)

fig, axes = plt.subplots(1, 2, figsize=(14, 6))
plot_decision_function(clf_no_weights, sample_weight_constant, axes[0],

"Constant weights")
plot_decision_function(clf_weights, sample_weight_last_ten, axes[1],

"Modified weights")

plt.show()

Total running time of the example: 0.94 seconds ( 0 minutes 0.94 seconds)

4.23.8 One-class SVM with non-linear kernel (RBF)

An example using a one-class SVM for novelty detection.
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One-class SVM is an unsupervised algorithm that learns a decision function for novelty detection: classifying new
data as similar or different to the training set.

Python source code: plot_oneclass.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.font_manager
from sklearn import svm

xx, yy = np.meshgrid(np.linspace(-5, 5, 500), np.linspace(-5, 5, 500))
# Generate train data
X = 0.3 * np.random.randn(100, 2)
X_train = np.r_[X + 2, X - 2]
# Generate some regular novel observations
X = 0.3 * np.random.randn(20, 2)
X_test = np.r_[X + 2, X - 2]
# Generate some abnormal novel observations
X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2))

# fit the model
clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1)
clf.fit(X_train)
y_pred_train = clf.predict(X_train)
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y_pred_test = clf.predict(X_test)
y_pred_outliers = clf.predict(X_outliers)
n_error_train = y_pred_train[y_pred_train == -1].size
n_error_test = y_pred_test[y_pred_test == -1].size
n_error_outliers = y_pred_outliers[y_pred_outliers == 1].size

# plot the line, the points, and the nearest vectors to the plane
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

plt.title("Novelty Detection")
plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), 0, 7), cmap=plt.cm.Blues_r)
a = plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='red')
plt.contourf(xx, yy, Z, levels=[0, Z.max()], colors='orange')

b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white')
b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green')
c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='red')
plt.axis('tight')
plt.xlim((-5, 5))
plt.ylim((-5, 5))
plt.legend([a.collections[0], b1, b2, c],

["learned frontier", "training observations",
"new regular observations", "new abnormal observations"],

loc="upper left",
prop=matplotlib.font_manager.FontProperties(size=11))

plt.xlabel(
"error train: %d/200 ; errors novel regular: %d/40 ; "
"errors novel abnormal: %d/40"
% (n_error_train, n_error_test, n_error_outliers))

plt.show()

Total running time of the example: 0.28 seconds ( 0 minutes 0.28 seconds)

4.23.9 Plot different SVM classifiers in the iris dataset

Comparison of different linear SVM classifiers on a 2D projection of the iris dataset. We only consider the first 2
features of this dataset:

• Sepal length

• Sepal width

This example shows how to plot the decision surface for four SVM classifiers with different kernels.

The linear models LinearSVC() and SVC(kernel=’linear’) yield slightly different decision boundaries.
This can be a consequence of the following differences:

• LinearSVC minimizes the squared hinge loss while SVC minimizes the regular hinge loss.

• LinearSVC uses the One-vs-All (also known as One-vs-Rest) multiclass reduction while SVC uses the One-
vs-One multiclass reduction.

Both linear models have linear decision boundaries (intersecting hyperplanes) while the non-linear kernel models
(polynomial or Gaussian RBF) have more flexible non-linear decision boundaries with shapes that depend on the kind
of kernel and its parameters.

Note: while plotting the decision function of classifiers for toy 2D datasets can help get an intuitive understanding
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of their respective expressive power, be aware that those intuitions don’t always generalize to more realistic high-
dimensional problems.

Python source code: plot_iris.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets

# import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features. We could

# avoid this ugly slicing by using a two-dim dataset
y = iris.target

h = .02 # step size in the mesh

# we create an instance of SVM and fit out data. We do not scale our
# data since we want to plot the support vectors
C = 1.0 # SVM regularization parameter
svc = svm.SVC(kernel='linear', C=C).fit(X, y)
rbf_svc = svm.SVC(kernel='rbf', gamma=0.7, C=C).fit(X, y)
poly_svc = svm.SVC(kernel='poly', degree=3, C=C).fit(X, y)
lin_svc = svm.LinearSVC(C=C).fit(X, y)
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# create a mesh to plot in
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))

# title for the plots
titles = ['SVC with linear kernel',

'LinearSVC (linear kernel)',
'SVC with RBF kernel',
'SVC with polynomial (degree 3) kernel']

for i, clf in enumerate((svc, lin_svc, rbf_svc, poly_svc)):
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
plt.subplot(2, 2, i + 1)
plt.subplots_adjust(wspace=0.4, hspace=0.4)

Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8)

# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.xticks(())
plt.yticks(())
plt.title(titles[i])

plt.show()

Total running time of the example: 0.71 seconds ( 0 minutes 0.71 seconds)

4.23.10 SVM-Kernels

Three different types of SVM-Kernels are displayed below. The polynomial and RBF are especially useful when the
data-points are not linearly separable.

•
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•

•

Python source code: plot_svm_kernels.py

print(__doc__)

# Code source: Gaël Varoquaux
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm

# Our dataset and targets
X = np.c_[(.4, -.7),

(-1.5, -1),
(-1.4, -.9),
(-1.3, -1.2),
(-1.1, -.2),
(-1.2, -.4),
(-.5, 1.2),
(-1.5, 2.1),
(1, 1),
# --
(1.3, .8),
(1.2, .5),
(.2, -2),
(.5, -2.4),
(.2, -2.3),
(0, -2.7),
(1.3, 2.1)].T

Y = [0] * 8 + [1] * 8

# figure number
fignum = 1

# fit the model
for kernel in ('linear', 'poly', 'rbf'):

clf = svm.SVC(kernel=kernel, gamma=2)
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clf.fit(X, Y)

# plot the line, the points, and the nearest vectors to the plane
plt.figure(fignum, figsize=(4, 3))
plt.clf()

plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80,
facecolors='none', zorder=10)

plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired)

plt.axis('tight')
x_min = -3
x_max = 3
y_min = -3
y_max = 3

XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()])

# Put the result into a color plot
Z = Z.reshape(XX.shape)
plt.figure(fignum, figsize=(4, 3))
plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired)
plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'],

levels=[-.5, 0, .5])

plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)

plt.xticks(())
plt.yticks(())
fignum = fignum + 1

plt.show()

Total running time of the example: 0.28 seconds ( 0 minutes 0.28 seconds)

4.23.11 SVM Margins Example

The plots below illustrate the effect the parameter C has on the separation line. A large value of C basically tells our
model that we do not have that much faith in our data’s distribution, and will only consider points close to line of
separation.

A small value of C includes more/all the observations, allowing the margins to be calculated using all the data in the
area.

•
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Python source code: plot_svm_margin.py

print(__doc__)

# Code source: Gaël Varoquaux
# Modified for documentation by Jaques Grobler
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm

# we create 40 separable points
np.random.seed(0)
X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]]
Y = [0] * 20 + [1] * 20

# figure number
fignum = 1

# fit the model
for name, penalty in (('unreg', 1), ('reg', 0.05)):

clf = svm.SVC(kernel='linear', C=penalty)
clf.fit(X, Y)

# get the separating hyperplane
w = clf.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(-5, 5)
yy = a * xx - (clf.intercept_[0]) / w[1]

# plot the parallels to the separating hyperplane that pass through the
# support vectors
margin = 1 / np.sqrt(np.sum(clf.coef_ ** 2))
yy_down = yy + a * margin
yy_up = yy - a * margin

# plot the line, the points, and the nearest vectors to the plane
plt.figure(fignum, figsize=(4, 3))
plt.clf()
plt.plot(xx, yy, 'k-')
plt.plot(xx, yy_down, 'k--')
plt.plot(xx, yy_up, 'k--')

plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80,
facecolors='none', zorder=10)

plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired)

934 Chapter 4. Examples



scikit-learn user guide, Release 0.17

plt.axis('tight')
x_min = -4.8
x_max = 4.2
y_min = -6
y_max = 6

XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
Z = clf.predict(np.c_[XX.ravel(), YY.ravel()])

# Put the result into a color plot
Z = Z.reshape(XX.shape)
plt.figure(fignum, figsize=(4, 3))
plt.pcolormesh(XX, YY, Z, cmap=plt.cm.Paired)

plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)

plt.xticks(())
plt.yticks(())
fignum = fignum + 1

plt.show()

Total running time of the example: 0.18 seconds ( 0 minutes 0.18 seconds)

4.23.12 Scaling the regularization parameter for SVCs

The following example illustrates the effect of scaling the regularization parameter when using Support Vector Ma-
chines for classification. For SVC classification, we are interested in a risk minimization for the equation:

𝐶
∑︁
𝑖=1,𝑛

ℒ(𝑓(𝑥𝑖), 𝑦𝑖) + Ω(𝑤)

where

• 𝐶 is used to set the amount of regularization

• ℒ is a loss function of our samples and our model parameters.

• Ω is a penalty function of our model parameters

If we consider the loss function to be the individual error per sample, then the data-fit term, or the sum of the error for
each sample, will increase as we add more samples. The penalization term, however, will not increase.

When using, for example, cross validation, to set the amount of regularization with C, there will be a different amount
of samples between the main problem and the smaller problems within the folds of the cross validation.

Since our loss function is dependent on the amount of samples, the latter will influence the selected value of C. The
question that arises is How do we optimally adjust C to account for the different amount of training samples?

The figures below are used to illustrate the effect of scaling our C to compensate for the change in the number of
samples, in the case of using an l1 penalty, as well as the l2 penalty.

l1-penalty case

In the l1 case, theory says that prediction consistency (i.e. that under given hypothesis, the estimator learned predicts
as well as a model knowing the true distribution) is not possible because of the bias of the l1. It does say, however,
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that model consistency, in terms of finding the right set of non-zero parameters as well as their signs, can be achieved
by scaling C1.

l2-penalty case

The theory says that in order to achieve prediction consistency, the penalty parameter should be kept constant as the
number of samples grow.

Simulations

The two figures below plot the values of C on the x-axis and the corresponding cross-validation scores on the y-axis,
for several different fractions of a generated data-set.

In the l1 penalty case, the cross-validation-error correlates best with the test-error, when scaling our C with the number
of samples, n, which can be seen in the first figure.

For the l2 penalty case, the best result comes from the case where C is not scaled.

Note:

Two separate datasets are used for the two different plots. The reason behind this is the l1 case works better on
sparse data, while l2 is better suited to the non-sparse case.

•
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Python source code: plot_svm_scale_c.py

print(__doc__)

# Author: Andreas Mueller <amueller@ais.uni-bonn.de>
# Jaques Grobler <jaques.grobler@inria.fr>
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.svm import LinearSVC
from sklearn.cross_validation import ShuffleSplit
from sklearn.grid_search import GridSearchCV
from sklearn.utils import check_random_state
from sklearn import datasets

rnd = check_random_state(1)

# set up dataset
n_samples = 100
n_features = 300

# l1 data (only 5 informative features)
X_1, y_1 = datasets.make_classification(n_samples=n_samples,

n_features=n_features, n_informative=5,
random_state=1)

# l2 data: non sparse, but less features
y_2 = np.sign(.5 - rnd.rand(n_samples))
X_2 = rnd.randn(n_samples, n_features / 5) + y_2[:, np.newaxis]
X_2 += 5 * rnd.randn(n_samples, n_features / 5)

clf_sets = [(LinearSVC(penalty='l1', loss='squared_hinge', dual=False,
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tol=1e-3),
np.logspace(-2.3, -1.3, 10), X_1, y_1),

(LinearSVC(penalty='l2', loss='squared_hinge', dual=True,
tol=1e-4),

np.logspace(-4.5, -2, 10), X_2, y_2)]

colors = ['b', 'g', 'r', 'c']

for fignum, (clf, cs, X, y) in enumerate(clf_sets):
# set up the plot for each regressor
plt.figure(fignum, figsize=(9, 10))

for k, train_size in enumerate(np.linspace(0.3, 0.7, 3)[::-1]):
param_grid = dict(C=cs)
# To get nice curve, we need a large number of iterations to
# reduce the variance
grid = GridSearchCV(clf, refit=False, param_grid=param_grid,

cv=ShuffleSplit(n=n_samples, train_size=train_size,
n_iter=250, random_state=1))

grid.fit(X, y)
scores = [x[1] for x in grid.grid_scores_]

scales = [(1, 'No scaling'),
((n_samples * train_size), '1/n_samples'),
]

for subplotnum, (scaler, name) in enumerate(scales):
plt.subplot(2, 1, subplotnum + 1)
plt.xlabel('C')
plt.ylabel('CV Score')
grid_cs = cs * float(scaler) # scale the C's
plt.semilogx(grid_cs, scores, label="fraction %.2f" %

train_size)
plt.title('scaling=%s, penalty=%s, loss=%s' %

(name, clf.penalty, clf.loss))

plt.legend(loc="best")
plt.show()

Total running time of the example: 25.47 seconds ( 0 minutes 25.47 seconds)

4.23.13 RBF SVM parameters

This example illustrates the effect of the parameters gamma and C of the Radial Basis Function (RBF) kernel SVM.

Intuitively, the gamma parameter defines how far the influence of a single training example reaches, with low values
meaning ‘far’ and high values meaning ‘close’. The gamma parameters can be seen as the inverse of the radius of
influence of samples selected by the model as support vectors.

The C parameter trades off misclassification of training examples against simplicity of the decision surface. A low C
makes the decision surface smooth, while a high C aims at classifying all training examples correctly by giving the
model freedom to select more samples as support vectors.

The first plot is a visualization of the decision function for a variety of parameter values on a simplified classification
problem involving only 2 input features and 2 possible target classes (binary classification). Note that this kind of plot
is not possible to do for problems with more features or target classes.

The second plot is a heatmap of the classifier’s cross-validation accuracy as a function of C and gamma. For this
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example we explore a relatively large grid for illustration purposes. In practice, a logarithmic grid from 10−3 to 103

is usually sufficient. If the best parameters lie on the boundaries of the grid, it can be extended in that direction in a
subsequent search.

Note that the heat map plot has a special colorbar with a midpoint value close to the score values of the best performing
models so as to make it easy to tell them appart in the blink of an eye.

The behavior of the model is very sensitive to the gamma parameter. If gamma is too large, the radius of the area of
influence of the support vectors only includes the support vector itself and no amount of regularization with C will be
able to prevent overfitting.

When gamma is very small, the model is too constrained and cannot capture the complexity or “shape” of the data.
The region of influence of any selected support vector would include the whole training set. The resulting model will
behave similarly to a linear model with a set of hyperplanes that separate the centers of high density of any pair of two
classes.

For intermediate values, we can see on the second plot that good models can be found on a diagonal of C and gamma.
Smooth models (lower gamma values) can be made more complex by selecting a larger number of support vectors
(larger C values) hence the diagonal of good performing models.

Finally one can also observe that for some intermediate values of gamma we get equally performing models when C
becomes very large: it is not necessary to regularize by limiting the number of support vectors. The radius of the RBF
kernel alone acts as a good structural regularizer. In practice though it might still be interesting to limit the number of
support vectors with a lower value of C so as to favor models that use less memory and that are faster to predict.

We should also note that small differences in scores results from the random splits of the cross-validation procedure.
Those spurious variations can be smoothed out by increasing the number of CV iterations n_iter at the expense of
compute time. Increasing the value number of C_range and gamma_range steps will increase the resolution of the
hyper-parameter heat map.

•

•
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Script output:

The best parameters are {'gamma': 0.10000000000000001, 'C': 1.0} with a score of 0.97

Python source code: plot_rbf_parameters.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import Normalize

from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_iris
from sklearn.cross_validation import StratifiedShuffleSplit
from sklearn.grid_search import GridSearchCV

# Utility function to move the midpoint of a colormap to be around
# the values of interest.

class MidpointNormalize(Normalize):

def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False):
self.midpoint = midpoint
Normalize.__init__(self, vmin, vmax, clip)

def __call__(self, value, clip=None):
x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1]
return np.ma.masked_array(np.interp(value, x, y))

##############################################################################
# Load and prepare data set
#
# dataset for grid search

iris = load_iris()
X = iris.data
y = iris.target

# Dataset for decision function visualization: we only keep the first two
# features in X and sub-sample the dataset to keep only 2 classes and
# make it a binary classification problem.

X_2d = X[:, :2]
X_2d = X_2d[y > 0]
y_2d = y[y > 0]
y_2d -= 1

# It is usually a good idea to scale the data for SVM training.
# We are cheating a bit in this example in scaling all of the data,
# instead of fitting the transformation on the training set and
# just applying it on the test set.

scaler = StandardScaler()
X = scaler.fit_transform(X)
X_2d = scaler.fit_transform(X_2d)
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##############################################################################
# Train classifiers
#
# For an initial search, a logarithmic grid with basis
# 10 is often helpful. Using a basis of 2, a finer
# tuning can be achieved but at a much higher cost.

C_range = np.logspace(-2, 10, 13)
gamma_range = np.logspace(-9, 3, 13)
param_grid = dict(gamma=gamma_range, C=C_range)
cv = StratifiedShuffleSplit(y, n_iter=5, test_size=0.2, random_state=42)
grid = GridSearchCV(SVC(), param_grid=param_grid, cv=cv)
grid.fit(X, y)

print("The best parameters are %s with a score of %0.2f"
% (grid.best_params_, grid.best_score_))

# Now we need to fit a classifier for all parameters in the 2d version
# (we use a smaller set of parameters here because it takes a while to train)

C_2d_range = [1e-2, 1, 1e2]
gamma_2d_range = [1e-1, 1, 1e1]
classifiers = []
for C in C_2d_range:

for gamma in gamma_2d_range:
clf = SVC(C=C, gamma=gamma)
clf.fit(X_2d, y_2d)
classifiers.append((C, gamma, clf))

##############################################################################
# visualization
#
# draw visualization of parameter effects

plt.figure(figsize=(8, 6))
xx, yy = np.meshgrid(np.linspace(-3, 3, 200), np.linspace(-3, 3, 200))
for (k, (C, gamma, clf)) in enumerate(classifiers):

# evaluate decision function in a grid
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

# visualize decision function for these parameters
plt.subplot(len(C_2d_range), len(gamma_2d_range), k + 1)
plt.title("gamma=10^%d, C=10^%d" % (np.log10(gamma), np.log10(C)),

size='medium')

# visualize parameter's effect on decision function
plt.pcolormesh(xx, yy, -Z, cmap=plt.cm.RdBu)
plt.scatter(X_2d[:, 0], X_2d[:, 1], c=y_2d, cmap=plt.cm.RdBu_r)
plt.xticks(())
plt.yticks(())
plt.axis('tight')

# plot the scores of the grid
# grid_scores_ contains parameter settings and scores
# We extract just the scores
scores = [x[1] for x in grid.grid_scores_]
scores = np.array(scores).reshape(len(C_range), len(gamma_range))
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# Draw heatmap of the validation accuracy as a function of gamma and C
#
# The score are encoded as colors with the hot colormap which varies from dark
# red to bright yellow. As the most interesting scores are all located in the
# 0.92 to 0.97 range we use a custom normalizer to set the mid-point to 0.92 so
# as to make it easier to visualize the small variations of score values in the
# interesting range while not brutally collapsing all the low score values to
# the same color.

plt.figure(figsize=(8, 6))
plt.subplots_adjust(left=.2, right=0.95, bottom=0.15, top=0.95)
plt.imshow(scores, interpolation='nearest', cmap=plt.cm.hot,

norm=MidpointNormalize(vmin=0.2, midpoint=0.92))
plt.xlabel('gamma')
plt.ylabel('C')
plt.colorbar()
plt.xticks(np.arange(len(gamma_range)), gamma_range, rotation=45)
plt.yticks(np.arange(len(C_range)), C_range)
plt.title('Validation accuracy')
plt.show()

Total running time of the example: 7.99 seconds ( 0 minutes 7.99 seconds)

4.24 Working with text documents

Examples concerning the sklearn.feature_extraction.text module.

4.24.1 FeatureHasher and DictVectorizer Comparison

Compares FeatureHasher and DictVectorizer by using both to vectorize text documents.

The example demonstrates syntax and speed only; it doesn’t actually do anything useful with the extracted vectors.
See the example scripts {document_classification_20newsgroups,clustering}.py for actual learning on text documents.

A discrepancy between the number of terms reported for DictVectorizer and for FeatureHasher is to be expected due
to hash collisions.

Python source code: hashing_vs_dict_vectorizer.py

# Author: Lars Buitinck <L.J.Buitinck@uva.nl>
# License: BSD 3 clause

from __future__ import print_function
from collections import defaultdict
import re
import sys
from time import time

import numpy as np

from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction import DictVectorizer, FeatureHasher

def n_nonzero_columns(X):
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"""Returns the number of non-zero columns in a CSR matrix X."""
return len(np.unique(X.nonzero()[1]))

def tokens(doc):
"""Extract tokens from doc.

This uses a simple regex to break strings into tokens. For a more
principled approach, see CountVectorizer or TfidfVectorizer.
"""
return (tok.lower() for tok in re.findall(r"\w+", doc))

def token_freqs(doc):
"""Extract a dict mapping tokens from doc to their frequencies."""
freq = defaultdict(int)
for tok in tokens(doc):

freq[tok] += 1
return freq

categories = [
'alt.atheism',
'comp.graphics',
'comp.sys.ibm.pc.hardware',
'misc.forsale',
'rec.autos',
'sci.space',
'talk.religion.misc',

]
# Uncomment the following line to use a larger set (11k+ documents)
#categories = None

print(__doc__)
print("Usage: %s [n_features_for_hashing]" % sys.argv[0])
print(" The default number of features is 2**18.")
print()

try:
n_features = int(sys.argv[1])

except IndexError:
n_features = 2 ** 18

except ValueError:
print("not a valid number of features: %r" % sys.argv[1])
sys.exit(1)

print("Loading 20 newsgroups training data")
raw_data = fetch_20newsgroups(subset='train', categories=categories).data
data_size_mb = sum(len(s.encode('utf-8')) for s in raw_data) / 1e6
print("%d documents - %0.3fMB" % (len(raw_data), data_size_mb))
print()

print("DictVectorizer")
t0 = time()
vectorizer = DictVectorizer()
vectorizer.fit_transform(token_freqs(d) for d in raw_data)
duration = time() - t0
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print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration))
print("Found %d unique terms" % len(vectorizer.get_feature_names()))
print()

print("FeatureHasher on frequency dicts")
t0 = time()
hasher = FeatureHasher(n_features=n_features)
X = hasher.transform(token_freqs(d) for d in raw_data)
duration = time() - t0
print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration))
print("Found %d unique terms" % n_nonzero_columns(X))
print()

print("FeatureHasher on raw tokens")
t0 = time()
hasher = FeatureHasher(n_features=n_features, input_type="string")
X = hasher.transform(tokens(d) for d in raw_data)
duration = time() - t0
print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration))
print("Found %d unique terms" % n_nonzero_columns(X))

4.24.2 Classification of text documents: using a MLComp dataset

This is an example showing how the scikit-learn can be used to classify documents by topics using a bag-of-words
approach. This example uses a scipy.sparse matrix to store the features instead of standard numpy arrays.

The dataset used in this example is the 20 newsgroups dataset and should be downloaded from the http://mlcomp.org
(free registration required):

http://mlcomp.org/datasets/379

Once downloaded unzip the archive somewhere on your filesystem. For instance in:

% mkdir -p ~/data/mlcomp
% cd ~/data/mlcomp
% unzip /path/to/dataset-379-20news-18828_XXXXX.zip

You should get a folder ~/data/mlcomp/379 with a file named metadata and subfolders raw, train and
test holding the text documents organized by newsgroups.

Then set the MLCOMP_DATASETS_HOME environment variable pointing to the root folder holding the uncompressed
archive:

% export MLCOMP_DATASETS_HOME="~/data/mlcomp"

Then you are ready to run this example using your favorite python shell:

% ipython examples/mlcomp_sparse_document_classification.py

Python source code: mlcomp_sparse_document_classification.py

# Author: Olivier Grisel <olivier.grisel@ensta.org>
# License: BSD 3 clause

from __future__ import print_function

from time import time
import sys
import os
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import numpy as np
import scipy.sparse as sp
import pylab as pl

from sklearn.datasets import load_mlcomp
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import SGDClassifier
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn.naive_bayes import MultinomialNB

print(__doc__)

if 'MLCOMP_DATASETS_HOME' not in os.environ:
print("MLCOMP_DATASETS_HOME not set; please follow the above instructions")
sys.exit(0)

# Load the training set
print("Loading 20 newsgroups training set... ")
news_train = load_mlcomp('20news-18828', 'train')
print(news_train.DESCR)
print("%d documents" % len(news_train.filenames))
print("%d categories" % len(news_train.target_names))

print("Extracting features from the dataset using a sparse vectorizer")
t0 = time()
vectorizer = TfidfVectorizer(encoding='latin1')
X_train = vectorizer.fit_transform((open(f).read()

for f in news_train.filenames))
print("done in %fs" % (time() - t0))
print("n_samples: %d, n_features: %d" % X_train.shape)
assert sp.issparse(X_train)
y_train = news_train.target

print("Loading 20 newsgroups test set... ")
news_test = load_mlcomp('20news-18828', 'test')
t0 = time()
print("done in %fs" % (time() - t0))

print("Predicting the labels of the test set...")
print("%d documents" % len(news_test.filenames))
print("%d categories" % len(news_test.target_names))

print("Extracting features from the dataset using the same vectorizer")
t0 = time()
X_test = vectorizer.transform((open(f).read() for f in news_test.filenames))
y_test = news_test.target
print("done in %fs" % (time() - t0))
print("n_samples: %d, n_features: %d" % X_test.shape)

###############################################################################
# Benchmark classifiers
def benchmark(clf_class, params, name):

print("parameters:", params)
t0 = time()
clf = clf_class(**params).fit(X_train, y_train)
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print("done in %fs" % (time() - t0))

if hasattr(clf, 'coef_'):
print("Percentage of non zeros coef: %f"

% (np.mean(clf.coef_ != 0) * 100))
print("Predicting the outcomes of the testing set")
t0 = time()
pred = clf.predict(X_test)
print("done in %fs" % (time() - t0))

print("Classification report on test set for classifier:")
print(clf)
print()
print(classification_report(y_test, pred,

target_names=news_test.target_names))

cm = confusion_matrix(y_test, pred)
print("Confusion matrix:")
print(cm)

# Show confusion matrix
pl.matshow(cm)
pl.title('Confusion matrix of the %s classifier' % name)
pl.colorbar()

print("Testbenching a linear classifier...")
parameters = {

'loss': 'hinge',
'penalty': 'l2',
'n_iter': 50,
'alpha': 0.00001,
'fit_intercept': True,

}

benchmark(SGDClassifier, parameters, 'SGD')

print("Testbenching a MultinomialNB classifier...")
parameters = {'alpha': 0.01}

benchmark(MultinomialNB, parameters, 'MultinomialNB')

pl.show()

4.24.3 Clustering text documents using k-means

This is an example showing how the scikit-learn can be used to cluster documents by topics using a bag-of-words
approach. This example uses a scipy.sparse matrix to store the features instead of standard numpy arrays.

Two feature extraction methods can be used in this example:

• TfidfVectorizer uses a in-memory vocabulary (a python dict) to map the most frequent words to features indices
and hence compute a word occurrence frequency (sparse) matrix. The word frequencies are then reweighted
using the Inverse Document Frequency (IDF) vector collected feature-wise over the corpus.

• HashingVectorizer hashes word occurrences to a fixed dimensional space, possibly with collisions. The word
count vectors are then normalized to each have l2-norm equal to one (projected to the euclidean unit-ball) which
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seems to be important for k-means to work in high dimensional space.

HashingVectorizer does not provide IDF weighting as this is a stateless model (the fit method does nothing).
When IDF weighting is needed it can be added by pipelining its output to a TfidfTransformer instance.

Two algorithms are demoed: ordinary k-means and its more scalable cousin minibatch k-means.

Additionally, latent sematic analysis can also be used to reduce dimensionality and discover latent patterns in the data.

It can be noted that k-means (and minibatch k-means) are very sensitive to feature scaling and that in this case the IDF
weighting helps improve the quality of the clustering by quite a lot as measured against the “ground truth” provided
by the class label assignments of the 20 newsgroups dataset.

This improvement is not visible in the Silhouette Coefficient which is small for both as this measure seem to suffer
from the phenomenon called “Concentration of Measure” or “Curse of Dimensionality” for high dimensional datasets
such as text data. Other measures such as V-measure and Adjusted Rand Index are information theoretic based eval-
uation scores: as they are only based on cluster assignments rather than distances, hence not affected by the curse of
dimensionality.

Note: as k-means is optimizing a non-convex objective function, it will likely end up in a local optimum. Several runs
with independent random init might be necessary to get a good convergence.

Python source code: document_clustering.py

# Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
# Lars Buitinck <L.J.Buitinck@uva.nl>
# License: BSD 3 clause

from __future__ import print_function

from sklearn.datasets import fetch_20newsgroups
from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import Normalizer
from sklearn import metrics

from sklearn.cluster import KMeans, MiniBatchKMeans

import logging
from optparse import OptionParser
import sys
from time import time

import numpy as np

# Display progress logs on stdout
logging.basicConfig(level=logging.INFO,

format='%(asctime)s %(levelname)s %(message)s')

# parse commandline arguments
op = OptionParser()
op.add_option("--lsa",

dest="n_components", type="int",
help="Preprocess documents with latent semantic analysis.")

op.add_option("--no-minibatch",
action="store_false", dest="minibatch", default=True,
help="Use ordinary k-means algorithm (in batch mode).")
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op.add_option("--no-idf",
action="store_false", dest="use_idf", default=True,
help="Disable Inverse Document Frequency feature weighting.")

op.add_option("--use-hashing",
action="store_true", default=False,
help="Use a hashing feature vectorizer")

op.add_option("--n-features", type=int, default=10000,
help="Maximum number of features (dimensions)"

" to extract from text.")
op.add_option("--verbose",

action="store_true", dest="verbose", default=False,
help="Print progress reports inside k-means algorithm.")

print(__doc__)
op.print_help()

(opts, args) = op.parse_args()
if len(args) > 0:

op.error("this script takes no arguments.")
sys.exit(1)

###############################################################################
# Load some categories from the training set
categories = [

'alt.atheism',
'talk.religion.misc',
'comp.graphics',
'sci.space',

]
# Uncomment the following to do the analysis on all the categories
#categories = None

print("Loading 20 newsgroups dataset for categories:")
print(categories)

dataset = fetch_20newsgroups(subset='all', categories=categories,
shuffle=True, random_state=42)

print("%d documents" % len(dataset.data))
print("%d categories" % len(dataset.target_names))
print()

labels = dataset.target
true_k = np.unique(labels).shape[0]

print("Extracting features from the training dataset using a sparse vectorizer")
t0 = time()
if opts.use_hashing:

if opts.use_idf:
# Perform an IDF normalization on the output of HashingVectorizer
hasher = HashingVectorizer(n_features=opts.n_features,

stop_words='english', non_negative=True,
norm=None, binary=False)

vectorizer = make_pipeline(hasher, TfidfTransformer())
else:

vectorizer = HashingVectorizer(n_features=opts.n_features,
stop_words='english',
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non_negative=False, norm='l2',
binary=False)

else:
vectorizer = TfidfVectorizer(max_df=0.5, max_features=opts.n_features,

min_df=2, stop_words='english',
use_idf=opts.use_idf)

X = vectorizer.fit_transform(dataset.data)

print("done in %fs" % (time() - t0))
print("n_samples: %d, n_features: %d" % X.shape)
print()

if opts.n_components:
print("Performing dimensionality reduction using LSA")
t0 = time()
# Vectorizer results are normalized, which makes KMeans behave as
# spherical k-means for better results. Since LSA/SVD results are
# not normalized, we have to redo the normalization.
svd = TruncatedSVD(opts.n_components)
normalizer = Normalizer(copy=False)
lsa = make_pipeline(svd, normalizer)

X = lsa.fit_transform(X)

print("done in %fs" % (time() - t0))

explained_variance = svd.explained_variance_ratio_.sum()
print("Explained variance of the SVD step: {}%".format(

int(explained_variance * 100)))

print()

###############################################################################
# Do the actual clustering

if opts.minibatch:
km = MiniBatchKMeans(n_clusters=true_k, init='k-means++', n_init=1,

init_size=1000, batch_size=1000, verbose=opts.verbose)
else:

km = KMeans(n_clusters=true_k, init='k-means++', max_iter=100, n_init=1,
verbose=opts.verbose)

print("Clustering sparse data with %s" % km)
t0 = time()
km.fit(X)
print("done in %0.3fs" % (time() - t0))
print()

print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels, km.labels_))
print("Completeness: %0.3f" % metrics.completeness_score(labels, km.labels_))
print("V-measure: %0.3f" % metrics.v_measure_score(labels, km.labels_))
print("Adjusted Rand-Index: %.3f"

% metrics.adjusted_rand_score(labels, km.labels_))
print("Silhouette Coefficient: %0.3f"

% metrics.silhouette_score(X, km.labels_, sample_size=1000))

print()
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if not opts.use_hashing:
print("Top terms per cluster:")

if opts.n_components:
original_space_centroids = svd.inverse_transform(km.cluster_centers_)
order_centroids = original_space_centroids.argsort()[:, ::-1]

else:
order_centroids = km.cluster_centers_.argsort()[:, ::-1]

terms = vectorizer.get_feature_names()
for i in range(true_k):

print("Cluster %d:" % i, end='')
for ind in order_centroids[i, :10]:

print(' %s' % terms[ind], end='')
print()

4.24.4 Classification of text documents using sparse features

This is an example showing how scikit-learn can be used to classify documents by topics using a bag-of-words ap-
proach. This example uses a scipy.sparse matrix to store the features and demonstrates various classifiers that can
efficiently handle sparse matrices.

The dataset used in this example is the 20 newsgroups dataset. It will be automatically downloaded, then cached.

The bar plot indicates the accuracy, training time (normalized) and test time (normalized) of each classifier.

Python source code: document_classification_20newsgroups.py

# Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
# Olivier Grisel <olivier.grisel@ensta.org>
# Mathieu Blondel <mathieu@mblondel.org>
# Lars Buitinck <L.J.Buitinck@uva.nl>
# License: BSD 3 clause

from __future__ import print_function

import logging
import numpy as np
from optparse import OptionParser
import sys
from time import time
import matplotlib.pyplot as plt

from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.feature_selection import SelectKBest, chi2
from sklearn.linear_model import RidgeClassifier
from sklearn.pipeline import Pipeline
from sklearn.svm import LinearSVC
from sklearn.linear_model import SGDClassifier
from sklearn.linear_model import Perceptron
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.naive_bayes import BernoulliNB, MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neighbors import NearestCentroid
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from sklearn.ensemble import RandomForestClassifier
from sklearn.utils.extmath import density
from sklearn import metrics

# Display progress logs on stdout
logging.basicConfig(level=logging.INFO,

format='%(asctime)s %(levelname)s %(message)s')

# parse commandline arguments
op = OptionParser()
op.add_option("--report",

action="store_true", dest="print_report",
help="Print a detailed classification report.")

op.add_option("--chi2_select",
action="store", type="int", dest="select_chi2",
help="Select some number of features using a chi-squared test")

op.add_option("--confusion_matrix",
action="store_true", dest="print_cm",
help="Print the confusion matrix.")

op.add_option("--top10",
action="store_true", dest="print_top10",
help="Print ten most discriminative terms per class"

" for every classifier.")
op.add_option("--all_categories",

action="store_true", dest="all_categories",
help="Whether to use all categories or not.")

op.add_option("--use_hashing",
action="store_true",
help="Use a hashing vectorizer.")

op.add_option("--n_features",
action="store", type=int, default=2 ** 16,
help="n_features when using the hashing vectorizer.")

op.add_option("--filtered",
action="store_true",
help="Remove newsgroup information that is easily overfit: "

"headers, signatures, and quoting.")

(opts, args) = op.parse_args()
if len(args) > 0:

op.error("this script takes no arguments.")
sys.exit(1)

print(__doc__)
op.print_help()
print()

###############################################################################
# Load some categories from the training set
if opts.all_categories:

categories = None
else:

categories = [
'alt.atheism',
'talk.religion.misc',
'comp.graphics',
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'sci.space',
]

if opts.filtered:
remove = ('headers', 'footers', 'quotes')

else:
remove = ()

print("Loading 20 newsgroups dataset for categories:")
print(categories if categories else "all")

data_train = fetch_20newsgroups(subset='train', categories=categories,
shuffle=True, random_state=42,
remove=remove)

data_test = fetch_20newsgroups(subset='test', categories=categories,
shuffle=True, random_state=42,
remove=remove)

print('data loaded')

categories = data_train.target_names # for case categories == None

def size_mb(docs):
return sum(len(s.encode('utf-8')) for s in docs) / 1e6

data_train_size_mb = size_mb(data_train.data)
data_test_size_mb = size_mb(data_test.data)

print("%d documents - %0.3fMB (training set)" % (
len(data_train.data), data_train_size_mb))

print("%d documents - %0.3fMB (test set)" % (
len(data_test.data), data_test_size_mb))

print("%d categories" % len(categories))
print()

# split a training set and a test set
y_train, y_test = data_train.target, data_test.target

print("Extracting features from the training data using a sparse vectorizer")
t0 = time()
if opts.use_hashing:

vectorizer = HashingVectorizer(stop_words='english', non_negative=True,
n_features=opts.n_features)

X_train = vectorizer.transform(data_train.data)
else:

vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5,
stop_words='english')

X_train = vectorizer.fit_transform(data_train.data)
duration = time() - t0
print("done in %fs at %0.3fMB/s" % (duration, data_train_size_mb / duration))
print("n_samples: %d, n_features: %d" % X_train.shape)
print()

print("Extracting features from the test data using the same vectorizer")
t0 = time()
X_test = vectorizer.transform(data_test.data)
duration = time() - t0
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print("done in %fs at %0.3fMB/s" % (duration, data_test_size_mb / duration))
print("n_samples: %d, n_features: %d" % X_test.shape)
print()

# mapping from integer feature name to original token string
if opts.use_hashing:

feature_names = None
else:

feature_names = vectorizer.get_feature_names()

if opts.select_chi2:
print("Extracting %d best features by a chi-squared test" %

opts.select_chi2)
t0 = time()
ch2 = SelectKBest(chi2, k=opts.select_chi2)
X_train = ch2.fit_transform(X_train, y_train)
X_test = ch2.transform(X_test)
if feature_names:

# keep selected feature names
feature_names = [feature_names[i] for i

in ch2.get_support(indices=True)]
print("done in %fs" % (time() - t0))
print()

if feature_names:
feature_names = np.asarray(feature_names)

def trim(s):
"""Trim string to fit on terminal (assuming 80-column display)"""
return s if len(s) <= 80 else s[:77] + "..."

###############################################################################
# Benchmark classifiers
def benchmark(clf):

print('_' * 80)
print("Training: ")
print(clf)
t0 = time()
clf.fit(X_train, y_train)
train_time = time() - t0
print("train time: %0.3fs" % train_time)

t0 = time()
pred = clf.predict(X_test)
test_time = time() - t0
print("test time: %0.3fs" % test_time)

score = metrics.accuracy_score(y_test, pred)
print("accuracy: %0.3f" % score)

if hasattr(clf, 'coef_'):
print("dimensionality: %d" % clf.coef_.shape[1])
print("density: %f" % density(clf.coef_))

if opts.print_top10 and feature_names is not None:
print("top 10 keywords per class:")
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for i, category in enumerate(categories):
top10 = np.argsort(clf.coef_[i])[-10:]
print(trim("%s: %s"

% (category, " ".join(feature_names[top10]))))
print()

if opts.print_report:
print("classification report:")
print(metrics.classification_report(y_test, pred,

target_names=categories))

if opts.print_cm:
print("confusion matrix:")
print(metrics.confusion_matrix(y_test, pred))

print()
clf_descr = str(clf).split('(')[0]
return clf_descr, score, train_time, test_time

results = []
for clf, name in (

(RidgeClassifier(tol=1e-2, solver="lsqr"), "Ridge Classifier"),
(Perceptron(n_iter=50), "Perceptron"),
(PassiveAggressiveClassifier(n_iter=50), "Passive-Aggressive"),
(KNeighborsClassifier(n_neighbors=10), "kNN"),
(RandomForestClassifier(n_estimators=100), "Random forest")):

print('=' * 80)
print(name)
results.append(benchmark(clf))

for penalty in ["l2", "l1"]:
print('=' * 80)
print("%s penalty" % penalty.upper())
# Train Liblinear model
results.append(benchmark(LinearSVC(loss='l2', penalty=penalty,

dual=False, tol=1e-3)))

# Train SGD model
results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50,

penalty=penalty)))

# Train SGD with Elastic Net penalty
print('=' * 80)
print("Elastic-Net penalty")
results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50,

penalty="elasticnet")))

# Train NearestCentroid without threshold
print('=' * 80)
print("NearestCentroid (aka Rocchio classifier)")
results.append(benchmark(NearestCentroid()))

# Train sparse Naive Bayes classifiers
print('=' * 80)
print("Naive Bayes")
results.append(benchmark(MultinomialNB(alpha=.01)))
results.append(benchmark(BernoulliNB(alpha=.01)))
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print('=' * 80)
print("LinearSVC with L1-based feature selection")
# The smaller C, the stronger the regularization.
# The more regularization, the more sparsity.
results.append(benchmark(Pipeline([

('feature_selection', LinearSVC(penalty="l1", dual=False, tol=1e-3)),
('classification', LinearSVC())

])))

# make some plots

indices = np.arange(len(results))

results = [[x[i] for x in results] for i in range(4)]

clf_names, score, training_time, test_time = results
training_time = np.array(training_time) / np.max(training_time)
test_time = np.array(test_time) / np.max(test_time)

plt.figure(figsize=(12, 8))
plt.title("Score")
plt.barh(indices, score, .2, label="score", color='r')
plt.barh(indices + .3, training_time, .2, label="training time", color='g')
plt.barh(indices + .6, test_time, .2, label="test time", color='b')
plt.yticks(())
plt.legend(loc='best')
plt.subplots_adjust(left=.25)
plt.subplots_adjust(top=.95)
plt.subplots_adjust(bottom=.05)

for i, c in zip(indices, clf_names):
plt.text(-.3, i, c)

plt.show()

4.25 Decision Trees

Examples concerning the sklearn.tree module.

4.25.1 Decision Tree Regression

A 1D regression with decision tree.

The decision trees is used to fit a sine curve with addition noisy observation. As a result, it learns local linear regres-
sions approximating the sine curve.

We can see that if the maximum depth of the tree (controlled by the max_depth parameter) is set too high, the decision
trees learn too fine details of the training data and learn from the noise, i.e. they overfit.
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Python source code: plot_tree_regression.py

print(__doc__)

# Import the necessary modules and libraries
import numpy as np
from sklearn.tree import DecisionTreeRegressor
import matplotlib.pyplot as plt

# Create a random dataset
rng = np.random.RandomState(1)
X = np.sort(5 * rng.rand(80, 1), axis=0)
y = np.sin(X).ravel()
y[::5] += 3 * (0.5 - rng.rand(16))

# Fit regression model
regr_1 = DecisionTreeRegressor(max_depth=2)
regr_2 = DecisionTreeRegressor(max_depth=5)
regr_1.fit(X, y)
regr_2.fit(X, y)

# Predict
X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]
y_1 = regr_1.predict(X_test)
y_2 = regr_2.predict(X_test)
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# Plot the results
plt.figure()
plt.scatter(X, y, c="k", label="data")
plt.plot(X_test, y_1, c="g", label="max_depth=2", linewidth=2)
plt.plot(X_test, y_2, c="r", label="max_depth=5", linewidth=2)
plt.xlabel("data")
plt.ylabel("target")
plt.title("Decision Tree Regression")
plt.legend()
plt.show()

Total running time of the example: 0.04 seconds ( 0 minutes 0.04 seconds)

4.25.2 Multi-output Decision Tree Regression

An example to illustrate multi-output regression with decision tree.

The decision trees is used to predict simultaneously the noisy x and y observations of a circle given a single underlying
feature. As a result, it learns local linear regressions approximating the circle.

We can see that if the maximum depth of the tree (controlled by the max_depth parameter) is set too high, the decision
trees learn too fine details of the training data and learn from the noise, i.e. they overfit.

Python source code: plot_tree_regression_multioutput.py
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print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeRegressor

# Create a random dataset
rng = np.random.RandomState(1)
X = np.sort(200 * rng.rand(100, 1) - 100, axis=0)
y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T
y[::5, :] += (0.5 - rng.rand(20, 2))

# Fit regression model
regr_1 = DecisionTreeRegressor(max_depth=2)
regr_2 = DecisionTreeRegressor(max_depth=5)
regr_3 = DecisionTreeRegressor(max_depth=8)
regr_1.fit(X, y)
regr_2.fit(X, y)
regr_3.fit(X, y)

# Predict
X_test = np.arange(-100.0, 100.0, 0.01)[:, np.newaxis]
y_1 = regr_1.predict(X_test)
y_2 = regr_2.predict(X_test)
y_3 = regr_3.predict(X_test)

# Plot the results
plt.figure()
plt.scatter(y[:, 0], y[:, 1], c="k", label="data")
plt.scatter(y_1[:, 0], y_1[:, 1], c="g", label="max_depth=2")
plt.scatter(y_2[:, 0], y_2[:, 1], c="r", label="max_depth=5")
plt.scatter(y_3[:, 0], y_3[:, 1], c="b", label="max_depth=8")
plt.xlim([-6, 6])
plt.ylim([-6, 6])
plt.xlabel("data")
plt.ylabel("target")
plt.title("Multi-output Decision Tree Regression")
plt.legend()
plt.show()

Total running time of the example: 0.07 seconds ( 0 minutes 0.07 seconds)

4.25.3 Plot the decision surface of a decision tree on the iris dataset

Plot the decision surface of a decision tree trained on pairs of features of the iris dataset.

See decision tree for more information on the estimator.

For each pair of iris features, the decision tree learns decision boundaries made of combinations of simple thresholding
rules inferred from the training samples.
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Python source code: plot_iris.py

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier

# Parameters
n_classes = 3
plot_colors = "bry"
plot_step = 0.02

# Load data
iris = load_iris()

for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3],
[1, 2], [1, 3], [2, 3]]):

# We only take the two corresponding features
X = iris.data[:, pair]
y = iris.target

# Shuffle
idx = np.arange(X.shape[0])
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np.random.seed(13)
np.random.shuffle(idx)
X = X[idx]
y = y[idx]

# Standardize
mean = X.mean(axis=0)
std = X.std(axis=0)
X = (X - mean) / std

# Train
clf = DecisionTreeClassifier().fit(X, y)

# Plot the decision boundary
plt.subplot(2, 3, pairidx + 1)

x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),

np.arange(y_min, y_max, plot_step))

Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)

plt.xlabel(iris.feature_names[pair[0]])
plt.ylabel(iris.feature_names[pair[1]])
plt.axis("tight")

# Plot the training points
for i, color in zip(range(n_classes), plot_colors):

idx = np.where(y == i)
plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i],

cmap=plt.cm.Paired)

plt.axis("tight")

plt.suptitle("Decision surface of a decision tree using paired features")
plt.legend()
plt.show()

Total running time of the example: 0.59 seconds ( 0 minutes 0.59 seconds)
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CHAPTER

FIVE

API REFERENCE

This is the class and function reference of scikit-learn. Please refer to the full user guide for further details, as the class
and function raw specifications may not be enough to give full guidelines on their uses.

5.1 sklearn.base: Base classes and utility functions

Base classes for all estimators.

5.1.1 Base classes

base.BaseEstimator Base class for all estimators in scikit-learn
base.ClassifierMixin Mixin class for all classifiers in scikit-learn.
base.ClusterMixin Mixin class for all cluster estimators in scikit-learn.
base.RegressorMixin Mixin class for all regression estimators in scikit-learn.
base.TransformerMixin Mixin class for all transformers in scikit-learn.

sklearn.base.BaseEstimator

class sklearn.base.BaseEstimator
Base class for all estimators in scikit-learn

Notes

All estimators should specify all the parameters that can be set at the class level in their __init__ as explicit
keyword arguments (no *args or **kwargs).

Methods

get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.

__init__()
Initialize self. See help(type(self)) for accurate signature.

get_params(deep=True)
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Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.base.BaseEstimator

• Feature Union with Heterogeneous Data Sources

sklearn.base.ClassifierMixin

class sklearn.base.ClassifierMixin
Mixin class for all classifiers in scikit-learn.

Methods

score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.

__init__()
Initialize self. See help(type(self)) for accurate signature.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.
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sklearn.base.ClusterMixin

class sklearn.base.ClusterMixin
Mixin class for all cluster estimators in scikit-learn.

Methods

fit_predict(X[, y]) Performs clustering on X and returns cluster labels.

__init__()
Initialize self. See help(type(self)) for accurate signature.

fit_predict(X, y=None)
Performs clustering on X and returns cluster labels.

ParametersX : ndarray, shape (n_samples, n_features)

Input data.

Returnsy : ndarray, shape (n_samples,)

cluster labels

sklearn.base.RegressorMixin

class sklearn.base.RegressorMixin
Mixin class for all regression estimators in scikit-learn.

Methods

score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.

__init__()
Initialize self. See help(type(self)) for accurate signature.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float
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R^2 of self.predict(X) wrt. y.

sklearn.base.TransformerMixin

class sklearn.base.TransformerMixin
Mixin class for all transformers in scikit-learn.

Methods

fit_transform(X[, y]) Fit to data, then transform it.

__init__()
Initialize self. See help(type(self)) for accurate signature.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Examples using sklearn.base.TransformerMixin

• Feature Union with Heterogeneous Data Sources

5.1.2 Functions

base.clone(estimator[, safe]) Constructs a new estimator with the same parameters.

sklearn.base.clone

sklearn.base.clone(estimator, safe=True)
Constructs a new estimator with the same parameters.

Clone does a deep copy of the model in an estimator without actually copying attached data. It yields a new
estimator with the same parameters that has not been fit on any data.

Parametersestimator: estimator object, or list, tuple or set of objects :

The estimator or group of estimators to be cloned

safe: boolean, optional :

If safe is false, clone will fall back to a deepcopy on objects that are not estimators.
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5.2 sklearn.cluster: Clustering

The sklearn.cluster module gathers popular unsupervised clustering algorithms.

User guide: See the Clustering section for further details.

5.2.1 Classes

cluster.AffinityPropagation([damping, ...]) Perform Affinity Propagation Clustering of data.
cluster.AgglomerativeClustering([...]) Agglomerative Clustering
cluster.Birch([threshold, branching_factor, ...]) Implements the Birch clustering algorithm.
cluster.DBSCAN([eps, min_samples, metric, ...]) Perform DBSCAN clustering from vector array or distance matrix.
cluster.FeatureAgglomeration([n_clusters, ...]) Agglomerate features.
cluster.KMeans([n_clusters, init, n_init, ...]) K-Means clustering
cluster.MiniBatchKMeans([n_clusters, init, ...]) Mini-Batch K-Means clustering
cluster.MeanShift([bandwidth, seeds, ...]) Mean shift clustering using a flat kernel.
cluster.SpectralClustering([n_clusters, ...]) Apply clustering to a projection to the normalized laplacian.

sklearn.cluster.AffinityPropagation

class sklearn.cluster.AffinityPropagation(damping=0.5, max_iter=200, conver-
gence_iter=15, copy=True, preference=None,
affinity=’euclidean’, verbose=False)

Perform Affinity Propagation Clustering of data.

Read more in the User Guide.

Parametersdamping : float, optional, default: 0.5

Damping factor between 0.5 and 1.

convergence_iter : int, optional, default: 15

Number of iterations with no change in the number of estimated clusters that stops the
convergence.

max_iter : int, optional, default: 200

Maximum number of iterations.

copy : boolean, optional, default: True

Make a copy of input data.

preference : array-like, shape (n_samples,) or float, optional

Preferences for each point - points with larger values of preferences are more likely to
be chosen as exemplars. The number of exemplars, ie of clusters, is influenced by the
input preferences value. If the preferences are not passed as arguments, they will be set
to the median of the input similarities.

affinity : string, optional, default=‘‘euclidean‘‘

Which affinity to use. At the moment precomputed and euclidean are supported.
euclidean uses the negative squared euclidean distance between points.

verbose : boolean, optional, default: False

Whether to be verbose.
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Attributescluster_centers_indices_ : array, shape (n_clusters,)

Indices of cluster centers

cluster_centers_ : array, shape (n_clusters, n_features)

Cluster centers (if affinity != precomputed).

labels_ : array, shape (n_samples,)

Labels of each point

affinity_matrix_ : array, shape (n_samples, n_samples)

Stores the affinity matrix used in fit.

n_iter_ : int

Number of iterations taken to converge.

Notes

See examples/cluster/plot_affinity_propagation.py for an example.

The algorithmic complexity of affinity propagation is quadratic in the number of points.

References

Brendan J. Frey and Delbert Dueck, “Clustering by Passing Messages Between Data Points”, Science Feb. 2007

Methods

fit(X[, y]) Create affinity matrix from negative euclidean distances, then apply affinity propagation clustering.
fit_predict(X[, y]) Performs clustering on X and returns cluster labels.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict the closest cluster each sample in X belongs to.
set_params(**params) Set the parameters of this estimator.

__init__(damping=0.5, max_iter=200, convergence_iter=15, copy=True, preference=None, affin-
ity=’euclidean’, verbose=False)

fit(X, y=None)
Create affinity matrix from negative euclidean distances, then apply affinity propagation clustering.

ParametersX: array-like, shape (n_samples, n_features) or (n_samples, n_samples) :

Data matrix or, if affinity is precomputed, matrix of similarities / affinities.

fit_predict(X, y=None)
Performs clustering on X and returns cluster labels.

ParametersX : ndarray, shape (n_samples, n_features)

Input data.

Returnsy : ndarray, shape (n_samples,)

cluster labels
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get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict the closest cluster each sample in X belongs to.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

New data to predict.

Returnslabels : array, shape (n_samples,)

Index of the cluster each sample belongs to.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.cluster.AffinityPropagation

• Demo of affinity propagation clustering algorithm

• Comparing different clustering algorithms on toy datasets

sklearn.cluster.AgglomerativeClustering

class sklearn.cluster.AgglomerativeClustering(n_clusters=2, affinity=’euclidean’, mem-
ory=Memory(cachedir=None), connec-
tivity=None, n_components=None, com-
pute_full_tree=’auto’, linkage=’ward’,
pooling_func=<function mean at
0x7f2327bcd7b8>)

Agglomerative Clustering

Recursively merges the pair of clusters that minimally increases a given linkage distance.

Read more in the User Guide.

Parametersn_clusters : int, default=2

The number of clusters to find.

connectivity : array-like or callable, optional

Connectivity matrix. Defines for each sample the neighboring samples following a
given structure of the data. This can be a connectivity matrix itself or a callable that
transforms the data into a connectivity matrix, such as derived from kneighbors_graph.
Default is None, i.e, the hierarchical clustering algorithm is unstructured.
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affinity : string or callable, default: “euclidean”

Metric used to compute the linkage. Can be “euclidean”, “l1”, “l2”, “manhattan”, “co-
sine”, or ‘precomputed’. If linkage is “ward”, only “euclidean” is accepted.

memory : Instance of joblib.Memory or string (optional)

Used to cache the output of the computation of the tree. By default, no caching is done.
If a string is given, it is the path to the caching directory.

n_components : int (optional)

Number of connected components. If None the number of connected components is es-
timated from the connectivity matrix. NOTE: This parameter is now directly determined
from the connectivity matrix and will be removed in 0.18

compute_full_tree : bool or ‘auto’ (optional)

Stop early the construction of the tree at n_clusters. This is useful to decrease compu-
tation time if the number of clusters is not small compared to the number of samples.
This option is useful only when specifying a connectivity matrix. Note also that when
varying the number of clusters and using caching, it may be advantageous to compute
the full tree.

linkage : {“ward”, “complete”, “average”}, optional, default: “ward”

Which linkage criterion to use. The linkage criterion determines which distance to use
between sets of observation. The algorithm will merge the pairs of cluster that minimize
this criterion.

•ward minimizes the variance of the clusters being merged.

•average uses the average of the distances of each observation of the two sets.

•complete or maximum linkage uses the maximum distances between all observations
of the two sets.

pooling_func : callable, default=np.mean

This combines the values of agglomerated features into a single value, and should accept
an array of shape [M, N] and the keyword argument axis=1, and reduce it to an array
of size [M].

Attributeslabels_ : array [n_samples]

cluster labels for each point

n_leaves_ : int

Number of leaves in the hierarchical tree.

n_components_ : int

The estimated number of connected components in the graph.

children_ : array-like, shape (n_nodes-1, 2)

The children of each non-leaf node. Values less than n_samples correspond to leaves
of the tree which are the original samples. A node i greater than or equal to n_samples
is a non-leaf node and has children children_[i - n_samples]. Alternatively at the i-th
iteration, children[i][0] and children[i][1] are merged to form node n_samples + i

Methods
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fit(X[, y]) Fit the hierarchical clustering on the data
fit_predict(X[, y]) Performs clustering on X and returns cluster labels.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.

__init__(n_clusters=2, affinity=’euclidean’, memory=Memory(cachedir=None), connectivity=None,
n_components=None, compute_full_tree=’auto’, linkage=’ward’, pooling_func=<function
mean at 0x7f2327bcd7b8>)

fit(X, y=None)
Fit the hierarchical clustering on the data

ParametersX : array-like, shape = [n_samples, n_features]

The samples a.k.a. observations.

Returnsself :

fit_predict(X, y=None)
Performs clustering on X and returns cluster labels.

ParametersX : ndarray, shape (n_samples, n_features)

Input data.

Returnsy : ndarray, shape (n_samples,)

cluster labels

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.cluster.AgglomerativeClustering

• A demo of structured Ward hierarchical clustering on Lena image

• Agglomerative clustering with and without structure

• Hierarchical clustering: structured vs unstructured ward

• Various Agglomerative Clustering on a 2D embedding of digits

• Agglomerative clustering with different metrics

• Comparing different clustering algorithms on toy datasets
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sklearn.cluster.Birch

class sklearn.cluster.Birch(threshold=0.5, branching_factor=50, n_clusters=3, com-
pute_labels=True, copy=True)

Implements the Birch clustering algorithm.

Every new sample is inserted into the root of the Clustering Feature Tree. It is then clubbed together with the
subcluster that has the centroid closest to the new sample. This is done recursively till it ends up at the subcluster
of the leaf of the tree has the closest centroid.

Read more in the User Guide.

Parametersthreshold : float, default 0.5

The radius of the subcluster obtained by merging a new sample and the closest subclus-
ter should be lesser than the threshold. Otherwise a new subcluster is started.

branching_factor : int, default 50

Maximum number of CF subclusters in each node. If a new samples enters such that the
number of subclusters exceed the branching_factor then the node has to be split. The
corresponding parent also has to be split and if the number of subclusters in the parent
is greater than the branching factor, then it has to be split recursively.

n_clusters : int, instance of sklearn.cluster model, default None

Number of clusters after the final clustering step, which treats the subclusters from the
leaves as new samples. By default, this final clustering step is not performed and the
subclusters are returned as they are. If a model is provided, the model is fit treating the
subclusters as new samples and the initial data is mapped to the label of the closest sub-
cluster. If an int is provided, the model fit is AgglomerativeClustering with n_clusters
set to the int.

compute_labels : bool, default True

Whether or not to compute labels for each fit.

copy : bool, default True

Whether or not to make a copy of the given data. If set to False, the initial data will be
overwritten.

Attributesroot_ : _CFNode

Root of the CFTree.

dummy_leaf_ : _CFNode

Start pointer to all the leaves.

subcluster_centers_ : ndarray,

Centroids of all subclusters read directly from the leaves.

subcluster_labels_ : ndarray,

Labels assigned to the centroids of the subclusters after they are clustered globally.

labels_ : ndarray, shape (n_samples,)

Array of labels assigned to the input data. if partial_fit is used instead of fit, they are
assigned to the last batch of data.
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References

•Tian Zhang, Raghu Ramakrishnan, Maron Livny BIRCH: An efficient data clustering method for large
databases. http://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf

•Roberto Perdisci JBirch - Java implementation of BIRCH clustering algorithm
https://code.google.com/p/jbirch/

Examples

>>> from sklearn.cluster import Birch
>>> X = [[0, 1], [0.3, 1], [-0.3, 1], [0, -1], [0.3, -1], [-0.3, -1]]
>>> brc = Birch(branching_factor=50, n_clusters=None, threshold=0.5,
... compute_labels=True)
>>> brc.fit(X)
Birch(branching_factor=50, compute_labels=True, copy=True, n_clusters=None,

threshold=0.5)
>>> brc.predict(X)
array([0, 0, 0, 1, 1, 1])

Methods

fit(X[, y]) Build a CF Tree for the input data.
fit_predict(X[, y]) Performs clustering on X and returns cluster labels.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
partial_fit([X, y]) Online learning.
predict(X) Predict data using the centroids_ of subclusters.
set_params(**params) Set the parameters of this estimator.
transform(X[, y]) Transform X into subcluster centroids dimension.

__init__(threshold=0.5, branching_factor=50, n_clusters=3, compute_labels=True, copy=True)

fit(X, y=None)
Build a CF Tree for the input data.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Input data.

fit_predict(X, y=None)
Performs clustering on X and returns cluster labels.

ParametersX : ndarray, shape (n_samples, n_features)

Input data.

Returnsy : ndarray, shape (n_samples,)

cluster labels

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]
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Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

partial_fit(X=None, y=None)
Online learning. Prevents rebuilding of CFTree from scratch.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features), None

Input data. If X is not provided, only the global clustering step is done.

predict(X)
Predict data using the centroids_ of subclusters.

Avoid computation of the row norms of X.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Input data.

Returnslabels: ndarray, shape(n_samples) :

Labelled data.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X, y=None)
Transform X into subcluster centroids dimension.

Each dimension represents the distance from the sample point to each cluster centroid.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Input data.

ReturnsX_trans : {array-like, sparse matrix}, shape (n_samples, n_clusters)

Transformed data.
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Examples using sklearn.cluster.Birch

• Compare BIRCH and MiniBatchKMeans

• Comparing different clustering algorithms on toy datasets

sklearn.cluster.DBSCAN

class sklearn.cluster.DBSCAN(eps=0.5, min_samples=5, metric=’euclidean’, algorithm=’auto’,
leaf_size=30, p=None, random_state=None)

Perform DBSCAN clustering from vector array or distance matrix.

DBSCAN - Density-Based Spatial Clustering of Applications with Noise. Finds core samples of high density
and expands clusters from them. Good for data which contains clusters of similar density.

Read more in the User Guide.

Parameterseps : float, optional

The maximum distance between two samples for them to be considered as in the same
neighborhood.

min_samples : int, optional

The number of samples (or total weight) in a neighborhood for a point to be considered
as a core point. This includes the point itself.

metric : string, or callable

The metric to use when calculating distance between instances in a feature array.
If metric is a string or callable, it must be one of the options allowed by met-
rics.pairwise.calculate_distance for its metric parameter. If metric is “precomputed”,
X is assumed to be a distance matrix and must be square. X may be a sparse matrix, in
which case only “nonzero” elements may be considered neighbors for DBSCAN.

New in version 0.17: metric precomputed to accept precomputed sparse matrix.

algorithm : {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional

The algorithm to be used by the NearestNeighbors module to compute pointwise dis-
tances and find nearest neighbors. See NearestNeighbors module documentation for
details.

leaf_size : int, optional (default = 30)

Leaf size passed to BallTree or cKDTree. This can affect the speed of the construction
and query, as well as the memory required to store the tree. The optimal value depends
on the nature of the problem.

random_state: numpy.RandomState, optional :

Deprecated and ignored as of version 0.16, will be removed in version 0.18. DBSCAN
does not use random initialization.

Attributescore_sample_indices_ : array, shape = [n_core_samples]

Indices of core samples.

components_ : array, shape = [n_core_samples, n_features]

Copy of each core sample found by training.

labels_ : array, shape = [n_samples]
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Cluster labels for each point in the dataset given to fit(). Noisy samples are given the
label -1.

Notes

See examples/cluster/plot_dbscan.py for an example.

This implementation bulk-computes all neighborhood queries, which increases the memory complexity to
O(n.d) where d is the average number of neighbors, while original DBSCAN had memory complexity O(n).

Sparse neighborhoods can be precomputed using NearestNeighbors.radius_neighbors_graph
with mode=’distance’.

References

Ester, M., H. P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise”. In: Proceedings of the 2nd International Conference on Knowledge Discovery
and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996

Methods

fit(X[, y, sample_weight]) Perform DBSCAN clustering from features or distance matrix.
fit_predict(X[, y, sample_weight]) Performs clustering on X and returns cluster labels.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.

__init__(eps=0.5, min_samples=5, metric=’euclidean’, algorithm=’auto’, leaf_size=30, p=None,
random_state=None)

fit(X, y=None, sample_weight=None)
Perform DBSCAN clustering from features or distance matrix.

ParametersX : array or sparse (CSR) matrix of shape (n_samples, n_features), or array of shape
(n_samples, n_samples)

A feature array, or array of distances between samples if metric=’precomputed’.

sample_weight : array, shape (n_samples,), optional

Weight of each sample, such that a sample with a weight of at least min_samples
is by itself a core sample; a sample with negative weight may inhibit its eps-neighbor
from being core. Note that weights are absolute, and default to 1.

fit_predict(X, y=None, sample_weight=None)
Performs clustering on X and returns cluster labels.

ParametersX : array or sparse (CSR) matrix of shape (n_samples, n_features), or array of shape
(n_samples, n_samples)

A feature array, or array of distances between samples if metric=’precomputed’.

sample_weight : array, shape (n_samples,), optional

Weight of each sample, such that a sample with a weight of at least min_samples
is by itself a core sample; a sample with negative weight may inhibit its eps-neighbor
from being core. Note that weights are absolute, and default to 1.
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Returnsy : ndarray, shape (n_samples,)

cluster labels

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.cluster.DBSCAN

• Demo of DBSCAN clustering algorithm

• Comparing different clustering algorithms on toy datasets

sklearn.cluster.FeatureAgglomeration

class sklearn.cluster.FeatureAgglomeration(n_clusters=2, affinity=’euclidean’, mem-
ory=Memory(cachedir=None), connec-
tivity=None, n_components=None, com-
pute_full_tree=’auto’, linkage=’ward’, pool-
ing_func=<function mean at 0x7f2327bcd7b8>)

Agglomerate features.

Similar to AgglomerativeClustering, but recursively merges features instead of samples.

Read more in the User Guide.

Parametersn_clusters : int, default 2

The number of clusters to find.

connectivity : array-like or callable, optional

Connectivity matrix. Defines for each feature the neighboring features following a given
structure of the data. This can be a connectivity matrix itself or a callable that transforms
the data into a connectivity matrix, such as derived from kneighbors_graph. Default is
None, i.e, the hierarchical clustering algorithm is unstructured.

affinity : string or callable, default “euclidean”

Metric used to compute the linkage. Can be “euclidean”, “l1”, “l2”, “manhattan”, “co-
sine”, or ‘precomputed’. If linkage is “ward”, only “euclidean” is accepted.

memory : Instance of joblib.Memory or string, optional
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Used to cache the output of the computation of the tree. By default, no caching is done.
If a string is given, it is the path to the caching directory.

n_components : int (optional)

Number of connected components. If None the number of connected components is es-
timated from the connectivity matrix. NOTE: This parameter is now directly determined
from the connectivity matrix and will be removed in 0.18

compute_full_tree : bool or ‘auto’, optional, default “auto”

Stop early the construction of the tree at n_clusters. This is useful to decrease compu-
tation time if the number of clusters is not small compared to the number of features.
This option is useful only when specifying a connectivity matrix. Note also that when
varying the number of clusters and using caching, it may be advantageous to compute
the full tree.

linkage : {“ward”, “complete”, “average”}, optional, default “ward”

Which linkage criterion to use. The linkage criterion determines which distance to use
between sets of features. The algorithm will merge the pairs of cluster that minimize
this criterion.

•ward minimizes the variance of the clusters being merged.

•average uses the average of the distances of each feature of the two sets.

•complete or maximum linkage uses the maximum distances between all features of
the two sets.

pooling_func : callable, default np.mean

This combines the values of agglomerated features into a single value, and should accept
an array of shape [M, N] and the keyword argument axis=1, and reduce it to an array of
size [M].

Attributeslabels_ : array-like, (n_features,)

cluster labels for each feature.

n_leaves_ : int

Number of leaves in the hierarchical tree.

n_components_ : int

The estimated number of connected components in the graph.

children_ : array-like, shape (n_nodes-1, 2)

The children of each non-leaf node. Values less than n_features correspond to leaves
of the tree which are the original samples. A node i greater than or equal to n_features
is a non-leaf node and has children children_[i - n_features]. Alternatively at the i-th
iteration, children[i][0] and children[i][1] are merged to form node n_features + i

Methods

fit(X[, y]) Fit the hierarchical clustering on the data
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
inverse_transform(Xred) Inverse the transformation.

Continued on next page
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Table 5.13 – continued from previous page
pooling_func(a[, axis, dtype, out, keepdims]) Compute the arithmetic mean along the specified axis.
set_params(**params) Set the parameters of this estimator.
transform(X[, pooling_func]) Transform a new matrix using the built clustering

__init__(n_clusters=2, affinity=’euclidean’, memory=Memory(cachedir=None), connectivity=None,
n_components=None, compute_full_tree=’auto’, linkage=’ward’, pooling_func=<function
mean at 0x7f2327bcd7b8>)

fit(X, y=None, **params)
Fit the hierarchical clustering on the data

ParametersX : array-like, shape = [n_samples, n_features]

The data

Returnsself :

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

inverse_transform(Xred)
Inverse the transformation. Return a vector of size nb_features with the values of Xred assigned to each
group of features

ParametersXred : array-like, shape=[n_samples, n_clusters] or [n_clusters,]

The values to be assigned to each cluster of samples

ReturnsX : array, shape=[n_samples, n_features] or [n_features]

A vector of size n_samples with the values of Xred assigned to each of the cluster of
samples.

pooling_func(a, axis=None, dtype=None, out=None, keepdims=False)
Compute the arithmetic mean along the specified axis.

Returns the average of the array elements. The average is taken over the flattened array by default, other-
wise over the specified axis. float64 intermediate and return values are used for integer inputs.
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Parametersa : array_like

Array containing numbers whose mean is desired. If a is not an array, a conversion is
attempted.

axis : None or int or tuple of ints, optional

Axis or axes along which the means are computed. The default is to compute the mean
of the flattened array.

If this is a tuple of ints, a mean is performed over multiple axes, instead of a single axis
or all the axes as before.

dtype : data-type, optional

Type to use in computing the mean. For integer inputs, the default is float64; for floating
point inputs, it is the same as the input dtype.

out : ndarray, optional

Alternate output array in which to place the result. The default is None; if provided, it
must have the same shape as the expected output, but the type will be cast if necessary.
See doc.ufuncs for details.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with
size one. With this option, the result will broadcast correctly against the original arr.

Returnsm : ndarray, see dtype parameter above

If out=None, returns a new array containing the mean values, otherwise a reference to
the output array is returned.

See also:

averageWeighted average

std, var, nanmean, nanstd, nanvar

Notes

The arithmetic mean is the sum of the elements along the axis divided by the number of elements.

Note that for floating-point input, the mean is computed using the same precision the input has. Depending
on the input data, this can cause the results to be inaccurate, especially for float32 (see example below).
Specifying a higher-precision accumulator using the dtype keyword can alleviate this issue.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> np.mean(a)
2.5
>>> np.mean(a, axis=0)
array([ 2., 3.])
>>> np.mean(a, axis=1)
array([ 1.5, 3.5])

In single precision, mean can be inaccurate:
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>>> a = np.zeros((2, 512*512), dtype=np.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> np.mean(a)
0.546875

Computing the mean in float64 is more accurate:

>>> np.mean(a, dtype=np.float64)
0.55000000074505806

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X, pooling_func=None)
Transform a new matrix using the built clustering

ParametersX : array-like, shape = [n_samples, n_features] or [n_features]

A M by N array of M observations in N dimensions or a length M array of M one-
dimensional observations.

pooling_func : callable, default=np.mean

This combines the values of agglomerated features into a single value, and should accept
an array of shape [M, N] and the keyword argument axis=1, and reduce it to an array of
size [M].

ReturnsY : array, shape = [n_samples, n_clusters] or [n_clusters]

The pooled values for each feature cluster.

Examples using sklearn.cluster.FeatureAgglomeration

• Feature agglomeration

• Feature agglomeration vs. univariate selection

sklearn.cluster.KMeans

class sklearn.cluster.KMeans(n_clusters=8, init=’k-means++’, n_init=10, max_iter=300,
tol=0.0001, precompute_distances=’auto’, verbose=0, ran-
dom_state=None, copy_x=True, n_jobs=1)

K-Means clustering

Read more in the User Guide.

Parametersn_clusters : int, optional, default: 8

The number of clusters to form as well as the number of centroids to generate.

max_iter : int, default: 300

Maximum number of iterations of the k-means algorithm for a single run.

n_init : int, default: 10
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Number of time the k-means algorithm will be run with different centroid seeds. The
final results will be the best output of n_init consecutive runs in terms of inertia.

init : {‘k-means++’, ‘random’ or an ndarray}

Method for initialization, defaults to ‘k-means++’:

‘k-means++’ : selects initial cluster centers for k-mean clustering in a smart way to
speed up convergence. See section Notes in k_init for more details.

‘random’: choose k observations (rows) at random from data for the initial centroids.

If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial
centers.

precompute_distances : {‘auto’, True, False}

Precompute distances (faster but takes more memory).

‘auto’ : do not precompute distances if n_samples * n_clusters > 12 million. This
corresponds to about 100MB overhead per job using double precision.

True : always precompute distances

False : never precompute distances

tol : float, default: 1e-4

Relative tolerance with regards to inertia to declare convergence

n_jobs : int

The number of jobs to use for the computation. This works by computing each of the
n_init runs in parallel.

If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which
is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for
n_jobs = -2, all CPUs but one are used.

random_state : integer or numpy.RandomState, optional

The generator used to initialize the centers. If an integer is given, it fixes the seed.
Defaults to the global numpy random number generator.

verbose : int, default 0

Verbosity mode.

copy_x : boolean, default True

When pre-computing distances it is more numerically accurate to center the data first.
If copy_x is True, then the original data is not modified. If False, the original data is
modified, and put back before the function returns, but small numerical differences may
be introduced by subtracting and then adding the data mean.

Attributescluster_centers_ : array, [n_clusters, n_features]

Coordinates of cluster centers

labels_ : :

Labels of each point

inertia_ : float

Sum of distances of samples to their closest cluster center.

See also:
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MiniBatchKMeansAlternative online implementation that does incremental updates of the centers positions
using mini-batches. For large scale learning (say n_samples > 10k) MiniBatchKMeans is probably much
faster to than the default batch implementation.

Notes

The k-means problem is solved using Lloyd’s algorithm.

The average complexity is given by O(k n T), were n is the number of samples and T is the number of iteration.

The worst case complexity is given by O(n^(k+2/p)) with n = n_samples, p = n_features. (D. Arthur and S.
Vassilvitskii, ‘How slow is the k-means method?’ SoCG2006)

In practice, the k-means algorithm is very fast (one of the fastest clustering algorithms available), but it falls in
local minima. That’s why it can be useful to restart it several times.

Methods

fit(X[, y]) Compute k-means clustering.
fit_predict(X[, y]) Compute cluster centers and predict cluster index for each sample.
fit_transform(X[, y]) Compute clustering and transform X to cluster-distance space.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict the closest cluster each sample in X belongs to.
score(X[, y]) Opposite of the value of X on the K-means objective.
set_params(**params) Set the parameters of this estimator.
transform(X[, y]) Transform X to a cluster-distance space.

__init__(n_clusters=8, init=’k-means++’, n_init=10, max_iter=300, tol=0.0001, precom-
pute_distances=’auto’, verbose=0, random_state=None, copy_x=True, n_jobs=1)

fit(X, y=None)
Compute k-means clustering.

ParametersX : array-like or sparse matrix, shape=(n_samples, n_features)

fit_predict(X, y=None)
Compute cluster centers and predict cluster index for each sample.

Convenience method; equivalent to calling fit(X) followed by predict(X).

fit_transform(X, y=None)
Compute clustering and transform X to cluster-distance space.

Equivalent to fit(X).transform(X), but more efficiently implemented.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

5.2. sklearn.cluster: Clustering 981



scikit-learn user guide, Release 0.17

predict(X)
Predict the closest cluster each sample in X belongs to.

In the vector quantization literature, cluster_centers_ is called the code book and each value returned by
predict is the index of the closest code in the code book.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

New data to predict.

Returnslabels : array, shape [n_samples,]

Index of the cluster each sample belongs to.

score(X, y=None)
Opposite of the value of X on the K-means objective.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

New data.

Returnsscore : float

Opposite of the value of X on the K-means objective.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X, y=None)
Transform X to a cluster-distance space.

In the new space, each dimension is the distance to the cluster centers. Note that even if X is sparse, the
array returned by transform will typically be dense.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

New data to transform.

ReturnsX_new : array, shape [n_samples, k]

X transformed in the new space.

Examples using sklearn.cluster.KMeans

• Demonstration of k-means assumptions

• Vector Quantization Example

• K-means Clustering

• Color Quantization using K-Means

• Empirical evaluation of the impact of k-means initialization

• A demo of K-Means clustering on the handwritten digits data

• Comparison of the K-Means and MiniBatchKMeans clustering algorithms

• Selecting the number of clusters with silhouette analysis on KMeans clustering
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• Clustering text documents using k-means

sklearn.cluster.MiniBatchKMeans

class sklearn.cluster.MiniBatchKMeans(n_clusters=8, init=’k-means++’, max_iter=100,
batch_size=100, verbose=0, compute_labels=True,
random_state=None, tol=0.0, max_no_improvement=10,
init_size=None, n_init=3, reassignment_ratio=0.01)

Mini-Batch K-Means clustering

Parametersn_clusters : int, optional, default: 8

The number of clusters to form as well as the number of centroids to generate.

max_iter : int, optional

Maximum number of iterations over the complete dataset before stopping independently
of any early stopping criterion heuristics.

max_no_improvement : int, default: 10

Control early stopping based on the consecutive number of mini batches that does not
yield an improvement on the smoothed inertia.

To disable convergence detection based on inertia, set max_no_improvement to None.

tol : float, default: 0.0

Control early stopping based on the relative center changes as measured by a smoothed,
variance-normalized of the mean center squared position changes. This early stopping
heuristics is closer to the one used for the batch variant of the algorithms but induces a
slight computational and memory overhead over the inertia heuristic.

To disable convergence detection based on normalized center change, set tol to 0.0
(default).

batch_size : int, optional, default: 100

Size of the mini batches.

init_size : int, optional, default: 3 * batch_size

Number of samples to randomly sample for speeding up the initialization (sometimes at
the expense of accuracy): the only algorithm is initialized by running a batch KMeans
on a random subset of the data. This needs to be larger than n_clusters.

init : {‘k-means++’, ‘random’ or an ndarray}, default: ‘k-means++’

Method for initialization, defaults to ‘k-means++’:

‘k-means++’ : selects initial cluster centers for k-mean clustering in a smart way to
speed up convergence. See section Notes in k_init for more details.

‘random’: choose k observations (rows) at random from data for the initial centroids.

If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial
centers.

n_init : int, default=3

Number of random initializations that are tried. In contrast to KMeans, the algorithm is
only run once, using the best of the n_init initializations as measured by inertia.

compute_labels : boolean, default=True
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Compute label assignment and inertia for the complete dataset once the minibatch opti-
mization has converged in fit.

random_state : integer or numpy.RandomState, optional

The generator used to initialize the centers. If an integer is given, it fixes the seed.
Defaults to the global numpy random number generator.

reassignment_ratio : float, default: 0.01

Control the fraction of the maximum number of counts for a center to be reassigned. A
higher value means that low count centers are more easily reassigned, which means that
the model will take longer to converge, but should converge in a better clustering.

verbose : boolean, optional

Verbosity mode.

Attributescluster_centers_ : array, [n_clusters, n_features]

Coordinates of cluster centers

labels_ : :

Labels of each point (if compute_labels is set to True).

inertia_ : float

The value of the inertia criterion associated with the chosen partition (if compute_labels
is set to True). The inertia is defined as the sum of square distances of samples to their
nearest neighbor.

Notes

See http://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf

Methods

fit(X[, y]) Compute the centroids on X by chunking it into mini-batches.
fit_predict(X[, y]) Compute cluster centers and predict cluster index for each sample.
fit_transform(X[, y]) Compute clustering and transform X to cluster-distance space.
get_params([deep]) Get parameters for this estimator.
partial_fit(X[, y]) Update k means estimate on a single mini-batch X.
predict(X) Predict the closest cluster each sample in X belongs to.
score(X[, y]) Opposite of the value of X on the K-means objective.
set_params(**params) Set the parameters of this estimator.
transform(X[, y]) Transform X to a cluster-distance space.

__init__(n_clusters=8, init=’k-means++’, max_iter=100, batch_size=100, verbose=0,
compute_labels=True, random_state=None, tol=0.0, max_no_improvement=10,
init_size=None, n_init=3, reassignment_ratio=0.01)

fit(X, y=None)
Compute the centroids on X by chunking it into mini-batches.

ParametersX : array-like, shape = [n_samples, n_features]

Coordinates of the data points to cluster
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fit_predict(X, y=None)
Compute cluster centers and predict cluster index for each sample.

Convenience method; equivalent to calling fit(X) followed by predict(X).

fit_transform(X, y=None)
Compute clustering and transform X to cluster-distance space.

Equivalent to fit(X).transform(X), but more efficiently implemented.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

partial_fit(X, y=None)
Update k means estimate on a single mini-batch X.

ParametersX : array-like, shape = [n_samples, n_features]

Coordinates of the data points to cluster.

predict(X)
Predict the closest cluster each sample in X belongs to.

In the vector quantization literature, cluster_centers_ is called the code book and each value returned by
predict is the index of the closest code in the code book.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

New data to predict.

Returnslabels : array, shape [n_samples,]

Index of the cluster each sample belongs to.

score(X, y=None)
Opposite of the value of X on the K-means objective.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

New data.

Returnsscore : float

Opposite of the value of X on the K-means objective.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X, y=None)
Transform X to a cluster-distance space.
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In the new space, each dimension is the distance to the cluster centers. Note that even if X is sparse, the
array returned by transform will typically be dense.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

New data to transform.

ReturnsX_new : array, shape [n_samples, k]

X transformed in the new space.

Examples using sklearn.cluster.MiniBatchKMeans

• Biclustering documents with the Spectral Co-clustering algorithm

• Online learning of a dictionary of parts of faces

• Compare BIRCH and MiniBatchKMeans

• Empirical evaluation of the impact of k-means initialization

• Comparing different clustering algorithms on toy datasets

• Comparison of the K-Means and MiniBatchKMeans clustering algorithms

• Faces dataset decompositions

• Clustering text documents using k-means

sklearn.cluster.MeanShift

class sklearn.cluster.MeanShift(bandwidth=None, seeds=None, bin_seeding=False,
min_bin_freq=1, cluster_all=True, n_jobs=1)

Mean shift clustering using a flat kernel.

Mean shift clustering aims to discover “blobs” in a smooth density of samples. It is a centroid-based algo-
rithm, which works by updating candidates for centroids to be the mean of the points within a given region.
These candidates are then filtered in a post-processing stage to eliminate near-duplicates to form the final set of
centroids.

Seeding is performed using a binning technique for scalability.

Read more in the User Guide.

Parametersbandwidth : float, optional

Bandwidth used in the RBF kernel.

If not given, the bandwidth is estimated using sklearn.cluster.estimate_bandwidth; see
the documentation for that function for hints on scalability (see also the Notes, below).

seeds : array, shape=[n_samples, n_features], optional

Seeds used to initialize kernels. If not set, the seeds are calculated by cluster-
ing.get_bin_seeds with bandwidth as the grid size and default values for other parame-
ters.

bin_seeding : boolean, optional

If true, initial kernel locations are not locations of all points, but rather the location of
the discretized version of points, where points are binned onto a grid whose coarseness
corresponds to the bandwidth. Setting this option to True will speed up the algorithm
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because fewer seeds will be initialized. default value: False Ignored if seeds argument
is not None.

min_bin_freq : int, optional

To speed up the algorithm, accept only those bins with at least min_bin_freq points as
seeds. If not defined, set to 1.

cluster_all : boolean, default True

If true, then all points are clustered, even those orphans that are not within any kernel.
Orphans are assigned to the nearest kernel. If false, then orphans are given cluster label
-1.

n_jobs : int

The number of jobs to use for the computation. This works by computing each of the
n_init runs in parallel.

If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which
is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for
n_jobs = -2, all CPUs but one are used.

Attributescluster_centers_ : array, [n_clusters, n_features]

Coordinates of cluster centers.

labels_ : :

Labels of each point.

Notes

Scalability:

Because this implementation uses a flat kernel and a Ball Tree to look up members of each kernel, the complexity
will is to O(T*n*log(n)) in lower dimensions, with n the number of samples and T the number of points. In
higher dimensions the complexity will tend towards O(T*n^2).

Scalability can be boosted by using fewer seeds, for example by using a higher value of min_bin_freq in the
get_bin_seeds function.

Note that the estimate_bandwidth function is much less scalable than the mean shift algorithm and will be the
bottleneck if it is used.

References

Dorin Comaniciu and Peter Meer, “Mean Shift: A robust approach toward feature space analysis”. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619.

Methods

fit(X[, y]) Perform clustering.
fit_predict(X[, y]) Performs clustering on X and returns cluster labels.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict the closest cluster each sample in X belongs to.
set_params(**params) Set the parameters of this estimator.
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__init__(bandwidth=None, seeds=None, bin_seeding=False, min_bin_freq=1, cluster_all=True,
n_jobs=1)

fit(X, y=None)
Perform clustering.

ParametersX : array-like, shape=[n_samples, n_features]

Samples to cluster.

fit_predict(X, y=None)
Performs clustering on X and returns cluster labels.

ParametersX : ndarray, shape (n_samples, n_features)

Input data.

Returnsy : ndarray, shape (n_samples,)

cluster labels

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict the closest cluster each sample in X belongs to.

ParametersX : {array-like, sparse matrix}, shape=[n_samples, n_features]

New data to predict.

Returnslabels : array, shape [n_samples,]

Index of the cluster each sample belongs to.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.cluster.MeanShift

• A demo of the mean-shift clustering algorithm

• Comparing different clustering algorithms on toy datasets
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sklearn.cluster.SpectralClustering

class sklearn.cluster.SpectralClustering(n_clusters=8, eigen_solver=None, ran-
dom_state=None, n_init=10, gamma=1.0, affin-
ity=’rbf’, n_neighbors=10, eigen_tol=0.0, as-
sign_labels=’kmeans’, degree=3, coef0=1, ker-
nel_params=None)

Apply clustering to a projection to the normalized laplacian.

In practice Spectral Clustering is very useful when the structure of the individual clusters is highly non-convex
or more generally when a measure of the center and spread of the cluster is not a suitable description of the
complete cluster. For instance when clusters are nested circles on the 2D plan.

If affinity is the adjacency matrix of a graph, this method can be used to find normalized graph cuts.

When calling fit, an affinity matrix is constructed using either kernel function such the Gaussian (aka RBF)
kernel of the euclidean distanced d(X, X):

np.exp(-gamma * d(X,X) ** 2)

or a k-nearest neighbors connectivity matrix.

Alternatively, using precomputed, a user-provided affinity matrix can be used.

Read more in the User Guide.

Parametersn_clusters : integer, optional

The dimension of the projection subspace.

affinity : string, array-like or callable, default ‘rbf’

If a string, this may be one of ‘nearest_neighbors’, ‘precomputed’, ‘rbf’ or one of the
kernels supported by sklearn.metrics.pairwise_kernels.

Only kernels that produce similarity scores (non-negative values that increase with sim-
ilarity) should be used. This property is not checked by the clustering algorithm.

gamma : float

Scaling factor of RBF, polynomial, exponential chi^2 and sigmoid affinity kernel. Ig-
nored for affinity=’nearest_neighbors’.

degree : float, default=3

Degree of the polynomial kernel. Ignored by other kernels.

coef0 : float, default=1

Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels.

n_neighbors : integer

Number of neighbors to use when constructing the affinity matrix using the nearest
neighbors method. Ignored for affinity=’rbf’.

eigen_solver : {None, ‘arpack’, ‘lobpcg’, or ‘amg’}

The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It
can be faster on very large, sparse problems, but may also lead to instabilities

random_state : int seed, RandomState instance, or None (default)

A pseudo random number generator used for the initialization of the lobpcg eigen vec-
tors decomposition when eigen_solver == ‘amg’ and by the K-Means initialization.
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n_init : int, optional, default: 10

Number of time the k-means algorithm will be run with different centroid seeds. The
final results will be the best output of n_init consecutive runs in terms of inertia.

eigen_tol : float, optional, default: 0.0

Stopping criterion for eigendecomposition of the Laplacian matrix when using arpack
eigen_solver.

assign_labels : {‘kmeans’, ‘discretize’}, default: ‘kmeans’

The strategy to use to assign labels in the embedding space. There are two ways to
assign labels after the laplacian embedding. k-means can be applied and is a popular
choice. But it can also be sensitive to initialization. Discretization is another approach
which is less sensitive to random initialization.

kernel_params : dictionary of string to any, optional

Parameters (keyword arguments) and values for kernel passed as callable object. Ig-
nored by other kernels.

Attributesaffinity_matrix_ : array-like, shape (n_samples, n_samples)

Affinity matrix used for clustering. Available only if after calling fit.

labels_ : :

Labels of each point

Notes

If you have an affinity matrix, such as a distance matrix, for which 0 means identical elements, and high values
means very dissimilar elements, it can be transformed in a similarity matrix that is well suited for the algorithm
by applying the Gaussian (RBF, heat) kernel:

np.exp(- X ** 2 / (2. * delta ** 2))

Another alternative is to take a symmetric version of the k nearest neighbors connectivity matrix of the points.

If the pyamg package is installed, it is used: this greatly speeds up computation.

References

•Normalized cuts and image segmentation, 2000 Jianbo Shi, Jitendra Malik
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324

•A Tutorial on Spectral Clustering, 2007 Ulrike von Luxburg
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323

•Multiclass spectral clustering, 2003 Stella X. Yu, Jianbo Shi
http://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf

Methods

fit(X[, y]) Creates an affinity matrix for X using the selected affinity, then applies spectral clustering to this affinity matrix.
fit_predict(X[, y]) Performs clustering on X and returns cluster labels.

Continued on next page
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Table 5.17 – continued from previous page
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.

__init__(n_clusters=8, eigen_solver=None, random_state=None, n_init=10, gamma=1.0, affin-
ity=’rbf’, n_neighbors=10, eigen_tol=0.0, assign_labels=’kmeans’, degree=3, coef0=1,
kernel_params=None)

fit(X, y=None)
Creates an affinity matrix for X using the selected affinity, then applies spectral clustering to this affinity
matrix.

ParametersX : array-like or sparse matrix, shape (n_samples, n_features)

OR, if affinity==‘precomputed‘, a precomputed affinity matrix of shape (n_samples,
n_samples)

fit_predict(X, y=None)
Performs clustering on X and returns cluster labels.

ParametersX : ndarray, shape (n_samples, n_features)

Input data.

Returnsy : ndarray, shape (n_samples,)

cluster labels

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.cluster.SpectralClustering

• Comparing different clustering algorithms on toy datasets

5.2.2 Functions

cluster.estimate_bandwidth(X[, quantile, ...]) Estimate the bandwidth to use with the mean-shift algorithm.
cluster.k_means(X, n_clusters[, init, ...]) K-means clustering algorithm.
cluster.ward_tree(X[, connectivity, ...]) Ward clustering based on a Feature matrix.

Continued on next page
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Table 5.18 – continued from previous page
cluster.affinity_propagation(S[, ...]) Perform Affinity Propagation Clustering of data
cluster.dbscan(X[, eps, min_samples, ...]) Perform DBSCAN clustering from vector array or distance matrix.
cluster.mean_shift(X[, bandwidth, seeds, ...]) Perform mean shift clustering of data using a flat kernel.
cluster.spectral_clustering(affinity[, ...]) Apply clustering to a projection to the normalized laplacian.

sklearn.cluster.estimate_bandwidth

sklearn.cluster.estimate_bandwidth(X, quantile=0.3, n_samples=None, random_state=0)
Estimate the bandwidth to use with the mean-shift algorithm.

That this function takes time at least quadratic in n_samples. For large datasets, it’s wise to set that parameter
to a small value.

ParametersX : array-like, shape=[n_samples, n_features]

Input points.

quantile : float, default 0.3

should be between [0, 1] 0.5 means that the median of all pairwise distances is used.

n_samples : int, optional

The number of samples to use. If not given, all samples are used.

random_state : int or RandomState

Pseudo-random number generator state used for random sampling.

Returnsbandwidth : float

The bandwidth parameter.

Examples using sklearn.cluster.estimate_bandwidth

• A demo of the mean-shift clustering algorithm

• Comparing different clustering algorithms on toy datasets

sklearn.cluster.k_means

sklearn.cluster.k_means(X, n_clusters, init=’k-means++’, precompute_distances=’auto’,
n_init=10, max_iter=300, verbose=False, tol=0.0001, ran-
dom_state=None, copy_x=True, n_jobs=1, return_n_iter=False)

K-means clustering algorithm.

Read more in the User Guide.

ParametersX : array-like or sparse matrix, shape (n_samples, n_features)

The observations to cluster.

n_clusters : int

The number of clusters to form as well as the number of centroids to generate.

max_iter : int, optional, default 300

Maximum number of iterations of the k-means algorithm to run.

n_init : int, optional, default: 10
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Number of time the k-means algorithm will be run with different centroid seeds. The
final results will be the best output of n_init consecutive runs in terms of inertia.

init : {‘k-means++’, ‘random’, or ndarray, or a callable}, optional

Method for initialization, default to ‘k-means++’:

‘k-means++’ : selects initial cluster centers for k-mean clustering in a smart way to
speed up convergence. See section Notes in k_init for more details.

‘random’: generate k centroids from a Gaussian with mean and variance estimated from
the data.

If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial
centers.

If a callable is passed, it should take arguments X, k and and a random state and return
an initialization.

precompute_distances : {‘auto’, True, False}

Precompute distances (faster but takes more memory).

‘auto’ : do not precompute distances if n_samples * n_clusters > 12 million. This
corresponds to about 100MB overhead per job using double precision.

True : always precompute distances

False : never precompute distances

tol : float, optional

The relative increment in the results before declaring convergence.

verbose : boolean, optional

Verbosity mode.

random_state : integer or numpy.RandomState, optional

The generator used to initialize the centers. If an integer is given, it fixes the seed.
Defaults to the global numpy random number generator.

copy_x : boolean, optional

When pre-computing distances it is more numerically accurate to center the data first.
If copy_x is True, then the original data is not modified. If False, the original data is
modified, and put back before the function returns, but small numerical differences may
be introduced by subtracting and then adding the data mean.

n_jobs : int

The number of jobs to use for the computation. This works by computing each of the
n_init runs in parallel.

If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which
is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for
n_jobs = -2, all CPUs but one are used.

return_n_iter : bool, optional

Whether or not to return the number of iterations.

Returnscentroid : float ndarray with shape (k, n_features)

Centroids found at the last iteration of k-means.
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label : integer ndarray with shape (n_samples,)

label[i] is the code or index of the centroid the i’th observation is closest to.

inertia : float

The final value of the inertia criterion (sum of squared distances to the closest centroid
for all observations in the training set).

best_n_iter: int :

Number of iterations corresponding to the best results. Returned only if return_n_iter
is set to True.

sklearn.cluster.ward_tree

sklearn.cluster.ward_tree(X, connectivity=None, n_components=None, n_clusters=None, re-
turn_distance=False)

Ward clustering based on a Feature matrix.

Recursively merges the pair of clusters that minimally increases within-cluster variance.

The inertia matrix uses a Heapq-based representation.

This is the structured version, that takes into account some topological structure between samples.

Read more in the User Guide.

ParametersX : array, shape (n_samples, n_features)

feature matrix representing n_samples samples to be clustered

connectivity : sparse matrix (optional).

connectivity matrix. Defines for each sample the neighboring samples following a given
structure of the data. The matrix is assumed to be symmetric and only the upper trian-
gular half is used. Default is None, i.e, the Ward algorithm is unstructured.

n_components : int (optional)

Number of connected components. If None the number of connected components is es-
timated from the connectivity matrix. NOTE: This parameter is now directly determined
directly from the connectivity matrix and will be removed in 0.18

n_clusters : int (optional)

Stop early the construction of the tree at n_clusters. This is useful to decrease compu-
tation time if the number of clusters is not small compared to the number of samples.
In this case, the complete tree is not computed, thus the ‘children’ output is of limited
use, and the ‘parents’ output should rather be used. This option is valid only when
specifying a connectivity matrix.

return_distance: bool (optional) :

If True, return the distance between the clusters.

Returnschildren : 2D array, shape (n_nodes-1, 2)

The children of each non-leaf node. Values less than n_samples correspond to leaves
of the tree which are the original samples. A node i greater than or equal to n_samples
is a non-leaf node and has children children_[i - n_samples]. Alternatively at the i-th
iteration, children[i][0] and children[i][1] are merged to form node n_samples + i

n_components : int
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The number of connected components in the graph.

n_leaves : int

The number of leaves in the tree

parents : 1D array, shape (n_nodes, ) or None

The parent of each node. Only returned when a connectivity matrix is specified, else-
where ‘None’ is returned.

distances : 1D array, shape (n_nodes-1, )

Only returned if return_distance is set to True (for compatibility). The distances be-
tween the centers of the nodes. distances[i] corresponds to a weighted euclidean dis-
tance between the nodes children[i, 1] and children[i, 2]. If the nodes refer to leaves of
the tree, then distances[i] is their unweighted euclidean distance. Distances are updated
in the following way (from scipy.hierarchy.linkage):

The new entry 𝑑(𝑢, 𝑣) is computed as follows,

𝑑(𝑢, 𝑣) =

√︂
|𝑣|+ |𝑠|
𝑇

𝑑(𝑣, 𝑠)2 +
|𝑣|+ |𝑡|
𝑇

𝑑(𝑣, 𝑡)2 − |𝑣|
𝑇
𝑑(𝑠, 𝑡)2

where 𝑢 is the newly joined cluster consisting of clusters 𝑠 and 𝑡, 𝑣 is an unused cluster
in the forest, 𝑇 = |𝑣|+ |𝑠|+ |𝑡|, and | * | is the cardinality of its argument. This is also
known as the incremental algorithm.

sklearn.cluster.affinity_propagation

sklearn.cluster.affinity_propagation(S, preference=None, convergence_iter=15,
max_iter=200, damping=0.5, copy=True, ver-
bose=False, return_n_iter=False)

Perform Affinity Propagation Clustering of data

Read more in the User Guide.

ParametersS : array-like, shape (n_samples, n_samples)

Matrix of similarities between points

preference : array-like, shape (n_samples,) or float, optional

Preferences for each point - points with larger values of preferences are more likely to
be chosen as exemplars. The number of exemplars, i.e. of clusters, is influenced by the
input preferences value. If the preferences are not passed as arguments, they will be set
to the median of the input similarities (resulting in a moderate number of clusters). For
a smaller amount of clusters, this can be set to the minimum value of the similarities.

convergence_iter : int, optional, default: 15

Number of iterations with no change in the number of estimated clusters that stops the
convergence.

max_iter : int, optional, default: 200

Maximum number of iterations

damping : float, optional, default: 0.5

Damping factor between 0.5 and 1.

copy : boolean, optional, default: True
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If copy is False, the affinity matrix is modified inplace by the algorithm, for memory
efficiency

verbose : boolean, optional, default: False

The verbosity level

return_n_iter : bool, default False

Whether or not to return the number of iterations.

Returnscluster_centers_indices : array, shape (n_clusters,)

index of clusters centers

labels : array, shape (n_samples,)

cluster labels for each point

n_iter : int

number of iterations run. Returned only if return_n_iter is set to True.

Notes

See examples/cluster/plot_affinity_propagation.py for an example.

References

Brendan J. Frey and Delbert Dueck, “Clustering by Passing Messages Between Data Points”, Science Feb. 2007

Examples using sklearn.cluster.affinity_propagation

• Visualizing the stock market structure

sklearn.cluster.dbscan

sklearn.cluster.dbscan(X, eps=0.5, min_samples=5, metric=’minkowski’, algorithm=’auto’,
leaf_size=30, p=2, sample_weight=None, random_state=None)

Perform DBSCAN clustering from vector array or distance matrix.

Read more in the User Guide.

ParametersX : array or sparse (CSR) matrix of shape (n_samples, n_features), or array of shape
(n_samples, n_samples)

A feature array, or array of distances between samples if metric=’precomputed’.

eps : float, optional

The maximum distance between two samples for them to be considered as in the same
neighborhood.

min_samples : int, optional

The number of samples (or total weight) in a neighborhood for a point to be considered
as a core point. This includes the point itself.

metric : string, or callable
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The metric to use when calculating distance between instances in a feature array.
If metric is a string or callable, it must be one of the options allowed by met-
rics.pairwise.pairwise_distances for its metric parameter. If metric is “precomputed”,
X is assumed to be a distance matrix and must be square. X may be a sparse matrix, in
which case only “nonzero” elements may be considered neighbors for DBSCAN.

algorithm : {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional

The algorithm to be used by the NearestNeighbors module to compute pointwise dis-
tances and find nearest neighbors. See NearestNeighbors module documentation for
details.

leaf_size : int, optional (default = 30)

Leaf size passed to BallTree or cKDTree. This can affect the speed of the construction
and query, as well as the memory required to store the tree. The optimal value depends
on the nature of the problem.

p : float, optional

The power of the Minkowski metric to be used to calculate distance between points.

sample_weight : array, shape (n_samples,), optional

Weight of each sample, such that a sample with a weight of at least min_samples
is by itself a core sample; a sample with negative weight may inhibit its eps-neighbor
from being core. Note that weights are absolute, and default to 1.

random_state: numpy.RandomState, optional :

Deprecated and ignored as of version 0.16, will be removed in version 0.18. DBSCAN
does not use random initialization.

Returnscore_samples : array [n_core_samples]

Indices of core samples.

labels : array [n_samples]

Cluster labels for each point. Noisy samples are given the label -1.

Notes

See examples/cluster/plot_dbscan.py for an example.

This implementation bulk-computes all neighborhood queries, which increases the memory complexity to
O(n.d) where d is the average number of neighbors, while original DBSCAN had memory complexity O(n).

Sparse neighborhoods can be precomputed using NearestNeighbors.radius_neighbors_graph
with mode=’distance’.

References

Ester, M., H. P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise”. In: Proceedings of the 2nd International Conference on Knowledge Discovery
and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996
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sklearn.cluster.mean_shift

sklearn.cluster.mean_shift(X, bandwidth=None, seeds=None, bin_seeding=False,
min_bin_freq=1, cluster_all=True, max_iter=300,
max_iterations=None, n_jobs=1)

Perform mean shift clustering of data using a flat kernel.

Read more in the User Guide.

ParametersX : array-like, shape=[n_samples, n_features]

Input data.

bandwidth : float, optional

Kernel bandwidth.

If bandwidth is not given, it is determined using a heuristic based on the median of
all pairwise distances. This will take quadratic time in the number of samples. The
sklearn.cluster.estimate_bandwidth function can be used to do this more efficiently.

seeds : array-like, shape=[n_seeds, n_features] or None

Point used as initial kernel locations. If None and bin_seeding=False, each data point is
used as a seed. If None and bin_seeding=True, see bin_seeding.

bin_seeding : boolean, default=False

If true, initial kernel locations are not locations of all points, but rather the location of
the discretized version of points, where points are binned onto a grid whose coarseness
corresponds to the bandwidth. Setting this option to True will speed up the algorithm
because fewer seeds will be initialized. Ignored if seeds argument is not None.

min_bin_freq : int, default=1

To speed up the algorithm, accept only those bins with at least min_bin_freq points as
seeds.

cluster_all : boolean, default True

If true, then all points are clustered, even those orphans that are not within any kernel.
Orphans are assigned to the nearest kernel. If false, then orphans are given cluster label
-1.

max_iter : int, default 300

Maximum number of iterations, per seed point before the clustering operation termi-
nates (for that seed point), if has not converged yet.

n_jobs : int

The number of jobs to use for the computation. This works by computing each of the
n_init runs in parallel.

If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which
is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for
n_jobs = -2, all CPUs but one are used.

New in version 0.17: Parallel Execution using n_jobs.

Returnscluster_centers : array, shape=[n_clusters, n_features]

Coordinates of cluster centers.

labels : array, shape=[n_samples]
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Cluster labels for each point.

Notes

See examples/cluster/plot_meanshift.py for an example.

sklearn.cluster.spectral_clustering

sklearn.cluster.spectral_clustering(affinity, n_clusters=8, n_components=None,
eigen_solver=None, random_state=None, n_init=10,
eigen_tol=0.0, assign_labels=’kmeans’)

Apply clustering to a projection to the normalized laplacian.

In practice Spectral Clustering is very useful when the structure of the individual clusters is highly non-convex
or more generally when a measure of the center and spread of the cluster is not a suitable description of the
complete cluster. For instance when clusters are nested circles on the 2D plan.

If affinity is the adjacency matrix of a graph, this method can be used to find normalized graph cuts.

Read more in the User Guide.

Parametersaffinity : array-like or sparse matrix, shape: (n_samples, n_samples)

The affinity matrix describing the relationship of the samples to embed. Must be sym-
metric.

Possible examples:

•adjacency matrix of a graph,

•heat kernel of the pairwise distance matrix of the samples,

•symmetric k-nearest neighbours connectivity matrix of the samples.

n_clusters : integer, optional

Number of clusters to extract.

n_components : integer, optional, default is n_clusters

Number of eigen vectors to use for the spectral embedding

eigen_solver : {None, ‘arpack’, ‘lobpcg’, or ‘amg’}

The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It
can be faster on very large, sparse problems, but may also lead to instabilities

random_state : int seed, RandomState instance, or None (default)

A pseudo random number generator used for the initialization of the lobpcg eigen vec-
tors decomposition when eigen_solver == ‘amg’ and by the K-Means initialization.

n_init : int, optional, default: 10

Number of time the k-means algorithm will be run with different centroid seeds. The
final results will be the best output of n_init consecutive runs in terms of inertia.

eigen_tol : float, optional, default: 0.0

Stopping criterion for eigendecomposition of the Laplacian matrix when using arpack
eigen_solver.

assign_labels : {‘kmeans’, ‘discretize’}, default: ‘kmeans’
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The strategy to use to assign labels in the embedding space. There are two ways to
assign labels after the laplacian embedding. k-means can be applied and is a popular
choice. But it can also be sensitive to initialization. Discretization is another approach
which is less sensitive to random initialization. See the ‘Multiclass spectral clustering’
paper referenced below for more details on the discretization approach.

Returnslabels : array of integers, shape: n_samples

The labels of the clusters.

Notes

The graph should contain only one connect component, elsewhere the results make little sense.

This algorithm solves the normalized cut for k=2: it is a normalized spectral clustering.

References

•Normalized cuts and image segmentation, 2000 Jianbo Shi, Jitendra Malik
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324

•A Tutorial on Spectral Clustering, 2007 Ulrike von Luxburg
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323

•Multiclass spectral clustering, 2003 Stella X. Yu, Jianbo Shi
http://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf

Examples using sklearn.cluster.spectral_clustering

• Segmenting the picture of Lena in regions

• Spectral clustering for image segmentation

5.3 sklearn.cluster.bicluster: Biclustering

Spectral biclustering algorithms.

Authors : Kemal Eren License: BSD 3 clause

User guide: See the Biclustering section for further details.

5.3.1 Classes

SpectralBiclustering([n_clusters, method, ...]) Spectral biclustering (Kluger, 2003).
SpectralCoclustering([n_clusters, ...]) Spectral Co-Clustering algorithm (Dhillon, 2001).
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sklearn.cluster.bicluster.SpectralBiclustering

class sklearn.cluster.bicluster.SpectralBiclustering(n_clusters=3,
method=’bistochastic’,
n_components=6, n_best=3,
svd_method=’randomized’,
n_svd_vecs=None,
mini_batch=False, init=’k-
means++’, n_init=10, n_jobs=1,
random_state=None)

Spectral biclustering (Kluger, 2003).

Partitions rows and columns under the assumption that the data has an underlying checkerboard structure. For
instance, if there are two row partitions and three column partitions, each row will belong to three biclusters,
and each column will belong to two biclusters. The outer product of the corresponding row and column label
vectors gives this checkerboard structure.

Read more in the User Guide.

Parametersn_clusters : integer or tuple (n_row_clusters, n_column_clusters)

The number of row and column clusters in the checkerboard structure.

method : string, optional, default: ‘bistochastic’

Method of normalizing and converting singular vectors into biclusters. May be one
of ‘scale’, ‘bistochastic’, or ‘log’. The authors recommend using ‘log’. If the data is
sparse, however, log normalization will not work, which is why the default is ‘bistochas-
tic’. CAUTION: if method=’log’, the data must not be sparse.

n_components : integer, optional, default: 6

Number of singular vectors to check.

n_best : integer, optional, default: 3

Number of best singular vectors to which to project the data for clustering.

svd_method : string, optional, default: ‘randomized’

Selects the algorithm for finding singular vectors. May be ‘randomized’ or ‘arpack’.
If ‘randomized’, uses sklearn.utils.extmath.randomized_svd, which may be faster for
large matrices. If ‘arpack’, uses sklearn.utils.arpack.svds, which is more accurate, but
possibly slower in some cases.

n_svd_vecs : int, optional, default: None

Number of vectors to use in calculating the SVD. Corresponds to ncv when
svd_method=arpack and n_oversamples when svd_method is ‘randomized‘.

mini_batch : bool, optional, default: False

Whether to use mini-batch k-means, which is faster but may get different results.

init : {‘k-means++’, ‘random’ or an ndarray}

Method for initialization of k-means algorithm; defaults to ‘k-means++’.

n_init : int, optional, default: 10

Number of random initializations that are tried with the k-means algorithm.

If mini-batch k-means is used, the best initialization is chosen and the algorithm runs
once. Otherwise, the algorithm is run for each initialization and the best solution chosen.
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n_jobs : int, optional, default: 1

The number of jobs to use for the computation. This works by breaking down the
pairwise matrix into n_jobs even slices and computing them in parallel.

If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which
is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for
n_jobs = -2, all CPUs but one are used.

random_state : int seed, RandomState instance, or None (default)

A pseudo random number generator used by the K-Means initialization.

Attributesrows_ : array-like, shape (n_row_clusters, n_rows)

Results of the clustering. rows[i, r] is True if cluster i contains row r. Available only
after calling fit.

columns_ : array-like, shape (n_column_clusters, n_columns)

Results of the clustering, like rows.

row_labels_ : array-like, shape (n_rows,)

Row partition labels.

column_labels_ : array-like, shape (n_cols,)

Column partition labels.

References

•Kluger, Yuval, et. al., 2003. Spectral biclustering of microarray data: coclustering genes and conditions.

Methods

fit(X) Creates a biclustering for X.
get_indices(i) Row and column indices of the i’th bicluster.
get_params([deep]) Get parameters for this estimator.
get_shape(i) Shape of the i’th bicluster.
get_submatrix(i, data) Returns the submatrix corresponding to bicluster i.
set_params(**params) Set the parameters of this estimator.

__init__(n_clusters=3, method=’bistochastic’, n_components=6, n_best=3,
svd_method=’randomized’, n_svd_vecs=None, mini_batch=False, init=’k-means++’,
n_init=10, n_jobs=1, random_state=None)

biclusters_
Convenient way to get row and column indicators together.

Returns the rows_ and columns_ members.

fit(X)
Creates a biclustering for X.

ParametersX : array-like, shape (n_samples, n_features)

get_indices(i)
Row and column indices of the i’th bicluster.
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Only works if rows_ and columns_ attributes exist.

Returnsrow_ind : np.array, dtype=np.intp

Indices of rows in the dataset that belong to the bicluster.

col_ind : np.array, dtype=np.intp

Indices of columns in the dataset that belong to the bicluster.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

get_shape(i)
Shape of the i’th bicluster.

Returnsshape : (int, int)

Number of rows and columns (resp.) in the bicluster.

get_submatrix(i, data)
Returns the submatrix corresponding to bicluster i.

Works with sparse matrices. Only works if rows_ and columns_ attributes exist.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

sklearn.cluster.bicluster.SpectralCoclustering

class sklearn.cluster.bicluster.SpectralCoclustering(n_clusters=3,
svd_method=’randomized’,
n_svd_vecs=None,
mini_batch=False, init=’k-
means++’, n_init=10, n_jobs=1,
random_state=None)

Spectral Co-Clustering algorithm (Dhillon, 2001).

Clusters rows and columns of an array X to solve the relaxed normalized cut of the bipartite graph created from
X as follows: the edge between row vertex i and column vertex j has weight X[i, j].

The resulting bicluster structure is block-diagonal, since each row and each column belongs to exactly one
bicluster.

Supports sparse matrices, as long as they are nonnegative.

Read more in the User Guide.

Parametersn_clusters : integer, optional, default: 3
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The number of biclusters to find.

svd_method : string, optional, default: ‘randomized’

Selects the algorithm for finding singular vectors. May be ‘randomized’ or ‘arpack’.
If ‘randomized’, use sklearn.utils.extmath.randomized_svd, which may
be faster for large matrices. If ‘arpack’, use sklearn.utils.arpack.svds,
which is more accurate, but possibly slower in some cases.

n_svd_vecs : int, optional, default: None

Number of vectors to use in calculating the SVD. Corresponds to ncv when
svd_method=arpack and n_oversamples when svd_method is ‘randomized‘.

mini_batch : bool, optional, default: False

Whether to use mini-batch k-means, which is faster but may get different results.

init : {‘k-means++’, ‘random’ or an ndarray}

Method for initialization of k-means algorithm; defaults to ‘k-means++’.

n_init : int, optional, default: 10

Number of random initializations that are tried with the k-means algorithm.

If mini-batch k-means is used, the best initialization is chosen and the algorithm runs
once. Otherwise, the algorithm is run for each initialization and the best solution chosen.

n_jobs : int, optional, default: 1

The number of jobs to use for the computation. This works by breaking down the
pairwise matrix into n_jobs even slices and computing them in parallel.

If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which
is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for
n_jobs = -2, all CPUs but one are used.

random_state : int seed, RandomState instance, or None (default)

A pseudo random number generator used by the K-Means initialization.

Attributesrows_ : array-like, shape (n_row_clusters, n_rows)

Results of the clustering. rows[i, r] is True if cluster i contains row r. Available only
after calling fit.

columns_ : array-like, shape (n_column_clusters, n_columns)

Results of the clustering, like rows.

row_labels_ : array-like, shape (n_rows,)

The bicluster label of each row.

column_labels_ : array-like, shape (n_cols,)

The bicluster label of each column.

References

•Dhillon, Inderjit S, 2001. Co-clustering documents and words using bipartite spectral graph partitioning.
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Methods

fit(X) Creates a biclustering for X.
get_indices(i) Row and column indices of the i’th bicluster.
get_params([deep]) Get parameters for this estimator.
get_shape(i) Shape of the i’th bicluster.
get_submatrix(i, data) Returns the submatrix corresponding to bicluster i.
set_params(**params) Set the parameters of this estimator.

__init__(n_clusters=3, svd_method=’randomized’, n_svd_vecs=None, mini_batch=False, init=’k-
means++’, n_init=10, n_jobs=1, random_state=None)

biclusters_
Convenient way to get row and column indicators together.

Returns the rows_ and columns_ members.

fit(X)
Creates a biclustering for X.

ParametersX : array-like, shape (n_samples, n_features)

get_indices(i)
Row and column indices of the i’th bicluster.

Only works if rows_ and columns_ attributes exist.

Returnsrow_ind : np.array, dtype=np.intp

Indices of rows in the dataset that belong to the bicluster.

col_ind : np.array, dtype=np.intp

Indices of columns in the dataset that belong to the bicluster.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

get_shape(i)
Shape of the i’th bicluster.

Returnsshape : (int, int)

Number of rows and columns (resp.) in the bicluster.

get_submatrix(i, data)
Returns the submatrix corresponding to bicluster i.

Works with sparse matrices. Only works if rows_ and columns_ attributes exist.

set_params(**params)
Set the parameters of this estimator.
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The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

5.4 sklearn.covariance: Covariance Estimators

The sklearn.covariance module includes methods and algorithms to robustly estimate the covariance of fea-
tures given a set of points. The precision matrix defined as the inverse of the covariance is also estimated. Covariance
estimation is closely related to the theory of Gaussian Graphical Models.

User guide: See the Covariance estimation section for further details.

covariance.EmpiricalCovariance([...]) Maximum likelihood covariance estimator
covariance.EllipticEnvelope([...]) An object for detecting outliers in a Gaussian distributed dataset.
covariance.GraphLasso([alpha, mode, tol, ...]) Sparse inverse covariance estimation with an l1-penalized estimator.
covariance.GraphLassoCV([alphas, ...]) Sparse inverse covariance w/ cross-validated choice of the l1 penalty
covariance.LedoitWolf([store_precision, ...]) LedoitWolf Estimator
covariance.MinCovDet([store_precision, ...]) Minimum Covariance Determinant (MCD): robust estimator of covariance.
covariance.OAS([store_precision, ...]) Oracle Approximating Shrinkage Estimator
covariance.ShrunkCovariance([...]) Covariance estimator with shrinkage

5.4.1 sklearn.covariance.EmpiricalCovariance

class sklearn.covariance.EmpiricalCovariance(store_precision=True, as-
sume_centered=False)

Maximum likelihood covariance estimator

Read more in the User Guide.

Parametersstore_precision : bool

Specifies if the estimated precision is stored.

assume_centered : bool

If True, data are not centered before computation. Useful when working with data
whose mean is almost, but not exactly zero. If False (default), data are centered before
computation.

Attributescovariance_ : 2D ndarray, shape (n_features, n_features)

Estimated covariance matrix

precision_ : 2D ndarray, shape (n_features, n_features)

Estimated pseudo-inverse matrix. (stored only if store_precision is True)

Methods

error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two covariance estimators.
fit(X[, y]) Fits the Maximum Likelihood Estimator covariance model according to the given training data and parameters.
get_params([deep]) Get parameters for this estimator.

Continued on next page
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Table 5.23 – continued from previous page
get_precision() Getter for the precision matrix.
mahalanobis(observations) Computes the squared Mahalanobis distances of given observations.
score(X_test[, y]) Computes the log-likelihood of a Gaussian data set with self.covariance_ as an estimator of its covariance matrix.
set_params(**params) Set the parameters of this estimator.

__init__(store_precision=True, assume_centered=False)

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm).

Parameterscomp_cov : array-like, shape = [n_features, n_features]

The covariance to compare with.

norm : str

The type of norm used to compute the error. Available error types: - ‘frobenius’ (de-
fault): sqrt(tr(A^t.A)) - ‘spectral’: sqrt(max(eigenvalues(A^t.A)) where A is the error
(comp_cov - self.covariance_).

scaling : bool

If True (default), the squared error norm is divided by n_features. If False, the squared
error norm is not rescaled.

squared : bool

Whether to compute the squared error norm or the error norm. If True (default), the
squared error norm is returned. If False, the error norm is returned.

ReturnsThe Mean Squared Error (in the sense of the Frobenius norm) between :

‘self‘ and ‘comp_cov‘ covariance estimators. :

fit(X, y=None)
Fits the Maximum Likelihood Estimator covariance model according to the given training data and param-
eters.

ParametersX : array-like, shape = [n_samples, n_features]

Training data, where n_samples is the number of samples and n_features is the number
of features.

y : not used, present for API consistence purpose.

Returnsself : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

get_precision()
Getter for the precision matrix.
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Returnsprecision_ : array-like,

The precision matrix associated to the current covariance object.

mahalanobis(observations)
Computes the squared Mahalanobis distances of given observations.

Parametersobservations : array-like, shape = [n_observations, n_features]

The observations, the Mahalanobis distances of the which we compute. Observations
are assumed to be drawn from the same distribution than the data used in fit.

Returnsmahalanobis_distance : array, shape = [n_observations,]

Squared Mahalanobis distances of the observations.

score(X_test, y=None)
Computes the log-likelihood of a Gaussian data set with self.covariance_ as an estimator of its covariance
matrix.

ParametersX_test : array-like, shape = [n_samples, n_features]

Test data of which we compute the likelihood, where n_samples is the number of sam-
ples and n_features is the number of features. X_test is assumed to be drawn from the
same distribution than the data used in fit (including centering).

y : not used, present for API consistence purpose.

Returnsres : float

The likelihood of the data set with self.covariance_ as an estimator of its covariance
matrix.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.covariance.EmpiricalCovariance

• Robust covariance estimation and Mahalanobis distances relevance

• Robust vs Empirical covariance estimate

5.4.2 sklearn.covariance.EllipticEnvelope

class sklearn.covariance.EllipticEnvelope(store_precision=True, assume_centered=False,
support_fraction=None, contamination=0.1,
random_state=None)

An object for detecting outliers in a Gaussian distributed dataset.

Read more in the User Guide.

Parametersstore_precision : bool

Specify if the estimated precision is stored.

assume_centered : Boolean
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If True, the support of robust location and covariance estimates is computed, and a
covariance estimate is recomputed from it, without centering the data. Useful to work
with data whose mean is significantly equal to zero but is not exactly zero. If False,
the robust location and covariance are directly computed with the FastMCD algorithm
without additional treatment.

support_fraction : float, 0 < support_fraction < 1

The proportion of points to be included in the support of the raw MCD estimate. Default
is None, which implies that the minimum value of support_fraction will be used within
the algorithm: [n_sample + n_features + 1] / 2.

contamination : float, 0. < contamination < 0.5

The amount of contamination of the data set, i.e. the proportion of outliers in the data
set.

Attributes‘contamination‘ : float, 0. < contamination < 0.5

The amount of contamination of the data set, i.e. the proportion of outliers in the data
set.

location_ : array-like, shape (n_features,)

Estimated robust location

covariance_ : array-like, shape (n_features, n_features)

Estimated robust covariance matrix

precision_ : array-like, shape (n_features, n_features)

Estimated pseudo inverse matrix. (stored only if store_precision is True)

support_ : array-like, shape (n_samples,)

A mask of the observations that have been used to compute the robust estimates of
location and shape.

See also:

EmpiricalCovariance, MinCovDet

Notes

Outlier detection from covariance estimation may break or not perform well in high-dimensional settings. In
particular, one will always take care to work with n_samples > n_features ** 2.

References

Methods

correct_covariance(data) Apply a correction to raw Minimum Covariance Determinant estimates.
decision_function(X[, raw_values]) Compute the decision function of the given observations.
error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two covariance estimators.
fit(X[, y])
get_params([deep]) Get parameters for this estimator.
get_precision() Getter for the precision matrix.

Continued on next page
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Table 5.24 – continued from previous page
mahalanobis(observations) Computes the squared Mahalanobis distances of given observations.
predict(X) Outlyingness of observations in X according to the fitted model.
reweight_covariance(data) Re-weight raw Minimum Covariance Determinant estimates.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.

__init__(store_precision=True, assume_centered=False, support_fraction=None, contamina-
tion=0.1, random_state=None)

correct_covariance(data)
Apply a correction to raw Minimum Covariance Determinant estimates.

Correction using the empirical correction factor suggested by Rousseeuw and Van Driessen in
[Rouseeuw1984].

Parametersdata : array-like, shape (n_samples, n_features)

The data matrix, with p features and n samples. The data set must be the one which was
used to compute the raw estimates.

Returnscovariance_corrected : array-like, shape (n_features, n_features)

Corrected robust covariance estimate.

decision_function(X, raw_values=False)
Compute the decision function of the given observations.

ParametersX : array-like, shape (n_samples, n_features)

raw_values : bool

Whether or not to consider raw Mahalanobis distances as the decision function. Must
be False (default) for compatibility with the others outlier detection tools.

Returnsdecision : array-like, shape (n_samples, )

The values of the decision function for each observations. It is equal to the Mahalanobis
distances if raw_values is True. By default (raw_values=True), it is equal to the
cubic root of the shifted Mahalanobis distances. In that case, the threshold for being an
outlier is 0, which ensures a compatibility with other outlier detection tools such as the
One-Class SVM.

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm).

Parameterscomp_cov : array-like, shape = [n_features, n_features]

The covariance to compare with.

norm : str

The type of norm used to compute the error. Available error types: - ‘frobenius’ (de-
fault): sqrt(tr(A^t.A)) - ‘spectral’: sqrt(max(eigenvalues(A^t.A)) where A is the error
(comp_cov - self.covariance_).

scaling : bool

If True (default), the squared error norm is divided by n_features. If False, the squared
error norm is not rescaled.

squared : bool
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Whether to compute the squared error norm or the error norm. If True (default), the
squared error norm is returned. If False, the error norm is returned.

ReturnsThe Mean Squared Error (in the sense of the Frobenius norm) between :

‘self‘ and ‘comp_cov‘ covariance estimators. :

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

get_precision()
Getter for the precision matrix.

Returnsprecision_ : array-like,

The precision matrix associated to the current covariance object.

mahalanobis(observations)
Computes the squared Mahalanobis distances of given observations.

Parametersobservations : array-like, shape = [n_observations, n_features]

The observations, the Mahalanobis distances of the which we compute. Observations
are assumed to be drawn from the same distribution than the data used in fit.

Returnsmahalanobis_distance : array, shape = [n_observations,]

Squared Mahalanobis distances of the observations.

predict(X)
Outlyingness of observations in X according to the fitted model.

ParametersX : array-like, shape = (n_samples, n_features)

Returnsis_outliers : array, shape = (n_samples, ), dtype = bool

For each observations, tells whether or not it should be considered as an outlier accord-
ing to the fitted model.

threshold : float,

The values of the less outlying point’s decision function.

reweight_covariance(data)
Re-weight raw Minimum Covariance Determinant estimates.

Re-weight observations using Rousseeuw’s method (equivalent to deleting outlying observations from the
data set before computing location and covariance estimates). [Rouseeuw1984]

Parametersdata : array-like, shape (n_samples, n_features)

The data matrix, with p features and n samples. The data set must be the one which was
used to compute the raw estimates.

Returnslocation_reweighted : array-like, shape (n_features, )

Re-weighted robust location estimate.

covariance_reweighted : array-like, shape (n_features, n_features)
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Re-weighted robust covariance estimate.

support_reweighted : array-like, type boolean, shape (n_samples,)

A mask of the observations that have been used to compute the re-weighted robust
location and covariance estimates.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.covariance.EllipticEnvelope

• Outlier detection on a real data set

• Outlier detection with several methods.

5.4.3 sklearn.covariance.GraphLasso

class sklearn.covariance.GraphLasso(alpha=0.01, mode=’cd’, tol=0.0001, enet_tol=0.0001,
max_iter=100, verbose=False, assume_centered=False)

Sparse inverse covariance estimation with an l1-penalized estimator.

Read more in the User Guide.

Parametersalpha : positive float, default 0.01

The regularization parameter: the higher alpha, the more regularization, the sparser the
inverse covariance.

mode : {‘cd’, ‘lars’}, default ‘cd’

The Lasso solver to use: coordinate descent or LARS. Use LARS for very sparse un-
derlying graphs, where p > n. Elsewhere prefer cd which is more numerically stable.

tol : positive float, default 1e-4
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The tolerance to declare convergence: if the dual gap goes below this value, iterations
are stopped.

enet_tol : positive float, optional

The tolerance for the elastic net solver used to calculate the descent direction. This
parameter controls the accuracy of the search direction for a given column update, not
of the overall parameter estimate. Only used for mode=’cd’.

max_iter : integer, default 100

The maximum number of iterations.

verbose : boolean, default False

If verbose is True, the objective function and dual gap are plotted at each iteration.

assume_centered : boolean, default False

If True, data are not centered before computation. Useful when working with data
whose mean is almost, but not exactly zero. If False, data are centered before computa-
tion.

Attributescovariance_ : array-like, shape (n_features, n_features)

Estimated covariance matrix

precision_ : array-like, shape (n_features, n_features)

Estimated pseudo inverse matrix.

n_iter_ : int

Number of iterations run.

See also:

graph_lasso, GraphLassoCV

Methods

error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two covariance estimators.
fit(X[, y])
get_params([deep]) Get parameters for this estimator.
get_precision() Getter for the precision matrix.
mahalanobis(observations) Computes the squared Mahalanobis distances of given observations.
score(X_test[, y]) Computes the log-likelihood of a Gaussian data set with self.covariance_ as an estimator of its covariance matrix.
set_params(**params) Set the parameters of this estimator.

__init__(alpha=0.01, mode=’cd’, tol=0.0001, enet_tol=0.0001, max_iter=100, verbose=False, as-
sume_centered=False)

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm).

Parameterscomp_cov : array-like, shape = [n_features, n_features]

The covariance to compare with.

norm : str

5.4. sklearn.covariance: Covariance Estimators 1013



scikit-learn user guide, Release 0.17

The type of norm used to compute the error. Available error types: - ‘frobenius’ (de-
fault): sqrt(tr(A^t.A)) - ‘spectral’: sqrt(max(eigenvalues(A^t.A)) where A is the error
(comp_cov - self.covariance_).

scaling : bool

If True (default), the squared error norm is divided by n_features. If False, the squared
error norm is not rescaled.

squared : bool

Whether to compute the squared error norm or the error norm. If True (default), the
squared error norm is returned. If False, the error norm is returned.

ReturnsThe Mean Squared Error (in the sense of the Frobenius norm) between :

‘self‘ and ‘comp_cov‘ covariance estimators. :

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

get_precision()
Getter for the precision matrix.

Returnsprecision_ : array-like,

The precision matrix associated to the current covariance object.

mahalanobis(observations)
Computes the squared Mahalanobis distances of given observations.

Parametersobservations : array-like, shape = [n_observations, n_features]

The observations, the Mahalanobis distances of the which we compute. Observations
are assumed to be drawn from the same distribution than the data used in fit.

Returnsmahalanobis_distance : array, shape = [n_observations,]

Squared Mahalanobis distances of the observations.

score(X_test, y=None)
Computes the log-likelihood of a Gaussian data set with self.covariance_ as an estimator of its covariance
matrix.

ParametersX_test : array-like, shape = [n_samples, n_features]

Test data of which we compute the likelihood, where n_samples is the number of sam-
ples and n_features is the number of features. X_test is assumed to be drawn from the
same distribution than the data used in fit (including centering).

y : not used, present for API consistence purpose.

Returnsres : float

The likelihood of the data set with self.covariance_ as an estimator of its covariance
matrix.
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set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

5.4.4 sklearn.covariance.GraphLassoCV

class sklearn.covariance.GraphLassoCV(alphas=4, n_refinements=4, cv=None, tol=0.0001,
enet_tol=0.0001, max_iter=100, mode=’cd’, n_jobs=1,
verbose=False, assume_centered=False)

Sparse inverse covariance w/ cross-validated choice of the l1 penalty

Read more in the User Guide.

Parametersalphas : integer, or list positive float, optional

If an integer is given, it fixes the number of points on the grids of alpha to be used. If
a list is given, it gives the grid to be used. See the notes in the class docstring for more
details.

n_refinements: strictly positive integer :

The number of times the grid is refined. Not used if explicit values of alphas are passed.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

•None, to use the default 3-fold cross-validation,

•integer, to specify the number of folds.

•An object to be used as a cross-validation generator.

•An iterable yielding train/test splits.

For integer/None inputs KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

tol: positive float, optional :

The tolerance to declare convergence: if the dual gap goes below this value, iterations
are stopped.

enet_tol : positive float, optional

The tolerance for the elastic net solver used to calculate the descent direction. This
parameter controls the accuracy of the search direction for a given column update, not
of the overall parameter estimate. Only used for mode=’cd’.

max_iter: integer, optional :

Maximum number of iterations.

mode: {‘cd’, ‘lars’} :

The Lasso solver to use: coordinate descent or LARS. Use LARS for very sparse under-
lying graphs, where number of features is greater than number of samples. Elsewhere
prefer cd which is more numerically stable.
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n_jobs: int, optional :

number of jobs to run in parallel (default 1).

verbose: boolean, optional :

If verbose is True, the objective function and duality gap are printed at each iteration.

assume_centered : Boolean

If True, data are not centered before computation. Useful when working with data
whose mean is almost, but not exactly zero. If False, data are centered before computa-
tion.

Attributescovariance_ : numpy.ndarray, shape (n_features, n_features)

Estimated covariance matrix.

precision_ : numpy.ndarray, shape (n_features, n_features)

Estimated precision matrix (inverse covariance).

alpha_ : float

Penalization parameter selected.

cv_alphas_ : list of float

All penalization parameters explored.

‘grid_scores‘: 2D numpy.ndarray (n_alphas, n_folds) :

Log-likelihood score on left-out data across folds.

n_iter_ : int

Number of iterations run for the optimal alpha.

See also:

graph_lasso, GraphLasso

Notes

The search for the optimal penalization parameter (alpha) is done on an iteratively refined grid: first the cross-
validated scores on a grid are computed, then a new refined grid is centered around the maximum, and so on.

One of the challenges which is faced here is that the solvers can fail to converge to a well-conditioned estimate.
The corresponding values of alpha then come out as missing values, but the optimum may be close to these
missing values.

Methods

error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two covariance estimators.
fit(X[, y]) Fits the GraphLasso covariance model to X.
get_params([deep]) Get parameters for this estimator.
get_precision() Getter for the precision matrix.
mahalanobis(observations) Computes the squared Mahalanobis distances of given observations.
score(X_test[, y]) Computes the log-likelihood of a Gaussian data set with self.covariance_ as an estimator of its covariance matrix.
set_params(**params) Set the parameters of this estimator.

1016 Chapter 5. API Reference



scikit-learn user guide, Release 0.17

__init__(alphas=4, n_refinements=4, cv=None, tol=0.0001, enet_tol=0.0001, max_iter=100,
mode=’cd’, n_jobs=1, verbose=False, assume_centered=False)

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm).

Parameterscomp_cov : array-like, shape = [n_features, n_features]

The covariance to compare with.

norm : str

The type of norm used to compute the error. Available error types: - ‘frobenius’ (de-
fault): sqrt(tr(A^t.A)) - ‘spectral’: sqrt(max(eigenvalues(A^t.A)) where A is the error
(comp_cov - self.covariance_).

scaling : bool

If True (default), the squared error norm is divided by n_features. If False, the squared
error norm is not rescaled.

squared : bool

Whether to compute the squared error norm or the error norm. If True (default), the
squared error norm is returned. If False, the error norm is returned.

ReturnsThe Mean Squared Error (in the sense of the Frobenius norm) between :

‘self‘ and ‘comp_cov‘ covariance estimators. :

fit(X, y=None)
Fits the GraphLasso covariance model to X.

ParametersX : ndarray, shape (n_samples, n_features)

Data from which to compute the covariance estimate

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

get_precision()
Getter for the precision matrix.

Returnsprecision_ : array-like,

The precision matrix associated to the current covariance object.

mahalanobis(observations)
Computes the squared Mahalanobis distances of given observations.

Parametersobservations : array-like, shape = [n_observations, n_features]

The observations, the Mahalanobis distances of the which we compute. Observations
are assumed to be drawn from the same distribution than the data used in fit.

Returnsmahalanobis_distance : array, shape = [n_observations,]

Squared Mahalanobis distances of the observations.
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score(X_test, y=None)
Computes the log-likelihood of a Gaussian data set with self.covariance_ as an estimator of its covariance
matrix.

ParametersX_test : array-like, shape = [n_samples, n_features]

Test data of which we compute the likelihood, where n_samples is the number of sam-
ples and n_features is the number of features. X_test is assumed to be drawn from the
same distribution than the data used in fit (including centering).

y : not used, present for API consistence purpose.

Returnsres : float

The likelihood of the data set with self.covariance_ as an estimator of its covariance
matrix.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.covariance.GraphLassoCV

• Visualizing the stock market structure

• Sparse inverse covariance estimation

5.4.5 sklearn.covariance.LedoitWolf

class sklearn.covariance.LedoitWolf(store_precision=True, assume_centered=False,
block_size=1000)

LedoitWolf Estimator

Ledoit-Wolf is a particular form of shrinkage, where the shrinkage coefficient is computed using O. Ledoit and
M. Wolf’s formula as described in “A Well-Conditioned Estimator for Large-Dimensional Covariance Matrices”,
Ledoit and Wolf, Journal of Multivariate Analysis, Volume 88, Issue 2, February 2004, pages 365-411.

Read more in the User Guide.

Parametersstore_precision : bool, default=True

Specify if the estimated precision is stored.

assume_centered : bool, default=False

If True, data are not centered before computation. Useful when working with data
whose mean is almost, but not exactly zero. If False (default), data are centered before
computation.

block_size : int, default=1000

Size of the blocks into which the covariance matrix will be split during its Ledoit-Wolf
estimation. This is purely a memory optimization and does not affect results.

Attributescovariance_ : array-like, shape (n_features, n_features)

Estimated covariance matrix
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precision_ : array-like, shape (n_features, n_features)

Estimated pseudo inverse matrix. (stored only if store_precision is True)

shrinkage_ : float, 0 <= shrinkage <= 1

Coefficient in the convex combination used for the computation of the shrunk estimate.

Notes

The regularised covariance is:

(1 - shrinkage)*cov
+ shrinkage*mu*np.identity(n_features)

where mu = trace(cov) / n_features and shrinkage is given by the Ledoit and Wolf formula (see References)

References

“A Well-Conditioned Estimator for Large-Dimensional Covariance Matrices”, Ledoit and Wolf, Journal of Mul-
tivariate Analysis, Volume 88, Issue 2, February 2004, pages 365-411.

Methods

error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two covariance estimators.
fit(X[, y]) Fits the Ledoit-Wolf shrunk covariance model according to the given training data and parameters.
get_params([deep]) Get parameters for this estimator.
get_precision() Getter for the precision matrix.
mahalanobis(observations) Computes the squared Mahalanobis distances of given observations.
score(X_test[, y]) Computes the log-likelihood of a Gaussian data set with self.covariance_ as an estimator of its covariance matrix.
set_params(**params) Set the parameters of this estimator.

__init__(store_precision=True, assume_centered=False, block_size=1000)

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm).

Parameterscomp_cov : array-like, shape = [n_features, n_features]

The covariance to compare with.

norm : str

The type of norm used to compute the error. Available error types: - ‘frobenius’ (de-
fault): sqrt(tr(A^t.A)) - ‘spectral’: sqrt(max(eigenvalues(A^t.A)) where A is the error
(comp_cov - self.covariance_).

scaling : bool

If True (default), the squared error norm is divided by n_features. If False, the squared
error norm is not rescaled.

squared : bool

Whether to compute the squared error norm or the error norm. If True (default), the
squared error norm is returned. If False, the error norm is returned.
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ReturnsThe Mean Squared Error (in the sense of the Frobenius norm) between :

‘self‘ and ‘comp_cov‘ covariance estimators. :

fit(X, y=None)
Fits the Ledoit-Wolf shrunk covariance model according to the given training data and parameters.

ParametersX : array-like, shape = [n_samples, n_features]

Training data, where n_samples is the number of samples and n_features is the number
of features.

y : not used, present for API consistence purpose.

Returnsself : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

get_precision()
Getter for the precision matrix.

Returnsprecision_ : array-like,

The precision matrix associated to the current covariance object.

mahalanobis(observations)
Computes the squared Mahalanobis distances of given observations.

Parametersobservations : array-like, shape = [n_observations, n_features]

The observations, the Mahalanobis distances of the which we compute. Observations
are assumed to be drawn from the same distribution than the data used in fit.

Returnsmahalanobis_distance : array, shape = [n_observations,]

Squared Mahalanobis distances of the observations.

score(X_test, y=None)
Computes the log-likelihood of a Gaussian data set with self.covariance_ as an estimator of its covariance
matrix.

ParametersX_test : array-like, shape = [n_samples, n_features]

Test data of which we compute the likelihood, where n_samples is the number of sam-
ples and n_features is the number of features. X_test is assumed to be drawn from the
same distribution than the data used in fit (including centering).

y : not used, present for API consistence purpose.

Returnsres : float

The likelihood of the data set with self.covariance_ as an estimator of its covariance
matrix.
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set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.covariance.LedoitWolf

• Ledoit-Wolf vs OAS estimation

• Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood

• Model selection with Probabilistic PCA and Factor Analysis (FA)

5.4.6 sklearn.covariance.MinCovDet

class sklearn.covariance.MinCovDet(store_precision=True, assume_centered=False, sup-
port_fraction=None, random_state=None)

Minimum Covariance Determinant (MCD): robust estimator of covariance.

The Minimum Covariance Determinant covariance estimator is to be applied on Gaussian-distributed data, but
could still be relevant on data drawn from a unimodal, symmetric distribution. It is not meant to be used with
multi-modal data (the algorithm used to fit a MinCovDet object is likely to fail in such a case). One should
consider projection pursuit methods to deal with multi-modal datasets.

Read more in the User Guide.

Parametersstore_precision : bool

Specify if the estimated precision is stored.

assume_centered : Boolean

If True, the support of the robust location and the covariance estimates is computed, and
a covariance estimate is recomputed from it, without centering the data. Useful to work
with data whose mean is significantly equal to zero but is not exactly zero. If False,
the robust location and covariance are directly computed with the FastMCD algorithm
without additional treatment.

support_fraction : float, 0 < support_fraction < 1

The proportion of points to be included in the support of the raw MCD estimate. Default
is None, which implies that the minimum value of support_fraction will be used within
the algorithm: [n_sample + n_features + 1] / 2

random_state : integer or numpy.RandomState, optional

The random generator used. If an integer is given, it fixes the seed. Defaults to the
global numpy random number generator.

Attributesraw_location_ : array-like, shape (n_features,)

The raw robust estimated location before correction and re-weighting.

raw_covariance_ : array-like, shape (n_features, n_features)

The raw robust estimated covariance before correction and re-weighting.

raw_support_ : array-like, shape (n_samples,)
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A mask of the observations that have been used to compute the raw robust estimates of
location and shape, before correction and re-weighting.

location_ : array-like, shape (n_features,)

Estimated robust location

covariance_ : array-like, shape (n_features, n_features)

Estimated robust covariance matrix

precision_ : array-like, shape (n_features, n_features)

Estimated pseudo inverse matrix. (stored only if store_precision is True)

support_ : array-like, shape (n_samples,)

A mask of the observations that have been used to compute the robust estimates of
location and shape.

dist_ : array-like, shape (n_samples,)

Mahalanobis distances of the training set (on which fit is called) observations.

References

[Rouseeuw1984], [Rouseeuw1999], [Butler1993]

Methods

correct_covariance(data) Apply a correction to raw Minimum Covariance Determinant estimates.
error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two covariance estimators.
fit(X[, y]) Fits a Minimum Covariance Determinant with the FastMCD algorithm.
get_params([deep]) Get parameters for this estimator.
get_precision() Getter for the precision matrix.
mahalanobis(observations) Computes the squared Mahalanobis distances of given observations.
reweight_covariance(data) Re-weight raw Minimum Covariance Determinant estimates.
score(X_test[, y]) Computes the log-likelihood of a Gaussian data set with self.covariance_ as an estimator of its covariance matrix.
set_params(**params) Set the parameters of this estimator.

__init__(store_precision=True, assume_centered=False, support_fraction=None, ran-
dom_state=None)

correct_covariance(data)
Apply a correction to raw Minimum Covariance Determinant estimates.

Correction using the empirical correction factor suggested by Rousseeuw and Van Driessen in
[Rouseeuw1984].

Parametersdata : array-like, shape (n_samples, n_features)

The data matrix, with p features and n samples. The data set must be the one which was
used to compute the raw estimates.

Returnscovariance_corrected : array-like, shape (n_features, n_features)

Corrected robust covariance estimate.

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
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Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm).

Parameterscomp_cov : array-like, shape = [n_features, n_features]

The covariance to compare with.

norm : str

The type of norm used to compute the error. Available error types: - ‘frobenius’ (de-
fault): sqrt(tr(A^t.A)) - ‘spectral’: sqrt(max(eigenvalues(A^t.A)) where A is the error
(comp_cov - self.covariance_).

scaling : bool

If True (default), the squared error norm is divided by n_features. If False, the squared
error norm is not rescaled.

squared : bool

Whether to compute the squared error norm or the error norm. If True (default), the
squared error norm is returned. If False, the error norm is returned.

ReturnsThe Mean Squared Error (in the sense of the Frobenius norm) between :

‘self‘ and ‘comp_cov‘ covariance estimators. :

fit(X, y=None)
Fits a Minimum Covariance Determinant with the FastMCD algorithm.

ParametersX : array-like, shape = [n_samples, n_features]

Training data, where n_samples is the number of samples and n_features is the number
of features.

y : not used, present for API consistence purpose.

Returnsself : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

get_precision()
Getter for the precision matrix.

Returnsprecision_ : array-like,

The precision matrix associated to the current covariance object.

mahalanobis(observations)
Computes the squared Mahalanobis distances of given observations.

Parametersobservations : array-like, shape = [n_observations, n_features]

The observations, the Mahalanobis distances of the which we compute. Observations
are assumed to be drawn from the same distribution than the data used in fit.
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Returnsmahalanobis_distance : array, shape = [n_observations,]

Squared Mahalanobis distances of the observations.

reweight_covariance(data)
Re-weight raw Minimum Covariance Determinant estimates.

Re-weight observations using Rousseeuw’s method (equivalent to deleting outlying observations from the
data set before computing location and covariance estimates). [Rouseeuw1984]

Parametersdata : array-like, shape (n_samples, n_features)

The data matrix, with p features and n samples. The data set must be the one which was
used to compute the raw estimates.

Returnslocation_reweighted : array-like, shape (n_features, )

Re-weighted robust location estimate.

covariance_reweighted : array-like, shape (n_features, n_features)

Re-weighted robust covariance estimate.

support_reweighted : array-like, type boolean, shape (n_samples,)

A mask of the observations that have been used to compute the re-weighted robust
location and covariance estimates.

score(X_test, y=None)
Computes the log-likelihood of a Gaussian data set with self.covariance_ as an estimator of its covariance
matrix.

ParametersX_test : array-like, shape = [n_samples, n_features]

Test data of which we compute the likelihood, where n_samples is the number of sam-
ples and n_features is the number of features. X_test is assumed to be drawn from the
same distribution than the data used in fit (including centering).

y : not used, present for API consistence purpose.

Returnsres : float

The likelihood of the data set with self.covariance_ as an estimator of its covariance
matrix.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.covariance.MinCovDet

• Robust covariance estimation and Mahalanobis distances relevance

• Robust vs Empirical covariance estimate
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5.4.7 sklearn.covariance.OAS

class sklearn.covariance.OAS(store_precision=True, assume_centered=False)
Oracle Approximating Shrinkage Estimator

Read more in the User Guide.

OAS is a particular form of shrinkage described in “Shrinkage Algorithms for MMSE Covariance Estimation”
Chen et al., IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010.

The formula used here does not correspond to the one given in the article. It has been taken from the Matlab
program available from the authors’ webpage (https://tbayes.eecs.umich.edu/yilun/covestimation).

Parametersstore_precision : bool, default=True

Specify if the estimated precision is stored.

assume_centered: bool, default=False :

If True, data are not centered before computation. Useful when working with data
whose mean is almost, but not exactly zero. If False (default), data are centered before
computation.

Attributescovariance_ : array-like, shape (n_features, n_features)

Estimated covariance matrix.

precision_ : array-like, shape (n_features, n_features)

Estimated pseudo inverse matrix. (stored only if store_precision is True)

shrinkage_ : float, 0 <= shrinkage <= 1

coefficient in the convex combination used for the computation of the shrunk estimate.

Notes

The regularised covariance is:

(1 - shrinkage)*cov
+ shrinkage*mu*np.identity(n_features)

where mu = trace(cov) / n_features and shrinkage is given by the OAS formula (see References)

References

“Shrinkage Algorithms for MMSE Covariance Estimation” Chen et al., IEEE Trans. on Sign. Proc., Volume 58,
Issue 10, October 2010.

Methods

error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two covariance estimators.
fit(X[, y]) Fits the Oracle Approximating Shrinkage covariance model according to the given training data and parameters.
get_params([deep]) Get parameters for this estimator.
get_precision() Getter for the precision matrix.
mahalanobis(observations) Computes the squared Mahalanobis distances of given observations.
score(X_test[, y]) Computes the log-likelihood of a Gaussian data set with self.covariance_ as an estimator of its covariance matrix.

Continued on next page
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Table 5.29 – continued from previous page
set_params(**params) Set the parameters of this estimator.

__init__(store_precision=True, assume_centered=False)

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm).

Parameterscomp_cov : array-like, shape = [n_features, n_features]

The covariance to compare with.

norm : str

The type of norm used to compute the error. Available error types: - ‘frobenius’ (de-
fault): sqrt(tr(A^t.A)) - ‘spectral’: sqrt(max(eigenvalues(A^t.A)) where A is the error
(comp_cov - self.covariance_).

scaling : bool

If True (default), the squared error norm is divided by n_features. If False, the squared
error norm is not rescaled.

squared : bool

Whether to compute the squared error norm or the error norm. If True (default), the
squared error norm is returned. If False, the error norm is returned.

ReturnsThe Mean Squared Error (in the sense of the Frobenius norm) between :

‘self‘ and ‘comp_cov‘ covariance estimators. :

fit(X, y=None)
Fits the Oracle Approximating Shrinkage covariance model according to the given training data and pa-
rameters.

ParametersX : array-like, shape = [n_samples, n_features]

Training data, where n_samples is the number of samples and n_features is the number
of features.

y : not used, present for API consistence purpose.

Returnsself: object :

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

get_precision()
Getter for the precision matrix.

Returnsprecision_ : array-like,

The precision matrix associated to the current covariance object.
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mahalanobis(observations)
Computes the squared Mahalanobis distances of given observations.

Parametersobservations : array-like, shape = [n_observations, n_features]

The observations, the Mahalanobis distances of the which we compute. Observations
are assumed to be drawn from the same distribution than the data used in fit.

Returnsmahalanobis_distance : array, shape = [n_observations,]

Squared Mahalanobis distances of the observations.

score(X_test, y=None)
Computes the log-likelihood of a Gaussian data set with self.covariance_ as an estimator of its covariance
matrix.

ParametersX_test : array-like, shape = [n_samples, n_features]

Test data of which we compute the likelihood, where n_samples is the number of sam-
ples and n_features is the number of features. X_test is assumed to be drawn from the
same distribution than the data used in fit (including centering).

y : not used, present for API consistence purpose.

Returnsres : float

The likelihood of the data set with self.covariance_ as an estimator of its covariance
matrix.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.covariance.OAS

• Ledoit-Wolf vs OAS estimation

• Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood

5.4.8 sklearn.covariance.ShrunkCovariance

class sklearn.covariance.ShrunkCovariance(store_precision=True, assume_centered=False,
shrinkage=0.1)

Covariance estimator with shrinkage

Read more in the User Guide.

Parametersstore_precision : boolean, default True

Specify if the estimated precision is stored

shrinkage : float, 0 <= shrinkage <= 1, default 0.1

Coefficient in the convex combination used for the computation of the shrunk estimate.

assume_centered : boolean, default False
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If True, data are not centered before computation. Useful when working with data
whose mean is almost, but not exactly zero. If False, data are centered before computa-
tion.

Attributescovariance_ : array-like, shape (n_features, n_features)

Estimated covariance matrix

precision_ : array-like, shape (n_features, n_features)

Estimated pseudo inverse matrix. (stored only if store_precision is True)

‘shrinkage‘ : float, 0 <= shrinkage <= 1

Coefficient in the convex combination used for the computation of the shrunk estimate.

Notes

The regularized covariance is given by

(1 - shrinkage)*cov

•shrinkage*mu*np.identity(n_features)

where mu = trace(cov) / n_features

Methods

error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two covariance estimators.
fit(X[, y]) Fits the shrunk covariance model according to the given training data and parameters.
get_params([deep]) Get parameters for this estimator.
get_precision() Getter for the precision matrix.
mahalanobis(observations) Computes the squared Mahalanobis distances of given observations.
score(X_test[, y]) Computes the log-likelihood of a Gaussian data set with self.covariance_ as an estimator of its covariance matrix.
set_params(**params) Set the parameters of this estimator.

__init__(store_precision=True, assume_centered=False, shrinkage=0.1)

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm).

Parameterscomp_cov : array-like, shape = [n_features, n_features]

The covariance to compare with.

norm : str

The type of norm used to compute the error. Available error types: - ‘frobenius’ (de-
fault): sqrt(tr(A^t.A)) - ‘spectral’: sqrt(max(eigenvalues(A^t.A)) where A is the error
(comp_cov - self.covariance_).

scaling : bool

If True (default), the squared error norm is divided by n_features. If False, the squared
error norm is not rescaled.

squared : bool
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Whether to compute the squared error norm or the error norm. If True (default), the
squared error norm is returned. If False, the error norm is returned.

ReturnsThe Mean Squared Error (in the sense of the Frobenius norm) between :

‘self‘ and ‘comp_cov‘ covariance estimators. :

fit(X, y=None)
Fits the shrunk covariance model according to the given training data and parameters.

ParametersX : array-like, shape = [n_samples, n_features]

Training data, where n_samples is the number of samples and n_features is the number
of features.

y : not used, present for API consistence purpose.

Returnsself : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

get_precision()
Getter for the precision matrix.

Returnsprecision_ : array-like,

The precision matrix associated to the current covariance object.

mahalanobis(observations)
Computes the squared Mahalanobis distances of given observations.

Parametersobservations : array-like, shape = [n_observations, n_features]

The observations, the Mahalanobis distances of the which we compute. Observations
are assumed to be drawn from the same distribution than the data used in fit.

Returnsmahalanobis_distance : array, shape = [n_observations,]

Squared Mahalanobis distances of the observations.

score(X_test, y=None)
Computes the log-likelihood of a Gaussian data set with self.covariance_ as an estimator of its covariance
matrix.

ParametersX_test : array-like, shape = [n_samples, n_features]

Test data of which we compute the likelihood, where n_samples is the number of sam-
ples and n_features is the number of features. X_test is assumed to be drawn from the
same distribution than the data used in fit (including centering).

y : not used, present for API consistence purpose.

Returnsres : float
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The likelihood of the data set with self.covariance_ as an estimator of its covariance
matrix.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.covariance.ShrunkCovariance

• Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood

• Model selection with Probabilistic PCA and Factor Analysis (FA)

covariance.empirical_covariance(X[, ...]) Computes the Maximum likelihood covariance estimator
covariance.ledoit_wolf(X[, assume_centered, ...]) Estimates the shrunk Ledoit-Wolf covariance matrix.
covariance.shrunk_covariance(emp_cov[, ...]) Calculates a covariance matrix shrunk on the diagonal
covariance.oas(X[, assume_centered]) Estimate covariance with the Oracle Approximating Shrinkage algorithm.
covariance.graph_lasso(emp_cov, alpha[, ...]) l1-penalized covariance estimator

5.4.9 sklearn.covariance.empirical_covariance

sklearn.covariance.empirical_covariance(X, assume_centered=False)
Computes the Maximum likelihood covariance estimator

ParametersX : ndarray, shape (n_samples, n_features)

Data from which to compute the covariance estimate

assume_centered : Boolean

If True, data are not centered before computation. Useful when working with data
whose mean is almost, but not exactly zero. If False, data are centered before computa-
tion.

Returnscovariance : 2D ndarray, shape (n_features, n_features)

Empirical covariance (Maximum Likelihood Estimator).

Examples using sklearn.covariance.empirical_covariance

• Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood

5.4.10 sklearn.covariance.ledoit_wolf

sklearn.covariance.ledoit_wolf(X, assume_centered=False, block_size=1000)
Estimates the shrunk Ledoit-Wolf covariance matrix.

Read more in the User Guide.

ParametersX : array-like, shape (n_samples, n_features)

Data from which to compute the covariance estimate

1030 Chapter 5. API Reference



scikit-learn user guide, Release 0.17

assume_centered : boolean, default=False

If True, data are not centered before computation. Useful to work with data whose mean
is significantly equal to zero but is not exactly zero. If False, data are centered before
computation.

block_size : int, default=1000

Size of the blocks into which the covariance matrix will be split. This is purely a mem-
ory optimization and does not affect results.

Returnsshrunk_cov : array-like, shape (n_features, n_features)

Shrunk covariance.

shrinkage : float

Coefficient in the convex combination used for the computation of the shrunk estimate.

Notes

The regularized (shrunk) covariance is:

(1 - shrinkage)*cov

•shrinkage * mu * np.identity(n_features)

where mu = trace(cov) / n_features

Examples using sklearn.covariance.ledoit_wolf

• Sparse inverse covariance estimation

5.4.11 sklearn.covariance.shrunk_covariance

sklearn.covariance.shrunk_covariance(emp_cov, shrinkage=0.1)
Calculates a covariance matrix shrunk on the diagonal

Read more in the User Guide.

Parametersemp_cov : array-like, shape (n_features, n_features)

Covariance matrix to be shrunk

shrinkage : float, 0 <= shrinkage <= 1

Coefficient in the convex combination used for the computation of the shrunk estimate.

Returnsshrunk_cov : array-like

Shrunk covariance.

Notes

The regularized (shrunk) covariance is given by

(1 - shrinkage)*cov

•shrinkage*mu*np.identity(n_features)

where mu = trace(cov) / n_features
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5.4.12 sklearn.covariance.oas

sklearn.covariance.oas(X, assume_centered=False)
Estimate covariance with the Oracle Approximating Shrinkage algorithm.

ParametersX : array-like, shape (n_samples, n_features)

Data from which to compute the covariance estimate.

assume_centered : boolean

If True, data are not centered before computation. Useful to work with data whose mean
is significantly equal to zero but is not exactly zero. If False, data are centered before
computation.

Returnsshrunk_cov : array-like, shape (n_features, n_features)

Shrunk covariance.

shrinkage : float

Coefficient in the convex combination used for the computation of the shrunk estimate.

Notes

The regularised (shrunk) covariance is:

(1 - shrinkage)*cov

•shrinkage * mu * np.identity(n_features)

where mu = trace(cov) / n_features

The formula we used to implement the OAS does not correspond to the one given in the ar-
ticle. It has been taken from the MATLAB program available from the author’s webpage
(https://tbayes.eecs.umich.edu/yilun/covestimation).

5.4.13 sklearn.covariance.graph_lasso

sklearn.covariance.graph_lasso(emp_cov, alpha, cov_init=None, mode=’cd’, tol=0.0001,
enet_tol=0.0001, max_iter=100, verbose=False, re-
turn_costs=False, eps=2.2204460492503131e-16, re-
turn_n_iter=False)

l1-penalized covariance estimator

Read more in the User Guide.

Parametersemp_cov : 2D ndarray, shape (n_features, n_features)

Empirical covariance from which to compute the covariance estimate.

alpha : positive float

The regularization parameter: the higher alpha, the more regularization, the sparser the
inverse covariance.

cov_init : 2D array (n_features, n_features), optional

The initial guess for the covariance.

mode : {‘cd’, ‘lars’}
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The Lasso solver to use: coordinate descent or LARS. Use LARS for very sparse un-
derlying graphs, where p > n. Elsewhere prefer cd which is more numerically stable.

tol : positive float, optional

The tolerance to declare convergence: if the dual gap goes below this value, iterations
are stopped.

enet_tol : positive float, optional

The tolerance for the elastic net solver used to calculate the descent direction. This
parameter controls the accuracy of the search direction for a given column update, not
of the overall parameter estimate. Only used for mode=’cd’.

max_iter : integer, optional

The maximum number of iterations.

verbose : boolean, optional

If verbose is True, the objective function and dual gap are printed at each iteration.

return_costs : boolean, optional

If return_costs is True, the objective function and dual gap at each iteration are returned.

eps : float, optional

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems.

return_n_iter : bool, optional

Whether or not to return the number of iterations.

Returnscovariance : 2D ndarray, shape (n_features, n_features)

The estimated covariance matrix.

precision : 2D ndarray, shape (n_features, n_features)

The estimated (sparse) precision matrix.

costs : list of (objective, dual_gap) pairs

The list of values of the objective function and the dual gap at each iteration. Returned
only if return_costs is True.

n_iter : int

Number of iterations. Returned only if return_n_iter is set to True.

See also:

GraphLasso, GraphLassoCV

Notes

The algorithm employed to solve this problem is the GLasso algorithm, from the Friedman 2008 Biostatistics
paper. It is the same algorithm as in the R glasso package.

One possible difference with the glasso R package is that the diagonal coefficients are not penalized.
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5.5 sklearn.cross_validation: Cross Validation

The sklearn.cross_validation module includes utilities for cross- validation and performance evaluation.

User guide: See the Cross-validation: evaluating estimator performance section for further details.

cross_validation.KFold(n[, n_folds, ...]) K-Folds cross validation iterator.
cross_validation.LabelKFold(labels[, n_folds]) K-fold iterator variant with non-overlapping labels.
cross_validation.LabelShuffleSplit(labels[, ...]) Shuffle-Labels-Out cross-validation iterator
cross_validation.LeaveOneLabelOut(labels) Leave-One-Label_Out cross-validation iterator
cross_validation.LeaveOneOut(n) Leave-One-Out cross validation iterator.
cross_validation.LeavePLabelOut(labels, p) Leave-P-Label_Out cross-validation iterator
cross_validation.LeavePOut(n, p) Leave-P-Out cross validation iterator
cross_validation.PredefinedSplit(test_fold) Predefined split cross validation iterator
cross_validation.ShuffleSplit(n[, n_iter, ...]) Random permutation cross-validation iterator.
cross_validation.StratifiedKFold(y[, ...]) Stratified K-Folds cross validation iterator
cross_validation.StratifiedShuffleSplit(y[, ...]) Stratified ShuffleSplit cross validation iterator

5.5.1 sklearn.cross_validation.KFold

class sklearn.cross_validation.KFold(n, n_folds=3, shuffle=False, random_state=None)
K-Folds cross validation iterator.

Provides train/test indices to split data in train test sets. Split dataset into k consecutive folds (without shuffling
by default).

Each fold is then used a validation set once while the k - 1 remaining fold form the training set.

Read more in the User Guide.

Parametersn : int

Total number of elements.

n_folds : int, default=3

Number of folds. Must be at least 2.

shuffle : boolean, optional

Whether to shuffle the data before splitting into batches.

random_state : None, int or RandomState

When shuffle=True, pseudo-random number generator state used for shuffling. If None,
use default numpy RNG for shuffling.

See also:

StratifiedKFoldtake label information into account to avoid building

folds, classification

LabelKFoldK-fold iterator variant with non-overlapping labels.

Notes

The first n % n_folds folds have size n // n_folds + 1, other folds have size n // n_folds.
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Examples

>>> from sklearn.cross_validation import KFold
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([1, 2, 3, 4])
>>> kf = KFold(4, n_folds=2)
>>> len(kf)
2
>>> print(kf)
sklearn.cross_validation.KFold(n=4, n_folds=2, shuffle=False,

random_state=None)
>>> for train_index, test_index in kf:
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [2 3] TEST: [0 1]
TRAIN: [0 1] TEST: [2 3]
.. automethod:: __init__

Examples using sklearn.cross_validation.KFold

• Feature agglomeration vs. univariate selection

• Gradient Boosting Out-of-Bag estimates

• Cross-validation on diabetes Dataset Exercise

• Gaussian Processes regression: goodness-of-fit on the ‘diabetes’ dataset

5.5.2 sklearn.cross_validation.LabelKFold

class sklearn.cross_validation.LabelKFold(labels, n_folds=3)
K-fold iterator variant with non-overlapping labels.

The same label will not appear in two different folds (the number of distinct labels has to be at least equal to the
number of folds).

The folds are approximately balanced in the sense that the number of distinct labels is approximately the same
in each fold.

New in version 0.17.

Parameterslabels : array-like with shape (n_samples, )

Contains a label for each sample. The folds are built so that the same label does not
appear in two different folds.

n_folds : int, default=3

Number of folds. Must be at least 2.

See also:

LeaveOneLabelOut, domain-specific
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Examples

>>> from sklearn.cross_validation import LabelKFold
>>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
>>> y = np.array([1, 2, 3, 4])
>>> labels = np.array([0, 0, 2, 2])
>>> label_kfold = LabelKFold(labels, n_folds=2)
>>> len(label_kfold)
2
>>> print(label_kfold)
sklearn.cross_validation.LabelKFold(n_labels=4, n_folds=2)
>>> for train_index, test_index in label_kfold:
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
... print(X_train, X_test, y_train, y_test)
...
TRAIN: [0 1] TEST: [2 3]
[[1 2]
[3 4]] [[5 6]
[7 8]] [1 2] [3 4]

TRAIN: [2 3] TEST: [0 1]
[[5 6]
[7 8]] [[1 2]
[3 4]] [3 4] [1 2]

.. automethod:: __init__

5.5.3 sklearn.cross_validation.LabelShuffleSplit

class sklearn.cross_validation.LabelShuffleSplit(labels, n_iter=5, test_size=0.2,
train_size=None, random_state=None)

Shuffle-Labels-Out cross-validation iterator

Provides randomized train/test indices to split data according to a third-party provided label. This label infor-
mation can be used to encode arbitrary domain specific stratifications of the samples as integers.

For instance the labels could be the year of collection of the samples and thus allow for cross-validation against
time-based splits.

The difference between LeavePLabelOut and LabelShuffleSplit is that the former generates splits using all
subsets of size p unique labels, whereas LabelShuffleSplit generates a user-determined number of random test
splits, each with a user-determined fraction of unique labels.

For example, a less computationally intensive alternative to LeavePLabelOut(labels, p=10) would be
LabelShuffleSplit(labels, test_size=10, n_iter=100).

Note: The parameters test_size and train_size refer to labels, and not to samples, as in ShuffleSplit.

New in version 0.17.

Parameterslabels : array, [n_samples]

Labels of samples

n_iter : int (default 5)

Number of re-shuffling and splitting iterations.

test_size : float (default 0.2), int, or None
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If float, should be between 0.0 and 1.0 and represent the proportion of the labels to
include in the test split. If int, represents the absolute number of test labels. If None,
the value is automatically set to the complement of the train size.

train_size : float, int, or None (default is None)

If float, should be between 0.0 and 1.0 and represent the proportion of the labels to
include in the train split. If int, represents the absolute number of train labels. If None,
the value is automatically set to the complement of the test size.

random_state : int or RandomState

Pseudo-random number generator state used for random sampling.

__init__(labels, n_iter=5, test_size=0.2, train_size=None, random_state=None)

5.5.4 sklearn.cross_validation.LeaveOneLabelOut

class sklearn.cross_validation.LeaveOneLabelOut(labels)
Leave-One-Label_Out cross-validation iterator

Provides train/test indices to split data according to a third-party provided label. This label information can be
used to encode arbitrary domain specific stratifications of the samples as integers.

For instance the labels could be the year of collection of the samples and thus allow for cross-validation against
time-based splits.

Read more in the User Guide.

Parameterslabels : array-like of int with shape (n_samples,)

Arbitrary domain-specific stratification of the data to be used to draw the splits.

See also:

LabelKFoldK-fold iterator variant with non-overlapping labels.

Examples

>>> from sklearn import cross_validation
>>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
>>> y = np.array([1, 2, 1, 2])
>>> labels = np.array([1, 1, 2, 2])
>>> lol = cross_validation.LeaveOneLabelOut(labels)
>>> len(lol)
2
>>> print(lol)
sklearn.cross_validation.LeaveOneLabelOut(labels=[1 1 2 2])
>>> for train_index, test_index in lol:
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
... print(X_train, X_test, y_train, y_test)
TRAIN: [2 3] TEST: [0 1]
[[5 6]
[7 8]] [[1 2]
[3 4]] [1 2] [1 2]

TRAIN: [0 1] TEST: [2 3]
[[1 2]
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[3 4]] [[5 6]
[7 8]] [1 2] [1 2]
.. automethod:: __init__

5.5.5 sklearn.cross_validation.LeaveOneOut

class sklearn.cross_validation.LeaveOneOut(n)
Leave-One-Out cross validation iterator.

Provides train/test indices to split data in train test sets. Each sample is used once as a test set (singleton) while
the remaining samples form the training set.

Note: LeaveOneOut(n) is equivalent to KFold(n, n_folds=n) and LeavePOut(n, p=1).

Due to the high number of test sets (which is the same as the number of samples) this cross validation method
can be very costly. For large datasets one should favor KFold, StratifiedKFold or ShuffleSplit.

Read more in the User Guide.

Parametersn : int

Total number of elements in dataset.

See also:

LeaveOneLabelOut, domain-specific

Examples

>>> from sklearn import cross_validation
>>> X = np.array([[1, 2], [3, 4]])
>>> y = np.array([1, 2])
>>> loo = cross_validation.LeaveOneOut(2)
>>> len(loo)
2
>>> print(loo)
sklearn.cross_validation.LeaveOneOut(n=2)
>>> for train_index, test_index in loo:
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
... print(X_train, X_test, y_train, y_test)
TRAIN: [1] TEST: [0]
[[3 4]] [[1 2]] [2] [1]
TRAIN: [0] TEST: [1]
[[1 2]] [[3 4]] [1] [2]
.. automethod:: __init__

5.5.6 sklearn.cross_validation.LeavePLabelOut

class sklearn.cross_validation.LeavePLabelOut(labels, p)
Leave-P-Label_Out cross-validation iterator

Provides train/test indices to split data according to a third-party provided label. This label information can be
used to encode arbitrary domain specific stratifications of the samples as integers.
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For instance the labels could be the year of collection of the samples and thus allow for cross-validation against
time-based splits.

The difference between LeavePLabelOut and LeaveOneLabelOut is that the former builds the test sets with all
the samples assigned to p different values of the labels while the latter uses samples all assigned the same labels.

Read more in the User Guide.

Parameterslabels : array-like of int with shape (n_samples,)

Arbitrary domain-specific stratification of the data to be used to draw the splits.

p : int

Number of samples to leave out in the test split.

See also:

LabelKFoldK-fold iterator variant with non-overlapping labels.

Examples

>>> from sklearn import cross_validation
>>> X = np.array([[1, 2], [3, 4], [5, 6]])
>>> y = np.array([1, 2, 1])
>>> labels = np.array([1, 2, 3])
>>> lpl = cross_validation.LeavePLabelOut(labels, p=2)
>>> len(lpl)
3
>>> print(lpl)
sklearn.cross_validation.LeavePLabelOut(labels=[1 2 3], p=2)
>>> for train_index, test_index in lpl:
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
... print(X_train, X_test, y_train, y_test)
TRAIN: [2] TEST: [0 1]
[[5 6]] [[1 2]
[3 4]] [1] [1 2]

TRAIN: [1] TEST: [0 2]
[[3 4]] [[1 2]
[5 6]] [2] [1 1]

TRAIN: [0] TEST: [1 2]
[[1 2]] [[3 4]
[5 6]] [1] [2 1]

.. automethod:: __init__

5.5.7 sklearn.cross_validation.LeavePOut

class sklearn.cross_validation.LeavePOut(n, p)
Leave-P-Out cross validation iterator

Provides train/test indices to split data in train test sets. This results in testing on all distinct samples of size p,
while the remaining n - p samples form the training set in each iteration.

Note: LeavePOut(n, p) is NOT equivalent to KFold(n, n_folds=n // p) which creates non-
overlapping test sets.
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Due to the high number of iterations which grows combinatorically with the number of samples this cross
validation method can be very costly. For large datasets one should favor KFold, StratifiedKFold or ShuffleSplit.

Read more in the User Guide.

Parametersn : int

Total number of elements in dataset.

p : int

Size of the test sets.

Examples

>>> from sklearn import cross_validation
>>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
>>> y = np.array([1, 2, 3, 4])
>>> lpo = cross_validation.LeavePOut(4, 2)
>>> len(lpo)
6
>>> print(lpo)
sklearn.cross_validation.LeavePOut(n=4, p=2)
>>> for train_index, test_index in lpo:
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [2 3] TEST: [0 1]
TRAIN: [1 3] TEST: [0 2]
TRAIN: [1 2] TEST: [0 3]
TRAIN: [0 3] TEST: [1 2]
TRAIN: [0 2] TEST: [1 3]
TRAIN: [0 1] TEST: [2 3]
.. automethod:: __init__

5.5.8 sklearn.cross_validation.PredefinedSplit

class sklearn.cross_validation.PredefinedSplit(test_fold)
Predefined split cross validation iterator

Splits the data into training/test set folds according to a predefined scheme. Each sample can be assigned to at
most one test set fold, as specified by the user through the test_fold parameter.

Read more in the User Guide.

Parameterstest_fold : “array-like, shape (n_samples,)

test_fold[i] gives the test set fold of sample i. A value of -1 indicates that the corre-
sponding sample is not part of any test set folds, but will instead always be put into the
training fold.

Examples

>>> from sklearn.cross_validation import PredefinedSplit
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([0, 0, 1, 1])
>>> ps = PredefinedSplit(test_fold=[0, 1, -1, 1])
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>>> len(ps)
2
>>> print(ps)
sklearn.cross_validation.PredefinedSplit(test_fold=[ 0 1 -1 1])
>>> for train_index, test_index in ps:
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [1 2 3] TEST: [0]
TRAIN: [0 2] TEST: [1 3]
.. automethod:: __init__

5.5.9 sklearn.cross_validation.ShuffleSplit

class sklearn.cross_validation.ShuffleSplit(n, n_iter=10, test_size=0.1, train_size=None,
random_state=None)

Random permutation cross-validation iterator.

Yields indices to split data into training and test sets.

Note: contrary to other cross-validation strategies, random splits do not guarantee that all folds will be different,
although this is still very likely for sizeable datasets.

Read more in the User Guide.

Parametersn : int

Total number of elements in the dataset.

n_iter : int (default 10)

Number of re-shuffling & splitting iterations.

test_size : float (default 0.1), int, or None

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to
include in the test split. If int, represents the absolute number of test samples. If None,
the value is automatically set to the complement of the train size.

train_size : float, int, or None (default is None)

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to
include in the train split. If int, represents the absolute number of train samples. If
None, the value is automatically set to the complement of the test size.

random_state : int or RandomState

Pseudo-random number generator state used for random sampling.

Examples

>>> from sklearn import cross_validation
>>> rs = cross_validation.ShuffleSplit(4, n_iter=3,
... test_size=.25, random_state=0)
>>> len(rs)
3
>>> print(rs)
...
ShuffleSplit(4, n_iter=3, test_size=0.25, ...)
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>>> for train_index, test_index in rs:
... print("TRAIN:", train_index, "TEST:", test_index)
...
TRAIN: [3 1 0] TEST: [2]
TRAIN: [2 1 3] TEST: [0]
TRAIN: [0 2 1] TEST: [3]

>>> rs = cross_validation.ShuffleSplit(4, n_iter=3,
... train_size=0.5, test_size=.25, random_state=0)
>>> for train_index, test_index in rs:
... print("TRAIN:", train_index, "TEST:", test_index)
...
TRAIN: [3 1] TEST: [2]
TRAIN: [2 1] TEST: [0]
TRAIN: [0 2] TEST: [3]
.. automethod:: __init__

Examples using sklearn.cross_validation.ShuffleSplit

• Plotting Learning Curves

• Scaling the regularization parameter for SVCs

5.5.10 sklearn.cross_validation.StratifiedKFold

class sklearn.cross_validation.StratifiedKFold(y, n_folds=3, shuffle=False, ran-
dom_state=None)

Stratified K-Folds cross validation iterator

Provides train/test indices to split data in train test sets.

This cross-validation object is a variation of KFold that returns stratified folds. The folds are made by preserving
the percentage of samples for each class.

Read more in the User Guide.

Parametersy : array-like, [n_samples]

Samples to split in K folds.

n_folds : int, default=3

Number of folds. Must be at least 2.

shuffle : boolean, optional

Whether to shuffle each stratification of the data before splitting into batches.

random_state : None, int or RandomState

When shuffle=True, pseudo-random number generator state used for shuffling. If None,
use default numpy RNG for shuffling.

See also:

LabelKFoldK-fold iterator variant with non-overlapping labels.
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Notes

All the folds have size trunc(n_samples / n_folds), the last one has the complementary.

Examples

>>> from sklearn.cross_validation import StratifiedKFold
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([0, 0, 1, 1])
>>> skf = StratifiedKFold(y, n_folds=2)
>>> len(skf)
2
>>> print(skf)
sklearn.cross_validation.StratifiedKFold(labels=[0 0 1 1], n_folds=2,

shuffle=False, random_state=None)
>>> for train_index, test_index in skf:
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [1 3] TEST: [0 2]
TRAIN: [0 2] TEST: [1 3]
.. automethod:: __init__

Examples using sklearn.cross_validation.StratifiedKFold

• Recursive feature elimination with cross-validation

• Test with permutations the significance of a classification score

• GMM classification

• Receiver Operating Characteristic (ROC) with cross validation

5.5.11 sklearn.cross_validation.StratifiedShuffleSplit

class sklearn.cross_validation.StratifiedShuffleSplit(y, n_iter=10, test_size=0.1,
train_size=None, ran-
dom_state=None)

Stratified ShuffleSplit cross validation iterator

Provides train/test indices to split data in train test sets.

This cross-validation object is a merge of StratifiedKFold and ShuffleSplit, which returns stratified randomized
folds. The folds are made by preserving the percentage of samples for each class.

Note: like the ShuffleSplit strategy, stratified random splits do not guarantee that all folds will be different,
although this is still very likely for sizeable datasets.

Read more in the User Guide.

Parametersy : array, [n_samples]

Labels of samples.

n_iter : int (default 10)

Number of re-shuffling & splitting iterations.
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test_size : float (default 0.1), int, or None

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to
include in the test split. If int, represents the absolute number of test samples. If None,
the value is automatically set to the complement of the train size.

train_size : float, int, or None (default is None)

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to
include in the train split. If int, represents the absolute number of train samples. If
None, the value is automatically set to the complement of the test size.

random_state : int or RandomState

Pseudo-random number generator state used for random sampling.

Examples

>>> from sklearn.cross_validation import StratifiedShuffleSplit
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([0, 0, 1, 1])
>>> sss = StratifiedShuffleSplit(y, 3, test_size=0.5, random_state=0)
>>> len(sss)
3
>>> print(sss)
StratifiedShuffleSplit(labels=[0 0 1 1], n_iter=3, ...)
>>> for train_index, test_index in sss:
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [1 2] TEST: [3 0]
TRAIN: [0 2] TEST: [1 3]
TRAIN: [0 2] TEST: [3 1]
.. automethod:: __init__

Examples using sklearn.cross_validation.StratifiedShuffleSplit

• RBF SVM parameters

cross_validation.train_test_split(*arrays, ...) Split arrays or matrices into random train and test subsets
cross_validation.cross_val_score(estimator, X) Evaluate a score by cross-validation
cross_validation.cross_val_predict(estimator, X) Generate cross-validated estimates for each input data point
cross_validation.permutation_test_score(...) Evaluate the significance of a cross-validated score with permutations
cross_validation.check_cv(cv[, X, y, classifier]) Input checker utility for building a CV in a user friendly way.

5.5.12 sklearn.cross_validation.train_test_split

sklearn.cross_validation.train_test_split(*arrays, **options)
Split arrays or matrices into random train and test subsets

Quick utility that wraps input validation and next(iter(ShuffleSplit(n_samples))) and applica-
tion to input data into a single call for splitting (and optionally subsampling) data in a oneliner.

Read more in the User Guide.

Parameters*arrays : sequence of indexables with same length / shape[0]
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allowed inputs are lists, numpy arrays, scipy-sparse matrices or pandas dataframes.

New in version 0.16: preserves input type instead of always casting to numpy array.

test_size : float, int, or None (default is None)

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to
include in the test split. If int, represents the absolute number of test samples. If None,
the value is automatically set to the complement of the train size. If train size is also
None, test size is set to 0.25.

train_size : float, int, or None (default is None)

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to
include in the train split. If int, represents the absolute number of train samples. If
None, the value is automatically set to the complement of the test size.

random_state : int or RandomState

Pseudo-random number generator state used for random sampling.

stratify : array-like or None (default is None)

If not None, data is split in a stratified fashion, using this as the labels array.

New in version 0.17: stratify splitting

Returnssplitting : list, length = 2 * len(arrays),

List containing train-test split of inputs.

New in version 0.16: Output type is the same as the input type.

Examples

>>> import numpy as np
>>> from sklearn.cross_validation import train_test_split
>>> X, y = np.arange(10).reshape((5, 2)), range(5)
>>> X
array([[0, 1],

[2, 3],
[4, 5],
[6, 7],
[8, 9]])

>>> list(y)
[0, 1, 2, 3, 4]

>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, test_size=0.33, random_state=42)
...
>>> X_train
array([[4, 5],

[0, 1],
[6, 7]])

>>> y_train
[2, 0, 3]
>>> X_test
array([[2, 3],

[8, 9]])
>>> y_test
[1, 4]
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Examples using sklearn.cross_validation.train_test_split

• Faces recognition example using eigenfaces and SVMs

• Probability Calibration curves

• Probability calibration of classifiers

• Classifier comparison

• Partial Dependence Plots

• Feature transformations with ensembles of trees

• Gradient Boosting Out-of-Bag estimates

• Comparing various online solvers

• Confusion matrix

• Parameter estimation using grid search with cross-validation

• Precision-Recall

• Receiver Operating Characteristic (ROC)

• Restricted Boltzmann Machine features for digit classification

• Using FunctionTransformer to select columns

5.5.13 sklearn.cross_validation.cross_val_score

sklearn.cross_validation.cross_val_score(estimator, X, y=None, scoring=None, cv=None,
n_jobs=1, verbose=0, fit_params=None,
pre_dispatch=‘2*n_jobs’)

Evaluate a score by cross-validation

Read more in the User Guide.

Parametersestimator : estimator object implementing ‘fit’

The object to use to fit the data.

X : array-like

The data to fit. Can be, for example a list, or an array at least 2d.

y : array-like, optional, default: None

The target variable to try to predict in the case of supervised learning.

scoring : string, callable or None, optional, default: None

A string (see model evaluation documentation) or a scorer callable object / function with
signature scorer(estimator, X, y).

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

•None, to use the default 3-fold cross-validation,

•integer, to specify the number of folds.

•An object to be used as a cross-validation generator.

•An iterable yielding train/test splits.
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For integer/None inputs, if y is binary or multiclass, StratifiedKFold used. If the
estimator is a classifier or if y is neither binary nor multiclass, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

n_jobs : integer, optional

The number of CPUs to use to do the computation. -1 means ‘all CPUs’.

verbose : integer, optional

The verbosity level.

fit_params : dict, optional

Parameters to pass to the fit method of the estimator.

pre_dispatch : int, or string, optional

Controls the number of jobs that get dispatched during parallel execution. Reducing
this number can be useful to avoid an explosion of memory consumption when more
jobs get dispatched than CPUs can process. This parameter can be:

•None, in which case all the jobs are immediately created and spawned. Use this for
lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the
jobs

•An int, giving the exact number of total jobs that are spawned

•A string, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

Returnsscores : array of float, shape=(len(list(cv)),)

Array of scores of the estimator for each run of the cross validation.

Examples using sklearn.cross_validation.cross_val_score

• Imputing missing values before building an estimator

• Model selection with Probabilistic PCA and Factor Analysis (FA)

• Cross-validation on Digits Dataset Exercise

• Cross-validation on diabetes Dataset Exercise

• Gaussian Processes regression: goodness-of-fit on the ‘diabetes’ dataset

• Underfitting vs. Overfitting

• SVM-Anova: SVM with univariate feature selection

5.5.14 sklearn.cross_validation.cross_val_predict

sklearn.cross_validation.cross_val_predict(estimator, X, y=None, cv=None,
n_jobs=1, verbose=0, fit_params=None,
pre_dispatch=‘2*n_jobs’)

Generate cross-validated estimates for each input data point

Read more in the User Guide.

Parametersestimator : estimator object implementing ‘fit’ and ‘predict’

The object to use to fit the data.

X : array-like
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The data to fit. Can be, for example a list, or an array at least 2d.

y : array-like, optional, default: None

The target variable to try to predict in the case of supervised learning.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

•None, to use the default 3-fold cross-validation,

•integer, to specify the number of folds.

•An object to be used as a cross-validation generator.

•An iterable yielding train/test splits.

For integer/None inputs, if y is binary or multiclass, StratifiedKFold used. If the
estimator is a classifier or if y is neither binary nor multiclass, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

n_jobs : integer, optional

The number of CPUs to use to do the computation. -1 means ‘all CPUs’.

verbose : integer, optional

The verbosity level.

fit_params : dict, optional

Parameters to pass to the fit method of the estimator.

pre_dispatch : int, or string, optional

Controls the number of jobs that get dispatched during parallel execution. Reducing
this number can be useful to avoid an explosion of memory consumption when more
jobs get dispatched than CPUs can process. This parameter can be:

•None, in which case all the jobs are immediately created and spawned. Use this for
lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the
jobs

•An int, giving the exact number of total jobs that are spawned

•A string, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

Returnspreds : ndarray

This is the result of calling ‘predict’

Examples using sklearn.cross_validation.cross_val_predict

• Plotting Cross-Validated Predictions

5.5.15 sklearn.cross_validation.permutation_test_score

sklearn.cross_validation.permutation_test_score(estimator, X, y, cv=None,
n_permutations=100, n_jobs=1,
labels=None, random_state=0, ver-
bose=0, scoring=None)

Evaluate the significance of a cross-validated score with permutations
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Read more in the User Guide.

Parametersestimator : estimator object implementing ‘fit’

The object to use to fit the data.

X : array-like of shape at least 2D

The data to fit.

y : array-like

The target variable to try to predict in the case of supervised learning.

scoring : string, callable or None, optional, default: None

A string (see model evaluation documentation) or a scorer callable object / function with
signature scorer(estimator, X, y).

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

•None, to use the default 3-fold cross-validation,

•integer, to specify the number of folds.

•An object to be used as a cross-validation generator.

•An iterable yielding train/test splits.

For integer/None inputs, if y is binary or multiclass, StratifiedKFold used. If the
estimator is a classifier or if y is neither binary nor multiclass, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

n_permutations : integer, optional

Number of times to permute y.

n_jobs : integer, optional

The number of CPUs to use to do the computation. -1 means ‘all CPUs’.

labels : array-like of shape [n_samples] (optional)

Labels constrain the permutation among groups of samples with a same label.

random_state : RandomState or an int seed (0 by default)

A random number generator instance to define the state of the random permutations
generator.

verbose : integer, optional

The verbosity level.

Returnsscore : float

The true score without permuting targets.

permutation_scores : array, shape (n_permutations,)

The scores obtained for each permutations.

pvalue : float
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The returned value equals p-value if scoring returns bigger numbers for better scores
(e.g., accuracy_score). If scoring is rather a loss function (i.e. when lower is better such
as with mean_squared_error) then this is actually the complement of the p-value: 1 -
p-value.

Notes

This function implements Test 1 in:

Ojala and Garriga. Permutation Tests for Studying Classifier Performance. The Journal of Machine
Learning Research (2010) vol. 11

Examples using sklearn.cross_validation.permutation_test_score

• Test with permutations the significance of a classification score

5.5.16 sklearn.cross_validation.check_cv

sklearn.cross_validation.check_cv(cv, X=None, y=None, classifier=False)
Input checker utility for building a CV in a user friendly way.

Parameterscv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

•None, to use the default 3-fold cross-validation,

•integer, to specify the number of folds.

•An object to be used as a cross-validation generator.

•An iterable yielding train/test splits.

For integer/None inputs, if y is binary or multiclass, StratifiedKFold used. If the
estimator is a classifier or if y is neither binary nor multiclass, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

X : array-like

The data the cross-val object will be applied on.

y : array-like

The target variable for a supervised learning problem.

classifier : boolean optional

Whether the task is a classification task, in which case stratified KFold will be used.

Returnschecked_cv: a cross-validation generator instance. :

The return value is guaranteed to be a cv generator instance, whatever the input type.
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5.6 sklearn.datasets: Datasets

The sklearn.datasets module includes utilities to load datasets, including methods to load and fetch popular
reference datasets. It also features some artificial data generators.

User guide: See the Dataset loading utilities section for further details.

5.6.1 Loaders

datasets.clear_data_home([data_home]) Delete all the content of the data home cache.
datasets.get_data_home([data_home]) Return the path of the scikit-learn data dir.
datasets.fetch_20newsgroups([data_home, ...]) Load the filenames and data from the 20 newsgroups dataset.
datasets.fetch_20newsgroups_vectorized([...]) Load the 20 newsgroups dataset and transform it into tf-idf vectors.
datasets.load_boston() Load and return the boston house-prices dataset (regression).
datasets.load_diabetes() Load and return the diabetes dataset (regression).
datasets.load_digits([n_class]) Load and return the digits dataset (classification).
datasets.load_files(container_path[, ...]) Load text files with categories as subfolder names.
datasets.load_iris() Load and return the iris dataset (classification).
datasets.fetch_lfw_pairs([subset, ...]) Loader for the Labeled Faces in the Wild (LFW) pairs dataset
datasets.fetch_lfw_people([data_home, ...]) Loader for the Labeled Faces in the Wild (LFW) people dataset
datasets.load_linnerud() Load and return the linnerud dataset (multivariate regression).
datasets.mldata_filename(dataname) Convert a raw name for a data set in a mldata.org filename.
datasets.fetch_mldata(dataname[, ...]) Fetch an mldata.org data set
datasets.fetch_olivetti_faces([data_home, ...]) Loader for the Olivetti faces data-set from AT&T.
datasets.fetch_california_housing([...]) Loader for the California housing dataset from StatLib.
datasets.fetch_covtype([data_home, ...]) Load the covertype dataset, downloading it if necessary.
datasets.fetch_rcv1([data_home, subset, ...]) Load the RCV1 multilabel dataset, downloading it if necessary.
datasets.load_mlcomp(name_or_id[, set_, ...]) Load a datasets as downloaded from http://mlcomp.org
datasets.load_sample_image(image_name) Load the numpy array of a single sample image
datasets.load_sample_images() Load sample images for image manipulation.
datasets.load_svmlight_file(f[, n_features, ...]) Load datasets in the svmlight / libsvm format into sparse CSR matrix
datasets.load_svmlight_files(files[, ...]) Load dataset from multiple files in SVMlight format
datasets.dump_svmlight_file(X, y, f[, ...]) Dump the dataset in svmlight / libsvm file format.

sklearn.datasets.clear_data_home

sklearn.datasets.clear_data_home(data_home=None)
Delete all the content of the data home cache.

sklearn.datasets.get_data_home

sklearn.datasets.get_data_home(data_home=None)
Return the path of the scikit-learn data dir.

This folder is used by some large dataset loaders to avoid downloading the data several times.

By default the data dir is set to a folder named ‘scikit_learn_data’ in the user home folder.

Alternatively, it can be set by the ‘SCIKIT_LEARN_DATA’ environment variable or programmatically by giving
an explicit folder path. The ‘~’ symbol is expanded to the user home folder.

If the folder does not already exist, it is automatically created.
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Examples using sklearn.datasets.get_data_home

• Out-of-core classification of text documents

sklearn.datasets.fetch_20newsgroups

sklearn.datasets.fetch_20newsgroups(data_home=None, subset=’train’, categories=None,
shuffle=True, random_state=42, remove=(), down-
load_if_missing=True)

Load the filenames and data from the 20 newsgroups dataset.

Read more in the User Guide.

Parameterssubset: ‘train’ or ‘test’, ‘all’, optional :

Select the dataset to load: ‘train’ for the training set, ‘test’ for the test set, ‘all’ for both,
with shuffled ordering.

data_home: optional, default: None :

Specify a download and cache folder for the datasets. If None, all scikit-learn data is
stored in ‘~/scikit_learn_data’ subfolders.

categories: None or collection of string or unicode :

If None (default), load all the categories. If not None, list of category names to load
(other categories ignored).

shuffle: bool, optional :

Whether or not to shuffle the data: might be important for models that make the as-
sumption that the samples are independent and identically distributed (i.i.d.), such as
stochastic gradient descent.

random_state: numpy random number generator or seed integer :

Used to shuffle the dataset.

download_if_missing: optional, True by default :

If False, raise an IOError if the data is not locally available instead of trying to download
the data from the source site.

remove: tuple :

May contain any subset of (‘headers’, ‘footers’, ‘quotes’). Each of these are kinds of
text that will be detected and removed from the newsgroup posts, preventing classifiers
from overfitting on metadata.

‘headers’ removes newsgroup headers, ‘footers’ removes blocks at the ends of posts that
look like signatures, and ‘quotes’ removes lines that appear to be quoting another post.

‘headers’ follows an exact standard; the other filters are not always correct.

Examples using sklearn.datasets.fetch_20newsgroups

• Feature Union with Heterogeneous Data Sources

• Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation

• Biclustering documents with the Spectral Co-clustering algorithm
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• Sample pipeline for text feature extraction and evaluation

• FeatureHasher and DictVectorizer Comparison

• Clustering text documents using k-means

• Classification of text documents using sparse features

sklearn.datasets.fetch_20newsgroups_vectorized

sklearn.datasets.fetch_20newsgroups_vectorized(subset=’train’, remove=(),
data_home=None)

Load the 20 newsgroups dataset and transform it into tf-idf vectors.

This is a convenience function; the tf-idf transformation is done using the default settings for
sklearn.feature_extraction.text.Vectorizer. For more advanced usage (stopword filtering, n-gram extraction,
etc.), combine fetch_20newsgroups with a custom Vectorizer or CountVectorizer.

Read more in the User Guide.

Parameterssubset: ‘train’ or ‘test’, ‘all’, optional :

Select the dataset to load: ‘train’ for the training set, ‘test’ for the test set, ‘all’ for both,
with shuffled ordering.

data_home: optional, default: None :

Specify an download and cache folder for the datasets. If None, all scikit-learn data is
stored in ‘~/scikit_learn_data’ subfolders.

remove: tuple :

May contain any subset of (‘headers’, ‘footers’, ‘quotes’). Each of these are kinds of
text that will be detected and removed from the newsgroup posts, preventing classifiers
from overfitting on metadata.

‘headers’ removes newsgroup headers, ‘footers’ removes blocks at the ends of posts that
look like signatures, and ‘quotes’ removes lines that appear to be quoting another post.

Returnsbunch : Bunch object

bunch.data: sparse matrix, shape [n_samples, n_features] bunch.target: array, shape
[n_samples] bunch.target_names: list, length [n_classes]

Examples using sklearn.datasets.fetch_20newsgroups_vectorized

• The Johnson-Lindenstrauss bound for embedding with random projections

• Model Complexity Influence

sklearn.datasets.load_boston

sklearn.datasets.load_boston()
Load and return the boston house-prices dataset (regression).

Samples total 506
Dimensionality 13
Features real, positive
Targets real 5. - 50.
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Returnsdata : Bunch

Dictionary-like object, the interesting attributes are: ‘data’, the data to learn, ‘target’,
the regression targets, and ‘DESCR’, the full description of the dataset.

Examples

>>> from sklearn.datasets import load_boston
>>> boston = load_boston()
>>> print(boston.data.shape)
(506, 13)

Examples using sklearn.datasets.load_boston

• Plotting Cross-Validated Predictions

• Imputing missing values before building an estimator

• Outlier detection on a real data set

• Model Complexity Influence

• Gradient Boosting regression

• Feature selection using SelectFromModel and LassoCV

sklearn.datasets.load_diabetes

sklearn.datasets.load_diabetes()
Load and return the diabetes dataset (regression).

Samples total 442
Dimensionality 10
Features real, -.2 < x < .2
Targets integer 25 - 346

Read more in the User Guide.

Returnsdata : Bunch

Dictionary-like object, the interesting attributes are: ‘data’, the data to learn and ‘target’,
the regression target for each sample.

Examples using sklearn.datasets.load_diabetes

• Cross-validation on diabetes Dataset Exercise

• Gaussian Processes regression: goodness-of-fit on the ‘diabetes’ dataset

• Lasso path using LARS

• Linear Regression Example

• Sparsity Example: Fitting only features 1 and 2

• Lasso and Elastic Net

• Lasso model selection: Cross-Validation / AIC / BIC
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sklearn.datasets.load_digits

sklearn.datasets.load_digits(n_class=10)
Load and return the digits dataset (classification).

Each datapoint is a 8x8 image of a digit.

Classes 10
Samples per class ~180
Samples total 1797
Dimensionality 64
Features integers 0-16

Read more in the User Guide.

Parametersn_class : integer, between 0 and 10, optional (default=10)

The number of classes to return.

Returnsdata : Bunch

Dictionary-like object, the interesting attributes are: ‘data’, the data to learn, ‘images’,
the images corresponding to each sample, ‘target’, the classification labels for each
sample, ‘target_names’, the meaning of the labels, and ‘DESCR’, the full description of
the dataset.

Examples

To load the data and visualize the images:

>>> from sklearn.datasets import load_digits
>>> digits = load_digits()
>>> print(digits.data.shape)
(1797, 64)
>>> import pylab as pl
>>> pl.gray()
>>> pl.matshow(digits.images[0])
>>> pl.show()

Examples using sklearn.datasets.load_digits

• Pipelining: chaining a PCA and a logistic regression

• The Johnson-Lindenstrauss bound for embedding with random projections

• Explicit feature map approximation for RBF kernels

• Recognizing hand-written digits

• Feature agglomeration

• Various Agglomerative Clustering on a 2D embedding of digits

• A demo of K-Means clustering on the handwritten digits data

• The Digit Dataset

• Digits Classification Exercise

• Cross-validation on Digits Dataset Exercise
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• Recursive feature elimination

• Comparing various online solvers

• L1 Penalty and Sparsity in Logistic Regression

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap...

• Plotting Validation Curves

• Parameter estimation using grid search with cross-validation

• Comparing randomized search and grid search for hyperparameter estimation

• Plotting Learning Curves

• Kernel Density Estimation

• Restricted Boltzmann Machine features for digit classification

• Label Propagation digits: Demonstrating performance

• Label Propagation digits active learning

• SVM-Anova: SVM with univariate feature selection

sklearn.datasets.load_files

sklearn.datasets.load_files(container_path, description=None, categories=None,
load_content=True, shuffle=True, encoding=None, de-
code_error=’strict’, random_state=0)

Load text files with categories as subfolder names.

Individual samples are assumed to be files stored a two levels folder structure such as the following:

container_folder/

category_1_folder/file_1.txt file_2.txt ... file_42.txt

category_2_folder/file_43.txt file_44.txt ...

The folder names are used as supervised signal label names. The individual file names are not important.

This function does not try to extract features into a numpy array or scipy sparse matrix. In addition, if
load_content is false it does not try to load the files in memory.

To use text files in a scikit-learn classification or clustering algorithm, you will need to use the
sklearn.feature_extraction.text module to build a feature extraction transformer that suits your problem.

If you set load_content=True, you should also specify the encoding of the text using the ‘encoding’ parame-
ter. For many modern text files, ‘utf-8’ will be the correct encoding. If you leave encoding equal to None,
then the content will be made of bytes instead of Unicode, and you will not be able to use most functions in
sklearn.feature_extraction.text.

Similar feature extractors should be built for other kind of unstructured data input such as images, audio, video,
...

Read more in the User Guide.

Parameterscontainer_path : string or unicode

Path to the main folder holding one subfolder per category

description: string or unicode, optional (default=None) :

A paragraph describing the characteristic of the dataset: its source, reference, etc.

1056 Chapter 5. API Reference



scikit-learn user guide, Release 0.17

categories : A collection of strings or None, optional (default=None)

If None (default), load all the categories. If not None, list of category names to load
(other categories ignored).

load_content : boolean, optional (default=True)

Whether to load or not the content of the different files. If true a ‘data’ attribute con-
taining the text information is present in the data structure returned. If not, a filenames
attribute gives the path to the files.

encoding : string or None (default is None)

If None, do not try to decode the content of the files (e.g. for images or other non-text
content). If not None, encoding to use to decode text files to Unicode if load_content is
True.

decode_error: {‘strict’, ‘ignore’, ‘replace’}, optional :

Instruction on what to do if a byte sequence is given to analyze that contains characters
not of the given encoding. Passed as keyword argument ‘errors’ to bytes.decode.

shuffle : bool, optional (default=True)

Whether or not to shuffle the data: might be important for models that make the as-
sumption that the samples are independent and identically distributed (i.i.d.), such as
stochastic gradient descent.

random_state : int, RandomState instance or None, optional (default=0)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returnsdata : Bunch

Dictionary-like object, the interesting attributes are: either data, the raw text data to
learn, or ‘filenames’, the files holding it, ‘target’, the classification labels (integer index),
‘target_names’, the meaning of the labels, and ‘DESCR’, the full description of the
dataset.

sklearn.datasets.load_iris

sklearn.datasets.load_iris()
Load and return the iris dataset (classification).

The iris dataset is a classic and very easy multi-class classification dataset.

Classes 3
Samples per class 50
Samples total 150
Dimensionality 4
Features real, positive

Read more in the User Guide.

Returnsdata : Bunch

Dictionary-like object, the interesting attributes are: ‘data’, the data to learn, ‘target’,
the classification labels, ‘target_names’, the meaning of the labels, ‘feature_names’, the
meaning of the features, and ‘DESCR’, the full description of the dataset.
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Examples

Let’s say you are interested in the samples 10, 25, and 50, and want to know their class name.

>>> from sklearn.datasets import load_iris
>>> data = load_iris()
>>> data.target[[10, 25, 50]]
array([0, 0, 1])
>>> list(data.target_names)
['setosa', 'versicolor', 'virginica']

Examples using sklearn.datasets.load_iris

• Concatenating multiple feature extraction methods

• Plot classification probability

• K-means Clustering

• The Iris Dataset

• Comparison of LDA and PCA 2D projection of Iris dataset

• Incremental PCA

• PCA example with Iris Data-set

• Plot the decision boundaries of a VotingClassifier

• Plot the decision surfaces of ensembles of trees on the iris dataset

• SVM Exercise

• Test with permutations the significance of a classification score

• Univariate Feature Selection

• Logistic Regression 3-class Classifier

• Path with L1- Logistic Regression

• Plot multi-class SGD on the iris dataset

• GMM classification

• Confusion matrix

• Receiver Operating Characteristic (ROC) with cross validation

• Precision-Recall

• Receiver Operating Characteristic (ROC)

• Nearest Neighbors Classification

• Nearest Centroid Classification

• Decision boundary of label propagation versus SVM on the Iris dataset

• SVM with custom kernel

• Plot different SVM classifiers in the iris dataset

• RBF SVM parameters

• Plot the decision surface of a decision tree on the iris dataset
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sklearn.datasets.fetch_lfw_pairs

sklearn.datasets.fetch_lfw_pairs(subset=’train’, data_home=None, funneled=True, re-
size=0.5, color=False, slice_=(slice(70, 195, None), slice(78,
172, None)), download_if_missing=True)

Loader for the Labeled Faces in the Wild (LFW) pairs dataset

This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available
on the official website:

http://vis-www.cs.umass.edu/lfw/

Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in
range 0.0 - 1.0.

The task is called Face Verification: given a pair of two pictures, a binary classifier must predict whether the
two images are from the same person.

In the official README.txt this task is described as the “Restricted” task. As I am not sure as to implement the
“Unrestricted” variant correctly, I left it as unsupported for now.

The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 74.

Read more in the User Guide.

Parameterssubset : optional, default: ‘train’

Select the dataset to load: ‘train’ for the development training set, ‘test’ for the develop-
ment test set, and ‘10_folds’ for the official evaluation set that is meant to be used with
a 10-folds cross validation.

data_home : optional, default: None

Specify another download and cache folder for the datasets. By default all scikit learn
data is stored in ‘~/scikit_learn_data’ subfolders.

funneled : boolean, optional, default: True

Download and use the funneled variant of the dataset.

resize : float, optional, default 0.5

Ratio used to resize the each face picture.

color : boolean, optional, default False

Keep the 3 RGB channels instead of averaging them to a single gray level channel. If
color is True the shape of the data has one more dimension than than the shape with
color = False.

slice_ : optional

Provide a custom 2D slice (height, width) to extract the ‘interesting’ part of the jpeg
files and avoid use statistical correlation from the background

download_if_missing : optional, True by default

If False, raise a IOError if the data is not locally available instead of trying to download
the data from the source site.

ReturnsThe data is returned as a Bunch object with the following attributes: :

data : numpy array of shape (2200, 5828)

5.6. sklearn.datasets: Datasets 1059

http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/README.txt


scikit-learn user guide, Release 0.17

Each row corresponds to 2 ravel’d face images of original size 62 x 47 pixels. Changing
the slice_ or resize parameters will change the shape of the output.

pairs : numpy array of shape (2200, 2, 62, 47)

Each row has 2 face images corresponding to same or different person from the dataset
containing 5749 people. Changing the slice_ or resize parameters will change the
shape of the output.

target : numpy array of shape (13233,)

Labels associated to each pair of images. The two label values being different persons
or the same person.

DESCR : string

Description of the Labeled Faces in the Wild (LFW) dataset.

sklearn.datasets.fetch_lfw_people

sklearn.datasets.fetch_lfw_people(data_home=None, funneled=True, resize=0.5,
min_faces_per_person=0, color=False, slice_=(slice(70,
195, None), slice(78, 172, None)), down-
load_if_missing=True)

Loader for the Labeled Faces in the Wild (LFW) people dataset

This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available
on the official website:

http://vis-www.cs.umass.edu/lfw/

Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in
range 0.0 - 1.0.

The task is called Face Recognition (or Identification): given the picture of a face, find the name of the person
given a training set (gallery).

The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 74.

Parametersdata_home : optional, default: None

Specify another download and cache folder for the datasets. By default all scikit learn
data is stored in ‘~/scikit_learn_data’ subfolders.

funneled : boolean, optional, default: True

Download and use the funneled variant of the dataset.

resize : float, optional, default 0.5

Ratio used to resize the each face picture.

min_faces_per_person : int, optional, default None

The extracted dataset will only retain pictures of people that have at least
min_faces_per_person different pictures.

color : boolean, optional, default False

Keep the 3 RGB channels instead of averaging them to a single gray level channel. If
color is True the shape of the data has one more dimension than than the shape with
color = False.

slice_ : optional
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Provide a custom 2D slice (height, width) to extract the ‘interesting’ part of the jpeg
files and avoid use statistical correlation from the background

download_if_missing : optional, True by default

If False, raise a IOError if the data is not locally available instead of trying to download
the data from the source site.

Returnsdataset : dict-like object with the following attributes:

dataset.data : numpy array of shape (13233, 2914)

Each row corresponds to a ravelled face image of original size 62 x 47 pixels. Changing
the slice_ or resize parameters will change the shape of the output.

dataset.images : numpy array of shape (13233, 62, 47)

Each row is a face image corresponding to one of the 5749 people in the dataset. Chang-
ing the slice_ or resize parameters will change the shape of the output.

dataset.target : numpy array of shape (13233,)

Labels associated to each face image. Those labels range from 0-5748 and correspond
to the person IDs.

dataset.DESCR : string

Description of the Labeled Faces in the Wild (LFW) dataset.

Examples using sklearn.datasets.fetch_lfw_people

• Faces recognition example using eigenfaces and SVMs

sklearn.datasets.load_linnerud

sklearn.datasets.load_linnerud()
Load and return the linnerud dataset (multivariate regression).

Samples total: 20 Dimensionality: 3 for both data and targets Features: integer Targets: integer

Returnsdata : Bunch

Dictionary-like object, the interesting attributes are: ‘data’ and ‘targets’, the two mul-
tivariate datasets, with ‘data’ corresponding to the exercise and ‘targets’ corresponding
to the physiological measurements, as well as ‘feature_names’ and ‘target_names’.

sklearn.datasets.mldata_filename

sklearn.datasets.mldata_filename(dataname)
Convert a raw name for a data set in a mldata.org filename.

sklearn.datasets.fetch_mldata

sklearn.datasets.fetch_mldata(dataname, target_name=’label’, data_name=’data’, trans-
pose_data=True, data_home=None)

Fetch an mldata.org data set

If the file does not exist yet, it is downloaded from mldata.org .
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mldata.org does not have an enforced convention for storing data or naming the columns in a data set. The
default behavior of this function works well with the most common cases:

1.data values are stored in the column ‘data’, and target values in the column ‘label’

2.alternatively, the first column stores target values, and the second data values

3.the data array is stored as n_features x n_samples , and thus needs to be transposed to match the sklearn
standard

Keyword arguments allow to adapt these defaults to specific data sets (see parameters target_name, data_name,
transpose_data, and the examples below).

mldata.org data sets may have multiple columns, which are stored in the Bunch object with their original name.

Parametersdataname: :

Name of the data set on mldata.org, e.g.: “leukemia”, “Whistler Daily Snowfall”, etc.
The raw name is automatically converted to a mldata.org URL .

target_name: optional, default: ‘label’ :

Name or index of the column containing the target values.

data_name: optional, default: ‘data’ :

Name or index of the column containing the data.

transpose_data: optional, default: True :

If True, transpose the downloaded data array.

data_home: optional, default: None :

Specify another download and cache folder for the data sets. By default all scikit learn
data is stored in ‘~/scikit_learn_data’ subfolders.

Returnsdata : Bunch

Dictionary-like object, the interesting attributes are: ‘data’, the data to learn, ‘target’, the
classification labels, ‘DESCR’, the full description of the dataset, and ‘COL_NAMES’,
the original names of the dataset columns.

Examples

Load the ‘iris’ dataset from mldata.org:

>>> from sklearn.datasets.mldata import fetch_mldata
>>> import tempfile
>>> test_data_home = tempfile.mkdtemp()

>>> iris = fetch_mldata('iris', data_home=test_data_home)
>>> iris.target.shape
(150,)
>>> iris.data.shape
(150, 4)

Load the ‘leukemia’ dataset from mldata.org, which needs to be transposed to respects the sklearn axes conven-
tion:

>>> leuk = fetch_mldata('leukemia', transpose_data=True,
... data_home=test_data_home)
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>>> leuk.data.shape
(72, 7129)

Load an alternative ‘iris’ dataset, which has different names for the columns:

>>> iris2 = fetch_mldata('datasets-UCI iris', target_name=1,
... data_name=0, data_home=test_data_home)
>>> iris3 = fetch_mldata('datasets-UCI iris',
... target_name='class', data_name='double0',
... data_home=test_data_home)

>>> import shutil
>>> shutil.rmtree(test_data_home)

sklearn.datasets.fetch_olivetti_faces

sklearn.datasets.fetch_olivetti_faces(data_home=None, shuffle=False, random_state=0,
download_if_missing=True)

Loader for the Olivetti faces data-set from AT&T.

Read more in the User Guide.

Parametersdata_home : optional, default: None

Specify another download and cache folder for the datasets. By default all scikit learn
data is stored in ‘~/scikit_learn_data’ subfolders.

shuffle : boolean, optional

If True the order of the dataset is shuffled to avoid having images of the same person
grouped.

download_if_missing: optional, True by default :

If False, raise a IOError if the data is not locally available instead of trying to download
the data from the source site.

random_state : optional, integer or RandomState object

The seed or the random number generator used to shuffle the data.

ReturnsAn object with the following attributes: :

data : numpy array of shape (400, 4096)

Each row corresponds to a ravelled face image of original size 64 x 64 pixels.

images : numpy array of shape (400, 64, 64)

Each row is a face image corresponding to one of the 40 subjects of the dataset.

target : numpy array of shape (400, )

Labels associated to each face image. Those labels are ranging from 0-39 and corre-
spond to the Subject IDs.

DESCR : string

Description of the modified Olivetti Faces Dataset.
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Notes

This dataset consists of 10 pictures each of 40 individuals. The original database was available from (now
defunct)

http://www.uk.research.att.com/facedatabase.html

The version retrieved here comes in MATLAB format from the personal web page of Sam Roweis:

http://www.cs.nyu.edu/~roweis/

Examples using sklearn.datasets.fetch_olivetti_faces

• Face completion with a multi-output estimators

• Online learning of a dictionary of parts of faces

• Faces dataset decompositions

• Pixel importances with a parallel forest of trees

sklearn.datasets.fetch_california_housing

sklearn.datasets.fetch_california_housing(data_home=None, down-
load_if_missing=True)

Loader for the California housing dataset from StatLib.

Read more in the User Guide.

Parametersdata_home : optional, default: None

Specify another download and cache folder for the datasets. By default all scikit learn
data is stored in ‘~/scikit_learn_data’ subfolders.

download_if_missing: optional, True by default :

If False, raise a IOError if the data is not locally available instead of trying to download
the data from the source site.

Returnsdataset : dict-like object with the following attributes:

dataset.data : ndarray, shape [20640, 8]

Each row corresponding to the 8 feature values in order.

dataset.target : numpy array of shape (20640,)

Each value corresponds to the average house value in units of 100,000.

dataset.feature_names : array of length 8

Array of ordered feature names used in the dataset.

dataset.DESCR : string

Description of the California housing dataset.

Notes

This dataset consists of 20,640 samples and 9 features.
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Examples using sklearn.datasets.fetch_california_housing

• Partial Dependence Plots

sklearn.datasets.fetch_covtype

sklearn.datasets.fetch_covtype(data_home=None, download_if_missing=True, ran-
dom_state=None, shuffle=False)

Load the covertype dataset, downloading it if necessary.

Read more in the User Guide.

Parametersdata_home : string, optional

Specify another download and cache folder for the datasets. By default all scikit learn
data is stored in ‘~/scikit_learn_data’ subfolders.

download_if_missing : boolean, default=True

If False, raise a IOError if the data is not locally available instead of trying to download
the data from the source site.

random_state : int, RandomState instance or None, optional (default=None)

Random state for shuffling the dataset. If int, random_state is the seed used by the ran-
dom number generator; If RandomState instance, random_state is the random number
generator; If None, the random number generator is the RandomState instance used by
np.random.

shuffle : bool, default=False

Whether to shuffle dataset.

Returnsdataset : dict-like object with the following attributes:

dataset.data : numpy array of shape (581012, 54)

Each row corresponds to the 54 features in the dataset.

dataset.target : numpy array of shape (581012,)

Each value corresponds to one of the 7 forest covertypes with values ranging between 1
to 7.

dataset.DESCR : string

Description of the forest covertype dataset.

sklearn.datasets.fetch_rcv1

sklearn.datasets.fetch_rcv1(data_home=None, subset=’all’, download_if_missing=True, ran-
dom_state=None, shuffle=False)

Load the RCV1 multilabel dataset, downloading it if necessary.

Version: RCV1-v2, vectors, full sets, topics multilabels.

Classes 103
Samples total 804414
Dimensionality 47236
Features real, between 0 and 1

Read more in the User Guide.
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New in version 0.17.

Parametersdata_home : string, optional

Specify another download and cache folder for the datasets. By default all scikit learn
data is stored in ‘~/scikit_learn_data’ subfolders.

subset: string, ‘train’, ‘test’, or ‘all’, default=’all’ :

Select the dataset to load: ‘train’ for the training set (23149 samples), ‘test’ for the test
set (781265 samples), ‘all’ for both, with the training samples first if shuffle is False.
This follows the official LYRL2004 chronological split.

download_if_missing : boolean, default=True

If False, raise a IOError if the data is not locally available instead of trying to download
the data from the source site.

random_state : int, RandomState instance or None, optional (default=None)

Random state for shuffling the dataset. If int, random_state is the seed used by the ran-
dom number generator; If RandomState instance, random_state is the random number
generator; If None, the random number generator is the RandomState instance used by
np.random.

shuffle : bool, default=False

Whether to shuffle dataset.

Returnsdataset : dict-like object with the following attributes:

dataset.data : scipy csr array, dtype np.float64, shape (804414, 47236)

The array has 0.16% of non zero values.

dataset.target : scipy csr array, dtype np.uint8, shape (804414, 103)

Each sample has a value of 1 in its categories, and 0 in others. The array has 3.15% of
non zero values.

dataset.sample_id : numpy array, dtype np.uint32, shape (804414,)

Identification number of each sample, as ordered in dataset.data.

dataset.target_names : numpy array, dtype object, length (103)

Names of each target (RCV1 topics), as ordered in dataset.target.

dataset.DESCR : string

Description of the RCV1 dataset.

References

Lewis, D. D., Yang, Y., Rose, T. G., & Li, F. (2004). RCV1: A new benchmark collection for text categorization
research. The Journal of Machine Learning Research, 5, 361-397.

sklearn.datasets.load_mlcomp

sklearn.datasets.load_mlcomp(name_or_id, set_=’raw’, mlcomp_root=None, **kwargs)
Load a datasets as downloaded from http://mlcomp.org

Parametersname_or_id : the integer id or the string name metadata of the MLComp
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dataset to load

set_ : select the portion to load: ‘train’, ‘test’ or ‘raw’

mlcomp_root : the filesystem path to the root folder where MLComp datasets

are stored, if mlcomp_root is None, the MLCOMP_DATASETS_HOME environment
variable is looked up instead.

**kwargs : domain specific kwargs to be passed to the dataset loader.

Read more in the :ref:‘User Guide <datasets>‘. :

Returnsdata : Bunch

Dictionary-like object, the interesting attributes are: ‘filenames’, the files holding the
raw to learn, ‘target’, the classification labels (integer index), ‘target_names’, the mean-
ing of the labels, and ‘DESCR’, the full description of the dataset.

Note on the lookup process: depending on the type of name_or_id, :

will choose between integer id lookup or metadata name lookup by :

looking at the unzipped archives and metadata file. :

TODO: implement zip dataset loading too :

Examples using sklearn.datasets.load_mlcomp

• Classification of text documents: using a MLComp dataset

sklearn.datasets.load_sample_image

sklearn.datasets.load_sample_image(image_name)
Load the numpy array of a single sample image

Parametersimage_name: {‘china.jpg‘, ‘flower.jpg‘} :

The name of the sample image loaded

Returnsimg: 3D array :

The image as a numpy array: height x width x color

Examples

>>> from sklearn.datasets import load_sample_image
>>> china = load_sample_image('china.jpg')
>>> china.dtype
dtype('uint8')
>>> china.shape
(427, 640, 3)
>>> flower = load_sample_image('flower.jpg')
>>> flower.dtype
dtype('uint8')
>>> flower.shape
(427, 640, 3)

5.6. sklearn.datasets: Datasets 1067



scikit-learn user guide, Release 0.17

Examples using sklearn.datasets.load_sample_image

• Color Quantization using K-Means

sklearn.datasets.load_sample_images

sklearn.datasets.load_sample_images()
Load sample images for image manipulation. Loads both, china and flower.

Returnsdata : Bunch

Dictionary-like object with the following attributes : ‘images’, the two sample images,
‘filenames’, the file names for the images, and ‘DESCR’ the full description of the
dataset.

Examples

To load the data and visualize the images:

>>> from sklearn.datasets import load_sample_images
>>> dataset = load_sample_images()
>>> len(dataset.images)
2
>>> first_img_data = dataset.images[0]
>>> first_img_data.shape
(427, 640, 3)
>>> first_img_data.dtype
dtype('uint8')

sklearn.datasets.load_svmlight_file

sklearn.datasets.load_svmlight_file(f, n_features=None, dtype=<class ‘numpy.float64’>,
multilabel=False, zero_based=’auto’, query_id=False)

Load datasets in the svmlight / libsvm format into sparse CSR matrix

This format is a text-based format, with one sample per line. It does not store zero valued features hence is
suitable for sparse dataset.

The first element of each line can be used to store a target variable to predict.

This format is used as the default format for both svmlight and the libsvm command line programs.

Parsing a text based source can be expensive. When working on repeatedly on the same dataset, it is recom-
mended to wrap this loader with joblib.Memory.cache to store a memmapped backup of the CSR results of the
first call and benefit from the near instantaneous loading of memmapped structures for the subsequent calls.

In case the file contains a pairwise preference constraint (known as “qid” in the svmlight format) these are
ignored unless the query_id parameter is set to True. These pairwise preference constraints can be used to
constraint the combination of samples when using pairwise loss functions (as is the case in some learning to
rank problems) so that only pairs with the same query_id value are considered.

This implementation is written in Cython and is reasonably fast. However, a faster API-compatible loader is
also available at:

https://github.com/mblondel/svmlight-loader

Parametersf : {str, file-like, int}
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(Path to) a file to load. If a path ends in ”.gz” or ”.bz2”, it will be uncompressed on
the fly. If an integer is passed, it is assumed to be a file descriptor. A file-like or file
descriptor will not be closed by this function. A file-like object must be opened in binary
mode.

n_features : int or None

The number of features to use. If None, it will be inferred. This argument is useful
to load several files that are subsets of a bigger sliced dataset: each subset might not
have examples of every feature, hence the inferred shape might vary from one slice to
another.

multilabel : boolean, optional, default False

Samples may have several labels each (see http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html)

zero_based : boolean or “auto”, optional, default “auto”

Whether column indices in f are zero-based (True) or one-based (False). If column in-
dices are one-based, they are transformed to zero-based to match Python/NumPy con-
ventions. If set to “auto”, a heuristic check is applied to determine this from the file
contents. Both kinds of files occur “in the wild”, but they are unfortunately not self-
identifying. Using “auto” or True should always be safe.

query_id : boolean, default False

If True, will return the query_id array for each file.

dtype : numpy data type, default np.float64

Data type of dataset to be loaded. This will be the data type of the output numpy arrays
X and y.

ReturnsX: scipy.sparse matrix of shape (n_samples, n_features) :

y: ndarray of shape (n_samples,), or, in the multilabel a list of :

tuples of length n_samples.

query_id: array of shape (n_samples,) :

query_id for each sample. Only returned when query_id is set to True.

See also:

load_svmlight_filessimilar function for loading multiple files in this

format, enforcing

Examples

To use joblib.Memory to cache the svmlight file:

from sklearn.externals.joblib import Memory
from sklearn.datasets import load_svmlight_file
mem = Memory("./mycache")

@mem.cache
def get_data():

data = load_svmlight_file("mysvmlightfile")
return data[0], data[1]
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X, y = get_data()

sklearn.datasets.load_svmlight_files

sklearn.datasets.load_svmlight_files(files, n_features=None, dtype=<class
‘numpy.float64’>, multilabel=False,
zero_based=’auto’, query_id=False)

Load dataset from multiple files in SVMlight format

This function is equivalent to mapping load_svmlight_file over a list of files, except that the results are concate-
nated into a single, flat list and the samples vectors are constrained to all have the same number of features.

In case the file contains a pairwise preference constraint (known as “qid” in the svmlight format) these are
ignored unless the query_id parameter is set to True. These pairwise preference constraints can be used to
constraint the combination of samples when using pairwise loss functions (as is the case in some learning to
rank problems) so that only pairs with the same query_id value are considered.

Parametersfiles : iterable over {str, file-like, int}

(Paths of) files to load. If a path ends in ”.gz” or ”.bz2”, it will be uncompressed on
the fly. If an integer is passed, it is assumed to be a file descriptor. File-likes and file
descriptors will not be closed by this function. File-like objects must be opened in
binary mode.

n_features: int or None :

The number of features to use. If None, it will be inferred from the maximum column
index occurring in any of the files.

This can be set to a higher value than the actual number of features in any of the input
files, but setting it to a lower value will cause an exception to be raised.

multilabel: boolean, optional :

Samples may have several labels each (see http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html)

zero_based: boolean or “auto”, optional :

Whether column indices in f are zero-based (True) or one-based (False). If column in-
dices are one-based, they are transformed to zero-based to match Python/NumPy con-
ventions. If set to “auto”, a heuristic check is applied to determine this from the file
contents. Both kinds of files occur “in the wild”, but they are unfortunately not self-
identifying. Using “auto” or True should always be safe.

query_id: boolean, defaults to False :

If True, will return the query_id array for each file.

dtype : numpy data type, default np.float64

Data type of dataset to be loaded. This will be the data type of the output numpy arrays
X and y.

Returns[X1, y1, ..., Xn, yn] :

where each (Xi, yi) pair is the result from load_svmlight_file(files[i]). :

If query_id is set to True, this will return instead [X1, y1, q1, :

..., Xn, yn, qn] where (Xi, yi, qi) is the result from :

load_svmlight_file(files[i]) :
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See also:

load_svmlight_file

Notes

When fitting a model to a matrix X_train and evaluating it against a matrix X_test, it is essential that X_train
and X_test have the same number of features (X_train.shape[1] == X_test.shape[1]). This may not be the case
if you load the files individually with load_svmlight_file.

sklearn.datasets.dump_svmlight_file

sklearn.datasets.dump_svmlight_file(X, y, f, zero_based=True, comment=None,
query_id=None, multilabel=False)

Dump the dataset in svmlight / libsvm file format.

This format is a text-based format, with one sample per line. It does not store zero valued features hence is
suitable for sparse dataset.

The first element of each line can be used to store a target variable to predict.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples] or [n_samples, n_labels]

Target values. Class labels must be an integer or float, or array-like objects of integer or
float for multilabel classifications.

f : string or file-like in binary mode

If string, specifies the path that will contain the data. If file-like, data will be written to
f. f should be opened in binary mode.

zero_based : boolean, optional

Whether column indices should be written zero-based (True) or one-based (False).

comment : string, optional

Comment to insert at the top of the file. This should be either a Unicode string, which
will be encoded as UTF-8, or an ASCII byte string. If a comment is given, then it will
be preceded by one that identifies the file as having been dumped by scikit-learn. Note
that not all tools grok comments in SVMlight files.

query_id : array-like, shape = [n_samples]

Array containing pairwise preference constraints (qid in svmlight format).

multilabel: boolean, optional :

Samples may have several labels each (see http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html)

New in version 0.17: parameter multilabel to support multilabel datasets.

Examples using sklearn.datasets.dump_svmlight_file

• Libsvm GUI
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5.6.2 Samples generator

datasets.make_blobs([n_samples, n_features, ...]) Generate isotropic Gaussian blobs for clustering.
datasets.make_classification([n_samples, ...]) Generate a random n-class classification problem.
datasets.make_circles([n_samples, shuffle, ...]) Make a large circle containing a smaller circle in 2d.
datasets.make_friedman1([n_samples, ...]) Generate the “Friedman #1” regression problem
datasets.make_friedman2([n_samples, noise, ...]) Generate the “Friedman #2” regression problem
datasets.make_friedman3([n_samples, noise, ...]) Generate the “Friedman #3” regression problem
datasets.make_gaussian_quantiles([mean, ...]) Generate isotropic Gaussian and label samples by quantile
datasets.make_hastie_10_2([n_samples, ...]) Generates data for binary classification used in Hastie et al.
datasets.make_low_rank_matrix([n_samples, ...]) Generate a mostly low rank matrix with bell-shaped singular values
datasets.make_moons([n_samples, shuffle, ...]) Make two interleaving half circles
datasets.make_multilabel_classification([...]) Generate a random multilabel classification problem.
datasets.make_regression([n_samples, ...]) Generate a random regression problem.
datasets.make_s_curve([n_samples, noise, ...]) Generate an S curve dataset.
datasets.make_sparse_coded_signal(n_samples, ...) Generate a signal as a sparse combination of dictionary elements.
datasets.make_sparse_spd_matrix([dim, ...]) Generate a sparse symmetric definite positive matrix.
datasets.make_sparse_uncorrelated([...]) Generate a random regression problem with sparse uncorrelated design
datasets.make_spd_matrix(n_dim[, random_state]) Generate a random symmetric, positive-definite matrix.
datasets.make_swiss_roll([n_samples, noise, ...]) Generate a swiss roll dataset.
datasets.make_biclusters(shape, n_clusters) Generate an array with constant block diagonal structure for biclustering.
datasets.make_checkerboard(shape, n_clusters) Generate an array with block checkerboard structure for biclustering.

sklearn.datasets.make_blobs

sklearn.datasets.make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0,
center_box=(-10.0, 10.0), shuffle=True, random_state=None)

Generate isotropic Gaussian blobs for clustering.

Read more in the User Guide.

Parametersn_samples : int, optional (default=100)

The total number of points equally divided among clusters.

n_features : int, optional (default=2)

The number of features for each sample.

centers : int or array of shape [n_centers, n_features], optional

(default=3) The number of centers to generate, or the fixed center locations.

cluster_std: float or sequence of floats, optional (default=1.0) :

The standard deviation of the clusters.

center_box: pair of floats (min, max), optional (default=(-10.0, 10.0)) :

The bounding box for each cluster center when centers are generated at random.

shuffle : boolean, optional (default=True)

Shuffle the samples.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.
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ReturnsX : array of shape [n_samples, n_features]

The generated samples.

y : array of shape [n_samples]

The integer labels for cluster membership of each sample.

See also:

make_classificationa more intricate variant

Examples

>>> from sklearn.datasets.samples_generator import make_blobs
>>> X, y = make_blobs(n_samples=10, centers=3, n_features=2,
... random_state=0)
>>> print(X.shape)
(10, 2)
>>> y
array([0, 0, 1, 0, 2, 2, 2, 1, 1, 0])

Examples using sklearn.datasets.make_blobs

• Probability calibration of classifiers

• Probability Calibration for 3-class classification

• Normal and Shrinkage Linear Discriminant Analysis for classification

• A demo of the mean-shift clustering algorithm

• Demo of affinity propagation clustering algorithm

• Demonstration of k-means assumptions

• Demo of DBSCAN clustering algorithm

• Compare BIRCH and MiniBatchKMeans

• Comparing different clustering algorithms on toy datasets

• Comparison of the K-Means and MiniBatchKMeans clustering algorithms

• Selecting the number of clusters with silhouette analysis on KMeans clustering

• Plot randomly generated classification dataset

• SGD: Maximum margin separating hyperplane

• Hyper-parameters of Approximate Nearest Neighbors

• Scalability of Approximate Nearest Neighbors
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sklearn.datasets.make_classification

sklearn.datasets.make_classification(n_samples=100, n_features=20, n_informative=2,
n_redundant=2, n_repeated=0, n_classes=2,
n_clusters_per_class=2, weights=None, flip_y=0.01,
class_sep=1.0, hypercube=True, shift=0.0, scale=1.0,
shuffle=True, random_state=None)

Generate a random n-class classification problem.

This initially creates clusters of points normally distributed (std=1) about vertices of a 2 * class_sep-sided
hypercube, and assigns an equal number of clusters to each class. It introduces interdependence between these
features and adds various types of further noise to the data.

Prior to shuffling, X stacks a number of these primary “informative” features, “redundant” linear combinations
of these, “repeated” duplicates of sampled features, and arbitrary noise for and remaining features.

Read more in the User Guide.

Parametersn_samples : int, optional (default=100)

The number of samples.

n_features : int, optional (default=20)

The total number of features. These comprise n_informative informative fea-
tures, n_redundant redundant features, n_repeated duplicated features and n_features-
n_informative-n_redundant- n_repeated useless features drawn at random.

n_informative : int, optional (default=2)

The number of informative features. Each class is composed of a number of gaussian
clusters each located around the vertices of a hypercube in a subspace of dimension
n_informative. For each cluster, informative features are drawn independently from
N(0, 1) and then randomly linearly combined within each cluster in order to add covari-
ance. The clusters are then placed on the vertices of the hypercube.

n_redundant : int, optional (default=2)

The number of redundant features. These features are generated as random linear com-
binations of the informative features.

n_repeated : int, optional (default=0)

The number of duplicated features, drawn randomly from the informative and the re-
dundant features.

n_classes : int, optional (default=2)

The number of classes (or labels) of the classification problem.

n_clusters_per_class : int, optional (default=2)

The number of clusters per class.

weights : list of floats or None (default=None)

The proportions of samples assigned to each class. If None, then classes are balanced.
Note that if len(weights) == n_classes - 1, then the last class weight is automatically
inferred. More than n_samples samples may be returned if the sum of weights exceeds
1.

flip_y : float, optional (default=0.01)

The fraction of samples whose class are randomly exchanged.
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class_sep : float, optional (default=1.0)

The factor multiplying the hypercube dimension.

hypercube : boolean, optional (default=True)

If True, the clusters are put on the vertices of a hypercube. If False, the clusters are put
on the vertices of a random polytope.

shift : float, array of shape [n_features] or None, optional (default=0.0)

Shift features by the specified value. If None, then features are shifted by a random
value drawn in [-class_sep, class_sep].

scale : float, array of shape [n_features] or None, optional (default=1.0)

Multiply features by the specified value. If None, then features are scaled by a random
value drawn in [1, 100]. Note that scaling happens after shifting.

shuffle : boolean, optional (default=True)

Shuffle the samples and the features.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

ReturnsX : array of shape [n_samples, n_features]

The generated samples.

y : array of shape [n_samples]

The integer labels for class membership of each sample.

See also:

make_blobssimplified variant

make_multilabel_classificationunrelated generator for multilabel tasks

Notes

The algorithm is adapted from Guyon [1] and was designed to generate the “Madelon” dataset.

References

[R7]

Examples using sklearn.datasets.make_classification

• Comparison of Calibration of Classifiers

• Probability Calibration curves

• Classifier comparison

• Plot randomly generated classification dataset

• Feature importances with forests of trees
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• OOB Errors for Random Forests

• Feature transformations with ensembles of trees

• Pipeline Anova SVM

• Recursive feature elimination with cross-validation

• Scaling the regularization parameter for SVCs

sklearn.datasets.make_circles

sklearn.datasets.make_circles(n_samples=100, shuffle=True, noise=None, random_state=None,
factor=0.8)

Make a large circle containing a smaller circle in 2d.

A simple toy dataset to visualize clustering and classification algorithms.

Read more in the User Guide.

Parametersn_samples : int, optional (default=100)

The total number of points generated.

shuffle: bool, optional (default=True) :

Whether to shuffle the samples.

noise : double or None (default=None)

Standard deviation of Gaussian noise added to the data.

factor : double < 1 (default=.8)

Scale factor between inner and outer circle.

ReturnsX : array of shape [n_samples, 2]

The generated samples.

y : array of shape [n_samples]

The integer labels (0 or 1) for class membership of each sample.

Examples using sklearn.datasets.make_circles

• Classifier comparison

• Comparing different clustering algorithms on toy datasets

• Kernel PCA

• Hashing feature transformation using Totally Random Trees

• Label Propagation learning a complex structure

sklearn.datasets.make_friedman1

sklearn.datasets.make_friedman1(n_samples=100, n_features=10, noise=0.0, ran-
dom_state=None)

Generate the “Friedman #1” regression problem

This dataset is described in Friedman [1] and Breiman [2].
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Inputs X are independent features uniformly distributed on the interval [0, 1]. The output y is created according
to the formula:

y(X) = 10 * sin(pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 + 10 * X[:, 3] + 5 * X[:, 4] + noise * N(0, 1).

Out of the n_features features, only 5 are actually used to compute y. The remaining features are independent
of y.

The number of features has to be >= 5.

Read more in the User Guide.

Parametersn_samples : int, optional (default=100)

The number of samples.

n_features : int, optional (default=10)

The number of features. Should be at least 5.

noise : float, optional (default=0.0)

The standard deviation of the gaussian noise applied to the output.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

ReturnsX : array of shape [n_samples, n_features]

The input samples.

y : array of shape [n_samples]

The output values.

References

[R111], [R112]

sklearn.datasets.make_friedman2

sklearn.datasets.make_friedman2(n_samples=100, noise=0.0, random_state=None)
Generate the “Friedman #2” regression problem

This dataset is described in Friedman [1] and Breiman [2].

Inputs X are 4 independent features uniformly distributed on the intervals:

0 <= X[:, 0] <= 100,
40 * pi <= X[:, 1] <= 560 * pi,
0 <= X[:, 2] <= 1,
1 <= X[:, 3] <= 11.

The output y is created according to the formula:

y(X) = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 + noise * N(0, 1).

Read more in the User Guide.

Parametersn_samples : int, optional (default=100)

5.6. sklearn.datasets: Datasets 1077



scikit-learn user guide, Release 0.17

The number of samples.

noise : float, optional (default=0.0)

The standard deviation of the gaussian noise applied to the output.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

ReturnsX : array of shape [n_samples, 4]

The input samples.

y : array of shape [n_samples]

The output values.

References

[R113], [R114]

sklearn.datasets.make_friedman3

sklearn.datasets.make_friedman3(n_samples=100, noise=0.0, random_state=None)
Generate the “Friedman #3” regression problem

This dataset is described in Friedman [1] and Breiman [2].

Inputs X are 4 independent features uniformly distributed on the intervals:

0 <= X[:, 0] <= 100,
40 * pi <= X[:, 1] <= 560 * pi,
0 <= X[:, 2] <= 1,
1 <= X[:, 3] <= 11.

The output y is created according to the formula:

y(X) = arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0]) + noise * N(0, 1).

Read more in the User Guide.

Parametersn_samples : int, optional (default=100)

The number of samples.

noise : float, optional (default=0.0)

The standard deviation of the gaussian noise applied to the output.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

ReturnsX : array of shape [n_samples, 4]

The input samples.

y : array of shape [n_samples]
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The output values.

References

[R115], [R116]

sklearn.datasets.make_gaussian_quantiles

sklearn.datasets.make_gaussian_quantiles(mean=None, cov=1.0, n_samples=100,
n_features=2, n_classes=3, shuffle=True,
random_state=None)

Generate isotropic Gaussian and label samples by quantile

This classification dataset is constructed by taking a multi-dimensional standard normal distribution and defining
classes separated by nested concentric multi-dimensional spheres such that roughly equal numbers of samples
are in each class (quantiles of the 𝜒2 distribution).

Read more in the User Guide.

Parametersmean : array of shape [n_features], optional (default=None)

The mean of the multi-dimensional normal distribution. If None then use the origin (0,
0, ...).

cov : float, optional (default=1.)

The covariance matrix will be this value times the unit matrix. This dataset only pro-
duces symmetric normal distributions.

n_samples : int, optional (default=100)

The total number of points equally divided among classes.

n_features : int, optional (default=2)

The number of features for each sample.

n_classes : int, optional (default=3)

The number of classes

shuffle : boolean, optional (default=True)

Shuffle the samples.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

ReturnsX : array of shape [n_samples, n_features]

The generated samples.

y : array of shape [n_samples]

The integer labels for quantile membership of each sample.

Notes

The dataset is from Zhu et al [1].
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References

[R8]

Examples using sklearn.datasets.make_gaussian_quantiles

• Plot randomly generated classification dataset

• Two-class AdaBoost

• Multi-class AdaBoosted Decision Trees

sklearn.datasets.make_hastie_10_2

sklearn.datasets.make_hastie_10_2(n_samples=12000, random_state=None)
Generates data for binary classification used in Hastie et al. 2009, Example 10.2.

The ten features are standard independent Gaussian and the target y is defined by:

y[i] = 1 if np.sum(X[i] ** 2) > 9.34 else -1

Read more in the User Guide.

Parametersn_samples : int, optional (default=12000)

The number of samples.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

ReturnsX : array of shape [n_samples, 10]

The input samples.

y : array of shape [n_samples]

The output values.

See also:

make_gaussian_quantilesa generalization of this dataset approach

References

[R9]

Examples using sklearn.datasets.make_hastie_10_2

• Gradient Boosting regularization

• Discrete versus Real AdaBoost
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sklearn.datasets.make_low_rank_matrix

sklearn.datasets.make_low_rank_matrix(n_samples=100, n_features=100, effective_rank=10,
tail_strength=0.5, random_state=None)

Generate a mostly low rank matrix with bell-shaped singular values

Most of the variance can be explained by a bell-shaped curve of width effective_rank: the low rank part of the
singular values profile is:

(1 - tail_strength) * exp(-1.0 * (i / effective_rank) ** 2)

The remaining singular values’ tail is fat, decreasing as:

tail_strength * exp(-0.1 * i / effective_rank).

The low rank part of the profile can be considered the structured signal part of the data while the tail can be
considered the noisy part of the data that cannot be summarized by a low number of linear components (singular
vectors).

This kind of singular profiles is often seen in practice, for instance:

•gray level pictures of faces

•TF-IDF vectors of text documents crawled from the web

Read more in the User Guide.

Parametersn_samples : int, optional (default=100)

The number of samples.

n_features : int, optional (default=100)

The number of features.

effective_rank : int, optional (default=10)

The approximate number of singular vectors required to explain most of the data by
linear combinations.

tail_strength : float between 0.0 and 1.0, optional (default=0.5)

The relative importance of the fat noisy tail of the singular values profile.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

ReturnsX : array of shape [n_samples, n_features]

The matrix.

sklearn.datasets.make_moons

sklearn.datasets.make_moons(n_samples=100, shuffle=True, noise=None, random_state=None)
Make two interleaving half circles

A simple toy dataset to visualize clustering and classification algorithms.

Parametersn_samples : int, optional (default=100)

The total number of points generated.
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shuffle : bool, optional (default=True)

Whether to shuffle the samples.

noise : double or None (default=None)

Standard deviation of Gaussian noise added to the data.

Read more in the :ref:‘User Guide <sample_generators>‘. :

ReturnsX : array of shape [n_samples, 2]

The generated samples.

y : array of shape [n_samples]

The integer labels (0 or 1) for class membership of each sample.

Examples using sklearn.datasets.make_moons

• Classifier comparison

• Comparing different clustering algorithms on toy datasets

sklearn.datasets.make_multilabel_classification

sklearn.datasets.make_multilabel_classification(n_samples=100, n_features=20,
n_classes=5, n_labels=2, length=50,
allow_unlabeled=True, sparse=False,
return_indicator=’dense’, re-
turn_distributions=False, ran-
dom_state=None)

Generate a random multilabel classification problem.

For each sample, the generative process is:

•pick the number of labels: n ~ Poisson(n_labels)

•n times, choose a class c: c ~ Multinomial(theta)

•pick the document length: k ~ Poisson(length)

•k times, choose a word: w ~ Multinomial(theta_c)

In the above process, rejection sampling is used to make sure that n is never zero or more than n_classes, and
that the document length is never zero. Likewise, we reject classes which have already been chosen.

Read more in the User Guide.

Parametersn_samples : int, optional (default=100)

The number of samples.

n_features : int, optional (default=20)

The total number of features.

n_classes : int, optional (default=5)

The number of classes of the classification problem.

n_labels : int, optional (default=2)
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The average number of labels per instance. More precisely, the number of labels per
sample is drawn from a Poisson distribution with n_labels as its expected value, but
samples are bounded (using rejection sampling) by n_classes, and must be nonzero
if allow_unlabeled is False.

length : int, optional (default=50)

The sum of the features (number of words if documents) is drawn from a Poisson dis-
tribution with this expected value.

allow_unlabeled : bool, optional (default=True)

If True, some instances might not belong to any class.

sparse : bool, optional (default=False)

If True, return a sparse feature matrix

New in version 0.17: parameter to allow sparse output.

return_indicator : ‘dense’ (default) | ‘sparse’ | False

If dense return Y in the dense binary indicator format. If ’sparse’ return Y in the
sparse binary indicator format. False returns a list of lists of labels.

return_distributions : bool, optional (default=False)

If True, return the prior class probability and conditional probabilities of features given
classes, from which the data was drawn.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

ReturnsX : array of shape [n_samples, n_features]

The generated samples.

Y : array or sparse CSR matrix of shape [n_samples, n_classes]

The label sets.

p_c : array, shape [n_classes]

The probability of each class being drawn. Only returned if
return_distributions=True.

p_w_c : array, shape [n_features, n_classes]

The probability of each feature being drawn given each class. Only returned if
return_distributions=True.

Examples using sklearn.datasets.make_multilabel_classification

• Multilabel classification

• Plot randomly generated multilabel dataset
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sklearn.datasets.make_regression

sklearn.datasets.make_regression(n_samples=100, n_features=100, n_informative=10,
n_targets=1, bias=0.0, effective_rank=None,
tail_strength=0.5, noise=0.0, shuffle=True, coef=False,
random_state=None)

Generate a random regression problem.

The input set can either be well conditioned (by default) or have a low rank-fat tail singular profile. See
make_low_rank_matrix for more details.

The output is generated by applying a (potentially biased) random linear regression model with n_informative
nonzero regressors to the previously generated input and some gaussian centered noise with some adjustable
scale.

Read more in the User Guide.

Parametersn_samples : int, optional (default=100)

The number of samples.

n_features : int, optional (default=100)

The number of features.

n_informative : int, optional (default=10)

The number of informative features, i.e., the number of features used to build the linear
model used to generate the output.

n_targets : int, optional (default=1)

The number of regression targets, i.e., the dimension of the y output vector associated
with a sample. By default, the output is a scalar.

bias : float, optional (default=0.0)

The bias term in the underlying linear model.

effective_rank : int or None, optional (default=None)

if not None:The approximate number of singular vectors required to explain most of
the input data by linear combinations. Using this kind of singular spectrum in the
input allows the generator to reproduce the correlations often observed in practice.

if None:The input set is well conditioned, centered and gaussian with unit variance.

tail_strength : float between 0.0 and 1.0, optional (default=0.5)

The relative importance of the fat noisy tail of the singular values profile if effec-
tive_rank is not None.

noise : float, optional (default=0.0)

The standard deviation of the gaussian noise applied to the output.

shuffle : boolean, optional (default=True)

Shuffle the samples and the features.

coef : boolean, optional (default=False)

If True, the coefficients of the underlying linear model are returned.

random_state : int, RandomState instance or None, optional (default=None)

1084 Chapter 5. API Reference



scikit-learn user guide, Release 0.17

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

ReturnsX : array of shape [n_samples, n_features]

The input samples.

y : array of shape [n_samples] or [n_samples, n_targets]

The output values.

coef : array of shape [n_features] or [n_features, n_targets], optional

The coefficient of the underlying linear model. It is returned only if coef is True.

Examples using sklearn.datasets.make_regression

• Prediction Latency

• Robust linear model estimation using RANSAC

• Lasso on dense and sparse data

sklearn.datasets.make_s_curve

sklearn.datasets.make_s_curve(n_samples=100, noise=0.0, random_state=None)
Generate an S curve dataset.

Read more in the User Guide.

Parametersn_samples : int, optional (default=100)

The number of sample points on the S curve.

noise : float, optional (default=0.0)

The standard deviation of the gaussian noise.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

ReturnsX : array of shape [n_samples, 3]

The points.

t : array of shape [n_samples]

The univariate position of the sample according to the main dimension of the points in
the manifold.

Examples using sklearn.datasets.make_s_curve

• Comparison of Manifold Learning methods
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sklearn.datasets.make_sparse_coded_signal

sklearn.datasets.make_sparse_coded_signal(n_samples, n_components, n_features,
n_nonzero_coefs, random_state=None)

Generate a signal as a sparse combination of dictionary elements.

Returns a matrix Y = DX, such as D is (n_features, n_components), X is (n_components, n_samples) and each
column of X has exactly n_nonzero_coefs non-zero elements.

Read more in the User Guide.

Parametersn_samples : int

number of samples to generate

n_components: int, :

number of components in the dictionary

n_features : int

number of features of the dataset to generate

n_nonzero_coefs : int

number of active (non-zero) coefficients in each sample

random_state: int or RandomState instance, optional (default=None) :

seed used by the pseudo random number generator

Returnsdata: array of shape [n_features, n_samples] :

The encoded signal (Y).

dictionary: array of shape [n_features, n_components] :

The dictionary with normalized components (D).

code: array of shape [n_components, n_samples] :

The sparse code such that each column of this matrix has exactly n_nonzero_coefs non-
zero items (X).

Examples using sklearn.datasets.make_sparse_coded_signal

• Orthogonal Matching Pursuit

sklearn.datasets.make_sparse_spd_matrix

sklearn.datasets.make_sparse_spd_matrix(dim=1, alpha=0.95, norm_diag=False,
smallest_coef=0.1, largest_coef=0.9, ran-
dom_state=None)

Generate a sparse symmetric definite positive matrix.

Read more in the User Guide.

Parametersdim: integer, optional (default=1) :

The size of the random matrix to generate.

alpha: float between 0 and 1, optional (default=0.95) :

The probability that a coefficient is non zero (see notes).
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random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

largest_coef : float between 0 and 1, optional (default=0.9)

The value of the largest coefficient.

smallest_coef : float between 0 and 1, optional (default=0.1)

The value of the smallest coefficient.

norm_diag : boolean, optional (default=False)

Whether to normalize the output matrix to make the leading diagonal elements all 1

Returnsprec : sparse matrix of shape (dim, dim)

The generated matrix.

See also:

make_spd_matrix

Notes

The sparsity is actually imposed on the cholesky factor of the matrix. Thus alpha does not translate directly into
the filling fraction of the matrix itself.

Examples using sklearn.datasets.make_sparse_spd_matrix

• Sparse inverse covariance estimation

sklearn.datasets.make_sparse_uncorrelated

sklearn.datasets.make_sparse_uncorrelated(n_samples=100, n_features=10, ran-
dom_state=None)

Generate a random regression problem with sparse uncorrelated design

This dataset is described in Celeux et al [1]. as:

X ~ N(0, 1)
y(X) = X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3]

Only the first 4 features are informative. The remaining features are useless.

Read more in the User Guide.

Parametersn_samples : int, optional (default=100)

The number of samples.

n_features : int, optional (default=10)

The number of features.

random_state : int, RandomState instance or None, optional (default=None)

5.6. sklearn.datasets: Datasets 1087



scikit-learn user guide, Release 0.17

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

ReturnsX : array of shape [n_samples, n_features]

The input samples.

y : array of shape [n_samples]

The output values.

References

[R119]

sklearn.datasets.make_spd_matrix

sklearn.datasets.make_spd_matrix(n_dim, random_state=None)
Generate a random symmetric, positive-definite matrix.

Read more in the User Guide.

Parametersn_dim : int

The matrix dimension.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

ReturnsX : array of shape [n_dim, n_dim]

The random symmetric, positive-definite matrix.

See also:

make_sparse_spd_matrix

sklearn.datasets.make_swiss_roll

sklearn.datasets.make_swiss_roll(n_samples=100, noise=0.0, random_state=None)
Generate a swiss roll dataset.

Read more in the User Guide.

Parametersn_samples : int, optional (default=100)

The number of sample points on the S curve.

noise : float, optional (default=0.0)

The standard deviation of the gaussian noise.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.
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ReturnsX : array of shape [n_samples, 3]

The points.

t : array of shape [n_samples]

The univariate position of the sample according to the main dimension of the points in
the manifold.

Notes

The algorithm is from Marsland [1].

References

[R10]

Examples using sklearn.datasets.make_swiss_roll

• Hierarchical clustering: structured vs unstructured ward

• Swiss Roll reduction with LLE

sklearn.datasets.make_biclusters

sklearn.datasets.make_biclusters(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuf-
fle=True, random_state=None)

Generate an array with constant block diagonal structure for biclustering.

Read more in the User Guide.

Parametersshape : iterable (n_rows, n_cols)

The shape of the result.

n_clusters : integer

The number of biclusters.

noise : float, optional (default=0.0)

The standard deviation of the gaussian noise.

minval : int, optional (default=10)

Minimum value of a bicluster.

maxval : int, optional (default=100)

Maximum value of a bicluster.

shuffle : boolean, optional (default=True)

Shuffle the samples.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.
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ReturnsX : array of shape shape

The generated array.

rows : array of shape (n_clusters, X.shape[0],)

The indicators for cluster membership of each row.

cols : array of shape (n_clusters, X.shape[1],)

The indicators for cluster membership of each column.

See also:

make_checkerboard

References

[R5]

Examples using sklearn.datasets.make_biclusters

• A demo of the Spectral Co-Clustering algorithm

sklearn.datasets.make_checkerboard

sklearn.datasets.make_checkerboard(shape, n_clusters, noise=0.0, minval=10, maxval=100,
shuffle=True, random_state=None)

Generate an array with block checkerboard structure for biclustering.

Read more in the User Guide.

Parametersshape : iterable (n_rows, n_cols)

The shape of the result.

n_clusters : integer or iterable (n_row_clusters, n_column_clusters)

The number of row and column clusters.

noise : float, optional (default=0.0)

The standard deviation of the gaussian noise.

minval : int, optional (default=10)

Minimum value of a bicluster.

maxval : int, optional (default=100)

Maximum value of a bicluster.

shuffle : boolean, optional (default=True)

Shuffle the samples.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

ReturnsX : array of shape shape
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The generated array.

rows : array of shape (n_clusters, X.shape[0],)

The indicators for cluster membership of each row.

cols : array of shape (n_clusters, X.shape[1],)

The indicators for cluster membership of each column.

See also:

make_biclusters

References

[R6]

Examples using sklearn.datasets.make_checkerboard

• A demo of the Spectral Biclustering algorithm

5.7 sklearn.decomposition: Matrix Decomposition

The sklearn.decomposition module includes matrix decomposition algorithms, including among others PCA,
NMF or ICA. Most of the algorithms of this module can be regarded as dimensionality reduction techniques.

User guide: See the Decomposing signals in components (matrix factorization problems) section for further details.

decomposition.PCA([n_components, copy, whiten]) Principal component analysis (PCA)
decomposition.IncrementalPCA([n_components, ...]) Incremental principal components analysis (IPCA).
decomposition.ProjectedGradientNMF(*args, ...) Non-Negative Matrix Factorization (NMF)
decomposition.RandomizedPCA([n_components, ...]) Principal component analysis (PCA) using randomized SVD
decomposition.KernelPCA([n_components, ...]) Kernel Principal component analysis (KPCA)
decomposition.FactorAnalysis([n_components, ...]) Factor Analysis (FA)
decomposition.FastICA([n_components, ...]) FastICA: a fast algorithm for Independent Component Analysis.
decomposition.TruncatedSVD([n_components, ...]) Dimensionality reduction using truncated SVD (aka LSA).
decomposition.NMF([n_components, init, ...]) Non-Negative Matrix Factorization (NMF)
decomposition.SparsePCA([n_components, ...]) Sparse Principal Components Analysis (SparsePCA)
decomposition.MiniBatchSparsePCA([...]) Mini-batch Sparse Principal Components Analysis
decomposition.SparseCoder(dictionary[, ...]) Sparse coding
decomposition.DictionaryLearning([...]) Dictionary learning
decomposition.MiniBatchDictionaryLearning([...]) Mini-batch dictionary learning
decomposition.LatentDirichletAllocation([...]) Latent Dirichlet Allocation with online variational Bayes algorithm

5.7.1 sklearn.decomposition.PCA

class sklearn.decomposition.PCA(n_components=None, copy=True, whiten=False)
Principal component analysis (PCA)

Linear dimensionality reduction using Singular Value Decomposition of the data and keeping only the most
significant singular vectors to project the data to a lower dimensional space.

This implementation uses the scipy.linalg implementation of the singular value decomposition. It only works
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for dense arrays and is not scalable to large dimensional data.

The time complexity of this implementation is O(n ** 3) assuming n ~ n_samples ~ n_features.

Read more in the User Guide.

Parametersn_components : int, None or string

Number of components to keep. if n_components is not set all components are kept:

n_components == min(n_samples, n_features)

if n_components == ‘mle’, Minka’s MLE is used to guess the dimension if 0 <
n_components < 1, select the number of components such that the amount of vari-
ance that needs to be explained is greater than the percentage specified by n_components

copy : bool

If False, data passed to fit are overwritten and running fit(X).transform(X) will not yield
the expected results, use fit_transform(X) instead.

whiten : bool, optional

When True (False by default) the components_ vectors are divided by n_samples times
singular values to ensure uncorrelated outputs with unit component-wise variances.

Whitening will remove some information from the transformed signal (the relative vari-
ance scales of the components) but can sometime improve the predictive accuracy of
the downstream estimators by making there data respect some hard-wired assumptions.

Attributescomponents_ : array, [n_components, n_features]

Principal axes in feature space, representing the directions of maximum variance in the
data.

explained_variance_ratio_ : array, [n_components]

Percentage of variance explained by each of the selected components. If
n_components is not set then all components are stored and the sum of explained
variances is equal to 1.0

mean_ : array, [n_features]

Per-feature empirical mean, estimated from the training set.

n_components_ : int

The estimated number of components. Relevant when n_components is set to ‘mle’ or
a number between 0 and 1 to select using explained variance.

noise_variance_ : float

The estimated noise covariance following the Probabilistic PCA model from Tipping
and Bishop 1999. See “Pattern Recognition and Machine Learning” by C. Bishop,
12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf. It is required to
computed the estimated data covariance and score samples.

See also:

RandomizedPCA, KernelPCA, SparsePCA, TruncatedSVD
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Notes

For n_components=’mle’, this class uses the method of Thomas P. Minka: Automatic Choice of Dimensionality
for PCA. NIPS 2000: 598-604

Implements the probabilistic PCA model from: M. Tipping and C. Bishop, Probabilistic Principal Compo-
nent Analysis, Journal of the Royal Statistical Society, Series B, 61, Part 3, pp. 611-622 via the score and
score_samples methods. See http://www.miketipping.com/papers/met-mppca.pdf

Due to implementation subtleties of the Singular Value Decomposition (SVD), which is used in this imple-
mentation, running fit twice on the same matrix can lead to principal components with signs flipped (change
in direction). For this reason, it is important to always use the same estimator object to transform data in a
consistent fashion.

Examples

>>> import numpy as np
>>> from sklearn.decomposition import PCA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> pca = PCA(n_components=2)
>>> pca.fit(X)
PCA(copy=True, n_components=2, whiten=False)
>>> print(pca.explained_variance_ratio_)
[ 0.99244... 0.00755...]

Methods

fit(X[, y]) Fit the model with X.
fit_transform(X[, y]) Fit the model with X and apply the dimensionality reduction on X.
get_covariance() Compute data covariance with the generative model.
get_params([deep]) Get parameters for this estimator.
get_precision() Compute data precision matrix with the generative model.
inverse_transform(X) Transform data back to its original space, i.e.,
score(X[, y]) Return the average log-likelihood of all samples
score_samples(X) Return the log-likelihood of each sample
set_params(**params) Set the parameters of this estimator.
transform(X) Apply the dimensionality reduction on X.

__init__(n_components=None, copy=True, whiten=False)

fit(X, y=None)
Fit the model with X.

ParametersX: array-like, shape (n_samples, n_features) :

Training data, where n_samples in the number of samples and n_features is the number
of features.

Returnsself : object

Returns the instance itself.

fit_transform(X, y=None)
Fit the model with X and apply the dimensionality reduction on X.

5.7. sklearn.decomposition: Matrix Decomposition 1093

http://www.miketipping.com/papers/met-mppca.pdf


scikit-learn user guide, Release 0.17

ParametersX : array-like, shape (n_samples, n_features)

Training data, where n_samples is the number of samples and n_features is the number
of features.

ReturnsX_new : array-like, shape (n_samples, n_components)

get_covariance()
Compute data covariance with the generative model.

cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)
where S**2 contains the explained variances.

Returnscov : array, shape=(n_features, n_features)

Estimated covariance of data.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

get_precision()
Compute data precision matrix with the generative model.

Equals the inverse of the covariance but computed with the matrix inversion lemma for efficiency.

Returnsprecision : array, shape=(n_features, n_features)

Estimated precision of data.

inverse_transform(X)
Transform data back to its original space, i.e., return an input X_original whose transform would be X

ParametersX : array-like, shape (n_samples, n_components)

New data, where n_samples is the number of samples and n_components is the number
of components.

ReturnsX_original array-like, shape (n_samples, n_features) :

score(X, y=None)
Return the average log-likelihood of all samples

See. “Pattern Recognition and Machine Learning” by C. Bishop, 12.2.1 p. 574 or
http://www.miketipping.com/papers/met-mppca.pdf

ParametersX: array, shape(n_samples, n_features) :

The data.

Returnsll: float :

Average log-likelihood of the samples under the current model

score_samples(X)
Return the log-likelihood of each sample

See. “Pattern Recognition and Machine Learning” by C. Bishop, 12.2.1 p. 574 or
http://www.miketipping.com/papers/met-mppca.pdf
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ParametersX: array, shape(n_samples, n_features) :

The data.

Returnsll: array, shape (n_samples,) :

Log-likelihood of each sample under the current model

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X)
Apply the dimensionality reduction on X.

X is projected on the first principal components previous extracted from a training set.

ParametersX : array-like, shape (n_samples, n_features)

New data, where n_samples is the number of samples and n_features is the number of
features.

ReturnsX_new : array-like, shape (n_samples, n_components)

Examples using sklearn.decomposition.PCA

• Concatenating multiple feature extraction methods

• Pipelining: chaining a PCA and a logistic regression

• Multilabel classification

• Explicit feature map approximation for RBF kernels

• A demo of K-Means clustering on the handwritten digits data

• The Iris Dataset

• Comparison of LDA and PCA 2D projection of Iris dataset

• Incremental PCA

• PCA example with Iris Data-set

• Blind source separation using FastICA

• Kernel PCA

• FastICA on 2D point clouds

• Principal components analysis (PCA)

• Model selection with Probabilistic PCA and Factor Analysis (FA)

• Multi-dimensional scaling

• Kernel Density Estimation

• Using FunctionTransformer to select columns
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5.7.2 sklearn.decomposition.IncrementalPCA

class sklearn.decomposition.IncrementalPCA(n_components=None, whiten=False, copy=True,
batch_size=None)

Incremental principal components analysis (IPCA).

Linear dimensionality reduction using Singular Value Decomposition of centered data, keeping only the most
significant singular vectors to project the data to a lower dimensional space.

Depending on the size of the input data, this algorithm can be much more memory efficient than a PCA.

This algorithm has constant memory complexity, on the order of batch_size, enabling use of np.memmap
files without loading the entire file into memory.

The computational overhead of each SVD is O(batch_size * n_features ** 2), but only 2 *
batch_size samples remain in memory at a time. There will be n_samples / batch_size SVD compu-
tations to get the principal components, versus 1 large SVD of complexity O(n_samples * n_features

** 2) for PCA.

Read more in the User Guide.

Parametersn_components : int or None, (default=None)

Number of components to keep. If n_components ‘‘ is ‘‘None, then
n_components is set to min(n_samples, n_features).

batch_size : int or None, (default=None)

The number of samples to use for each batch. Only used when calling fit. If
batch_size is None, then batch_size is inferred from the data and set to 5

* n_features, to provide a balance between approximation accuracy and memory
consumption.

copy : bool, (default=True)

If False, X will be overwritten. copy=False can be used to save memory but is unsafe
for general use.

whiten : bool, optional

When True (False by default) the components_ vectors are divided by n_samples
times components_ to ensure uncorrelated outputs with unit component-wise vari-
ances.

Whitening will remove some information from the transformed signal (the relative vari-
ance scales of the components) but can sometimes improve the predictive accuracy of
the downstream estimators by making data respect some hard-wired assumptions.

Attributescomponents_ : array, shape (n_components, n_features)

Components with maximum variance.

explained_variance_ : array, shape (n_components,)

Variance explained by each of the selected components.

explained_variance_ratio_ : array, shape (n_components,)

Percentage of variance explained by each of the selected components. If all components
are stored, the sum of explained variances is equal to 1.0

mean_ : array, shape (n_features,)

Per-feature empirical mean, aggregate over calls to partial_fit.

var_ : array, shape (n_features,)
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Per-feature empirical variance, aggregate over calls to partial_fit.

noise_variance_ : float

The estimated noise covariance following the Probabilistic PCA model from Tipping
and Bishop 1999. See “Pattern Recognition and Machine Learning” by C. Bishop,
12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf.

n_components_ : int

The estimated number of components. Relevant when n_components=None.

n_samples_seen_ : int

The number of samples processed by the estimator. Will be reset on new calls to fit, but
increments across partial_fit calls.

See also:

PCA, RandomizedPCA, KernelPCA, SparsePCA, TruncatedSVD

Notes

Implements the incremental PCA model from: D. Ross, J. Lim, R. Lin, M. Yang, Incremental Learning for
Robust Visual Tracking, International Journal of Computer Vision, Volume 77, Issue 1-3, pp. 125-141, May
2008. See http://www.cs.toronto.edu/~dross/ivt/RossLimLinYang_ijcv.pdf

This model is an extension of the Sequential Karhunen-Loeve Transform from: A. Levy and M. Lindenbaum, Se-
quential Karhunen-Loeve Basis Extraction and its Application to Images, IEEE Transactions on Image Process-
ing, Volume 9, Number 8, pp. 1371-1374, August 2000. See http://www.cs.technion.ac.il/~mic/doc/skl-ip.pdf

We have specifically abstained from an optimization used by authors of both papers, a QR decomposition used
in specific situations to reduce the algorithmic complexity of the SVD. The source for this technique is Matrix
Computations, Third Edition, G. Holub and C. Van Loan, Chapter 5, section 5.4.4, pp 252-253.. This technique
has been omitted because it is advantageous only when decomposing a matrix with n_samples (rows) >=
5/3 * n_features (columns), and hurts the readability of the implemented algorithm. This would be a good
opportunity for future optimization, if it is deemed necessary.

References

4.Ross, J. Lim, R. Lin, M. Yang. Incremental Learning for Robust VisualTracking, International Jour-
nal of Computer Vision, Volume 77, Issue 1-3, pp. 125-141, May 2008.

7.Golub and C. Van Loan. Matrix Computations, Third Edition, Chapter 5,Section 5.4.4, pp. 252-253.

Methods

fit(X[, y]) Fit the model with X, using minibatches of size batch_size.
fit_transform(X[, y]) Fit to data, then transform it.
get_covariance() Compute data covariance with the generative model.
get_params([deep]) Get parameters for this estimator.
get_precision() Compute data precision matrix with the generative model.
inverse_transform(X[, y]) Transform data back to its original space.
partial_fit(X[, y, check_input]) Incremental fit with X.
set_params(**params) Set the parameters of this estimator.

Continued on next page
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Table 5.38 – continued from previous page
transform(X[, y]) Apply dimensionality reduction to X.

__init__(n_components=None, whiten=False, copy=True, batch_size=None)

fit(X, y=None)
Fit the model with X, using minibatches of size batch_size.

ParametersX: array-like, shape (n_samples, n_features) :

Training data, where n_samples is the number of samples and n_features is the number
of features.

y: Passthrough for ‘‘Pipeline‘‘ compatibility. :

Returnsself: object :

Returns the instance itself.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_covariance()
Compute data covariance with the generative model.

cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)
where S**2 contains the explained variances, and sigma2 contains the noise variances.

Returnscov : array, shape=(n_features, n_features)

Estimated covariance of data.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

get_precision()
Compute data precision matrix with the generative model.

Equals the inverse of the covariance but computed with the matrix inversion lemma for efficiency.

Returnsprecision : array, shape=(n_features, n_features)

Estimated precision of data.
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inverse_transform(X, y=None)
Transform data back to its original space.

In other words, return an input X_original whose transform would be X.

ParametersX : array-like, shape (n_samples, n_components)

New data, where n_samples is the number of samples and n_components is the number
of components.

ReturnsX_original array-like, shape (n_samples, n_features) :

Notes

If whitening is enabled, inverse_transform will compute the exact inverse operation, which includes re-
versing whitening.

partial_fit(X, y=None, check_input=True)
Incremental fit with X. All of X is processed as a single batch.

ParametersX: array-like, shape (n_samples, n_features) :

Training data, where n_samples is the number of samples and n_features is the number
of features.

Returnsself: object :

Returns the instance itself.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X, y=None)
Apply dimensionality reduction to X.

X is projected on the first principal components previously extracted from a training set.

ParametersX : array-like, shape (n_samples, n_features)

New data, where n_samples is the number of samples and n_features is the number of
features.

ReturnsX_new : array-like, shape (n_samples, n_components)

Examples

>>> import numpy as np
>>> from sklearn.decomposition import IncrementalPCA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> ipca = IncrementalPCA(n_components=2, batch_size=3)
>>> ipca.fit(X)
IncrementalPCA(batch_size=3, copy=True, n_components=2, whiten=False)
>>> ipca.transform(X)
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Examples using sklearn.decomposition.IncrementalPCA

• Incremental PCA

5.7.3 sklearn.decomposition.ProjectedGradientNMF

class sklearn.decomposition.ProjectedGradientNMF(*args, **kwargs)
Non-Negative Matrix Factorization (NMF)

Find two non-negative matrices (W, H) whose product approximates the non- negative matrix X. This factoriza-
tion can be used for example for dimensionality reduction, source separation or topic extraction.

The objective function is:

0.5 * ||X - WH||_Fro^2
+ alpha * l1_ratio * ||vec(W)||_1
+ alpha * l1_ratio * ||vec(H)||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2
+ 0.5 * alpha * (1 - l1_ratio) * ||H||_Fro^2

Where:

||A||_Fro^2 = \sum_{i,j} A_{ij}^2 (Frobenius norm)
||vec(A)||_1 = \sum_{i,j} abs(A_{ij}) (Elementwise L1 norm)

The objective function is minimized with an alternating minimization of W and H.

Read more in the User Guide.

Parametersn_components : int or None

Number of components, if n_components is not set all features are kept.

init : ‘random’ | ‘nndsvd’ | ‘nndsvda’ | ‘nndsvdar’ | ‘custom’

Method used to initialize the procedure. Default: ‘nndsvdar’ if n_components <
n_features, otherwise random. Valid options:

•‘random’: non-negative random matrices, scaled with:sqrt(X.mean() /
n_components)

•‘nndsvd’: Nonnegative Double Singular Value Decomposition (NNDSVD)
initialization (better for sparseness)

•‘nndsvda’: NNDSVD with zeros filled with the average of X(better when sparsity
is not desired)

•‘nndsvdar’: NNDSVD with zeros filled with small random values(generally
faster, less accurate alternative to NNDSVDa for when sparsity is not desired)

•‘custom’: use custom matrices W and H

solver : ‘pg’ | ‘cd’

Numerical solver to use: ‘pg’ is a Projected Gradient solver (deprecated). ‘cd’ is a
Coordinate Descent solver (recommended).

New in version 0.17: Coordinate Descent solver.

Changed in version 0.17: Deprecated Projected Gradient solver.

tol : double, default: 1e-4
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Tolerance value used in stopping conditions.

max_iter : integer, default: 200

Number of iterations to compute.

random_state : integer seed, RandomState instance, or None (default)

Random number generator seed control.

alpha : double, default: 0.

Constant that multiplies the regularization terms. Set it to zero to have no regularization.

New in version 0.17: alpha used in the Coordinate Descent solver.

l1_ratio : double, default: 0.

The regularization mixing parameter, with 0 <= l1_ratio <= 1. For l1_ratio = 0 the
penalty is an elementwise L2 penalty (aka Frobenius Norm). For l1_ratio = 1 it is an
elementwise L1 penalty. For 0 < l1_ratio < 1, the penalty is a combination of L1 and
L2.

New in version 0.17: Regularization parameter l1_ratio used in the Coordinate Descent
solver.

shuffle : boolean, default: False

If true, randomize the order of coordinates in the CD solver.

New in version 0.17: shuffle parameter used in the Coordinate Descent solver.

nls_max_iter : integer, default: 2000

Number of iterations in NLS subproblem. Used only in the deprecated ‘pg’ solver.

Changed in version 0.17: Deprecated Projected Gradient solver. Use Coordinate De-
scent solver instead.

sparseness : ‘data’ | ‘components’ | None, default: None

Where to enforce sparsity in the model. Used only in the deprecated ‘pg’ solver.

Changed in version 0.17: Deprecated Projected Gradient solver. Use Coordinate De-
scent solver instead.

beta : double, default: 1

Degree of sparseness, if sparseness is not None. Larger values mean more sparseness.
Used only in the deprecated ‘pg’ solver.

Changed in version 0.17: Deprecated Projected Gradient solver. Use Coordinate De-
scent solver instead.

eta : double, default: 0.1

Degree of correctness to maintain, if sparsity is not None. Smaller values mean larger
error. Used only in the deprecated ‘pg’ solver.

Changed in version 0.17: Deprecated Projected Gradient solver. Use Coordinate De-
scent solver instead.

Attributescomponents_ : array, [n_components, n_features]

Non-negative components of the data.

reconstruction_err_ : number
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Frobenius norm of the matrix difference between the training data and the reconstructed
data from the fit produced by the model. || X - WH ||_2

n_iter_ : int

Actual number of iterations.

References

C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007),
2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/

Cichocki, Andrzej, and P. H. A. N. Anh-Huy. “Fast local algorithms for large scale nonnegative matrix and ten-
sor factorizations.” IEICE transactions on fundamentals of electronics, communications and computer sciences
92.3: 708-721, 2009.

Examples

>>> import numpy as np
>>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
>>> from sklearn.decomposition import NMF
>>> model = NMF(n_components=2, init='random', random_state=0)
>>> model.fit(X)
NMF(alpha=0.0, beta=1, eta=0.1, init='random', l1_ratio=0.0, max_iter=200,
n_components=2, nls_max_iter=2000, random_state=0, shuffle=False,
solver='cd', sparseness=None, tol=0.0001, verbose=0)

>>> model.components_
array([[ 2.09783018, 0.30560234],

[ 2.13443044, 2.13171694]])
>>> model.reconstruction_err_
0.00115993...

Methods

fit(X[, y]) Learn a NMF model for the data X.
fit_transform(X[, y, W, H]) Learn a NMF model for the data X and returns the transformed data.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform the data X according to the fitted NMF model

__init__(*args, **kwargs)
DEPRECATED: It will be removed in release 0.19. Use NMF instead.’pg’ solver is still available until
release 0.19.

fit(X, y=None, **params)
Learn a NMF model for the data X.

ParametersX: {array-like, sparse matrix}, shape (n_samples, n_features) :

Data matrix to be decomposed

Returnsself :

Attributescomponents_ : array-like, shape (n_components, n_features)
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Factorization matrix, sometimes called ‘dictionary’.

n_iter_ : int

Actual number of iterations for the transform.

fit_transform(X, y=None, W=None, H=None)
Learn a NMF model for the data X and returns the transformed data.

This is more efficient than calling fit followed by transform.

ParametersX: {array-like, sparse matrix}, shape (n_samples, n_features) :

Data matrix to be decomposed

W : array-like, shape (n_samples, n_components)

If init=’custom’, it is used as initial guess for the solution.

H : array-like, shape (n_components, n_features)

If init=’custom’, it is used as initial guess for the solution.

ReturnsW: array, shape (n_samples, n_components) :

Transformed data.

Attributescomponents_ : array-like, shape (n_components, n_features)

Factorization matrix, sometimes called ‘dictionary’.

n_iter_ : int

Actual number of iterations for the transform.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X)
Transform the data X according to the fitted NMF model

ParametersX: {array-like, sparse matrix}, shape (n_samples, n_features) :

Data matrix to be transformed by the model

ReturnsW: array, shape (n_samples, n_components) :

Transformed data

Attributesn_iter_ : int
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Actual number of iterations for the transform.

5.7.4 sklearn.decomposition.RandomizedPCA

class sklearn.decomposition.RandomizedPCA(n_components=None, copy=True, it-
erated_power=3, whiten=False, ran-
dom_state=None)

Principal component analysis (PCA) using randomized SVD

Linear dimensionality reduction using approximated Singular Value Decomposition of the data and keeping
only the most significant singular vectors to project the data to a lower dimensional space.

Read more in the User Guide.

Parametersn_components : int, optional

Maximum number of components to keep. When not given or None, this is set to
n_features (the second dimension of the training data).

copy : bool

If False, data passed to fit are overwritten and running fit(X).transform(X) will not yield
the expected results, use fit_transform(X) instead.

iterated_power : int, optional

Number of iterations for the power method. 3 by default.

whiten : bool, optional

When True (False by default) the components_ vectors are divided by the singular values
to ensure uncorrelated outputs with unit component-wise variances.

Whitening will remove some information from the transformed signal (the relative vari-
ance scales of the components) but can sometime improve the predictive accuracy of
the downstream estimators by making their data respect some hard-wired assumptions.

random_state : int or RandomState instance or None (default)

Pseudo Random Number generator seed control. If None, use the numpy.random sin-
gleton.

Attributescomponents_ : array, [n_components, n_features]

Components with maximum variance.

explained_variance_ratio_ : array, [n_components]

Percentage of variance explained by each of the selected components. k is not set then
all components are stored and the sum of explained variances is equal to 1.0

mean_ : array, [n_features]

Per-feature empirical mean, estimated from the training set.

See also:

PCA, TruncatedSVD

References

[Halko2009], [MRT]

1104 Chapter 5. API Reference



scikit-learn user guide, Release 0.17

Examples

>>> import numpy as np
>>> from sklearn.decomposition import RandomizedPCA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> pca = RandomizedPCA(n_components=2)
>>> pca.fit(X)
RandomizedPCA(copy=True, iterated_power=3, n_components=2,

random_state=None, whiten=False)
>>> print(pca.explained_variance_ratio_)
[ 0.99244... 0.00755...]

Methods

fit(X[, y]) Fit the model with X by extracting the first principal components.
fit_transform(X[, y]) Fit the model with X and apply the dimensionality reduction on X.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X[, y]) Transform data back to its original space.
set_params(**params) Set the parameters of this estimator.
transform(X[, y]) Apply dimensionality reduction on X.

__init__(n_components=None, copy=True, iterated_power=3, whiten=False, random_state=None)

fit(X, y=None)
Fit the model with X by extracting the first principal components.

ParametersX: array-like, shape (n_samples, n_features) :

Training data, where n_samples in the number of samples and n_features is the number
of features.

Returnsself : object

Returns the instance itself.

fit_transform(X, y=None)
Fit the model with X and apply the dimensionality reduction on X.

ParametersX : array-like, shape (n_samples, n_features)

New data, where n_samples in the number of samples and n_features is the number of
features.

ReturnsX_new : array-like, shape (n_samples, n_components)

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

inverse_transform(X, y=None)
Transform data back to its original space.
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Returns an array X_original whose transform would be X.

ParametersX : array-like, shape (n_samples, n_components)

New data, where n_samples in the number of samples and n_components is the number
of components.

ReturnsX_original array-like, shape (n_samples, n_features) :

Notes

If whitening is enabled, inverse_transform does not compute the exact inverse operation of transform.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X, y=None)
Apply dimensionality reduction on X.

X is projected on the first principal components previous extracted from a training set.

ParametersX : array-like, shape (n_samples, n_features)

New data, where n_samples in the number of samples and n_features is the number of
features.

ReturnsX_new : array-like, shape (n_samples, n_components)

Examples using sklearn.decomposition.RandomizedPCA

• Faces recognition example using eigenfaces and SVMs

• Faces dataset decompositions

5.7.5 sklearn.decomposition.KernelPCA

class sklearn.decomposition.KernelPCA(n_components=None, kernel=’linear’, gamma=None,
degree=3, coef0=1, kernel_params=None, alpha=1.0,
fit_inverse_transform=False, eigen_solver=’auto’, tol=0,
max_iter=None, remove_zero_eig=False)

Kernel Principal component analysis (KPCA)

Non-linear dimensionality reduction through the use of kernels (see Pairwise metrics, Affinities and Kernels).

Read more in the User Guide.

Parametersn_components: int or None :

Number of components. If None, all non-zero components are kept.

kernel: “linear” | “poly” | “rbf” | “sigmoid” | “cosine” | “precomputed” :

Kernel. Default: “linear”

degree : int, default=3

1106 Chapter 5. API Reference



scikit-learn user guide, Release 0.17

Degree for poly kernels. Ignored by other kernels.

gamma : float, optional

Kernel coefficient for rbf and poly kernels. Default: 1/n_features. Ignored by other
kernels.

coef0 : float, optional

Independent term in poly and sigmoid kernels. Ignored by other kernels.

kernel_params : mapping of string to any, optional

Parameters (keyword arguments) and values for kernel passed as callable object. Ig-
nored by other kernels.

alpha: int :

Hyperparameter of the ridge regression that learns the inverse transform (when
fit_inverse_transform=True). Default: 1.0

fit_inverse_transform: bool :

Learn the inverse transform for non-precomputed kernels. (i.e. learn to find the pre-
image of a point) Default: False

eigen_solver: string [’auto’|’dense’|’arpack’] :

Select eigensolver to use. If n_components is much less than the number of training
samples, arpack may be more efficient than the dense eigensolver.

tol: float :

convergence tolerance for arpack. Default: 0 (optimal value will be chosen by arpack)

max_iter : int

maximum number of iterations for arpack Default: None (optimal value will be chosen
by arpack)

remove_zero_eig : boolean, default=True

If True, then all components with zero eigenvalues are removed, so that the number
of components in the output may be < n_components (and sometimes even zero due
to numerical instability). When n_components is None, this parameter is ignored and
components with zero eigenvalues are removed regardless.

Attributeslambdas_ : :

Eigenvalues of the centered kernel matrix

alphas_ : :

Eigenvectors of the centered kernel matrix

dual_coef_ : :

Inverse transform matrix

X_transformed_fit_ : :

Projection of the fitted data on the kernel principal components
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References

Kernel PCA was introduced in:Bernhard Schoelkopf, Alexander J. Smola, and Klaus-Robert Mueller. 1999.
Kernel principal component analysis. In Advances in kernel methods, MIT Press, Cambridge, MA, USA
327-352.

Methods

fit(X[, y]) Fit the model from data in X.
fit_transform(X[, y]) Fit the model from data in X and transform X.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X) Transform X back to original space.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform X.

__init__(n_components=None, kernel=’linear’, gamma=None, degree=3, coef0=1, ker-
nel_params=None, alpha=1.0, fit_inverse_transform=False, eigen_solver=’auto’, tol=0,
max_iter=None, remove_zero_eig=False)

fit(X, y=None)
Fit the model from data in X.

ParametersX: array-like, shape (n_samples, n_features) :

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

Returnsself : object

Returns the instance itself.

fit_transform(X, y=None, **params)
Fit the model from data in X and transform X.

ParametersX: array-like, shape (n_samples, n_features) :

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

ReturnsX_new: array-like, shape (n_samples, n_components) :

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

inverse_transform(X)
Transform X back to original space.

ParametersX: array-like, shape (n_samples, n_components) :

ReturnsX_new: array-like, shape (n_samples, n_features) :
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References

“Learning to Find Pre-Images”, G BakIr et al, 2004.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X)
Transform X.

ParametersX: array-like, shape (n_samples, n_features) :

ReturnsX_new: array-like, shape (n_samples, n_components) :

Examples using sklearn.decomposition.KernelPCA

• Kernel PCA

5.7.6 sklearn.decomposition.FactorAnalysis

class sklearn.decomposition.FactorAnalysis(n_components=None, tol=0.01, copy=True,
max_iter=1000, noise_variance_init=None,
svd_method=’randomized’, iterated_power=3,
random_state=0)

Factor Analysis (FA)

A simple linear generative model with Gaussian latent variables.

The observations are assumed to be caused by a linear transformation of lower dimensional latent factors and
added Gaussian noise. Without loss of generality the factors are distributed according to a Gaussian with zero
mean and unit covariance. The noise is also zero mean and has an arbitrary diagonal covariance matrix.

If we would restrict the model further, by assuming that the Gaussian noise is even isotropic (all diagonal entries
are the same) we would obtain PPCA.

FactorAnalysis performs a maximum likelihood estimate of the so-called loading matrix, the transformation of
the latent variables to the observed ones, using expectation-maximization (EM).

Read more in the User Guide.

Parametersn_components : int | None

Dimensionality of latent space, the number of components of X that are obtained after
transform. If None, n_components is set to the number of features.

tol : float

Stopping tolerance for EM algorithm.

copy : bool

Whether to make a copy of X. If False, the input X gets overwritten during fitting.

max_iter : int

Maximum number of iterations.
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noise_variance_init : None | array, shape=(n_features,)

The initial guess of the noise variance for each feature. If None, it defaults to
np.ones(n_features)

svd_method : {‘lapack’, ‘randomized’}

Which SVD method to use. If ‘lapack’ use standard SVD from scipy.linalg, if ‘ran-
domized’ use fast randomized_svd function. Defaults to ‘randomized’. For most
applications ‘randomized’ will be sufficiently precise while providing significant speed
gains. Accuracy can also be improved by setting higher values for iterated_power. If
this is not sufficient, for maximum precision you should choose ‘lapack’.

iterated_power : int, optional

Number of iterations for the power method. 3 by default. Only used if svd_method
equals ‘randomized’

random_state : int or RandomState

Pseudo number generator state used for random sampling. Only used if svd_method
equals ‘randomized’

Attributescomponents_ : array, [n_components, n_features]

Components with maximum variance.

loglike_ : list, [n_iterations]

The log likelihood at each iteration.

noise_variance_ : array, shape=(n_features,)

The estimated noise variance for each feature.

n_iter_ : int

Number of iterations run.

See also:

PCAPrincipal component analysis is also a latent linear variable model which however assumes equal noise
variance for each feature. This extra assumption makes probabilistic PCA faster as it can be computed in
closed form.

FastICAIndependent component analysis, a latent variable model with non-Gaussian latent variables.

References

Methods

fit(X[, y]) Fit the FactorAnalysis model to X using EM
fit_transform(X[, y]) Fit to data, then transform it.
get_covariance() Compute data covariance with the FactorAnalysis model.
get_params([deep]) Get parameters for this estimator.
get_precision() Compute data precision matrix with the FactorAnalysis model.
score(X[, y]) Compute the average log-likelihood of the samples
score_samples(X) Compute the log-likelihood of each sample
set_params(**params) Set the parameters of this estimator.
transform(X) Apply dimensionality reduction to X using the model.
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__init__(n_components=None, tol=0.01, copy=True, max_iter=1000, noise_variance_init=None,
svd_method=’randomized’, iterated_power=3, random_state=0)

fit(X, y=None)
Fit the FactorAnalysis model to X using EM

ParametersX : array-like, shape (n_samples, n_features)

Training data.

Returnsself :

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_covariance()
Compute data covariance with the FactorAnalysis model.

cov = components_.T * components_ + diag(noise_variance)

Returnscov : array, shape (n_features, n_features)

Estimated covariance of data.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

get_precision()
Compute data precision matrix with the FactorAnalysis model.

Returnsprecision : array, shape (n_features, n_features)

Estimated precision of data.

score(X, y=None)
Compute the average log-likelihood of the samples

ParametersX: array, shape (n_samples, n_features) :

The data

Returnsll: float :

Average log-likelihood of the samples under the current model
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score_samples(X)
Compute the log-likelihood of each sample

ParametersX: array, shape (n_samples, n_features) :

The data

Returnsll: array, shape (n_samples,) :

Log-likelihood of each sample under the current model

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X)
Apply dimensionality reduction to X using the model.

Compute the expected mean of the latent variables. See Barber, 21.2.33 (or Bishop, 12.66).

ParametersX : array-like, shape (n_samples, n_features)

Training data.

ReturnsX_new : array-like, shape (n_samples, n_components)

The latent variables of X.

Examples using sklearn.decomposition.FactorAnalysis

• Model selection with Probabilistic PCA and Factor Analysis (FA)

• Faces dataset decompositions

5.7.7 sklearn.decomposition.FastICA

class sklearn.decomposition.FastICA(n_components=None, algorithm=’parallel’, whiten=True,
fun=’logcosh’, fun_args=None, max_iter=200, tol=0.0001,
w_init=None, random_state=None)

FastICA: a fast algorithm for Independent Component Analysis.

Read more in the User Guide.

Parametersn_components : int, optional

Number of components to use. If none is passed, all are used.

algorithm : {‘parallel’, ‘deflation’}

Apply parallel or deflational algorithm for FastICA.

whiten : boolean, optional

If whiten is false, the data is already considered to be whitened, and no whitening is
performed.

fun : string or function, optional. Default: ‘logcosh’
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The functional form of the G function used in the approximation to neg-entropy. Could
be either ‘logcosh’, ‘exp’, or ‘cube’. You can also provide your own function. It should
return a tuple containing the value of the function, and of its derivative, in the point.
Example:

def my_g(x):return x ** 3, 3 * x ** 2

fun_args : dictionary, optional

Arguments to send to the functional form. If empty and if fun=’logcosh’, fun_args will
take value {‘alpha’ : 1.0}.

max_iter : int, optional

Maximum number of iterations during fit.

tol : float, optional

Tolerance on update at each iteration.

w_init : None of an (n_components, n_components) ndarray

The mixing matrix to be used to initialize the algorithm.

random_state : int or RandomState

Pseudo number generator state used for random sampling.

Attributescomponents_ : 2D array, shape (n_components, n_features)

The unmixing matrix.

mixing_ : array, shape (n_features, n_components)

The mixing matrix.

n_iter_ : int

If the algorithm is “deflation”, n_iter is the maximum number of iterations run across
all components. Else they are just the number of iterations taken to converge.

Notes

Implementation based on A. Hyvarinen and E. Oja, Independent Component Analysis: Algorithms and Appli-
cations, Neural Networks, 13(4-5), 2000, pp. 411-430

Methods

fit(X[, y]) Fit the model to X.
fit_transform(X[, y]) Fit the model and recover the sources from X.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X[, copy]) Transform the sources back to the mixed data (apply mixing matrix).
set_params(**params) Set the parameters of this estimator.
transform(X[, y, copy]) Recover the sources from X (apply the unmixing matrix).

__init__(n_components=None, algorithm=’parallel’, whiten=True, fun=’logcosh’, fun_args=None,
max_iter=200, tol=0.0001, w_init=None, random_state=None)

fit(X, y=None)
Fit the model to X.
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ParametersX : array-like, shape (n_samples, n_features)

Training data, where n_samples is the number of samples and n_features is the number
of features.

Returnsself :

fit_transform(X, y=None)
Fit the model and recover the sources from X.

ParametersX : array-like, shape (n_samples, n_features)

Training data, where n_samples is the number of samples and n_features is the number
of features.

ReturnsX_new : array-like, shape (n_samples, n_components)

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

inverse_transform(X, copy=True)
Transform the sources back to the mixed data (apply mixing matrix).

ParametersX : array-like, shape (n_samples, n_components)

Sources, where n_samples is the number of samples and n_components is the number
of components.

copy : bool (optional)

If False, data passed to fit are overwritten. Defaults to True.

ReturnsX_new : array-like, shape (n_samples, n_features)

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X, y=None, copy=True)
Recover the sources from X (apply the unmixing matrix).

ParametersX : array-like, shape (n_samples, n_features)

Data to transform, where n_samples is the number of samples and n_features is the
number of features.

copy : bool (optional)

If False, data passed to fit are overwritten. Defaults to True.

ReturnsX_new : array-like, shape (n_samples, n_components)
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Examples using sklearn.decomposition.FastICA

• Blind source separation using FastICA

• FastICA on 2D point clouds

• Faces dataset decompositions

5.7.8 sklearn.decomposition.TruncatedSVD

class sklearn.decomposition.TruncatedSVD(n_components=2, algorithm=’randomized’,
n_iter=5, random_state=None, tol=0.0)

Dimensionality reduction using truncated SVD (aka LSA).

This transformer performs linear dimensionality reduction by means of truncated singular value decomposition
(SVD). It is very similar to PCA, but operates on sample vectors directly, instead of on a covariance matrix.
This means it can work with scipy.sparse matrices efficiently.

In particular, truncated SVD works on term count/tf-idf matrices as returned by the vectorizers in
sklearn.feature_extraction.text. In that context, it is known as latent semantic analysis (LSA).

This estimator supports two algorithm: a fast randomized SVD solver, and a “naive” algorithm that uses
ARPACK as an eigensolver on (X * X.T) or (X.T * X), whichever is more efficient.

Read more in the User Guide.

Parametersn_components : int, default = 2

Desired dimensionality of output data. Must be strictly less than the number of features.
The default value is useful for visualisation. For LSA, a value of 100 is recommended.

algorithm : string, default = “randomized”

SVD solver to use. Either “arpack” for the ARPACK wrapper in SciPy
(scipy.sparse.linalg.svds), or “randomized” for the randomized algorithm due to Halko
(2009).

n_iter : int, optional

Number of iterations for randomized SVD solver. Not used by ARPACK.

random_state : int or RandomState, optional

(Seed for) pseudo-random number generator. If not given, the numpy.random singleton
is used.

tol : float, optional

Tolerance for ARPACK. 0 means machine precision. Ignored by randomized SVD
solver.

Attributescomponents_ : array, shape (n_components, n_features)

explained_variance_ratio_ : array, [n_components]

Percentage of variance explained by each of the selected components.

explained_variance_ : array, [n_components]

The variance of the training samples transformed by a projection to each component.

See also:

PCA, RandomizedPCA
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Notes

SVD suffers from a problem called “sign indeterminancy”, which means the sign of the components_ and
the output from transform depend on the algorithm and random state. To work around this, fit instances of this
class to data once, then keep the instance around to do transformations.

References

Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions
Halko, et al., 2009 (arXiv:909) http://arxiv.org/pdf/0909.4061

Examples

>>> from sklearn.decomposition import TruncatedSVD
>>> from sklearn.random_projection import sparse_random_matrix
>>> X = sparse_random_matrix(100, 100, density=0.01, random_state=42)
>>> svd = TruncatedSVD(n_components=5, random_state=42)
>>> svd.fit(X)
TruncatedSVD(algorithm='randomized', n_components=5, n_iter=5,

random_state=42, tol=0.0)
>>> print(svd.explained_variance_ratio_)
[ 0.0782... 0.0552... 0.0544... 0.0499... 0.0413...]
>>> print(svd.explained_variance_ratio_.sum())
0.279...

Methods

fit(X[, y]) Fit LSI model on training data X.
fit_transform(X[, y]) Fit LSI model to X and perform dimensionality reduction on X.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X) Transform X back to its original space.
set_params(**params) Set the parameters of this estimator.
transform(X) Perform dimensionality reduction on X.

__init__(n_components=2, algorithm=’randomized’, n_iter=5, random_state=None, tol=0.0)

fit(X, y=None)
Fit LSI model on training data X.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Training data.

Returnsself : object

Returns the transformer object.

fit_transform(X, y=None)
Fit LSI model to X and perform dimensionality reduction on X.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Training data.

ReturnsX_new : array, shape (n_samples, n_components)

1116 Chapter 5. API Reference



scikit-learn user guide, Release 0.17

Reduced version of X. This will always be a dense array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

inverse_transform(X)
Transform X back to its original space.

Returns an array X_original whose transform would be X.

ParametersX : array-like, shape (n_samples, n_components)

New data.

ReturnsX_original : array, shape (n_samples, n_features)

Note that this is always a dense array.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X)
Perform dimensionality reduction on X.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

New data.

ReturnsX_new : array, shape (n_samples, n_components)

Reduced version of X. This will always be a dense array.

Examples using sklearn.decomposition.TruncatedSVD

• Feature Union with Heterogeneous Data Sources

• Hashing feature transformation using Totally Random Trees

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap...

• Clustering text documents using k-means

5.7.9 sklearn.decomposition.NMF

class sklearn.decomposition.NMF(n_components=None, init=None, solver=’cd’, tol=0.0001,
max_iter=200, random_state=None, alpha=0.0, l1_ratio=0.0,
verbose=0, shuffle=False, nls_max_iter=2000, sparseness=None,
beta=1, eta=0.1)

Non-Negative Matrix Factorization (NMF)
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Find two non-negative matrices (W, H) whose product approximates the non- negative matrix X. This factoriza-
tion can be used for example for dimensionality reduction, source separation or topic extraction.

The objective function is:

0.5 * ||X - WH||_Fro^2
+ alpha * l1_ratio * ||vec(W)||_1
+ alpha * l1_ratio * ||vec(H)||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2
+ 0.5 * alpha * (1 - l1_ratio) * ||H||_Fro^2

Where:

||A||_Fro^2 = \sum_{i,j} A_{ij}^2 (Frobenius norm)
||vec(A)||_1 = \sum_{i,j} abs(A_{ij}) (Elementwise L1 norm)

The objective function is minimized with an alternating minimization of W and H.

Read more in the User Guide.

Parametersn_components : int or None

Number of components, if n_components is not set all features are kept.

init : ‘random’ | ‘nndsvd’ | ‘nndsvda’ | ‘nndsvdar’ | ‘custom’

Method used to initialize the procedure. Default: ‘nndsvdar’ if n_components <
n_features, otherwise random. Valid options:

•‘random’: non-negative random matrices, scaled with:sqrt(X.mean() /
n_components)

•‘nndsvd’: Nonnegative Double Singular Value Decomposition (NNDSVD)
initialization (better for sparseness)

•‘nndsvda’: NNDSVD with zeros filled with the average of X(better when sparsity
is not desired)

•‘nndsvdar’: NNDSVD with zeros filled with small random values(generally
faster, less accurate alternative to NNDSVDa for when sparsity is not desired)

•‘custom’: use custom matrices W and H

solver : ‘pg’ | ‘cd’

Numerical solver to use: ‘pg’ is a Projected Gradient solver (deprecated). ‘cd’ is a
Coordinate Descent solver (recommended).

New in version 0.17: Coordinate Descent solver.

Changed in version 0.17: Deprecated Projected Gradient solver.

tol : double, default: 1e-4

Tolerance value used in stopping conditions.

max_iter : integer, default: 200

Number of iterations to compute.

random_state : integer seed, RandomState instance, or None (default)

Random number generator seed control.

alpha : double, default: 0.
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Constant that multiplies the regularization terms. Set it to zero to have no regularization.

New in version 0.17: alpha used in the Coordinate Descent solver.

l1_ratio : double, default: 0.

The regularization mixing parameter, with 0 <= l1_ratio <= 1. For l1_ratio = 0 the
penalty is an elementwise L2 penalty (aka Frobenius Norm). For l1_ratio = 1 it is an
elementwise L1 penalty. For 0 < l1_ratio < 1, the penalty is a combination of L1 and
L2.

New in version 0.17: Regularization parameter l1_ratio used in the Coordinate Descent
solver.

shuffle : boolean, default: False

If true, randomize the order of coordinates in the CD solver.

New in version 0.17: shuffle parameter used in the Coordinate Descent solver.

nls_max_iter : integer, default: 2000

Number of iterations in NLS subproblem. Used only in the deprecated ‘pg’ solver.

Changed in version 0.17: Deprecated Projected Gradient solver. Use Coordinate De-
scent solver instead.

sparseness : ‘data’ | ‘components’ | None, default: None

Where to enforce sparsity in the model. Used only in the deprecated ‘pg’ solver.

Changed in version 0.17: Deprecated Projected Gradient solver. Use Coordinate De-
scent solver instead.

beta : double, default: 1

Degree of sparseness, if sparseness is not None. Larger values mean more sparseness.
Used only in the deprecated ‘pg’ solver.

Changed in version 0.17: Deprecated Projected Gradient solver. Use Coordinate De-
scent solver instead.

eta : double, default: 0.1

Degree of correctness to maintain, if sparsity is not None. Smaller values mean larger
error. Used only in the deprecated ‘pg’ solver.

Changed in version 0.17: Deprecated Projected Gradient solver. Use Coordinate De-
scent solver instead.

Attributescomponents_ : array, [n_components, n_features]

Non-negative components of the data.

reconstruction_err_ : number

Frobenius norm of the matrix difference between the training data and the reconstructed
data from the fit produced by the model. || X - WH ||_2

n_iter_ : int

Actual number of iterations.
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References

C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007),
2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/

Cichocki, Andrzej, and P. H. A. N. Anh-Huy. “Fast local algorithms for large scale nonnegative matrix and ten-
sor factorizations.” IEICE transactions on fundamentals of electronics, communications and computer sciences
92.3: 708-721, 2009.

Examples

>>> import numpy as np
>>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
>>> from sklearn.decomposition import NMF
>>> model = NMF(n_components=2, init='random', random_state=0)
>>> model.fit(X)
NMF(alpha=0.0, beta=1, eta=0.1, init='random', l1_ratio=0.0, max_iter=200,
n_components=2, nls_max_iter=2000, random_state=0, shuffle=False,
solver='cd', sparseness=None, tol=0.0001, verbose=0)

>>> model.components_
array([[ 2.09783018, 0.30560234],

[ 2.13443044, 2.13171694]])
>>> model.reconstruction_err_
0.00115993...

Methods

fit(X[, y]) Learn a NMF model for the data X.
fit_transform(X[, y, W, H]) Learn a NMF model for the data X and returns the transformed data.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform the data X according to the fitted NMF model

__init__(n_components=None, init=None, solver=’cd’, tol=0.0001, max_iter=200, ran-
dom_state=None, alpha=0.0, l1_ratio=0.0, verbose=0, shuffle=False, nls_max_iter=2000,
sparseness=None, beta=1, eta=0.1)

fit(X, y=None, **params)
Learn a NMF model for the data X.

ParametersX: {array-like, sparse matrix}, shape (n_samples, n_features) :

Data matrix to be decomposed

Returnsself :

Attributescomponents_ : array-like, shape (n_components, n_features)

Factorization matrix, sometimes called ‘dictionary’.

n_iter_ : int

Actual number of iterations for the transform.

fit_transform(X, y=None, W=None, H=None)
Learn a NMF model for the data X and returns the transformed data.
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This is more efficient than calling fit followed by transform.

ParametersX: {array-like, sparse matrix}, shape (n_samples, n_features) :

Data matrix to be decomposed

W : array-like, shape (n_samples, n_components)

If init=’custom’, it is used as initial guess for the solution.

H : array-like, shape (n_components, n_features)

If init=’custom’, it is used as initial guess for the solution.

ReturnsW: array, shape (n_samples, n_components) :

Transformed data.

Attributescomponents_ : array-like, shape (n_components, n_features)

Factorization matrix, sometimes called ‘dictionary’.

n_iter_ : int

Actual number of iterations for the transform.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X)
Transform the data X according to the fitted NMF model

ParametersX: {array-like, sparse matrix}, shape (n_samples, n_features) :

Data matrix to be transformed by the model

ReturnsW: array, shape (n_samples, n_components) :

Transformed data

Attributesn_iter_ : int

Actual number of iterations for the transform.

Examples using sklearn.decomposition.NMF

• Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation

• Faces dataset decompositions
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5.7.10 sklearn.decomposition.SparsePCA

class sklearn.decomposition.SparsePCA(n_components=None, alpha=1, ridge_alpha=0.01,
max_iter=1000, tol=1e-08, method=’lars’, n_jobs=1,
U_init=None, V_init=None, verbose=False, ran-
dom_state=None)

Sparse Principal Components Analysis (SparsePCA)

Finds the set of sparse components that can optimally reconstruct the data. The amount of sparseness is control-
lable by the coefficient of the L1 penalty, given by the parameter alpha.

Read more in the User Guide.

Parametersn_components : int,

Number of sparse atoms to extract.

alpha : float,

Sparsity controlling parameter. Higher values lead to sparser components.

ridge_alpha : float,

Amount of ridge shrinkage to apply in order to improve conditioning when calling the
transform method.

max_iter : int,

Maximum number of iterations to perform.

tol : float,

Tolerance for the stopping condition.

method : {‘lars’, ‘cd’}

lars: uses the least angle regression method to solve the lasso problem (lin-
ear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso so-
lution (linear_model.Lasso). Lars will be faster if the estimated components are sparse.

n_jobs : int,

Number of parallel jobs to run.

U_init : array of shape (n_samples, n_components),

Initial values for the loadings for warm restart scenarios.

V_init : array of shape (n_components, n_features),

Initial values for the components for warm restart scenarios.

verbose : :

Degree of verbosity of the printed output.

random_state : int or RandomState

Pseudo number generator state used for random sampling.

Attributescomponents_ : array, [n_components, n_features]

Sparse components extracted from the data.

error_ : array

Vector of errors at each iteration.

n_iter_ : int
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Number of iterations run.

See also:

PCA, MiniBatchSparsePCA, DictionaryLearning

Methods

fit(X[, y]) Fit the model from data in X.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X[, ridge_alpha]) Least Squares projection of the data onto the sparse components.

__init__(n_components=None, alpha=1, ridge_alpha=0.01, max_iter=1000, tol=1e-08,
method=’lars’, n_jobs=1, U_init=None, V_init=None, verbose=False, ran-
dom_state=None)

fit(X, y=None)
Fit the model from data in X.

ParametersX: array-like, shape (n_samples, n_features) :

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

Returnsself : object

Returns the instance itself.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.
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The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X, ridge_alpha=None)
Least Squares projection of the data onto the sparse components.

To avoid instability issues in case the system is under-determined, regularization can be applied (Ridge
regression) via the ridge_alpha parameter.

Note that Sparse PCA components orthogonality is not enforced as in PCA hence one cannot use a simple
linear projection.

ParametersX: array of shape (n_samples, n_features) :

Test data to be transformed, must have the same number of features as the data used to
train the model.

ridge_alpha: float, default: 0.01 :

Amount of ridge shrinkage to apply in order to improve conditioning.

ReturnsX_new array, shape (n_samples, n_components) :

Transformed data.

5.7.11 sklearn.decomposition.MiniBatchSparsePCA

class sklearn.decomposition.MiniBatchSparsePCA(n_components=None, alpha=1,
ridge_alpha=0.01, n_iter=100, call-
back=None, batch_size=3, verbose=False,
shuffle=True, n_jobs=1, method=’lars’,
random_state=None)

Mini-batch Sparse Principal Components Analysis

Finds the set of sparse components that can optimally reconstruct the data. The amount of sparseness is control-
lable by the coefficient of the L1 penalty, given by the parameter alpha.

Read more in the User Guide.

Parametersn_components : int,

number of sparse atoms to extract

alpha : int,

Sparsity controlling parameter. Higher values lead to sparser components.

ridge_alpha : float,

Amount of ridge shrinkage to apply in order to improve conditioning when calling the
transform method.

n_iter : int,

number of iterations to perform for each mini batch

callback : callable,

callable that gets invoked every five iterations

batch_size : int,
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the number of features to take in each mini batch

verbose : :

degree of output the procedure will print

shuffle : boolean,

whether to shuffle the data before splitting it in batches

n_jobs : int,

number of parallel jobs to run, or -1 to autodetect.

method : {‘lars’, ‘cd’}

lars: uses the least angle regression method to solve the lasso problem (lin-
ear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso so-
lution (linear_model.Lasso). Lars will be faster if the estimated components are sparse.

random_state : int or RandomState

Pseudo number generator state used for random sampling.

Attributescomponents_ : array, [n_components, n_features]

Sparse components extracted from the data.

error_ : array

Vector of errors at each iteration.

n_iter_ : int

Number of iterations run.

See also:

PCA, SparsePCA, DictionaryLearning

Methods

fit(X[, y]) Fit the model from data in X.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X[, ridge_alpha]) Least Squares projection of the data onto the sparse components.

__init__(n_components=None, alpha=1, ridge_alpha=0.01, n_iter=100, callback=None,
batch_size=3, verbose=False, shuffle=True, n_jobs=1, method=’lars’, ran-
dom_state=None)

fit(X, y=None)
Fit the model from data in X.

ParametersX: array-like, shape (n_samples, n_features) :

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

Returnsself : object

Returns the instance itself.
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fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X, ridge_alpha=None)
Least Squares projection of the data onto the sparse components.

To avoid instability issues in case the system is under-determined, regularization can be applied (Ridge
regression) via the ridge_alpha parameter.

Note that Sparse PCA components orthogonality is not enforced as in PCA hence one cannot use a simple
linear projection.

ParametersX: array of shape (n_samples, n_features) :

Test data to be transformed, must have the same number of features as the data used to
train the model.

ridge_alpha: float, default: 0.01 :

Amount of ridge shrinkage to apply in order to improve conditioning.

ReturnsX_new array, shape (n_samples, n_components) :

Transformed data.

Examples using sklearn.decomposition.MiniBatchSparsePCA

• Faces dataset decompositions
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5.7.12 sklearn.decomposition.SparseCoder

class sklearn.decomposition.SparseCoder(dictionary, transform_algorithm=’omp’,
transform_n_nonzero_coefs=None, trans-
form_alpha=None, split_sign=False, n_jobs=1)

Sparse coding

Finds a sparse representation of data against a fixed, precomputed dictionary.

Each row of the result is the solution to a sparse coding problem. The goal is to find a sparse array code such
that:

X ~= code * dictionary

Read more in the User Guide.

Parametersdictionary : array, [n_components, n_features]

The dictionary atoms used for sparse coding. Lines are assumed to be normalized to
unit norm.

transform_algorithm : {‘lasso_lars’, ‘lasso_cd’, ‘lars’, ‘omp’, ‘threshold’}

Algorithm used to transform the data: lars: uses the least angle regression method (lin-
ear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses
the coordinate descent method to compute the Lasso solution (linear_model.Lasso).
lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal
matching pursuit to estimate the sparse solution threshold: squashes to zero all coeffi-
cients less than alpha from the projection dictionary * X’

transform_n_nonzero_coefs : int, 0.1 * n_features by default

Number of nonzero coefficients to target in each column of the solution. This is only
used by algorithm=’lars’ and algorithm=’omp’ and is overridden by alpha in the omp
case.

transform_alpha : float, 1. by default

If algorithm=’lasso_lars’ or algorithm=’lasso_cd’, alpha is the penalty applied to the
L1 norm. If algorithm=’threshold’, alpha is the absolute value of the threshold below
which coefficients will be squashed to zero. If algorithm=’omp’, alpha is the toler-
ance parameter: the value of the reconstruction error targeted. In this case, it overrides
n_nonzero_coefs.

split_sign : bool, False by default

Whether to split the sparse feature vector into the concatenation of its negative part and
its positive part. This can improve the performance of downstream classifiers.

n_jobs : int,

number of parallel jobs to run

Attributescomponents_ : array, [n_components, n_features]

The unchanged dictionary atoms

See also:

DictionaryLearning, MiniBatchDictionaryLearning, SparsePCA,
MiniBatchSparsePCA, sparse_encode
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Methods

fit(X[, y]) Do nothing and return the estimator unchanged
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X[, y]) Encode the data as a sparse combination of the dictionary atoms.

__init__(dictionary, transform_algorithm=’omp’, transform_n_nonzero_coefs=None, trans-
form_alpha=None, split_sign=False, n_jobs=1)

fit(X, y=None)
Do nothing and return the estimator unchanged

This method is just there to implement the usual API and hence work in pipelines.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X, y=None)
Encode the data as a sparse combination of the dictionary atoms.

Coding method is determined by the object parameter transform_algorithm.

ParametersX : array of shape (n_samples, n_features)

Test data to be transformed, must have the same number of features as the data used to
train the model.
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ReturnsX_new : array, shape (n_samples, n_components)

Transformed data

Examples using sklearn.decomposition.SparseCoder

• Sparse coding with a precomputed dictionary

5.7.13 sklearn.decomposition.DictionaryLearning

class sklearn.decomposition.DictionaryLearning(n_components=None, alpha=1,
max_iter=1000, tol=1e-08,
fit_algorithm=’lars’, trans-
form_algorithm=’omp’, trans-
form_n_nonzero_coefs=None, trans-
form_alpha=None, n_jobs=1,
code_init=None, dict_init=None, ver-
bose=False, split_sign=False, ran-
dom_state=None)

Dictionary learning

Finds a dictionary (a set of atoms) that can best be used to represent data using a sparse code.

Solves the optimization problem:

(U^*,V^*) = argmin 0.5 || Y - U V ||_2^2 + alpha * || U ||_1
(U,V)
with || V_k ||_2 = 1 for all 0 <= k < n_components

Read more in the User Guide.

Parametersn_components : int,

number of dictionary elements to extract

alpha : float,

sparsity controlling parameter

max_iter : int,

maximum number of iterations to perform

tol : float,

tolerance for numerical error

fit_algorithm : {‘lars’, ‘cd’}

lars: uses the least angle regression method to solve the lasso problem (lin-
ear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso so-
lution (linear_model.Lasso). Lars will be faster if the estimated components are sparse.

New in version 0.17: cd coordinate descent method to improve speed.

transform_algorithm : {‘lasso_lars’, ‘lasso_cd’, ‘lars’, ‘omp’, ‘threshold’}

Algorithm used to transform the data lars: uses the least angle regression method (lin-
ear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses
the coordinate descent method to compute the Lasso solution (linear_model.Lasso).
lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal
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matching pursuit to estimate the sparse solution threshold: squashes to zero all coeffi-
cients less than alpha from the projection dictionary * X’

New in version 0.17: lasso_cd coordinate descent method to improve speed.

transform_n_nonzero_coefs : int, 0.1 * n_features by default

Number of nonzero coefficients to target in each column of the solution. This is only
used by algorithm=’lars’ and algorithm=’omp’ and is overridden by alpha in the omp
case.

transform_alpha : float, 1. by default

If algorithm=’lasso_lars’ or algorithm=’lasso_cd’, alpha is the penalty applied to the
L1 norm. If algorithm=’threshold’, alpha is the absolute value of the threshold below
which coefficients will be squashed to zero. If algorithm=’omp’, alpha is the toler-
ance parameter: the value of the reconstruction error targeted. In this case, it overrides
n_nonzero_coefs.

split_sign : bool, False by default

Whether to split the sparse feature vector into the concatenation of its negative part and
its positive part. This can improve the performance of downstream classifiers.

n_jobs : int,

number of parallel jobs to run

code_init : array of shape (n_samples, n_components),

initial value for the code, for warm restart

dict_init : array of shape (n_components, n_features),

initial values for the dictionary, for warm restart

verbose : :

degree of verbosity of the printed output

random_state : int or RandomState

Pseudo number generator state used for random sampling.

Attributescomponents_ : array, [n_components, n_features]

dictionary atoms extracted from the data

error_ : array

vector of errors at each iteration

n_iter_ : int

Number of iterations run.

See also:

SparseCoder, MiniBatchDictionaryLearning, SparsePCA, MiniBatchSparsePCA

Notes

References:

J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning for sparse coding
(http://www.di.ens.fr/sierra/pdfs/icml09.pdf)
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Methods

fit(X[, y]) Fit the model from data in X.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X[, y]) Encode the data as a sparse combination of the dictionary atoms.

__init__(n_components=None, alpha=1, max_iter=1000, tol=1e-08, fit_algorithm=’lars’, trans-
form_algorithm=’omp’, transform_n_nonzero_coefs=None, transform_alpha=None,
n_jobs=1, code_init=None, dict_init=None, verbose=False, split_sign=False, ran-
dom_state=None)

fit(X, y=None)
Fit the model from data in X.

ParametersX: array-like, shape (n_samples, n_features) :

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

Returnsself: object :

Returns the object itself

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :
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transform(X, y=None)
Encode the data as a sparse combination of the dictionary atoms.

Coding method is determined by the object parameter transform_algorithm.

ParametersX : array of shape (n_samples, n_features)

Test data to be transformed, must have the same number of features as the data used to
train the model.

ReturnsX_new : array, shape (n_samples, n_components)

Transformed data

5.7.14 sklearn.decomposition.MiniBatchDictionaryLearning

class sklearn.decomposition.MiniBatchDictionaryLearning(n_components=None, al-
pha=1, n_iter=1000,
fit_algorithm=’lars’,
n_jobs=1, batch_size=3,
shuffle=True,
dict_init=None, trans-
form_algorithm=’omp’, trans-
form_n_nonzero_coefs=None,
transform_alpha=None, ver-
bose=False, split_sign=False,
random_state=None)

Mini-batch dictionary learning

Finds a dictionary (a set of atoms) that can best be used to represent data using a sparse code.

Solves the optimization problem:

(U^*,V^*) = argmin 0.5 || Y - U V ||_2^2 + alpha * || U ||_1
(U,V)
with || V_k ||_2 = 1 for all 0 <= k < n_components

Read more in the User Guide.

Parametersn_components : int,

number of dictionary elements to extract

alpha : float,

sparsity controlling parameter

n_iter : int,

total number of iterations to perform

fit_algorithm : {‘lars’, ‘cd’}

lars: uses the least angle regression method to solve the lasso problem (lin-
ear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso so-
lution (linear_model.Lasso). Lars will be faster if the estimated components are sparse.

transform_algorithm : {‘lasso_lars’, ‘lasso_cd’, ‘lars’, ‘omp’, ‘threshold’}

Algorithm used to transform the data. lars: uses the least angle regression method (lin-
ear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses
the coordinate descent method to compute the Lasso solution (linear_model.Lasso).
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lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal
matching pursuit to estimate the sparse solution threshold: squashes to zero all coeffi-
cients less than alpha from the projection dictionary * X’

transform_n_nonzero_coefs : int, 0.1 * n_features by default

Number of nonzero coefficients to target in each column of the solution. This is only
used by algorithm=’lars’ and algorithm=’omp’ and is overridden by alpha in the omp
case.

transform_alpha : float, 1. by default

If algorithm=’lasso_lars’ or algorithm=’lasso_cd’, alpha is the penalty applied to the
L1 norm. If algorithm=’threshold’, alpha is the absolute value of the threshold below
which coefficients will be squashed to zero. If algorithm=’omp’, alpha is the toler-
ance parameter: the value of the reconstruction error targeted. In this case, it overrides
n_nonzero_coefs.

split_sign : bool, False by default

Whether to split the sparse feature vector into the concatenation of its negative part and
its positive part. This can improve the performance of downstream classifiers.

n_jobs : int,

number of parallel jobs to run

dict_init : array of shape (n_components, n_features),

initial value of the dictionary for warm restart scenarios

verbose : :

degree of verbosity of the printed output

batch_size : int,

number of samples in each mini-batch

shuffle : bool,

whether to shuffle the samples before forming batches

random_state : int or RandomState

Pseudo number generator state used for random sampling.

Attributescomponents_ : array, [n_components, n_features]

components extracted from the data

inner_stats_ : tuple of (A, B) ndarrays

Internal sufficient statistics that are kept by the algorithm. Keeping them is useful in
online settings, to avoid loosing the history of the evolution, but they shouldn’t have
any use for the end user. A (n_components, n_components) is the dictionary covariance
matrix. B (n_features, n_components) is the data approximation matrix

n_iter_ : int

Number of iterations run.

See also:

SparseCoder, DictionaryLearning, SparsePCA, MiniBatchSparsePCA
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Notes

References:

J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning for sparse coding
(http://www.di.ens.fr/sierra/pdfs/icml09.pdf)

Methods

fit(X[, y]) Fit the model from data in X.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
partial_fit(X[, y, iter_offset]) Updates the model using the data in X as a mini-batch.
set_params(**params) Set the parameters of this estimator.
transform(X[, y]) Encode the data as a sparse combination of the dictionary atoms.

__init__(n_components=None, alpha=1, n_iter=1000, fit_algorithm=’lars’, n_jobs=1,
batch_size=3, shuffle=True, dict_init=None, transform_algorithm=’omp’, trans-
form_n_nonzero_coefs=None, transform_alpha=None, verbose=False, split_sign=False,
random_state=None)

fit(X, y=None)
Fit the model from data in X.

ParametersX: array-like, shape (n_samples, n_features) :

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

Returnsself : object

Returns the instance itself.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.
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partial_fit(X, y=None, iter_offset=None)
Updates the model using the data in X as a mini-batch.

ParametersX: array-like, shape (n_samples, n_features) :

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

iter_offset: integer, optional :

The number of iteration on data batches that has been performed before this call to
partial_fit. This is optional: if no number is passed, the memory of the object is used.

Returnsself : object

Returns the instance itself.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X, y=None)
Encode the data as a sparse combination of the dictionary atoms.

Coding method is determined by the object parameter transform_algorithm.

ParametersX : array of shape (n_samples, n_features)

Test data to be transformed, must have the same number of features as the data used to
train the model.

ReturnsX_new : array, shape (n_samples, n_components)

Transformed data

Examples using sklearn.decomposition.MiniBatchDictionaryLearning

• Faces dataset decompositions

• Image denoising using dictionary learning
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5.7.15 sklearn.decomposition.LatentDirichletAllocation

class sklearn.decomposition.LatentDirichletAllocation(n_topics=10,
doc_topic_prior=None,
topic_word_prior=None,
learning_method=’online’,
learning_decay=0.7,
learning_offset=10.0,
max_iter=10, batch_size=128,
evaluate_every=-1, to-
tal_samples=1000000.0,
perp_tol=0.1,
mean_change_tol=0.001,
max_doc_update_iter=100,
n_jobs=1, verbose=0, ran-
dom_state=None)

Latent Dirichlet Allocation with online variational Bayes algorithm

New in version 0.17.

Parametersn_topics : int, optional (default=10)

Number of topics.

doc_topic_prior : float, optional (default=None)

Prior of document topic distribution theta. If the value is None, defaults to 1 / n_topics.
In the literature, this is called alpha.

topic_word_prior : float, optional (default=None)

Prior of topic word distribution beta. If the value is None, defaults to 1 / n_topics. In
the literature, this is called eta.

learning_method : ‘batch’ | ‘online’, default=’online’

Method used to update _component. Only used in fit method. In general, if the data size
is large, the online update will be much faster than the batch update. Valid options:

'batch': Batch variational Bayes method. Use all training data in
each EM update.
Old `components_` will be overwritten in each iteration.

'online': Online variational Bayes method. In each EM update, use
mini-batch of training data to update the ``components_``
variable incrementally. The learning rate is controlled by the
``learning_decay`` and the ``learning_offset`` parameters.

learning_decay : float, optional (default=0.7)

It is a parameter that control learning rate in the online learning method. The value
should be set between (0.5, 1.0] to guarantee asymptotic convergence. When the value
is 0.0 and batch_size is n_samples, the update method is same as batch learning. In
the literature, this is called kappa.

learning_offset : float, optional (default=10.)

A (positive) parameter that downweights early iterations in online learning. It should
be greater than 1.0. In the literature, this is called tau_0.

max_iter : integer, optional (default=10)

The maximum number of iterations.
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total_samples : int, optional (default=1e6)

Total number of documents. Only used in the partial_fit method.

batch_size : int, optional (default=128)

Number of documents to use in each EM iteration. Only used in online learning.

evaluate_every : int optional (default=0)

How often to evaluate perplexity. Only used in fit method. set it to 0 or and nega-
tive number to not evalute perplexity in training at all. Evaluating perplexity can help
you check convergence in training process, but it will also increase total training time.
Evaluating perplexity in every iteration might increase training time up to two-fold.

perp_tol : float, optional (default=1e-1)

Perplexity tolerance in batch learning. Only used when evaluate_every is greater
than 0.

mean_change_tol : float, optional (default=1e-3)

Stopping tolerance for updating document topic distribution in E-step.

max_doc_update_iter : int (default=100)

Max number of iterations for updating document topic distribution in the E-step.

n_jobs : int, optional (default=1)

The number of jobs to use in the E-step. If -1, all CPUs are used. For n_jobs below
-1, (n_cpus + 1 + n_jobs) are used.

verbose : int, optional (default=0)

Verbosity level.

random_state : int or RandomState instance or None, optional (default=None)

Pseudo-random number generator seed control.

Attributescomponents_ : array, [n_topics, n_features]

Topic word distribution. components_[i, j] represents word j in topic i. In the
literature, this is called lambda.

n_batch_iter_ : int

Number of iterations of the EM step.

n_iter_ : int

Number of passes over the dataset.

References

[1] “Online Learning for Latent Dirichlet Allocation”, Matthew D. Hoffman,David M. Blei, Francis Bach,
2010

[2] “Stochastic Variational Inference”, Matthew D. Hoffman, David M. Blei,Chong Wang, John Paisley,
2013

[3] Matthew D. Hoffman’s onlineldavb code. Link:http://www.cs.princeton.edu/~mdhoffma/code/onlineldavb.tar
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Methods

fit(X[, y]) Learn model for the data X with variational Bayes method.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
partial_fit(X[, y]) Online VB with Mini-Batch update.
perplexity(X[, doc_topic_distr, sub_sampling]) Calculate approximate perplexity for data X.
score(X[, y]) Calculate approximate log-likelihood as score.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform data X according to the fitted model.

__init__(n_topics=10, doc_topic_prior=None, topic_word_prior=None, learning_method=’online’,
learning_decay=0.7, learning_offset=10.0, max_iter=10, batch_size=128,
evaluate_every=-1, total_samples=1000000.0, perp_tol=0.1, mean_change_tol=0.001,
max_doc_update_iter=100, n_jobs=1, verbose=0, random_state=None)

fit(X, y=None)
Learn model for the data X with variational Bayes method.

When learning_method is ‘online’, use mini-batch update. Otherwise, use batch update.

ParametersX : array-like or sparse matrix, shape=(n_samples, n_features)

Document word matrix.

Returnsself :

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

partial_fit(X, y=None)
Online VB with Mini-Batch update.

ParametersX : array-like or sparse matrix, shape=(n_samples, n_features)

Document word matrix.
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Returnsself :

perplexity(X, doc_topic_distr=None, sub_sampling=False)
Calculate approximate perplexity for data X.

Perplexity is defined as exp(-1. * log-likelihood per word)

ParametersX : array-like or sparse matrix, [n_samples, n_features]

Document word matrix.

doc_topic_distr : None or array, shape=(n_samples, n_topics)

Document topic distribution. If it is None, it will be generated by applying transform
on X.

Returnsscore : float

Perplexity score.

score(X, y=None)
Calculate approximate log-likelihood as score.

ParametersX : array-like or sparse matrix, shape=(n_samples, n_features)

Document word matrix.

Returnsscore : float

Use approximate bound as score.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X)
Transform data X according to the fitted model.

ParametersX : array-like or sparse matrix, shape=(n_samples, n_features)

Document word matrix.

Returnsdoc_topic_distr : shape=(n_samples, n_topics)

Document topic distribution for X.

Examples using sklearn.decomposition.LatentDirichletAllocation

• Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation

decomposition.fastica(X[, n_components, ...]) Perform Fast Independent Component Analysis.
decomposition.dict_learning(X, n_components, ...) Solves a dictionary learning matrix factorization problem.
decomposition.dict_learning_online(X[, ...]) Solves a dictionary learning matrix factorization problem online.
decomposition.sparse_encode(X, dictionary[, ...]) Sparse coding
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5.7.16 sklearn.decomposition.fastica

sklearn.decomposition.fastica(X, n_components=None, algorithm=’parallel’, whiten=True,
fun=’logcosh’, fun_args=None, max_iter=200, tol=0.0001,
w_init=None, random_state=None, return_X_mean=False,
compute_sources=True, return_n_iter=False)

Perform Fast Independent Component Analysis.

Read more in the User Guide.

ParametersX : array-like, shape (n_samples, n_features)

Training vector, where n_samples is the number of samples and n_features is the number
of features.

n_components : int, optional

Number of components to extract. If None no dimension reduction is performed.

algorithm : {‘parallel’, ‘deflation’}, optional

Apply a parallel or deflational FASTICA algorithm.

whiten : boolean, optional

If True perform an initial whitening of the data. If False, the data is assumed to have
already been preprocessed: it should be centered, normed and white. Otherwise you
will get incorrect results. In this case the parameter n_components will be ignored.

fun : string or function, optional. Default: ‘logcosh’

The functional form of the G function used in the approximation to neg-entropy. Could
be either ‘logcosh’, ‘exp’, or ‘cube’. You can also provide your own function. It should
return a tuple containing the value of the function, and of its derivative, in the point.
Example:

def my_g(x):return x ** 3, 3 * x ** 2

fun_args : dictionary, optional

Arguments to send to the functional form. If empty or None and if fun=’logcosh’,
fun_args will take value {‘alpha’ : 1.0}

max_iter : int, optional

Maximum number of iterations to perform.

tol: float, optional :

A positive scalar giving the tolerance at which the un-mixing matrix is considered to
have converged.

w_init : (n_components, n_components) array, optional

Initial un-mixing array of dimension (n.comp,n.comp). If None (default) then an array
of normal r.v.’s is used.

random_state : int or RandomState

Pseudo number generator state used for random sampling.

return_X_mean : bool, optional

If True, X_mean is returned too.

compute_sources : bool, optional
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If False, sources are not computed, but only the rotation matrix. This can save memory
when working with big data. Defaults to True.

return_n_iter : bool, optional

Whether or not to return the number of iterations.

ReturnsK : array, shape (n_components, n_features) | None.

If whiten is ‘True’, K is the pre-whitening matrix that projects data onto the first
n_components principal components. If whiten is ‘False’, K is ‘None’.

W : array, shape (n_components, n_components)

Estimated un-mixing matrix. The mixing matrix can be obtained by:

w = np.dot(W, K.T)
A = w.T * (w * w.T).I

S : array, shape (n_samples, n_components) | None

Estimated source matrix

X_mean : array, shape (n_features, )

The mean over features. Returned only if return_X_mean is True.

n_iter : int

If the algorithm is “deflation”, n_iter is the maximum number of iterations run across
all components. Else they are just the number of iterations taken to converge. This is
returned only when return_n_iter is set to True.

Notes

The data matrix X is considered to be a linear combination of non-Gaussian (independent) components i.e. X
= AS where columns of S contain the independent components and A is a linear mixing matrix. In short ICA
attempts to un-mix’ the data by estimating an un-mixing matrix W where ‘‘S = W K X.‘

This implementation was originally made for data of shape [n_features, n_samples]. Now the input is transposed
before the algorithm is applied. This makes it slightly faster for Fortran-ordered input.

Implemented using FastICA: A. Hyvarinen and E. Oja, Independent Component Analysis: Algorithms and
Applications, Neural Networks, 13(4-5), 2000, pp. 411-430

5.7.17 sklearn.decomposition.dict_learning

sklearn.decomposition.dict_learning(X, n_components, alpha, max_iter=100, tol=1e-
08, method=’lars’, n_jobs=1, dict_init=None,
code_init=None, callback=None, verbose=False,
random_state=None, return_n_iter=False)

Solves a dictionary learning matrix factorization problem.

Finds the best dictionary and the corresponding sparse code for approximating the data matrix X by solving:

(U^*, V^*) = argmin 0.5 || X - U V ||_2^2 + alpha * || U ||_1
(U,V)

with || V_k ||_2 = 1 for all 0 <= k < n_components
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where V is the dictionary and U is the sparse code.

Read more in the User Guide.

ParametersX: array of shape (n_samples, n_features) :

Data matrix.

n_components: int, :

Number of dictionary atoms to extract.

alpha: int, :

Sparsity controlling parameter.

max_iter: int, :

Maximum number of iterations to perform.

tol: float, :

Tolerance for the stopping condition.

method: {‘lars’, ‘cd’} :

lars: uses the least angle regression method to solve the lasso problem (lin-
ear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso so-
lution (linear_model.Lasso). Lars will be faster if the estimated components are sparse.

n_jobs: int, :

Number of parallel jobs to run, or -1 to autodetect.

dict_init: array of shape (n_components, n_features), :

Initial value for the dictionary for warm restart scenarios.

code_init: array of shape (n_samples, n_components), :

Initial value for the sparse code for warm restart scenarios.

callback: :

Callable that gets invoked every five iterations.

verbose: :

Degree of output the procedure will print.

random_state: int or RandomState :

Pseudo number generator state used for random sampling.

return_n_iter : bool

Whether or not to return the number of iterations.

Returnscode: array of shape (n_samples, n_components) :

The sparse code factor in the matrix factorization.

dictionary: array of shape (n_components, n_features), :

The dictionary factor in the matrix factorization.

errors: array :

Vector of errors at each iteration.

n_iter : int
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Number of iterations run. Returned only if return_n_iter is set to True.

See also:

dict_learning_online, DictionaryLearning, MiniBatchDictionaryLearning,
SparsePCA, MiniBatchSparsePCA

5.7.18 sklearn.decomposition.dict_learning_online

sklearn.decomposition.dict_learning_online(X, n_components=2, alpha=1, n_iter=100,
return_code=True, dict_init=None, call-
back=None, batch_size=3, verbose=False,
shuffle=True, n_jobs=1, method=’lars’,
iter_offset=0, random_state=None, re-
turn_inner_stats=False, inner_stats=None,
return_n_iter=False)

Solves a dictionary learning matrix factorization problem online.

Finds the best dictionary and the corresponding sparse code for approximating the data matrix X by solving:

(U^*, V^*) = argmin 0.5 || X - U V ||_2^2 + alpha * || U ||_1
(U,V)
with || V_k ||_2 = 1 for all 0 <= k < n_components

where V is the dictionary and U is the sparse code. This is accomplished by repeatedly iterating over mini-
batches by slicing the input data.

Read more in the User Guide.

ParametersX: array of shape (n_samples, n_features) :

Data matrix.

n_components : int,

Number of dictionary atoms to extract.

alpha : float,

Sparsity controlling parameter.

n_iter : int,

Number of iterations to perform.

return_code : boolean,

Whether to also return the code U or just the dictionary V.

dict_init : array of shape (n_components, n_features),

Initial value for the dictionary for warm restart scenarios.

callback : :

Callable that gets invoked every five iterations.

batch_size : int,

The number of samples to take in each batch.

verbose : :

Degree of output the procedure will print.
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shuffle : boolean,

Whether to shuffle the data before splitting it in batches.

n_jobs : int,

Number of parallel jobs to run, or -1 to autodetect.

method : {‘lars’, ‘cd’}

lars: uses the least angle regression method to solve the lasso problem (lin-
ear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso so-
lution (linear_model.Lasso). Lars will be faster if the estimated components are sparse.

iter_offset : int, default 0

Number of previous iterations completed on the dictionary used for initialization.

random_state : int or RandomState

Pseudo number generator state used for random sampling.

return_inner_stats : boolean, optional

Return the inner statistics A (dictionary covariance) and B (data approximation). Useful
to restart the algorithm in an online setting. If return_inner_stats is True, return_code is
ignored

inner_stats : tuple of (A, B) ndarrays

Inner sufficient statistics that are kept by the algorithm. Passing them at initialization is
useful in online settings, to avoid loosing the history of the evolution. A (n_components,
n_components) is the dictionary covariance matrix. B (n_features, n_components) is the
data approximation matrix

return_n_iter : bool

Whether or not to return the number of iterations.

Returnscode : array of shape (n_samples, n_components),

the sparse code (only returned if return_code=True)

dictionary : array of shape (n_components, n_features),

the solutions to the dictionary learning problem

n_iter : int

Number of iterations run. Returned only if return_n_iter is set to True.

See also:

dict_learning, DictionaryLearning, MiniBatchDictionaryLearning, SparsePCA,
MiniBatchSparsePCA

5.7.19 sklearn.decomposition.sparse_encode

sklearn.decomposition.sparse_encode(X, dictionary, gram=None, cov=None, algo-
rithm=’lasso_lars’, n_nonzero_coefs=None, al-
pha=None, copy_cov=True, init=None, max_iter=1000,
n_jobs=1, check_input=True, verbose=0)

Sparse coding
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Each row of the result is the solution to a sparse coding problem. The goal is to find a sparse array code such
that:

X ~= code * dictionary

Read more in the User Guide.

ParametersX: array of shape (n_samples, n_features) :

Data matrix

dictionary: array of shape (n_components, n_features) :

The dictionary matrix against which to solve the sparse coding of the data. Some of the
algorithms assume normalized rows for meaningful output.

gram: array, shape=(n_components, n_components) :

Precomputed Gram matrix, dictionary * dictionary’

cov: array, shape=(n_components, n_samples) :

Precomputed covariance, dictionary’ * X

algorithm: {‘lasso_lars’, ‘lasso_cd’, ‘lars’, ‘omp’, ‘threshold’} :

lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses
Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to
compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the es-
timated components are sparse. omp: uses orthogonal matching pursuit to estimate
the sparse solution threshold: squashes to zero all coefficients less than alpha from the
projection dictionary * X’

n_nonzero_coefs: int, 0.1 * n_features by default :

Number of nonzero coefficients to target in each column of the solution. This is only
used by algorithm=’lars’ and algorithm=’omp’ and is overridden by alpha in the omp
case.

alpha: float, 1. by default :

If algorithm=’lasso_lars’ or algorithm=’lasso_cd’, alpha is the penalty applied to the
L1 norm. If algorithm=’threhold’, alpha is the absolute value of the threshold below
which coefficients will be squashed to zero. If algorithm=’omp’, alpha is the toler-
ance parameter: the value of the reconstruction error targeted. In this case, it overrides
n_nonzero_coefs.

init: array of shape (n_samples, n_components) :

Initialization value of the sparse codes. Only used if algorithm=’lasso_cd’.

max_iter: int, 1000 by default :

Maximum number of iterations to perform if algorithm=’lasso_cd’.

copy_cov: boolean, optional :

Whether to copy the precomputed covariance matrix; if False, it may be overwritten.

n_jobs: int, optional :

Number of parallel jobs to run.

check_input: boolean, optional :

If False, the input arrays X and dictionary will not be checked.
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verbose : int, optional

Controls the verbosity; the higher, the more messages. Defaults to 0.

Returnscode: array of shape (n_samples, n_components) :

The sparse codes

See also:

sklearn.linear_model.lars_path, sklearn.linear_model.orthogonal_mp,
sklearn.linear_model.Lasso, SparseCoder

5.8 sklearn.dummy: Dummy estimators

User guide: See the Model evaluation: quantifying the quality of predictions section for further details.

dummy.DummyClassifier([strategy, ...]) DummyClassifier is a classifier that makes predictions using simple rules.
dummy.DummyRegressor([strategy, constant, ...]) DummyRegressor is a regressor that makes predictions using simple rules.

5.8.1 sklearn.dummy.DummyClassifier

class sklearn.dummy.DummyClassifier(strategy=’stratified’, random_state=None, constant=None)
DummyClassifier is a classifier that makes predictions using simple rules.

This classifier is useful as a simple baseline to compare with other (real) classifiers. Do not use it for real
problems.

Read more in the User Guide.

Parametersstrategy : str

Strategy to use to generate predictions.

•“stratified”: generates predictions by respecting the training set’s class distribution.

•“most_frequent”: always predicts the most frequent label in the training set.

•“prior”: always predicts the class that maximizes the class prior (like
“most_frequent”) and predict_proba returns the class prior.

•“uniform”: generates predictions uniformly at random.

•“constant”: always predicts a constant label that is provided by the user. This is useful
for metrics that evaluate a non-majority class

New in version 0.17: Dummy Classifier now supports prior fitting strategy using
parameter prior.

random_state : int seed, RandomState instance, or None (default)

The seed of the pseudo random number generator to use.

constant : int or str or array of shape = [n_outputs]

The explicit constant as predicted by the “constant” strategy. This parameter is useful
only for the “constant” strategy.

Attributesclasses_ : array or list of array of shape = [n_classes]

Class labels for each output.
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n_classes_ : array or list of array of shape = [n_classes]

Number of label for each output.

class_prior_ : array or list of array of shape = [n_classes]

Probability of each class for each output.

n_outputs_ : int,

Number of outputs.

outputs_2d_ : bool,

True if the output at fit is 2d, else false.

sparse_output_ : bool,

True if the array returned from predict is to be in sparse CSC format. Is automatically
set to True if the input y is passed in sparse format.

Methods

fit(X, y[, sample_weight]) Fit the random classifier.
get_params([deep]) Get parameters for this estimator.
predict(X) Perform classification on test vectors X.
predict_log_proba(X) Return log probability estimates for the test vectors X.
predict_proba(X) Return probability estimates for the test vectors X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.

__init__(strategy=’stratified’, random_state=None, constant=None)

fit(X, y, sample_weight=None)
Fit the random classifier.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples] or [n_samples, n_outputs]

Target values.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returnsself : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any
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Parameter names mapped to their values.

predict(X)
Perform classification on test vectors X.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Input vectors, where n_samples is the number of samples and n_features is the number
of features.

Returnsy : array, shape = [n_samples] or [n_samples, n_outputs]

Predicted target values for X.

predict_log_proba(X)
Return log probability estimates for the test vectors X.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Input vectors, where n_samples is the number of samples and n_features is the number
of features.

ReturnsP : array-like or list of array-like of shape = [n_samples, n_classes]

Returns the log probability of the sample for each class in the model, where classes are
ordered arithmetically for each output.

predict_proba(X)
Return probability estimates for the test vectors X.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Input vectors, where n_samples is the number of samples and n_features is the number
of features.

ReturnsP : array-like or list of array-lke of shape = [n_samples, n_classes]

Returns the probability of the sample for each class in the model, where classes are
ordered arithmetically, for each output.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.
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The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

5.8.2 sklearn.dummy.DummyRegressor

class sklearn.dummy.DummyRegressor(strategy=’mean’, constant=None, quantile=None)
DummyRegressor is a regressor that makes predictions using simple rules.

This regressor is useful as a simple baseline to compare with other (real) regressors. Do not use it for real
problems.

Read more in the User Guide.

Parametersstrategy : str

Strategy to use to generate predictions.

•“mean”: always predicts the mean of the training set

•“median”: always predicts the median of the training set

•“quantile”: always predicts a specified quantile of the training set, provided with the
quantile parameter.

•“constant”: always predicts a constant value that is provided by the user.

constant : int or float or array of shape = [n_outputs]

The explicit constant as predicted by the “constant” strategy. This parameter is useful
only for the “constant” strategy.

quantile : float in [0.0, 1.0]

The quantile to predict using the “quantile” strategy. A quantile of 0.5 corresponds to
the median, while 0.0 to the minimum and 1.0 to the maximum.

Attributesconstant_ : float or array of shape [n_outputs]

Mean or median or quantile of the training targets or constant value given by the user.

n_outputs_ : int,

Number of outputs.

outputs_2d_ : bool,

True if the output at fit is 2d, else false.

Methods

fit(X, y[, sample_weight]) Fit the random regressor.
get_params([deep]) Get parameters for this estimator.
predict(X) Perform classification on test vectors X.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(strategy=’mean’, constant=None, quantile=None)
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fit(X, y, sample_weight=None)
Fit the random regressor.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples] or [n_samples, n_outputs]

Target values.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returnsself : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Perform classification on test vectors X.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Input vectors, where n_samples is the number of samples and n_features is the number
of features.

Returnsy : array, shape = [n_samples] or [n_samples, n_outputs]

Predicted target values for X.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.
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set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

5.9 sklearn.ensemble: Ensemble Methods

The sklearn.ensemble module includes ensemble-based methods for classification and regression.

User guide: See the Ensemble methods section for further details.

ensemble.AdaBoostClassifier([...]) An AdaBoost classifier.
ensemble.AdaBoostRegressor([base_estimator, ...]) An AdaBoost regressor.
ensemble.BaggingClassifier([base_estimator, ...]) A Bagging classifier.
ensemble.BaggingRegressor([base_estimator, ...]) A Bagging regressor.
ensemble.ExtraTreesClassifier([...]) An extra-trees classifier.
ensemble.ExtraTreesRegressor([n_estimators, ...]) An extra-trees regressor.
ensemble.GradientBoostingClassifier([loss, ...]) Gradient Boosting for classification.
ensemble.GradientBoostingRegressor([loss, ...]) Gradient Boosting for regression.
ensemble.RandomForestClassifier([...]) A random forest classifier.
ensemble.RandomTreesEmbedding([...]) An ensemble of totally random trees.
ensemble.RandomForestRegressor([...]) A random forest regressor.
ensemble.VotingClassifier(estimators[, ...]) Soft Voting/Majority Rule classifier for unfitted estimators.

5.9.1 sklearn.ensemble.AdaBoostClassifier

class sklearn.ensemble.AdaBoostClassifier(base_estimator=None, n_estimators=50, learn-
ing_rate=1.0, algorithm=’SAMME.R’, ran-
dom_state=None)

An AdaBoost classifier.

An AdaBoost [1] classifier is a meta-estimator that begins by fitting a classifier on the original dataset and then
fits additional copies of the classifier on the same dataset but where the weights of incorrectly classified instances
are adjusted such that subsequent classifiers focus more on difficult cases.

This class implements the algorithm known as AdaBoost-SAMME [2].

Read more in the User Guide.

Parametersbase_estimator : object, optional (default=DecisionTreeClassifier)

The base estimator from which the boosted ensemble is built. Support for sample
weighting is required, as well as proper classes_ and n_classes_ attributes.

n_estimators : integer, optional (default=50)

The maximum number of estimators at which boosting is terminated. In case of perfect
fit, the learning procedure is stopped early.

learning_rate : float, optional (default=1.)
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Learning rate shrinks the contribution of each classifier by learning_rate. There
is a trade-off between learning_rate and n_estimators.

algorithm : {‘SAMME’, ‘SAMME.R’}, optional (default=’SAMME.R’)

If ‘SAMME.R’ then use the SAMME.R real boosting algorithm. base_estimator
must support calculation of class probabilities. If ‘SAMME’ then use the SAMME
discrete boosting algorithm. The SAMME.R algorithm typically converges faster than
SAMME, achieving a lower test error with fewer boosting iterations.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Attributesestimators_ : list of classifiers

The collection of fitted sub-estimators.

classes_ : array of shape = [n_classes]

The classes labels.

n_classes_ : int

The number of classes.

estimator_weights_ : array of floats

Weights for each estimator in the boosted ensemble.

estimator_errors_ : array of floats

Classification error for each estimator in the boosted ensemble.

feature_importances_ : array of shape = [n_features]

The feature importances if supported by the base_estimator.

See also:

AdaBoostRegressor, GradientBoostingClassifier, DecisionTreeClassifier

References

[R11], [R12]

Methods

decision_function(X) Compute the decision function of X.
fit(X, y[, sample_weight]) Build a boosted classifier from the training set (X, y).
get_params([deep]) Get parameters for this estimator.
predict(X) Predict classes for X.
predict_log_proba(X) Predict class log-probabilities for X.
predict_proba(X) Predict class probabilities for X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.
staged_decision_function(X) Compute decision function of X for each boosting iteration.
staged_predict(X) Return staged predictions for X.

Continued on next page
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Table 5.58 – continued from previous page
staged_predict_proba(X) Predict class probabilities for X.
staged_score(X, y[, sample_weight]) Return staged scores for X, y.

__init__(base_estimator=None, n_estimators=50, learning_rate=1.0, algorithm=’SAMME.R’, ran-
dom_state=None)

decision_function(X)
Compute the decision function of X.

ParametersX : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK
and LIL are converted to CSR.

Returnsscore : array, shape = [n_samples, k]

The decision function of the input samples. The order of outputs is the same of that of
the classes_ attribute. Binary classification is a special cases with k == 1, otherwise
k==n_classes. For binary classification, values closer to -1 or 1 mean more like the
first or second class in classes_, respectively.

feature_importances_

Return the feature importances (the higher, the more important thefeature).

Returnsfeature_importances_ : array, shape = [n_features]

fit(X, y, sample_weight=None)
Build a boosted classifier from the training set (X, y).

ParametersX : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK
and LIL are converted to CSR.

y : array-like of shape = [n_samples]

The target values (class labels).

sample_weight : array-like of shape = [n_samples], optional

Sample weights. If None, the sample weights are initialized to 1 / n_samples.

Returnsself : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict classes for X.

The predicted class of an input sample is computed as the weighted mean prediction of the classifiers in
the ensemble.
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ParametersX : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK
and LIL are converted to CSR.

Returnsy : array of shape = [n_samples]

The predicted classes.

predict_log_proba(X)
Predict class log-probabilities for X.

The predicted class log-probabilities of an input sample is computed as the weighted mean predicted class
log-probabilities of the classifiers in the ensemble.

ParametersX : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK
and LIL are converted to CSR.

Returnsp : array of shape = [n_samples]

The class probabilities of the input samples. The order of outputs is the same of that of
the classes_ attribute.

predict_proba(X)
Predict class probabilities for X.

The predicted class probabilities of an input sample is computed as the weighted mean predicted class
probabilities of the classifiers in the ensemble.

ParametersX : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK
and LIL are converted to CSR.

Returnsp : array of shape = [n_samples]

The class probabilities of the input samples. The order of outputs is the same of that of
the classes_ attribute.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.
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The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

staged_decision_function(X)
Compute decision function of X for each boosting iteration.

This method allows monitoring (i.e. determine error on testing set) after each boosting iteration.

ParametersX : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK
and LIL are converted to CSR.

Returnsscore : generator of array, shape = [n_samples, k]

The decision function of the input samples. The order of outputs is the same of that of
the classes_ attribute. Binary classification is a special cases with k == 1, otherwise
k==n_classes. For binary classification, values closer to -1 or 1 mean more like the
first or second class in classes_, respectively.

staged_predict(X)
Return staged predictions for X.

The predicted class of an input sample is computed as the weighted mean prediction of the classifiers in
the ensemble.

This generator method yields the ensemble prediction after each iteration of boosting and therefore allows
monitoring, such as to determine the prediction on a test set after each boost.

ParametersX : array-like of shape = [n_samples, n_features]

The input samples.

Returnsy : generator of array, shape = [n_samples]

The predicted classes.

staged_predict_proba(X)
Predict class probabilities for X.

The predicted class probabilities of an input sample is computed as the weighted mean predicted class
probabilities of the classifiers in the ensemble.

This generator method yields the ensemble predicted class probabilities after each iteration of boosting
and therefore allows monitoring, such as to determine the predicted class probabilities on a test set after
each boost.

ParametersX : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK
and LIL are converted to CSR.

Returnsp : generator of array, shape = [n_samples]

The class probabilities of the input samples. The order of outputs is the same of that of
the classes_ attribute.

staged_score(X, y, sample_weight=None)
Return staged scores for X, y.

This generator method yields the ensemble score after each iteration of boosting and therefore allows
monitoring, such as to determine the score on a test set after each boost.
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ParametersX : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK
and LIL are converted to CSR.

y : array-like, shape = [n_samples]

Labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsz : float

Examples using sklearn.ensemble.AdaBoostClassifier

• Classifier comparison

• Two-class AdaBoost

• Discrete versus Real AdaBoost

• Multi-class AdaBoosted Decision Trees

• Plot the decision surfaces of ensembles of trees on the iris dataset

5.9.2 sklearn.ensemble.AdaBoostRegressor

class sklearn.ensemble.AdaBoostRegressor(base_estimator=None, n_estimators=50, learn-
ing_rate=1.0, loss=’linear’, random_state=None)

An AdaBoost regressor.

An AdaBoost [1] regressor is a meta-estimator that begins by fitting a regressor on the original dataset and
then fits additional copies of the regressor on the same dataset but where the weights of instances are adjusted
according to the error of the current prediction. As such, subsequent regressors focus more on difficult cases.

This class implements the algorithm known as AdaBoost.R2 [2].

Read more in the User Guide.

Parametersbase_estimator : object, optional (default=DecisionTreeRegressor)

The base estimator from which the boosted ensemble is built. Support for sample
weighting is required.

n_estimators : integer, optional (default=50)

The maximum number of estimators at which boosting is terminated. In case of perfect
fit, the learning procedure is stopped early.

learning_rate : float, optional (default=1.)

Learning rate shrinks the contribution of each regressor by learning_rate. There
is a trade-off between learning_rate and n_estimators.

loss : {‘linear’, ‘square’, ‘exponential’}, optional (default=’linear’)

The loss function to use when updating the weights after each boosting iteration.

random_state : int, RandomState instance or None, optional (default=None)
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If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Attributesestimators_ : list of classifiers

The collection of fitted sub-estimators.

estimator_weights_ : array of floats

Weights for each estimator in the boosted ensemble.

estimator_errors_ : array of floats

Regression error for each estimator in the boosted ensemble.

feature_importances_ : array of shape = [n_features]

The feature importances if supported by the base_estimator.

See also:

AdaBoostClassifier, GradientBoostingRegressor, DecisionTreeRegressor

References

[R13], [R14]

Methods

fit(X, y[, sample_weight]) Build a boosted regressor from the training set (X, y).
get_params([deep]) Get parameters for this estimator.
predict(X) Predict regression value for X.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.
staged_predict(X) Return staged predictions for X.
staged_score(X, y[, sample_weight]) Return staged scores for X, y.

__init__(base_estimator=None, n_estimators=50, learning_rate=1.0, loss=’linear’, ran-
dom_state=None)

feature_importances_

Return the feature importances (the higher, the more important thefeature).

Returnsfeature_importances_ : array, shape = [n_features]

fit(X, y, sample_weight=None)
Build a boosted regressor from the training set (X, y).

ParametersX : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK
and LIL are converted to CSR.

y : array-like of shape = [n_samples]

The target values (real numbers).
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sample_weight : array-like of shape = [n_samples], optional

Sample weights. If None, the sample weights are initialized to 1 / n_samples.

Returnsself : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict regression value for X.

The predicted regression value of an input sample is computed as the weighted median prediction of the
classifiers in the ensemble.

ParametersX : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK
and LIL are converted to CSR.

Returnsy : array of shape = [n_samples]

The predicted regression values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

1158 Chapter 5. API Reference



scikit-learn user guide, Release 0.17

staged_predict(X)
Return staged predictions for X.

The predicted regression value of an input sample is computed as the weighted median prediction of the
classifiers in the ensemble.

This generator method yields the ensemble prediction after each iteration of boosting and therefore allows
monitoring, such as to determine the prediction on a test set after each boost.

ParametersX : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK
and LIL are converted to CSR.

Returnsy : generator of array, shape = [n_samples]

The predicted regression values.

staged_score(X, y, sample_weight=None)
Return staged scores for X, y.

This generator method yields the ensemble score after each iteration of boosting and therefore allows
monitoring, such as to determine the score on a test set after each boost.

ParametersX : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK
and LIL are converted to CSR.

y : array-like, shape = [n_samples]

Labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsz : float

Examples using sklearn.ensemble.AdaBoostRegressor

• Decision Tree Regression with AdaBoost

5.9.3 sklearn.ensemble.BaggingClassifier

class sklearn.ensemble.BaggingClassifier(base_estimator=None, n_estimators=10,
max_samples=1.0, max_features=1.0, boot-
strap=True, bootstrap_features=False,
oob_score=False, warm_start=False, n_jobs=1,
random_state=None, verbose=0)

A Bagging classifier.

A Bagging classifier is an ensemble meta-estimator that fits base classifiers each on random subsets of the
original dataset and then aggregate their individual predictions (either by voting or by averaging) to form a
final prediction. Such a meta-estimator can typically be used as a way to reduce the variance of a black-box
estimator (e.g., a decision tree), by introducing randomization into its construction procedure and then making
an ensemble out of it.

This algorithm encompasses several works from the literature. When random subsets of the dataset are drawn
as random subsets of the samples, then this algorithm is known as Pasting [R125]. If samples are drawn with
replacement, then the method is known as Bagging [R126]. When random subsets of the dataset are drawn as
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random subsets of the features, then the method is known as Random Subspaces [R127]. Finally, when base
estimators are built on subsets of both samples and features, then the method is known as Random Patches
[R128].

Read more in the User Guide.

Parametersbase_estimator : object or None, optional (default=None)

The base estimator to fit on random subsets of the dataset. If None, then the base
estimator is a decision tree.

n_estimators : int, optional (default=10)

The number of base estimators in the ensemble.

max_samples : int or float, optional (default=1.0)

The number of samples to draw from X to train each base estimator.

•If int, then draw max_samples samples.

•If float, then draw max_samples * X.shape[0] samples.

max_features : int or float, optional (default=1.0)

The number of features to draw from X to train each base estimator.

•If int, then draw max_features features.

•If float, then draw max_features * X.shape[1] features.

bootstrap : boolean, optional (default=True)

Whether samples are drawn with replacement.

bootstrap_features : boolean, optional (default=False)

Whether features are drawn with replacement.

oob_score : bool

Whether to use out-of-bag samples to estimate the generalization error.

warm_start : bool, optional (default=False)

When set to True, reuse the solution of the previous call to fit and add more estimators
to the ensemble, otherwise, just fit a whole new ensemble.

New in version 0.17: warm_start constructor parameter.

n_jobs : int, optional (default=1)

The number of jobs to run in parallel for both fit and predict. If -1, then the number of
jobs is set to the number of cores.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

verbose : int, optional (default=0)

Controls the verbosity of the building process.

Attributesbase_estimator_ : list of estimators

The base estimator from which the ensemble is grown.
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estimators_ : list of estimators

The collection of fitted base estimators.

estimators_samples_ : list of arrays

The subset of drawn samples (i.e., the in-bag samples) for each base estimator.

estimators_features_ : list of arrays

The subset of drawn features for each base estimator.

classes_ : array of shape = [n_classes]

The classes labels.

n_classes_ : int or list

The number of classes.

oob_score_ : float

Score of the training dataset obtained using an out-of-bag estimate.

oob_decision_function_ : array of shape = [n_samples, n_classes]

Decision function computed with out-of-bag estimate on the training set. If
n_estimators is small it might be possible that a data point was never left out during
the bootstrap. In this case, oob_decision_function_ might contain NaN.

References

[R125], [R126], [R127], [R128]

Methods

decision_function(X) Average of the decision functions of the base classifiers.
fit(X, y[, sample_weight]) Build a Bagging ensemble of estimators from the training set (X, y).
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class for X.
predict_log_proba(X) Predict class log-probabilities for X.
predict_proba(X) Predict class probabilities for X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.

__init__(base_estimator=None, n_estimators=10, max_samples=1.0, max_features=1.0, boot-
strap=True, bootstrap_features=False, oob_score=False, warm_start=False, n_jobs=1,
random_state=None, verbose=0)

decision_function(X)
Average of the decision functions of the base classifiers.

ParametersX : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrices are accepted only if they are supported by
the base estimator.

Returnsscore : array, shape = [n_samples, k]

The decision function of the input samples. The columns correspond to the classes in

5.9. sklearn.ensemble: Ensemble Methods 1161



scikit-learn user guide, Release 0.17

sorted order, as they appear in the attribute classes_. Regression and binary classifi-
cation are special cases with k == 1, otherwise k==n_classes.

fit(X, y, sample_weight=None)

Build a Bagging ensemble of estimators from the trainingset (X, y).

ParametersX : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrices are accepted only if they are supported by
the base estimator.

y : array-like, shape = [n_samples]

The target values (class labels in classification, real numbers in regression).

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Note that this is supported
only if the base estimator supports sample weighting.

Returnsself : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict class for X.

The predicted class of an input sample is computed as the class with the highest mean predicted probability.
If base estimators do not implement a predict_proba method, then it resorts to voting.

ParametersX : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrices are accepted only if they are supported by
the base estimator.

Returnsy : array of shape = [n_samples]

The predicted classes.

predict_log_proba(X)
Predict class log-probabilities for X.

The predicted class log-probabilities of an input sample is computed as the log of the mean predicted class
probabilities of the base estimators in the ensemble.

ParametersX : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrices are accepted only if they are supported by
the base estimator.

Returnsp : array of shape = [n_samples, n_classes]
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The class log-probabilities of the input samples. The order of the classes corresponds to
that in the attribute classes_.

predict_proba(X)
Predict class probabilities for X.

The predicted class probabilities of an input sample is computed as the mean predicted class probabilities
of the base estimators in the ensemble. If base estimators do not implement a predict_proba method,
then it resorts to voting and the predicted class probabilities of a an input sample represents the proportion
of estimators predicting each class.

ParametersX : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrices are accepted only if they are supported by
the base estimator.

Returnsp : array of shape = [n_samples, n_classes]

The class probabilities of the input samples. The order of the classes corresponds to that
in the attribute classes_.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

5.9.4 sklearn.ensemble.BaggingRegressor

class sklearn.ensemble.BaggingRegressor(base_estimator=None, n_estimators=10,
max_samples=1.0, max_features=1.0, boot-
strap=True, bootstrap_features=False,
oob_score=False, warm_start=False, n_jobs=1,
random_state=None, verbose=0)

A Bagging regressor.

A Bagging regressor is an ensemble meta-estimator that fits base regressors each on random subsets of the
original dataset and then aggregate their individual predictions (either by voting or by averaging) to form a
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final prediction. Such a meta-estimator can typically be used as a way to reduce the variance of a black-box
estimator (e.g., a decision tree), by introducing randomization into its construction procedure and then making
an ensemble out of it.

This algorithm encompasses several works from the literature. When random subsets of the dataset are drawn
as random subsets of the samples, then this algorithm is known as Pasting [R15]. If samples are drawn with
replacement, then the method is known as Bagging [R16]. When random subsets of the dataset are drawn as
random subsets of the features, then the method is known as Random Subspaces [R17]. Finally, when base
estimators are built on subsets of both samples and features, then the method is known as Random Patches
[R18].

Read more in the User Guide.

Parametersbase_estimator : object or None, optional (default=None)

The base estimator to fit on random subsets of the dataset. If None, then the base
estimator is a decision tree.

n_estimators : int, optional (default=10)

The number of base estimators in the ensemble.

max_samples : int or float, optional (default=1.0)

The number of samples to draw from X to train each base estimator.

•If int, then draw max_samples samples.

•If float, then draw max_samples * X.shape[0] samples.

max_features : int or float, optional (default=1.0)

The number of features to draw from X to train each base estimator.

•If int, then draw max_features features.

•If float, then draw max_features * X.shape[1] features.

bootstrap : boolean, optional (default=True)

Whether samples are drawn with replacement.

bootstrap_features : boolean, optional (default=False)

Whether features are drawn with replacement.

oob_score : bool

Whether to use out-of-bag samples to estimate the generalization error.

warm_start : bool, optional (default=False)

When set to True, reuse the solution of the previous call to fit and add more estimators
to the ensemble, otherwise, just fit a whole new ensemble.

n_jobs : int, optional (default=1)

The number of jobs to run in parallel for both fit and predict. If -1, then the number of
jobs is set to the number of cores.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

verbose : int, optional (default=0)
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Controls the verbosity of the building process.

Attributesestimators_ : list of estimators

The collection of fitted sub-estimators.

estimators_samples_ : list of arrays

The subset of drawn samples (i.e., the in-bag samples) for each base estimator.

estimators_features_ : list of arrays

The subset of drawn features for each base estimator.

oob_score_ : float

Score of the training dataset obtained using an out-of-bag estimate.

oob_prediction_ : array of shape = [n_samples]

Prediction computed with out-of-bag estimate on the training set. If n_estimators is
small it might be possible that a data point was never left out during the bootstrap. In
this case, oob_prediction_ might contain NaN.

References

[R15], [R16], [R17], [R18]

Methods

fit(X, y[, sample_weight]) Build a Bagging ensemble of estimators from the training set (X, y).
get_params([deep]) Get parameters for this estimator.
predict(X) Predict regression target for X.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(base_estimator=None, n_estimators=10, max_samples=1.0, max_features=1.0, boot-
strap=True, bootstrap_features=False, oob_score=False, warm_start=False, n_jobs=1,
random_state=None, verbose=0)

fit(X, y, sample_weight=None)

Build a Bagging ensemble of estimators from the trainingset (X, y).

ParametersX : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrices are accepted only if they are supported by
the base estimator.

y : array-like, shape = [n_samples]

The target values (class labels in classification, real numbers in regression).

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Note that this is supported
only if the base estimator supports sample weighting.

Returnsself : object

Returns self.
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get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict regression target for X.

The predicted regression target of an input sample is computed as the mean predicted regression targets of
the estimators in the ensemble.

ParametersX : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrices are accepted only if they are supported by
the base estimator.

Returnsy : array of shape = [n_samples]

The predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.ensemble.BaggingRegressor

• Single estimator versus bagging: bias-variance decomposition
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5.9.5 sklearn.ensemble.ExtraTreesClassifier

class sklearn.ensemble.ExtraTreesClassifier(n_estimators=10, crite-
rion=’gini’, max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=’auto’, max_leaf_nodes=None,
bootstrap=False, oob_score=False,
n_jobs=1, random_state=None, verbose=0,
warm_start=False, class_weight=None)

An extra-trees classifier.

This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on
various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting.

Read more in the User Guide.

Parametersn_estimators : integer, optional (default=10)

The number of trees in the forest.

criterion : string, optional (default=”gini”)

The function to measure the quality of a split. Supported criteria are “gini” for the Gini
impurity and “entropy” for the information gain. Note: this parameter is tree-specific.

max_features : int, float, string or None, optional (default=”auto”)

The number of features to consider when looking for the best split:

•If int, then consider max_features features at each split.

•If float, then max_features is a percentage and int(max_features * n_features) features
are considered at each split.

•If “auto”, then max_features=sqrt(n_features).

•If “sqrt”, then max_features=sqrt(n_features).

•If “log2”, then max_features=log2(n_features).

•If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node
samples is found, even if it requires to effectively inspect more than max_features
features. Note: this parameter is tree-specific.

max_depth : integer or None, optional (default=None)

The maximum depth of the tree. If None, then nodes are expanded until all leaves
are pure or until all leaves contain less than min_samples_split samples. Ignored if
max_leaf_nodes is not None. Note: this parameter is tree-specific.

min_samples_split : integer, optional (default=2)

The minimum number of samples required to split an internal node. Note: this parame-
ter is tree-specific.

min_samples_leaf : integer, optional (default=1)

The minimum number of samples in newly created leaves. A split is discarded if after
the split, one of the leaves would contain less then min_samples_leaf samples.
Note: this parameter is tree-specific.

min_weight_fraction_leaf : float, optional (default=0.)
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The minimum weighted fraction of the input samples required to be at a leaf node. Note:
this parameter is tree-specific.

max_leaf_nodes : int or None, optional (default=None)

Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined as
relative reduction in impurity. If None then unlimited number of leaf nodes. If not
None then max_depth will be ignored. Note: this parameter is tree-specific.

bootstrap : boolean, optional (default=False)

Whether bootstrap samples are used when building trees.

oob_score : bool

Whether to use out-of-bag samples to estimate the generalization error.

n_jobs : integer, optional (default=1)

The number of jobs to run in parallel for both fit and predict. If -1, then the number of
jobs is set to the number of cores.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

verbose : int, optional (default=0)

Controls the verbosity of the tree building process.

warm_start : bool, optional (default=False)

When set to True, reuse the solution of the previous call to fit and add more estimators
to the ensemble, otherwise, just fit a whole new forest.

class_weight : dict, list of dicts, “balanced”, “balanced_subsample” or None, optional

Weights associated with classes in the form {class_label: weight}. If not
given, all classes are supposed to have weight one. For multi-output problems, a list of
dicts can be provided in the same order as the columns of y.

The “balanced” mode uses the values of y to automatically adjust weights inversely
proportional to class frequencies in the input data as n_samples / (n_classes

* np.bincount(y))

The “balanced_subsample” mode is the same as “balanced” except that weights are
computed based on the bootstrap sample for every tree grown.

For multi-output, the weights of each column of y will be multiplied.

Note that these weights will be multiplied with sample_weight (passed through the fit
method) if sample_weight is specified.

Attributesestimators_ : list of DecisionTreeClassifier

The collection of fitted sub-estimators.

classes_ : array of shape = [n_classes] or a list of such arrays

The classes labels (single output problem), or a list of arrays of class labels (multi-output
problem).

n_classes_ : int or list
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The number of classes (single output problem), or a list containing the number of classes
for each output (multi-output problem).

feature_importances_ : array of shape = [n_features]

The feature importances (the higher, the more important the feature).

n_features_ : int

The number of features when fit is performed.

n_outputs_ : int

The number of outputs when fit is performed.

oob_score_ : float

Score of the training dataset obtained using an out-of-bag estimate.

oob_decision_function_ : array of shape = [n_samples, n_classes]

Decision function computed with out-of-bag estimate on the training set. If
n_estimators is small it might be possible that a data point was never left out during
the bootstrap. In this case, oob_decision_function_ might contain NaN.

See also:

sklearn.tree.ExtraTreeClassifierBase classifier for this ensemble.

RandomForestClassifierEnsemble Classifier based on trees with optimal splits.

References

[R19]

Methods

apply(X) Apply trees in the forest to X, return leaf indices.
fit(X, y[, sample_weight]) Build a forest of trees from the training set (X, y).
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class for X.
predict_log_proba(X) Predict class log-probabilities for X.
predict_proba(X) Predict class probabilities for X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.
transform(*args, **kwargs) DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19.

__init__(n_estimators=10, criterion=’gini’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’,
max_leaf_nodes=None, bootstrap=False, oob_score=False, n_jobs=1, ran-
dom_state=None, verbose=0, warm_start=False, class_weight=None)

apply(X)
Apply trees in the forest to X, return leaf indices.

ParametersX : array-like or sparse matrix, shape = [n_samples, n_features]
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The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

ReturnsX_leaves : array_like, shape = [n_samples, n_estimators]

For each datapoint x in X and for each tree in the forest, return the index of the leaf x
ends up in.

feature_importances_

Return the feature importances (the higher, the more important thefeature).

Returnsfeature_importances_ : array, shape = [n_features]

fit(X, y, sample_weight=None)
Build a forest of trees from the training set (X, y).

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]

The training input samples. Internally, it will be converted to dtype=np.float32
and if a sparse matrix is provided to a sparse csc_matrix.

y : array-like, shape = [n_samples] or [n_samples, n_outputs]

The target values (class labels in classification, real numbers in regression).

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Splits that would create
child nodes with net zero or negative weight are ignored while searching for a split in
each node. In the case of classification, splits are also ignored if they would result in
any single class carrying a negative weight in either child node.

Returnsself : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.
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predict(X)
Predict class for X.

The predicted class of an input sample is a vote by the trees in the forest, weighted by their probability
estimates. That is, the predicted class is the one with highest mean probability estimate across the trees.

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returnsy : array of shape = [n_samples] or [n_samples, n_outputs]

The predicted classes.

predict_log_proba(X)
Predict class log-probabilities for X.

The predicted class log-probabilities of an input sample is computed as the log of the mean predicted class
probabilities of the trees in the forest.

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returnsp : array of shape = [n_samples, n_classes], or a list of n_outputs

such arrays if n_outputs > 1. The class probabilities of the input samples. The order of
the classes corresponds to that in the attribute classes_.

predict_proba(X)
Predict class probabilities for X.

The predicted class probabilities of an input sample is computed as the mean predicted class probabilities
of the trees in the forest. The class probability of a single tree is the fraction of samples of the same class
in a leaf.

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returnsp : array of shape = [n_samples, n_classes], or a list of n_outputs

such arrays if n_outputs > 1. The class probabilities of the input samples. The order of
the classes corresponds to that in the attribute classes_.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float
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Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(*args, **kwargs)
DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19. Use
SelectFromModel instead.

Reduce X to its most important features.

Uses coef_ or feature_importances_ to determine the most important features. For
models with a coef_ for each class, the absolute sum over the classes is used.

ParametersX : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold[string, float or None, optional (default=None)] The threshold value to use for
feature selection. Features whose importance is greater or equal are kept while the
others are discarded. If “median” (resp. “mean”), then the threshold value is the me-
dian (resp. the mean) of the feature importances. A scaling factor (e.g., “1.25*mean”)
may also be used. If None and if available, the object attribute threshold is used.
Otherwise, “mean” is used by default.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

Examples using sklearn.ensemble.ExtraTreesClassifier

• Pixel importances with a parallel forest of trees

• Feature importances with forests of trees

• Hashing feature transformation using Totally Random Trees

• Plot the decision surfaces of ensembles of trees on the iris dataset

5.9.6 sklearn.ensemble.ExtraTreesRegressor

class sklearn.ensemble.ExtraTreesRegressor(n_estimators=10, crite-
rion=’mse’, max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=’auto’, max_leaf_nodes=None,
bootstrap=False, oob_score=False,
n_jobs=1, random_state=None, verbose=0,
warm_start=False)

An extra-trees regressor.

This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on
various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting.
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Read more in the User Guide.

Parametersn_estimators : integer, optional (default=10)

The number of trees in the forest.

criterion : string, optional (default=”mse”)

The function to measure the quality of a split. The only supported criterion is “mse” for
the mean squared error. Note: this parameter is tree-specific.

max_features : int, float, string or None, optional (default=”auto”)

The number of features to consider when looking for the best split:

•If int, then consider max_features features at each split.

•If float, then max_features is a percentage and int(max_features * n_features) features
are considered at each split.

•If “auto”, then max_features=n_features.

•If “sqrt”, then max_features=sqrt(n_features).

•If “log2”, then max_features=log2(n_features).

•If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node
samples is found, even if it requires to effectively inspect more than max_features
features. Note: this parameter is tree-specific.

max_depth : integer or None, optional (default=None)

The maximum depth of the tree. If None, then nodes are expanded until all leaves
are pure or until all leaves contain less than min_samples_split samples. Ignored if
max_leaf_nodes is not None. Note: this parameter is tree-specific.

min_samples_split : integer, optional (default=2)

The minimum number of samples required to split an internal node. Note: this parame-
ter is tree-specific.

min_samples_leaf : integer, optional (default=1)

The minimum number of samples in newly created leaves. A split is discarded if after
the split, one of the leaves would contain less then min_samples_leaf samples.
Note: this parameter is tree-specific.

min_weight_fraction_leaf : float, optional (default=0.)

The minimum weighted fraction of the input samples required to be at a leaf node. Note:
this parameter is tree-specific.

max_leaf_nodes : int or None, optional (default=None)

Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined as
relative reduction in impurity. If None then unlimited number of leaf nodes. If not
None then max_depth will be ignored. Note: this parameter is tree-specific.

bootstrap : boolean, optional (default=False)

Whether bootstrap samples are used when building trees. Note: this parameter is tree-
specific.

oob_score : bool
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Whether to use out-of-bag samples to estimate the generalization error.

n_jobs : integer, optional (default=1)

The number of jobs to run in parallel for both fit and predict. If -1, then the number of
jobs is set to the number of cores.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

verbose : int, optional (default=0)

Controls the verbosity of the tree building process.

warm_start : bool, optional (default=False)

When set to True, reuse the solution of the previous call to fit and add more estimators
to the ensemble, otherwise, just fit a whole new forest.

Attributesestimators_ : list of DecisionTreeRegressor

The collection of fitted sub-estimators.

feature_importances_ : array of shape = [n_features]

The feature importances (the higher, the more important the feature).

n_features_ : int

The number of features.

n_outputs_ : int

The number of outputs.

oob_score_ : float

Score of the training dataset obtained using an out-of-bag estimate.

oob_prediction_ : array of shape = [n_samples]

Prediction computed with out-of-bag estimate on the training set.

See also:

sklearn.tree.ExtraTreeRegressorBase estimator for this ensemble.

RandomForestRegressorEnsemble regressor using trees with optimal splits.

References

[R20]

Methods

apply(X) Apply trees in the forest to X, return leaf indices.
fit(X, y[, sample_weight]) Build a forest of trees from the training set (X, y).
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.

Continued on next page
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Table 5.63 – continued from previous page
predict(X) Predict regression target for X.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.
transform(*args, **kwargs) DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19.

__init__(n_estimators=10, criterion=’mse’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’,
max_leaf_nodes=None, bootstrap=False, oob_score=False, n_jobs=1, ran-
dom_state=None, verbose=0, warm_start=False)

apply(X)
Apply trees in the forest to X, return leaf indices.

ParametersX : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

ReturnsX_leaves : array_like, shape = [n_samples, n_estimators]

For each datapoint x in X and for each tree in the forest, return the index of the leaf x
ends up in.

feature_importances_

Return the feature importances (the higher, the more important thefeature).

Returnsfeature_importances_ : array, shape = [n_features]

fit(X, y, sample_weight=None)
Build a forest of trees from the training set (X, y).

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]

The training input samples. Internally, it will be converted to dtype=np.float32
and if a sparse matrix is provided to a sparse csc_matrix.

y : array-like, shape = [n_samples] or [n_samples, n_outputs]

The target values (class labels in classification, real numbers in regression).

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Splits that would create
child nodes with net zero or negative weight are ignored while searching for a split in
each node. In the case of classification, splits are also ignored if they would result in
any single class carrying a negative weight in either child node.

Returnsself : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]
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Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict regression target for X.

The predicted regression target of an input sample is computed as the mean predicted regression targets of
the trees in the forest.

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returnsy : array of shape = [n_samples] or [n_samples, n_outputs]

The predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :
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transform(*args, **kwargs)
DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19. Use
SelectFromModel instead.

Reduce X to its most important features.

Uses coef_ or feature_importances_ to determine the most important features. For
models with a coef_ for each class, the absolute sum over the classes is used.

ParametersX : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold[string, float or None, optional (default=None)] The threshold value to use for
feature selection. Features whose importance is greater or equal are kept while the
others are discarded. If “median” (resp. “mean”), then the threshold value is the me-
dian (resp. the mean) of the feature importances. A scaling factor (e.g., “1.25*mean”)
may also be used. If None and if available, the object attribute threshold is used.
Otherwise, “mean” is used by default.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

Examples using sklearn.ensemble.ExtraTreesRegressor

• Face completion with a multi-output estimators

• Sparse recovery: feature selection for sparse linear models

5.9.7 sklearn.ensemble.GradientBoostingClassifier

class sklearn.ensemble.GradientBoostingClassifier(loss=’deviance’, learning_rate=0.1,
n_estimators=100, subsam-
ple=1.0, min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_depth=3, init=None, ran-
dom_state=None, max_features=None,
verbose=0, max_leaf_nodes=None,
warm_start=False, presort=’auto’)

Gradient Boosting for classification.

GB builds an additive model in a forward stage-wise fashion; it allows for the optimization of arbitrary differen-
tiable loss functions. In each stage n_classes_ regression trees are fit on the negative gradient of the binomial
or multinomial deviance loss function. Binary classification is a special case where only a single regression tree
is induced.

Read more in the User Guide.

Parametersloss : {‘deviance’, ‘exponential’}, optional (default=’deviance’)

loss function to be optimized. ‘deviance’ refers to deviance (= logistic regression) for
classification with probabilistic outputs. For loss ‘exponential’ gradient boosting recov-
ers the AdaBoost algorithm.

learning_rate : float, optional (default=0.1)
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learning rate shrinks the contribution of each tree by learning_rate. There is a trade-off
between learning_rate and n_estimators.

n_estimators : int (default=100)

The number of boosting stages to perform. Gradient boosting is fairly robust to over-
fitting so a large number usually results in better performance.

max_depth : integer, optional (default=3)

maximum depth of the individual regression estimators. The maximum depth limits the
number of nodes in the tree. Tune this parameter for best performance; the best value
depends on the interaction of the input variables. Ignored if max_leaf_nodes is not
None.

min_samples_split : integer, optional (default=2)

The minimum number of samples required to split an internal node.

min_samples_leaf : integer, optional (default=1)

The minimum number of samples required to be at a leaf node.

min_weight_fraction_leaf : float, optional (default=0.)

The minimum weighted fraction of the input samples required to be at a leaf node.

subsample : float, optional (default=1.0)

The fraction of samples to be used for fitting the individual base learners. If smaller
than 1.0 this results in Stochastic Gradient Boosting. subsample interacts with the pa-
rameter n_estimators. Choosing subsample < 1.0 leads to a reduction of variance and
an increase in bias.

max_features : int, float, string or None, optional (default=None)

The number of features to consider when looking for the best split:

•If int, then consider max_features features at each split.

•If float, then max_features is a percentage and int(max_features * n_features) fea-
tures are considered at each split.

•If “auto”, then max_features=sqrt(n_features).

•If “sqrt”, then max_features=sqrt(n_features).

•If “log2”, then max_features=log2(n_features).

•If None, then max_features=n_features.

Choosing max_features < n_features leads to a reduction of variance and an increase in
bias.

Note: the search for a split does not stop until at least one valid partition of the node
samples is found, even if it requires to effectively inspect more than max_features
features.

max_leaf_nodes : int or None, optional (default=None)

Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined as
relative reduction in impurity. If None then unlimited number of leaf nodes. If not
None then max_depth will be ignored.

init : BaseEstimator, None, optional (default=None)
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An estimator object that is used to compute the initial predictions. init has to provide
fit and predict. If None it uses loss.init_estimator.

verbose : int, default: 0

Enable verbose output. If 1 then it prints progress and performance once in a while
(the more trees the lower the frequency). If greater than 1 then it prints progress and
performance for every tree.

warm_start : bool, default: False

When set to True, reuse the solution of the previous call to fit and add more estimators
to the ensemble, otherwise, just erase the previous solution.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

presort : bool or ‘auto’, optional (default=’auto’)

Whether to presort the data to speed up the finding of best splits in fitting. Auto mode
by default will use presorting on dense data and default to normal sorting on sparse data.
Setting presort to true on sparse data will raise an error.

New in version 0.17: presort parameter.

Attributesfeature_importances_ : array, shape = [n_features]

The feature importances (the higher, the more important the feature).

oob_improvement_ : array, shape = [n_estimators]

The improvement in loss (= deviance) on the out-of-bag samples relative to the previous
iteration. oob_improvement_[0] is the improvement in loss of the first stage over
the init estimator.

train_score_ : array, shape = [n_estimators]

The i-th score train_score_[i] is the deviance (= loss) of the model at iteration i
on the in-bag sample. If subsample == 1 this is the deviance on the training data.

loss_ : LossFunction

The concrete LossFunction object.

init : BaseEstimator

The estimator that provides the initial predictions. Set via the init argument or
loss.init_estimator.

estimators_ : ndarray of DecisionTreeRegressor, shape = [n_estimators, loss_.K]

The collection of fitted sub-estimators. loss_.K is 1 for binary classification, other-
wise n_classes.

See also:

sklearn.tree.DecisionTreeClassifier, RandomForestClassifier,
AdaBoostClassifier
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Methods

apply(X) Apply trees in the ensemble to X, return leaf indices.
decision_function(X) Compute the decision function of X.
fit(X, y[, sample_weight, monitor]) Fit the gradient boosting model.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class for X.
predict_log_proba(X) Predict class log-probabilities for X.
predict_proba(X) Predict class probabilities for X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.
staged_decision_function(X) Compute decision function of X for each iteration.
staged_predict(X) Predict class at each stage for X.
staged_predict_proba(X) Predict class probabilities at each stage for X.
transform(*args, **kwargs) DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19.

__init__(loss=’deviance’, learning_rate=0.1, n_estimators=100, subsample=1.0,
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_depth=3,
init=None, random_state=None, max_features=None, verbose=0, max_leaf_nodes=None,
warm_start=False, presort=’auto’)

apply(X)
Apply trees in the ensemble to X, return leaf indices.

New in version 0.17.

ParametersX : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

ReturnsX_leaves : array_like, shape = [n_samples, n_estimators, n_classes]

For each datapoint x in X and for each tree in the ensemble, return the index of the leaf
x ends up in in each estimator. In the case of binary classification n_classes is 1.

decision_function(X)
Compute the decision function of X.

ParametersX : array-like of shape = [n_samples, n_features]

The input samples.

Returnsscore : array, shape = [n_samples, n_classes] or [n_samples]

The decision function of the input samples. The order of the classes corresponds to that
in the attribute classes_. Regression and binary classification produce an array of shape
[n_samples].
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feature_importances_

Return the feature importances (the higher, the more important thefeature).

Returnsfeature_importances_ : array, shape = [n_features]

fit(X, y, sample_weight=None, monitor=None)
Fit the gradient boosting model.

ParametersX : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target values (integers in classification, real numbers in regression) For classification,
labels must correspond to classes.

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Splits that would create
child nodes with net zero or negative weight are ignored while searching for a split in
each node. In the case of classification, splits are also ignored if they would result in
any single class carrying a negative weight in either child node.

monitor : callable, optional

The monitor is called after each iteration with the current iteration, a reference
to the estimator and the local variables of _fit_stages as keyword arguments
callable(i, self, locals()). If the callable returns True the fitting proce-
dure is stopped. The monitor can be used for various things such as computing held-out
estimates, early stopping, model introspect, and snapshoting.

Returnsself : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.
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predict(X)
Predict class for X.

ParametersX : array-like of shape = [n_samples, n_features]

The input samples.

Returnsy: array of shape = [”n_samples] :

The predicted values.

predict_log_proba(X)
Predict class log-probabilities for X.

ParametersX : array-like of shape = [n_samples, n_features]

The input samples.

Returnsp : array of shape = [n_samples]

The class log-probabilities of the input samples. The order of the classes corresponds to
that in the attribute classes_.

RaisesAttributeError :

If the loss does not support probabilities.

predict_proba(X)
Predict class probabilities for X.

ParametersX : array-like of shape = [n_samples, n_features]

The input samples.

Returnsp : array of shape = [n_samples]

The class probabilities of the input samples. The order of the classes corresponds to that
in the attribute classes_.

RaisesAttributeError :

If the loss does not support probabilities.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.
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The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

staged_decision_function(X)
Compute decision function of X for each iteration.

This method allows monitoring (i.e. determine error on testing set) after each stage.

ParametersX : array-like of shape = [n_samples, n_features]

The input samples.

Returnsscore : generator of array, shape = [n_samples, k]

The decision function of the input samples. The order of the classes corresponds to that
in the attribute classes_. Regression and binary classification are special cases with k
== 1, otherwise k==n_classes.

staged_predict(X)
Predict class at each stage for X.

This method allows monitoring (i.e. determine error on testing set) after each stage.

ParametersX : array-like of shape = [n_samples, n_features]

The input samples.

Returnsy : generator of array of shape = [n_samples]

The predicted value of the input samples.

staged_predict_proba(X)
Predict class probabilities at each stage for X.

This method allows monitoring (i.e. determine error on testing set) after each stage.

ParametersX : array-like of shape = [n_samples, n_features]

The input samples.

Returnsy : generator of array of shape = [n_samples]

The predicted value of the input samples.

transform(*args, **kwargs)
DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19. Use
SelectFromModel instead.

Reduce X to its most important features.

Uses coef_ or feature_importances_ to determine the most important features. For
models with a coef_ for each class, the absolute sum over the classes is used.

ParametersX : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold[string, float or None, optional (default=None)] The threshold value to use for
feature selection. Features whose importance is greater or equal are kept while the
others are discarded. If “median” (resp. “mean”), then the threshold value is the me-
dian (resp. the mean) of the feature importances. A scaling factor (e.g., “1.25*mean”)

5.9. sklearn.ensemble: Ensemble Methods 1183



scikit-learn user guide, Release 0.17

may also be used. If None and if available, the object attribute threshold is used.
Otherwise, “mean” is used by default.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

Examples using sklearn.ensemble.GradientBoostingClassifier

• Gradient Boosting regularization

• Feature transformations with ensembles of trees

• Gradient Boosting Out-of-Bag estimates

5.9.8 sklearn.ensemble.GradientBoostingRegressor

class sklearn.ensemble.GradientBoostingRegressor(loss=’ls’, learning_rate=0.1,
n_estimators=100, subsam-
ple=1.0, min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_depth=3, init=None, ran-
dom_state=None, max_features=None,
alpha=0.9, verbose=0,
max_leaf_nodes=None,
warm_start=False, presort=’auto’)

Gradient Boosting for regression.

GB builds an additive model in a forward stage-wise fashion; it allows for the optimization of arbitrary differ-
entiable loss functions. In each stage a regression tree is fit on the negative gradient of the given loss function.

Read more in the User Guide.

Parametersloss : {‘ls’, ‘lad’, ‘huber’, ‘quantile’}, optional (default=’ls’)

loss function to be optimized. ‘ls’ refers to least squares regression. ‘lad’ (least absolute
deviation) is a highly robust loss function solely based on order information of the input
variables. ‘huber’ is a combination of the two. ‘quantile’ allows quantile regression
(use alpha to specify the quantile).

learning_rate : float, optional (default=0.1)

learning rate shrinks the contribution of each tree by learning_rate. There is a trade-off
between learning_rate and n_estimators.

n_estimators : int (default=100)

The number of boosting stages to perform. Gradient boosting is fairly robust to over-
fitting so a large number usually results in better performance.

max_depth : integer, optional (default=3)

maximum depth of the individual regression estimators. The maximum depth limits the
number of nodes in the tree. Tune this parameter for best performance; the best value
depends on the interaction of the input variables. Ignored if max_leaf_nodes is not
None.

min_samples_split : integer, optional (default=2)
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The minimum number of samples required to split an internal node.

min_samples_leaf : integer, optional (default=1)

The minimum number of samples required to be at a leaf node.

min_weight_fraction_leaf : float, optional (default=0.)

The minimum weighted fraction of the input samples required to be at a leaf node.

subsample : float, optional (default=1.0)

The fraction of samples to be used for fitting the individual base learners. If smaller
than 1.0 this results in Stochastic Gradient Boosting. subsample interacts with the pa-
rameter n_estimators. Choosing subsample < 1.0 leads to a reduction of variance and
an increase in bias.

max_features : int, float, string or None, optional (default=None)

The number of features to consider when looking for the best split:

•If int, then consider max_features features at each split.

•If float, then max_features is a percentage and int(max_features * n_features) fea-
tures are considered at each split.

•If “auto”, then max_features=n_features.

•If “sqrt”, then max_features=sqrt(n_features).

•If “log2”, then max_features=log2(n_features).

•If None, then max_features=n_features.

Choosing max_features < n_features leads to a reduction of variance and an increase in
bias.

Note: the search for a split does not stop until at least one valid partition of the node
samples is found, even if it requires to effectively inspect more than max_features
features.

max_leaf_nodes : int or None, optional (default=None)

Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined as
relative reduction in impurity. If None then unlimited number of leaf nodes.

alpha : float (default=0.9)

The alpha-quantile of the huber loss function and the quantile loss function. Only if
loss=’huber’ or loss=’quantile’.

init : BaseEstimator, None, optional (default=None)

An estimator object that is used to compute the initial predictions. init has to provide
fit and predict. If None it uses loss.init_estimator.

verbose : int, default: 0

Enable verbose output. If 1 then it prints progress and performance once in a while
(the more trees the lower the frequency). If greater than 1 then it prints progress and
performance for every tree.

warm_start : bool, default: False

When set to True, reuse the solution of the previous call to fit and add more estimators
to the ensemble, otherwise, just erase the previous solution.
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random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

presort : bool or ‘auto’, optional (default=’auto’)

Whether to presort the data to speed up the finding of best splits in fitting. Auto mode
by default will use presorting on dense data and default to normal sorting on sparse data.
Setting presort to true on sparse data will raise an error.

New in version 0.17: optional parameter presort.

Attributesfeature_importances_ : array, shape = [n_features]

The feature importances (the higher, the more important the feature).

oob_improvement_ : array, shape = [n_estimators]

The improvement in loss (= deviance) on the out-of-bag samples relative to the previous
iteration. oob_improvement_[0] is the improvement in loss of the first stage over
the init estimator.

train_score_ : array, shape = [n_estimators]

The i-th score train_score_[i] is the deviance (= loss) of the model at iteration i
on the in-bag sample. If subsample == 1 this is the deviance on the training data.

loss_ : LossFunction

The concrete LossFunction object.

‘init‘ : BaseEstimator

The estimator that provides the initial predictions. Set via the init argument or
loss.init_estimator.

estimators_ : ndarray of DecisionTreeRegressor, shape = [n_estimators, 1]

The collection of fitted sub-estimators.

See also:

DecisionTreeRegressor, RandomForestRegressor

References

J. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The Annals of Statistics, Vol. 29,
No. 5, 2001.

10.Friedman, Stochastic Gradient Boosting, 1999

T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical Learning Ed. 2, Springer, 2009.

Methods

apply(X) Apply trees in the ensemble to X, return leaf indices.
decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19
fit(X, y[, sample_weight, monitor]) Fit the gradient boosting model.
fit_transform(X[, y]) Fit to data, then transform it.

Continued on next page

1186 Chapter 5. API Reference



scikit-learn user guide, Release 0.17

Table 5.65 – continued from previous page
get_params([deep]) Get parameters for this estimator.
predict(X) Predict regression target for X.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.
staged_decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19
staged_predict(X) Predict regression target at each stage for X.
transform(*args, **kwargs) DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19.

__init__(loss=’ls’, learning_rate=0.1, n_estimators=100, subsample=1.0, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_depth=3, init=None, ran-
dom_state=None, max_features=None, alpha=0.9, verbose=0, max_leaf_nodes=None,
warm_start=False, presort=’auto’)

apply(X)
Apply trees in the ensemble to X, return leaf indices.

New in version 0.17.

ParametersX : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

ReturnsX_leaves : array_like, shape = [n_samples, n_estimators]

For each datapoint x in X and for each tree in the ensemble, return the index of the leaf
x ends up in in each estimator.

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19

Compute the decision function of X.

ParametersX : array-like of shape = [n_samples, n_features]

The input samples.

Returnsscore : array, shape = [n_samples, n_classes] or [n_samples]

The decision function of the input samples. The order of the classes corresponds to that
in the attribute classes_. Regression and binary classification produce an array of shape
[n_samples].

feature_importances_

Return the feature importances (the higher, the more important thefeature).

Returnsfeature_importances_ : array, shape = [n_features]

fit(X, y, sample_weight=None, monitor=None)
Fit the gradient boosting model.

ParametersX : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target values (integers in classification, real numbers in regression) For classification,
labels must correspond to classes.
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sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Splits that would create
child nodes with net zero or negative weight are ignored while searching for a split in
each node. In the case of classification, splits are also ignored if they would result in
any single class carrying a negative weight in either child node.

monitor : callable, optional

The monitor is called after each iteration with the current iteration, a reference
to the estimator and the local variables of _fit_stages as keyword arguments
callable(i, self, locals()). If the callable returns True the fitting proce-
dure is stopped. The monitor can be used for various things such as computing held-out
estimates, early stopping, model introspect, and snapshoting.

Returnsself : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict regression target for X.

ParametersX : array-like of shape = [n_samples, n_features]

The input samples.

Returnsy : array of shape = [n_samples]

The predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.
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ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

staged_decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19

Compute decision function of X for each iteration.

This method allows monitoring (i.e. determine error on testing set) after each stage.

ParametersX : array-like of shape = [n_samples, n_features]

The input samples.

Returnsscore : generator of array, shape = [n_samples, k]

The decision function of the input samples. The order of the classes corresponds to that
in the attribute classes_. Regression and binary classification are special cases with k
== 1, otherwise k==n_classes.

staged_predict(X)
Predict regression target at each stage for X.

This method allows monitoring (i.e. determine error on testing set) after each stage.

ParametersX : array-like of shape = [n_samples, n_features]

The input samples.

Returnsy : generator of array of shape = [n_samples]

The predicted value of the input samples.

transform(*args, **kwargs)
DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19. Use
SelectFromModel instead.

Reduce X to its most important features.

Uses coef_ or feature_importances_ to determine the most important features. For
models with a coef_ for each class, the absolute sum over the classes is used.

ParametersX : array or scipy sparse matrix of shape [n_samples, n_features]
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The input samples.

threshold[string, float or None, optional (default=None)] The threshold value to use for
feature selection. Features whose importance is greater or equal are kept while the
others are discarded. If “median” (resp. “mean”), then the threshold value is the me-
dian (resp. the mean) of the feature importances. A scaling factor (e.g., “1.25*mean”)
may also be used. If None and if available, the object attribute threshold is used.
Otherwise, “mean” is used by default.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

Examples using sklearn.ensemble.GradientBoostingRegressor

• Model Complexity Influence

• Partial Dependence Plots

• Gradient Boosting regression

• Prediction Intervals for Gradient Boosting Regression

5.9.9 sklearn.ensemble.RandomForestClassifier

class sklearn.ensemble.RandomForestClassifier(n_estimators=10, crite-
rion=’gini’, max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=’auto’,
max_leaf_nodes=None, bootstrap=True,
oob_score=False, n_jobs=1, ran-
dom_state=None, verbose=0,
warm_start=False, class_weight=None)

A random forest classifier.

A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the
dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is
always the same as the original input sample size but the samples are drawn with replacement if bootstrap=True
(default).

Read more in the User Guide.

Parametersn_estimators : integer, optional (default=10)

The number of trees in the forest.

criterion : string, optional (default=”gini”)

The function to measure the quality of a split. Supported criteria are “gini” for the Gini
impurity and “entropy” for the information gain. Note: this parameter is tree-specific.

max_features : int, float, string or None, optional (default=”auto”)

The number of features to consider when looking for the best split:

•If int, then consider max_features features at each split.

•If float, then max_features is a percentage and int(max_features * n_features) features
are considered at each split.
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•If “auto”, then max_features=sqrt(n_features).

•If “sqrt”, then max_features=sqrt(n_features) (same as “auto”).

•If “log2”, then max_features=log2(n_features).

•If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node
samples is found, even if it requires to effectively inspect more than max_features
features. Note: this parameter is tree-specific.

max_depth : integer or None, optional (default=None)

The maximum depth of the tree. If None, then nodes are expanded until all leaves
are pure or until all leaves contain less than min_samples_split samples. Ignored if
max_leaf_nodes is not None. Note: this parameter is tree-specific.

min_samples_split : integer, optional (default=2)

The minimum number of samples required to split an internal node. Note: this parame-
ter is tree-specific.

min_samples_leaf : integer, optional (default=1)

The minimum number of samples in newly created leaves. A split is discarded if after
the split, one of the leaves would contain less then min_samples_leaf samples.
Note: this parameter is tree-specific.

min_weight_fraction_leaf : float, optional (default=0.)

The minimum weighted fraction of the input samples required to be at a leaf node. Note:
this parameter is tree-specific.

max_leaf_nodes : int or None, optional (default=None)

Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined as
relative reduction in impurity. If None then unlimited number of leaf nodes. If not
None then max_depth will be ignored. Note: this parameter is tree-specific.

bootstrap : boolean, optional (default=True)

Whether bootstrap samples are used when building trees.

oob_score : bool

Whether to use out-of-bag samples to estimate the generalization error.

n_jobs : integer, optional (default=1)

The number of jobs to run in parallel for both fit and predict. If -1, then the number of
jobs is set to the number of cores.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

verbose : int, optional (default=0)

Controls the verbosity of the tree building process.

warm_start : bool, optional (default=False)

When set to True, reuse the solution of the previous call to fit and add more estimators
to the ensemble, otherwise, just fit a whole new forest.
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class_weight : dict, list of dicts, “balanced”, “balanced_subsample” or None, optional

Weights associated with classes in the form {class_label: weight}. If not
given, all classes are supposed to have weight one. For multi-output problems, a list of
dicts can be provided in the same order as the columns of y.

The “balanced” mode uses the values of y to automatically adjust weights inversely
proportional to class frequencies in the input data as n_samples / (n_classes

* np.bincount(y))

The “balanced_subsample” mode is the same as “balanced” except that weights are
computed based on the bootstrap sample for every tree grown.

For multi-output, the weights of each column of y will be multiplied.

Note that these weights will be multiplied with sample_weight (passed through the fit
method) if sample_weight is specified.

Attributesestimators_ : list of DecisionTreeClassifier

The collection of fitted sub-estimators.

classes_ : array of shape = [n_classes] or a list of such arrays

The classes labels (single output problem), or a list of arrays of class labels (multi-output
problem).

n_classes_ : int or list

The number of classes (single output problem), or a list containing the number of classes
for each output (multi-output problem).

n_features_ : int

The number of features when fit is performed.

n_outputs_ : int

The number of outputs when fit is performed.

feature_importances_ : array of shape = [n_features]

The feature importances (the higher, the more important the feature).

oob_score_ : float

Score of the training dataset obtained using an out-of-bag estimate.

oob_decision_function_ : array of shape = [n_samples, n_classes]

Decision function computed with out-of-bag estimate on the training set. If
n_estimators is small it might be possible that a data point was never left out during
the bootstrap. In this case, oob_decision_function_ might contain NaN.

See also:

DecisionTreeClassifier, ExtraTreesClassifier

References

[R21]
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apply(X) Apply trees in the forest to X, return leaf indices.
fit(X, y[, sample_weight]) Build a forest of trees from the training set (X, y).
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class for X.
predict_log_proba(X) Predict class log-probabilities for X.
predict_proba(X) Predict class probabilities for X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.
transform(*args, **kwargs) DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19.

__init__(n_estimators=10, criterion=’gini’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’,
max_leaf_nodes=None, bootstrap=True, oob_score=False, n_jobs=1, random_state=None,
verbose=0, warm_start=False, class_weight=None)

apply(X)
Apply trees in the forest to X, return leaf indices.

ParametersX : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

ReturnsX_leaves : array_like, shape = [n_samples, n_estimators]

For each datapoint x in X and for each tree in the forest, return the index of the leaf x
ends up in.

feature_importances_

Return the feature importances (the higher, the more important thefeature).

Returnsfeature_importances_ : array, shape = [n_features]

fit(X, y, sample_weight=None)
Build a forest of trees from the training set (X, y).

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]

The training input samples. Internally, it will be converted to dtype=np.float32
and if a sparse matrix is provided to a sparse csc_matrix.

y : array-like, shape = [n_samples] or [n_samples, n_outputs]

The target values (class labels in classification, real numbers in regression).

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Splits that would create
child nodes with net zero or negative weight are ignored while searching for a split in
each node. In the case of classification, splits are also ignored if they would result in
any single class carrying a negative weight in either child node.

Returnsself : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.
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Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict class for X.

The predicted class of an input sample is a vote by the trees in the forest, weighted by their probability
estimates. That is, the predicted class is the one with highest mean probability estimate across the trees.

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returnsy : array of shape = [n_samples] or [n_samples, n_outputs]

The predicted classes.

predict_log_proba(X)
Predict class log-probabilities for X.

The predicted class log-probabilities of an input sample is computed as the log of the mean predicted class
probabilities of the trees in the forest.

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returnsp : array of shape = [n_samples, n_classes], or a list of n_outputs

such arrays if n_outputs > 1. The class probabilities of the input samples. The order of
the classes corresponds to that in the attribute classes_.

predict_proba(X)
Predict class probabilities for X.

The predicted class probabilities of an input sample is computed as the mean predicted class probabilities
of the trees in the forest. The class probability of a single tree is the fraction of samples of the same class
in a leaf.

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]
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The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returnsp : array of shape = [n_samples, n_classes], or a list of n_outputs

such arrays if n_outputs > 1. The class probabilities of the input samples. The order of
the classes corresponds to that in the attribute classes_.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(*args, **kwargs)
DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19. Use
SelectFromModel instead.

Reduce X to its most important features.

Uses coef_ or feature_importances_ to determine the most important features. For
models with a coef_ for each class, the absolute sum over the classes is used.

ParametersX : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold[string, float or None, optional (default=None)] The threshold value to use for
feature selection. Features whose importance is greater or equal are kept while the
others are discarded. If “median” (resp. “mean”), then the threshold value is the me-
dian (resp. the mean) of the feature importances. A scaling factor (e.g., “1.25*mean”)
may also be used. If None and if available, the object attribute threshold is used.
Otherwise, “mean” is used by default.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.
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Examples using sklearn.ensemble.RandomForestClassifier

• Comparison of Calibration of Classifiers

• Probability Calibration for 3-class classification

• Classifier comparison

• Plot class probabilities calculated by the VotingClassifier

• OOB Errors for Random Forests

• Feature transformations with ensembles of trees

• Plot the decision surfaces of ensembles of trees on the iris dataset

• Comparing randomized search and grid search for hyperparameter estimation

• Classification of text documents using sparse features

5.9.10 sklearn.ensemble.RandomTreesEmbedding

class sklearn.ensemble.RandomTreesEmbedding(n_estimators=10, max_depth=5,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_leaf_nodes=None, sparse_output=True,
n_jobs=1, random_state=None, verbose=0,
warm_start=False)

An ensemble of totally random trees.

An unsupervised transformation of a dataset to a high-dimensional sparse representation. A datapoint is coded
according to which leaf of each tree it is sorted into. Using a one-hot encoding of the leaves, this leads to a
binary coding with as many ones as there are trees in the forest.

The dimensionality of the resulting representation is n_out <= n_estimators * max_leaf_nodes.
If max_leaf_nodes == None, the number of leaf nodes is at most n_estimators * 2 **
max_depth.

Read more in the User Guide.

Parametersn_estimators : int

Number of trees in the forest.

max_depth : int

The maximum depth of each tree. If None, then nodes are expanded until all leaves
are pure or until all leaves contain less than min_samples_split samples. Ignored if
max_leaf_nodes is not None.

min_samples_split : integer, optional (default=2)

The minimum number of samples required to split an internal node.

min_samples_leaf : integer, optional (default=1)

The minimum number of samples in newly created leaves. A split is discarded if after
the split, one of the leaves would contain less then min_samples_leaf samples.

min_weight_fraction_leaf : float, optional (default=0.)

The minimum weighted fraction of the input samples required to be at a leaf node.

max_leaf_nodes : int or None, optional (default=None)
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Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined as
relative reduction in impurity. If None then unlimited number of leaf nodes. If not
None then max_depth will be ignored.

sparse_output : bool, optional (default=True)

Whether or not to return a sparse CSR matrix, as default behavior, or to return a dense
array compatible with dense pipeline operators.

n_jobs : integer, optional (default=1)

The number of jobs to run in parallel for both fit and predict. If -1, then the number of
jobs is set to the number of cores.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

verbose : int, optional (default=0)

Controls the verbosity of the tree building process.

warm_start : bool, optional (default=False)

When set to True, reuse the solution of the previous call to fit and add more estimators
to the ensemble, otherwise, just fit a whole new forest.

Attributesestimators_ : list of DecisionTreeClassifier

The collection of fitted sub-estimators.

References

[R23], [R24]

Methods

apply(X) Apply trees in the forest to X, return leaf indices.
fit(X[, y, sample_weight]) Fit estimator.
fit_transform(X[, y, sample_weight]) Fit estimator and transform dataset.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform dataset.

__init__(n_estimators=10, max_depth=5, min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_leaf_nodes=None, sparse_output=True, n_jobs=1,
random_state=None, verbose=0, warm_start=False)

apply(X)
Apply trees in the forest to X, return leaf indices.

ParametersX : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

ReturnsX_leaves : array_like, shape = [n_samples, n_estimators]
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For each datapoint x in X and for each tree in the forest, return the index of the leaf x
ends up in.

feature_importances_

Return the feature importances (the higher, the more important thefeature).

Returnsfeature_importances_ : array, shape = [n_features]

fit(X, y=None, sample_weight=None)
Fit estimator.

ParametersX : array-like or sparse matrix, shape=(n_samples, n_features)

The input samples. Use dtype=np.float32 for maximum efficiency. Sparse ma-
trices are also supported, use sparse csc_matrix for maximum efficiency.

Returnsself : object

Returns self.

fit_transform(X, y=None, sample_weight=None)
Fit estimator and transform dataset.

ParametersX : array-like or sparse matrix, shape=(n_samples, n_features)

Input data used to build forests. Use dtype=np.float32 for maximum efficiency.

ReturnsX_transformed : sparse matrix, shape=(n_samples, n_out)

Transformed dataset.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X)
Transform dataset.

ParametersX : array-like or sparse matrix, shape=(n_samples, n_features)

Input data to be transformed. Use dtype=np.float32 for maximum efficiency.
Sparse matrices are also supported, use sparse csr_matrix for maximum efficiency.

ReturnsX_transformed : sparse matrix, shape=(n_samples, n_out)

Transformed dataset.
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Examples using sklearn.ensemble.RandomTreesEmbedding

• Hashing feature transformation using Totally Random Trees

• Feature transformations with ensembles of trees

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap...

5.9.11 sklearn.ensemble.RandomForestRegressor

class sklearn.ensemble.RandomForestRegressor(n_estimators=10, crite-
rion=’mse’, max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=’auto’, max_leaf_nodes=None,
bootstrap=True, oob_score=False,
n_jobs=1, random_state=None, verbose=0,
warm_start=False)

A random forest regressor.

A random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of
the dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is
always the same as the original input sample size but the samples are drawn with replacement if bootstrap=True
(default).

Read more in the User Guide.

Parametersn_estimators : integer, optional (default=10)

The number of trees in the forest.

criterion : string, optional (default=”mse”)

The function to measure the quality of a split. The only supported criterion is “mse” for
the mean squared error. Note: this parameter is tree-specific.

max_features : int, float, string or None, optional (default=”auto”)

The number of features to consider when looking for the best split:

•If int, then consider max_features features at each split.

•If float, then max_features is a percentage and int(max_features * n_features) features
are considered at each split.

•If “auto”, then max_features=n_features.

•If “sqrt”, then max_features=sqrt(n_features).

•If “log2”, then max_features=log2(n_features).

•If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node
samples is found, even if it requires to effectively inspect more than max_features
features. Note: this parameter is tree-specific.

max_depth : integer or None, optional (default=None)

The maximum depth of the tree. If None, then nodes are expanded until all leaves
are pure or until all leaves contain less than min_samples_split samples. Ignored if
max_leaf_nodes is not None. Note: this parameter is tree-specific.
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min_samples_split : integer, optional (default=2)

The minimum number of samples required to split an internal node. Note: this parame-
ter is tree-specific.

min_samples_leaf : integer, optional (default=1)

The minimum number of samples in newly created leaves. A split is discarded if after
the split, one of the leaves would contain less then min_samples_leaf samples.
Note: this parameter is tree-specific.

min_weight_fraction_leaf : float, optional (default=0.)

The minimum weighted fraction of the input samples required to be at a leaf node. Note:
this parameter is tree-specific.

max_leaf_nodes : int or None, optional (default=None)

Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined as
relative reduction in impurity. If None then unlimited number of leaf nodes. If not
None then max_depth will be ignored. Note: this parameter is tree-specific.

bootstrap : boolean, optional (default=True)

Whether bootstrap samples are used when building trees.

oob_score : bool

whether to use out-of-bag samples to estimate the generalization error.

n_jobs : integer, optional (default=1)

The number of jobs to run in parallel for both fit and predict. If -1, then the number of
jobs is set to the number of cores.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

verbose : int, optional (default=0)

Controls the verbosity of the tree building process.

warm_start : bool, optional (default=False)

When set to True, reuse the solution of the previous call to fit and add more estimators
to the ensemble, otherwise, just fit a whole new forest.

Attributesestimators_ : list of DecisionTreeRegressor

The collection of fitted sub-estimators.

feature_importances_ : array of shape = [n_features]

The feature importances (the higher, the more important the feature).

n_features_ : int

The number of features when fit is performed.

n_outputs_ : int

The number of outputs when fit is performed.

oob_score_ : float
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Score of the training dataset obtained using an out-of-bag estimate.

oob_prediction_ : array of shape = [n_samples]

Prediction computed with out-of-bag estimate on the training set.

See also:

DecisionTreeRegressor, ExtraTreesRegressor

References

[R22]

Methods

apply(X) Apply trees in the forest to X, return leaf indices.
fit(X, y[, sample_weight]) Build a forest of trees from the training set (X, y).
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict regression target for X.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.
transform(*args, **kwargs) DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19.

__init__(n_estimators=10, criterion=’mse’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’,
max_leaf_nodes=None, bootstrap=True, oob_score=False, n_jobs=1, random_state=None,
verbose=0, warm_start=False)

apply(X)
Apply trees in the forest to X, return leaf indices.

ParametersX : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

ReturnsX_leaves : array_like, shape = [n_samples, n_estimators]

For each datapoint x in X and for each tree in the forest, return the index of the leaf x
ends up in.

feature_importances_

Return the feature importances (the higher, the more important thefeature).

Returnsfeature_importances_ : array, shape = [n_features]

fit(X, y, sample_weight=None)
Build a forest of trees from the training set (X, y).

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]

The training input samples. Internally, it will be converted to dtype=np.float32
and if a sparse matrix is provided to a sparse csc_matrix.

y : array-like, shape = [n_samples] or [n_samples, n_outputs]
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The target values (class labels in classification, real numbers in regression).

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Splits that would create
child nodes with net zero or negative weight are ignored while searching for a split in
each node. In the case of classification, splits are also ignored if they would result in
any single class carrying a negative weight in either child node.

Returnsself : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict regression target for X.

The predicted regression target of an input sample is computed as the mean predicted regression targets of
the trees in the forest.

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returnsy : array of shape = [n_samples] or [n_samples, n_outputs]

The predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)
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Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(*args, **kwargs)
DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19. Use
SelectFromModel instead.

Reduce X to its most important features.

Uses coef_ or feature_importances_ to determine the most important features. For
models with a coef_ for each class, the absolute sum over the classes is used.

ParametersX : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold[string, float or None, optional (default=None)] The threshold value to use for
feature selection. Features whose importance is greater or equal are kept while the
others are discarded. If “median” (resp. “mean”), then the threshold value is the me-
dian (resp. the mean) of the feature importances. A scaling factor (e.g., “1.25*mean”)
may also be used. If None and if available, the object attribute threshold is used.
Otherwise, “mean” is used by default.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

Examples using sklearn.ensemble.RandomForestRegressor

• Imputing missing values before building an estimator

• Prediction Latency

5.9.12 sklearn.ensemble.VotingClassifier

class sklearn.ensemble.VotingClassifier(estimators, voting=’hard’, weights=None)
Soft Voting/Majority Rule classifier for unfitted estimators.

New in version 0.17.

Read more in the User Guide.
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Parametersestimators : list of (string, estimator) tuples

Invoking the fitmethod on the VotingClassifierwill fit clones of those original
estimators that will be stored in the class attribute self.estimators_.

voting : str, {‘hard’, ‘soft’} (default=’hard’)

If ‘hard’, uses predicted class labels for majority rule voting. Else if ‘soft’, predicts
the class label based on the argmax of the sums of the predicted probalities, which is
recommended for an ensemble of well-calibrated classifiers.

weights : array-like, shape = [n_classifiers], optional (default=‘None‘)

Sequence of weights (float or int) to weight the occurances of predicted class labels
(hard voting) or class probabilities before averaging (soft voting). Uses uniform weights
if None.

Attributesclasses_ : array-like, shape = [n_predictions]

Examples

>>> import numpy as np
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.naive_bayes import GaussianNB
>>> from sklearn.ensemble import RandomForestClassifier
>>> clf1 = LogisticRegression(random_state=1)
>>> clf2 = RandomForestClassifier(random_state=1)
>>> clf3 = GaussianNB()
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> eclf1 = VotingClassifier(estimators=[
... ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard')
>>> eclf1 = eclf1.fit(X, y)
>>> print(eclf1.predict(X))
[1 1 1 2 2 2]
>>> eclf2 = VotingClassifier(estimators=[
... ('lr', clf1), ('rf', clf2), ('gnb', clf3)],
... voting='soft')
>>> eclf2 = eclf2.fit(X, y)
>>> print(eclf2.predict(X))
[1 1 1 2 2 2]
>>> eclf3 = VotingClassifier(estimators=[
... ('lr', clf1), ('rf', clf2), ('gnb', clf3)],
... voting='soft', weights=[2,1,1])
>>> eclf3 = eclf3.fit(X, y)
>>> print(eclf3.predict(X))
[1 1 1 2 2 2]
>>>

Methods

fit(X, y) Fit the estimators.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Return estimator parameter names for GridSearch support
predict(X) Predict class labels for X.

Continued on next page
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Table 5.69 – continued from previous page
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.
transform(X) Return class labels or probabilities for X for each estimator.

__init__(estimators, voting=’hard’, weights=None)

fit(X, y)
Fit the estimators.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target values.

Returnsself : object

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Return estimator parameter names for GridSearch support

predict(X)
Predict class labels for X.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

Returnsmaj : array-like, shape = [n_samples]

Predicted class labels.

predict_proba
Compute probabilities of possible outcomes for samples in X.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

Returnsavg : array-like, shape = [n_samples, n_classes]

Weighted average probability for each class per sample.
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score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X)
Return class labels or probabilities for X for each estimator.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

ReturnsIf ‘voting=’soft’‘: :

array-like = [n_classifiers, n_samples, n_classes]Class probabilties calculated by
each classifier.

If ‘voting=’hard’‘: :

array-like = [n_classifiers, n_samples]Class labels predicted by each classifier.

Examples using sklearn.ensemble.VotingClassifier

• Plot the decision boundaries of a VotingClassifier

• Plot class probabilities calculated by the VotingClassifier

5.9.13 partial dependence

Partial dependence plots for tree ensembles.

ensemble.partial_dependence.partial_dependence(...) Partial dependence of target_variables.
ensemble.partial_dependence.plot_partial_dependence(...) Partial dependence plots for features.
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sklearn.ensemble.partial_dependence.partial_dependence

sklearn.ensemble.partial_dependence.partial_dependence(gbrt, target_variables,
grid=None, X=None,
percentiles=(0.05, 0.95),
grid_resolution=100)

Partial dependence of target_variables.

Partial dependence plots show the dependence between the joint values of the target_variables and the
function represented by the gbrt.

Read more in the User Guide.

Parametersgbrt : BaseGradientBoosting

A fitted gradient boosting model.

target_variables : array-like, dtype=int

The target features for which the partial dependecy should be computed (size should be
smaller than 3 for visual renderings).

grid : array-like, shape=(n_points, len(target_variables))

The grid of target_variables values for which the partial dependecy should be
evaluated (either grid or X must be specified).

X : array-like, shape=(n_samples, n_features)

The data on which gbrt was trained. It is used to generate a grid for the
target_variables. The grid comprises grid_resolution equally spaced
points between the two percentiles.

percentiles : (low, high), default=(0.05, 0.95)

The lower and upper percentile used create the extreme values for the grid. Only if X
is not None.

grid_resolution : int, default=100

The number of equally spaced points on the grid.

Returnspdp : array, shape=(n_classes, n_points)

The partial dependence function evaluated on the grid. For regression and binary
classification n_classes==1.

axes : seq of ndarray or None

The axes with which the grid has been created or None if the grid has been given.

Examples

>>> samples = [[0, 0, 2], [1, 0, 0]]
>>> labels = [0, 1]
>>> from sklearn.ensemble import GradientBoostingClassifier
>>> gb = GradientBoostingClassifier(random_state=0).fit(samples, labels)
>>> kwargs = dict(X=samples, percentiles=(0, 1), grid_resolution=2)
>>> partial_dependence(gb, [0], **kwargs)
(array([[-4.52..., 4.52...]]), [array([ 0., 1.])])
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sklearn.ensemble.partial_dependence.plot_partial_dependence

sklearn.ensemble.partial_dependence.plot_partial_dependence(gbrt, X, features, fea-
ture_names=None,
label=None,
n_cols=3,
grid_resolution=100,
percentiles=(0.05,
0.95), n_jobs=1, ver-
bose=0, ax=None,
line_kw=None,
contour_kw=None,
**fig_kw)

Partial dependence plots for features.

The len(features) plots are arranged in a grid with n_cols columns. Two-way partial dependence plots
are plotted as contour plots.

Read more in the User Guide.

Parametersgbrt : BaseGradientBoosting

A fitted gradient boosting model.

X : array-like, shape=(n_samples, n_features)

The data on which gbrt was trained.

features : seq of tuples or ints

If seq[i] is an int or a tuple with one int value, a one-way PDP is created; if seq[i] is a
tuple of two ints, a two-way PDP is created.

feature_names : seq of str

Name of each feature; feature_names[i] holds the name of the feature with index i.

label : object

The class label for which the PDPs should be computed. Only if gbrt is a multi-class
model. Must be in gbrt.classes_.

n_cols : int

The number of columns in the grid plot (default: 3).

percentiles : (low, high), default=(0.05, 0.95)

The lower and upper percentile used to create the extreme values for the PDP axes.

grid_resolution : int, default=100

The number of equally spaced points on the axes.

n_jobs : int

The number of CPUs to use to compute the PDs. -1 means ‘all CPUs’. Defaults to 1.

verbose : int

Verbose output during PD computations. Defaults to 0.

ax : Matplotlib axis object, default None

An axis object onto which the plots will be drawn.

line_kw : dict
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Dict with keywords passed to the pylab.plot call. For one-way partial dependence
plots.

contour_kw : dict

Dict with keywords passed to the pylab.plot call. For two-way partial dependence
plots.

fig_kw : dict

Dict with keywords passed to the figure() call. Note that all keywords not recognized
above will be automatically included here.

Returnsfig : figure

The Matplotlib Figure object.

axs : seq of Axis objects

A seq of Axis objects, one for each subplot.

Examples

>>> from sklearn.datasets import make_friedman1
>>> from sklearn.ensemble import GradientBoostingRegressor
>>> X, y = make_friedman1()
>>> clf = GradientBoostingRegressor(n_estimators=10).fit(X, y)
>>> fig, axs = plot_partial_dependence(clf, X, [0, (0, 1)])
...

Examples using sklearn.ensemble.partial_dependence.plot_partial_dependence

• Partial Dependence Plots

5.10 sklearn.feature_extraction: Feature Extraction

The sklearn.feature_extraction module deals with feature extraction from raw data. It currently includes
methods to extract features from text and images.

User guide: See the Feature extraction section for further details.

feature_extraction.DictVectorizer([dtype, ...]) Transforms lists of feature-value mappings to vectors.
feature_extraction.FeatureHasher([...]) Implements feature hashing, aka the hashing trick.

5.10.1 sklearn.feature_extraction.DictVectorizer

class sklearn.feature_extraction.DictVectorizer(dtype=<class ‘numpy.float64’>, separa-
tor=’=’, sparse=True, sort=True)

Transforms lists of feature-value mappings to vectors.

This transformer turns lists of mappings (dict-like objects) of feature names to feature values into Numpy arrays
or scipy.sparse matrices for use with scikit-learn estimators.

When feature values are strings, this transformer will do a binary one-hot (aka one-of-K) coding: one boolean-
valued feature is constructed for each of the possible string values that the feature can take on. For instance, a
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feature “f” that can take on the values “ham” and “spam” will become two features in the output, one signifying
“f=ham”, the other “f=spam”.

Features that do not occur in a sample (mapping) will have a zero value in the resulting array/matrix.

Read more in the User Guide.

Parametersdtype : callable, optional

The type of feature values. Passed to Numpy array/scipy.sparse matrix constructors as
the dtype argument.

separator: string, optional :

Separator string used when constructing new features for one-hot coding.

sparse: boolean, optional. :

Whether transform should produce scipy.sparse matrices. True by default.

sort: boolean, optional. :

Whether feature_names_ and vocabulary_ should be sorted when fitting. True
by default.

Attributesvocabulary_ : dict

A dictionary mapping feature names to feature indices.

feature_names_ : list

A list of length n_features containing the feature names (e.g., “f=ham” and “f=spam”).

See also:

FeatureHasherperforms vectorization using only a hash function.

sklearn.preprocessing.OneHotEncoderhandles nominal/categorical features encoded as columns
of integers.

Examples

>>> from sklearn.feature_extraction import DictVectorizer
>>> v = DictVectorizer(sparse=False)
>>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}]
>>> X = v.fit_transform(D)
>>> X
array([[ 2., 0., 1.],

[ 0., 1., 3.]])
>>> v.inverse_transform(X) == [{'bar': 2.0, 'foo': 1.0}, {'baz': 1.0, 'foo': 3.0}]
True
>>> v.transform({'foo': 4, 'unseen_feature': 3})
array([[ 0., 0., 4.]])

Methods

fit(X[, y]) Learn a list of feature name -> indices mappings.
fit_transform(X[, y]) Learn a list of feature name -> indices mappings and transform X.
get_feature_names() Returns a list of feature names, ordered by their indices.

Continued on next page
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Table 5.73 – continued from previous page
get_params([deep]) Get parameters for this estimator.
inverse_transform(X[, dict_type]) Transform array or sparse matrix X back to feature mappings.
restrict(support[, indices]) Restrict the features to those in support using feature selection.
set_params(**params) Set the parameters of this estimator.
transform(X[, y]) Transform feature->value dicts to array or sparse matrix.

__init__(dtype=<class ‘numpy.float64’>, separator=’=’, sparse=True, sort=True)

fit(X, y=None)
Learn a list of feature name -> indices mappings.

ParametersX : Mapping or iterable over Mappings

Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values
(strings or convertible to dtype).

y : (ignored)

Returnsself :

fit_transform(X, y=None)
Learn a list of feature name -> indices mappings and transform X.

Like fit(X) followed by transform(X), but does not require materializing X in memory.

ParametersX : Mapping or iterable over Mappings

Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values
(strings or convertible to dtype).

y : (ignored)

ReturnsXa : {array, sparse matrix}

Feature vectors; always 2-d.

get_feature_names()
Returns a list of feature names, ordered by their indices.

If one-of-K coding is applied to categorical features, this will include the constructed feature names but
not the original ones.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

inverse_transform(X, dict_type=<class ‘dict’>)
Transform array or sparse matrix X back to feature mappings.

X must have been produced by this DictVectorizer’s transform or fit_transform method; it may only have
passed through transformers that preserve the number of features and their order.

In the case of one-hot/one-of-K coding, the constructed feature names and values are returned rather than
the original ones.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]
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Sample matrix.

dict_type : callable, optional

Constructor for feature mappings. Must conform to the collections.Mapping API.

ReturnsD : list of dict_type objects, length = n_samples

Feature mappings for the samples in X.

restrict(support, indices=False)
Restrict the features to those in support using feature selection.

This function modifies the estimator in-place.

Parameterssupport : array-like

Boolean mask or list of indices (as returned by the get_support member of feature se-
lectors).

indices : boolean, optional

Whether support is a list of indices.

Returnsself :

Examples

>>> from sklearn.feature_extraction import DictVectorizer
>>> from sklearn.feature_selection import SelectKBest, chi2
>>> v = DictVectorizer()
>>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}]
>>> X = v.fit_transform(D)
>>> support = SelectKBest(chi2, k=2).fit(X, [0, 1])
>>> v.get_feature_names()
['bar', 'baz', 'foo']
>>> v.restrict(support.get_support())
DictVectorizer(dtype=..., separator='=', sort=True,

sparse=True)
>>> v.get_feature_names()
['bar', 'foo']

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X, y=None)
Transform feature->value dicts to array or sparse matrix.

Named features not encountered during fit or fit_transform will be silently ignored.

ParametersX : Mapping or iterable over Mappings, length = n_samples

Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values
(strings or convertible to dtype).

y : (ignored)

ReturnsXa : {array, sparse matrix}
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Feature vectors; always 2-d.

Examples using sklearn.feature_extraction.DictVectorizer

• Feature Union with Heterogeneous Data Sources

• FeatureHasher and DictVectorizer Comparison

5.10.2 sklearn.feature_extraction.FeatureHasher

class sklearn.feature_extraction.FeatureHasher(n_features=1048576, input_type=’dict’,
dtype=<class ‘numpy.float64’>,
non_negative=False)

Implements feature hashing, aka the hashing trick.

This class turns sequences of symbolic feature names (strings) into scipy.sparse matrices, using a hash function
to compute the matrix column corresponding to a name. The hash function employed is the signed 32-bit version
of Murmurhash3.

Feature names of type byte string are used as-is. Unicode strings are converted to UTF-8 first, but no Unicode
normalization is done. Feature values must be (finite) numbers.

This class is a low-memory alternative to DictVectorizer and CountVectorizer, intended for large-scale (online)
learning and situations where memory is tight, e.g. when running prediction code on embedded devices.

Read more in the User Guide.

Parametersn_features : integer, optional

The number of features (columns) in the output matrices. Small numbers of features are
likely to cause hash collisions, but large numbers will cause larger coefficient dimen-
sions in linear learners.

dtype : numpy type, optional, default np.float64

The type of feature values. Passed to scipy.sparse matrix constructors as the dtype
argument. Do not set this to bool, np.boolean or any unsigned integer type.

input_type : string, optional, default “dict”

Either “dict” (the default) to accept dictionaries over (feature_name, value); “pair” to
accept pairs of (feature_name, value); or “string” to accept single strings. feature_name
should be a string, while value should be a number. In the case of “string”, a value of 1
is implied. The feature_name is hashed to find the appropriate column for the feature.
The value’s sign might be flipped in the output (but see non_negative, below).

non_negative : boolean, optional, default False

Whether output matrices should contain non-negative values only; effectively calls abs
on the matrix prior to returning it. When True, output values can be interpreted as
frequencies. When False, output values will have expected value zero.

See also:

DictVectorizervectorizes string-valued features using a hash table.

sklearn.preprocessing.OneHotEncoderhandles nominal/categorical features encoded as columns
of integers.
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Examples

>>> from sklearn.feature_extraction import FeatureHasher
>>> h = FeatureHasher(n_features=10)
>>> D = [{'dog': 1, 'cat':2, 'elephant':4},{'dog': 2, 'run': 5}]
>>> f = h.transform(D)
>>> f.toarray()
array([[ 0., 0., -4., -1., 0., 0., 0., 0., 0., 2.],

[ 0., 0., 0., -2., -5., 0., 0., 0., 0., 0.]])

Methods

fit([X, y]) No-op.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(raw_X[, y]) Transform a sequence of instances to a scipy.sparse matrix.

__init__(n_features=1048576, input_type=’dict’, dtype=<class ‘numpy.float64’>,
non_negative=False)

fit(X=None, y=None)
No-op.

This method doesn’t do anything. It exists purely for compatibility with the scikit-learn transformer API.

Returnsself : FeatureHasher

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.
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The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(raw_X, y=None)
Transform a sequence of instances to a scipy.sparse matrix.

Parametersraw_X : iterable over iterable over raw features, length = n_samples

Samples. Each sample must be iterable an (e.g., a list or tuple) containing/generating
feature names (and optionally values, see the input_type constructor argument) which
will be hashed. raw_X need not support the len function, so it can be the result of a
generator; n_samples is determined on the fly.

y : (ignored)

ReturnsX : scipy.sparse matrix, shape = (n_samples, self.n_features)

Feature matrix, for use with estimators or further transformers.

Examples using sklearn.feature_extraction.FeatureHasher

• FeatureHasher and DictVectorizer Comparison

5.10.3 From images

The sklearn.feature_extraction.image submodule gathers utilities to extract features from images.

feature_extraction.image.img_to_graph(img[, ...]) Graph of the pixel-to-pixel gradient connections
feature_extraction.image.grid_to_graph(n_x, n_y) Graph of the pixel-to-pixel connections
feature_extraction.image.extract_patches_2d(...) Reshape a 2D image into a collection of patches
feature_extraction.image.reconstruct_from_patches_2d(...) Reconstruct the image from all of its patches.
feature_extraction.image.PatchExtractor([...]) Extracts patches from a collection of images

sklearn.feature_extraction.image.img_to_graph

sklearn.feature_extraction.image.img_to_graph(img, mask=None, return_as=<class
‘scipy.sparse.coo.coo_matrix’>,
dtype=None)

Graph of the pixel-to-pixel gradient connections

Edges are weighted with the gradient values.

Read more in the User Guide.

Parametersimg : ndarray, 2D or 3D

2D or 3D image

mask : ndarray of booleans, optional

An optional mask of the image, to consider only part of the pixels.

return_as : np.ndarray or a sparse matrix class, optional

The class to use to build the returned adjacency matrix.
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dtype : None or dtype, optional

The data of the returned sparse matrix. By default it is the dtype of img

Notes

For sklearn versions 0.14.1 and prior, return_as=np.ndarray was handled by returning a dense np.matrix instance.
Going forward, np.ndarray returns an np.ndarray, as expected.

For compatibility, user code relying on this method should wrap its calls in np.asarray to avoid type issues.

sklearn.feature_extraction.image.grid_to_graph

sklearn.feature_extraction.image.grid_to_graph(n_x, n_y, n_z=1,
mask=None, return_as=<class
‘scipy.sparse.coo.coo_matrix’>,
dtype=<class ‘int’>)

Graph of the pixel-to-pixel connections

Edges exist if 2 voxels are connected.

Parametersn_x : int

Dimension in x axis

n_y : int

Dimension in y axis

n_z : int, optional, default 1

Dimension in z axis

mask : ndarray of booleans, optional

An optional mask of the image, to consider only part of the pixels.

return_as : np.ndarray or a sparse matrix class, optional

The class to use to build the returned adjacency matrix.

dtype : dtype, optional, default int

The data of the returned sparse matrix. By default it is int

Notes

For sklearn versions 0.14.1 and prior, return_as=np.ndarray was handled by returning a dense np.matrix instance.
Going forward, np.ndarray returns an np.ndarray, as expected.

For compatibility, user code relying on this method should wrap its calls in np.asarray to avoid type issues.

sklearn.feature_extraction.image.extract_patches_2d

sklearn.feature_extraction.image.extract_patches_2d(image, patch_size,
max_patches=None, ran-
dom_state=None)

Reshape a 2D image into a collection of patches

The resulting patches are allocated in a dedicated array.
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Read more in the User Guide.

Parametersimage : array, shape = (image_height, image_width) or

(image_height, image_width, n_channels) The original image data. For color images,
the last dimension specifies the channel: a RGB image would have n_channels=3.

patch_size : tuple of ints (patch_height, patch_width)

the dimensions of one patch

max_patches : integer or float, optional default is None

The maximum number of patches to extract. If max_patches is a float between 0 and 1,
it is taken to be a proportion of the total number of patches.

random_state : int or RandomState

Pseudo number generator state used for random sampling to use if max_patches is not
None.

Returnspatches : array, shape = (n_patches, patch_height, patch_width) or

(n_patches, patch_height, patch_width, n_channels) The collection of patches extracted
from the image, where n_patches is either max_patches or the total number of patches
that can be extracted.

Examples

>>> from sklearn.feature_extraction import image
>>> one_image = np.arange(16).reshape((4, 4))
>>> one_image
array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])

>>> patches = image.extract_patches_2d(one_image, (2, 2))
>>> print(patches.shape)
(9, 2, 2)
>>> patches[0]
array([[0, 1],

[4, 5]])
>>> patches[1]
array([[1, 2],

[5, 6]])
>>> patches[8]
array([[10, 11],

[14, 15]])

Examples using sklearn.feature_extraction.image.extract_patches_2d

• Online learning of a dictionary of parts of faces

• Image denoising using dictionary learning
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sklearn.feature_extraction.image.reconstruct_from_patches_2d

sklearn.feature_extraction.image.reconstruct_from_patches_2d(patches, im-
age_size)

Reconstruct the image from all of its patches.

Patches are assumed to overlap and the image is constructed by filling in the patches from left to right, top to
bottom, averaging the overlapping regions.

Read more in the User Guide.

Parameterspatches : array, shape = (n_patches, patch_height, patch_width) or

(n_patches, patch_height, patch_width, n_channels) The complete set of patches. If
the patches contain colour information, channels are indexed along the last dimension:
RGB patches would have n_channels=3.

image_size : tuple of ints (image_height, image_width) or

(image_height, image_width, n_channels) the size of the image that will be recon-
structed

Returnsimage : array, shape = image_size

the reconstructed image

Examples using sklearn.feature_extraction.image.reconstruct_from_patches_2d

• Image denoising using dictionary learning

sklearn.feature_extraction.image.PatchExtractor

class sklearn.feature_extraction.image.PatchExtractor(patch_size=None,
max_patches=None, ran-
dom_state=None)

Extracts patches from a collection of images

Read more in the User Guide.

Parameterspatch_size : tuple of ints (patch_height, patch_width)

the dimensions of one patch

max_patches : integer or float, optional default is None

The maximum number of patches per image to extract. If max_patches is a float in (0,
1), it is taken to mean a proportion of the total number of patches.

random_state : int or RandomState

Pseudo number generator state used for random sampling.

Methods

fit(X[, y]) Do nothing and return the estimator unchanged
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Transforms the image samples in X into a matrix of patch data.
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__init__(patch_size=None, max_patches=None, random_state=None)

fit(X, y=None)
Do nothing and return the estimator unchanged

This method is just there to implement the usual API and hence work in pipelines.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X)
Transforms the image samples in X into a matrix of patch data.

ParametersX : array, shape = (n_samples, image_height, image_width) or

(n_samples, image_height, image_width, n_channels) Array of images from which to
extract patches. For color images, the last dimension specifies the channel: a RGB
image would have n_channels=3.

Returnspatches: array, shape = (n_patches, patch_height, patch_width) or :

(n_patches, patch_height, patch_width, n_channels) The collection of patches extracted
from the images, where n_patches is either n_samples * max_patches or the total num-
ber of patches that can be extracted.

5.10.4 From text

The sklearn.feature_extraction.text submodule gathers utilities to build feature vectors from text doc-
uments.

feature_extraction.text.CountVectorizer([...]) Convert a collection of text documents to a matrix of token counts
feature_extraction.text.HashingVectorizer([...]) Convert a collection of text documents to a matrix of token occurrences
feature_extraction.text.TfidfTransformer([...]) Transform a count matrix to a normalized tf or tf-idf representation
feature_extraction.text.TfidfVectorizer([...]) Convert a collection of raw documents to a matrix of TF-IDF features.
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sklearn.feature_extraction.text.CountVectorizer

class sklearn.feature_extraction.text.CountVectorizer(input=’content’, encoding=’utf-
8’, decode_error=’strict’,
strip_accents=None, low-
ercase=True, preproces-
sor=None, tokenizer=None,
stop_words=None, to-
ken_pattern=’(?u)\b\w\w+\b’,
ngram_range=(1, 1), ana-
lyzer=’word’, max_df=1.0,
min_df=1, max_features=None,
vocabulary=None, binary=False,
dtype=<class ‘numpy.int64’>)

Convert a collection of text documents to a matrix of token counts

This implementation produces a sparse representation of the counts using scipy.sparse.coo_matrix.

If you do not provide an a-priori dictionary and you do not use an analyzer that does some kind of feature
selection then the number of features will be equal to the vocabulary size found by analyzing the data.

Read more in the User Guide.

Parametersinput : string {‘filename’, ‘file’, ‘content’}

If ‘filename’, the sequence passed as an argument to fit is expected to be a list of file-
names that need reading to fetch the raw content to analyze.

If ‘file’, the sequence items must have a ‘read’ method (file-like object) that is called to
fetch the bytes in memory.

Otherwise the input is expected to be the sequence strings or bytes items are expected
to be analyzed directly.

encoding : string, ‘utf-8’ by default.

If bytes or files are given to analyze, this encoding is used to decode.

decode_error : {‘strict’, ‘ignore’, ‘replace’}

Instruction on what to do if a byte sequence is given to analyze that contains characters
not of the given encoding. By default, it is ‘strict’, meaning that a UnicodeDecodeError
will be raised. Other values are ‘ignore’ and ‘replace’.

strip_accents : {‘ascii’, ‘unicode’, None}

Remove accents during the preprocessing step. ‘ascii’ is a fast method that only works
on characters that have an direct ASCII mapping. ‘unicode’ is a slightly slower method
that works on any characters. None (default) does nothing.

analyzer : string, {‘word’, ‘char’, ‘char_wb’} or callable

Whether the feature should be made of word or character n-grams. Option ‘char_wb’
creates character n-grams only from text inside word boundaries.

If a callable is passed it is used to extract the sequence of features out of the raw, unpro-
cessed input. Only applies if analyzer == ’word’.

preprocessor : callable or None (default)

Override the preprocessing (string transformation) stage while preserving the tokenizing
and n-grams generation steps.

tokenizer : callable or None (default)
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Override the string tokenization step while preserving the preprocessing and n-grams
generation steps. Only applies if analyzer == ’word’.

ngram_range : tuple (min_n, max_n)

The lower and upper boundary of the range of n-values for different n-grams to be
extracted. All values of n such that min_n <= n <= max_n will be used.

stop_words : string {‘english’}, list, or None (default)

If ‘english’, a built-in stop word list for English is used.

If a list, that list is assumed to contain stop words, all of which will be removed from
the resulting tokens. Only applies if analyzer == ’word’.

If None, no stop words will be used. max_df can be set to a value in the range [0.7, 1.0)
to automatically detect and filter stop words based on intra corpus document frequency
of terms.

lowercase : boolean, True by default

Convert all characters to lowercase before tokenizing.

token_pattern : string

Regular expression denoting what constitutes a “token”, only used if analyzer ==
’word’. The default regexp select tokens of 2 or more alphanumeric characters (punc-
tuation is completely ignored and always treated as a token separator).

max_df : float in range [0.0, 1.0] or int, default=1.0

When building the vocabulary ignore terms that have a document frequency strictly
higher than the given threshold (corpus-specific stop words). If float, the parameter
represents a proportion of documents, integer absolute counts. This parameter is ignored
if vocabulary is not None.

min_df : float in range [0.0, 1.0] or int, default=1

When building the vocabulary ignore terms that have a document frequency strictly
lower than the given threshold. This value is also called cut-off in the literature. If
float, the parameter represents a proportion of documents, integer absolute counts. This
parameter is ignored if vocabulary is not None.

max_features : int or None, default=None

If not None, build a vocabulary that only consider the top max_features ordered by term
frequency across the corpus.

This parameter is ignored if vocabulary is not None.

vocabulary : Mapping or iterable, optional

Either a Mapping (e.g., a dict) where keys are terms and values are indices in the feature
matrix, or an iterable over terms. If not given, a vocabulary is determined from the input
documents. Indices in the mapping should not be repeated and should not have any gap
between 0 and the largest index.

binary : boolean, default=False

If True, all non zero counts are set to 1. This is useful for discrete probabilistic models
that model binary events rather than integer counts.

dtype : type, optional

Type of the matrix returned by fit_transform() or transform().

1222 Chapter 5. API Reference



scikit-learn user guide, Release 0.17

Attributesvocabulary_ : dict

A mapping of terms to feature indices.

stop_words_ : set

Terms that were ignored because they either:

•occurred in too many documents (max_df )

•occurred in too few documents (min_df )

•were cut off by feature selection (max_features).

This is only available if no vocabulary was given.

See also:

HashingVectorizer, TfidfVectorizer

Notes

The stop_words_ attribute can get large and increase the model size when pickling. This attribute is provided
only for introspection and can be safely removed using delattr or set to None before pickling.

Methods

build_analyzer() Return a callable that handles preprocessing and tokenization
build_preprocessor() Return a function to preprocess the text before tokenization
build_tokenizer() Return a function that splits a string into a sequence of tokens
decode(doc) Decode the input into a string of unicode symbols
fit(raw_documents[, y]) Learn a vocabulary dictionary of all tokens in the raw documents.
fit_transform(raw_documents[, y]) Learn the vocabulary dictionary and return term-document matrix.
get_feature_names() Array mapping from feature integer indices to feature name
get_params([deep]) Get parameters for this estimator.
get_stop_words() Build or fetch the effective stop words list
inverse_transform(X) Return terms per document with nonzero entries in X.
set_params(**params) Set the parameters of this estimator.
transform(raw_documents) Transform documents to document-term matrix.

__init__(input=’content’, encoding=’utf-8’, decode_error=’strict’, strip_accents=None,
lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, to-
ken_pattern=’(?u)\\b\\w\\w+\\b’, ngram_range=(1, 1), analyzer=’word’, max_df=1.0,
min_df=1, max_features=None, vocabulary=None, binary=False, dtype=<class
‘numpy.int64’>)

build_analyzer()
Return a callable that handles preprocessing and tokenization

build_preprocessor()
Return a function to preprocess the text before tokenization

build_tokenizer()
Return a function that splits a string into a sequence of tokens

decode(doc)
Decode the input into a string of unicode symbols

5.10. sklearn.feature_extraction: Feature Extraction 1223



scikit-learn user guide, Release 0.17

The decoding strategy depends on the vectorizer parameters.

fit(raw_documents, y=None)
Learn a vocabulary dictionary of all tokens in the raw documents.

Parametersraw_documents : iterable

An iterable which yields either str, unicode or file objects.

Returnsself :

fit_transform(raw_documents, y=None)
Learn the vocabulary dictionary and return term-document matrix.

This is equivalent to fit followed by transform, but more efficiently implemented.

Parametersraw_documents : iterable

An iterable which yields either str, unicode or file objects.

ReturnsX : array, [n_samples, n_features]

Document-term matrix.

fixed_vocabulary
DEPRECATED: The fixed_vocabulary attribute is deprecated and will be removed in 0.18. Please use
fixed_vocabulary_ instead.

get_feature_names()
Array mapping from feature integer indices to feature name

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

get_stop_words()
Build or fetch the effective stop words list

inverse_transform(X)
Return terms per document with nonzero entries in X.

ParametersX : {array, sparse matrix}, shape = [n_samples, n_features]

ReturnsX_inv : list of arrays, len = n_samples

List of arrays of terms.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(raw_documents)
Transform documents to document-term matrix.
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Extract token counts out of raw text documents using the vocabulary fitted with fit or the one provided to
the constructor.

Parametersraw_documents : iterable

An iterable which yields either str, unicode or file objects.

ReturnsX : sparse matrix, [n_samples, n_features]

Document-term matrix.

Examples using sklearn.feature_extraction.text.CountVectorizer

• Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation

• Sample pipeline for text feature extraction and evaluation

sklearn.feature_extraction.text.HashingVectorizer

class sklearn.feature_extraction.text.HashingVectorizer(input=’content’,
encoding=’utf-8’, de-
code_error=’strict’,
strip_accents=None, low-
ercase=True, preproces-
sor=None, tokenizer=None,
stop_words=None, to-
ken_pattern=’(?u)\b\w\w+\b’,
ngram_range=(1,
1), analyzer=’word’,
n_features=1048576, bi-
nary=False, norm=’l2’,
non_negative=False,
dtype=<class
‘numpy.float64’>)

Convert a collection of text documents to a matrix of token occurrences

It turns a collection of text documents into a scipy.sparse matrix holding token occurrence counts (or binary
occurrence information), possibly normalized as token frequencies if norm=’l1’ or projected on the euclidean
unit sphere if norm=’l2’.

This text vectorizer implementation uses the hashing trick to find the token string name to feature integer index
mapping.

This strategy has several advantages:

•it is very low memory scalable to large datasets as there is no need to store a vocabulary dictionary in
memory

•it is fast to pickle and un-pickle as it holds no state besides the constructor parameters

•it can be used in a streaming (partial fit) or parallel pipeline as there is no state computed during fit.

There are also a couple of cons (vs using a CountVectorizer with an in-memory vocabulary):

•there is no way to compute the inverse transform (from feature indices to string feature names) which can
be a problem when trying to introspect which features are most important to a model.

•there can be collisions: distinct tokens can be mapped to the same feature index. However in practice this
is rarely an issue if n_features is large enough (e.g. 2 ** 18 for text classification problems).
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•no IDF weighting as this would render the transformer stateful.

The hash function employed is the signed 32-bit version of Murmurhash3.

Read more in the User Guide.

Parametersinput : string {‘filename’, ‘file’, ‘content’}

If ‘filename’, the sequence passed as an argument to fit is expected to be a list of file-
names that need reading to fetch the raw content to analyze.

If ‘file’, the sequence items must have a ‘read’ method (file-like object) that is called to
fetch the bytes in memory.

Otherwise the input is expected to be the sequence strings or bytes items are expected
to be analyzed directly.

encoding : string, default=’utf-8’

If bytes or files are given to analyze, this encoding is used to decode.

decode_error : {‘strict’, ‘ignore’, ‘replace’}

Instruction on what to do if a byte sequence is given to analyze that contains characters
not of the given encoding. By default, it is ‘strict’, meaning that a UnicodeDecodeError
will be raised. Other values are ‘ignore’ and ‘replace’.

strip_accents : {‘ascii’, ‘unicode’, None}

Remove accents during the preprocessing step. ‘ascii’ is a fast method that only works
on characters that have an direct ASCII mapping. ‘unicode’ is a slightly slower method
that works on any characters. None (default) does nothing.

analyzer : string, {‘word’, ‘char’, ‘char_wb’} or callable

Whether the feature should be made of word or character n-grams. Option ‘char_wb’
creates character n-grams only from text inside word boundaries.

If a callable is passed it is used to extract the sequence of features out of the raw, unpro-
cessed input.

preprocessor : callable or None (default)

Override the preprocessing (string transformation) stage while preserving the tokenizing
and n-grams generation steps.

tokenizer : callable or None (default)

Override the string tokenization step while preserving the preprocessing and n-grams
generation steps. Only applies if analyzer == ’word’.

ngram_range : tuple (min_n, max_n), default=(1, 1)

The lower and upper boundary of the range of n-values for different n-grams to be
extracted. All values of n such that min_n <= n <= max_n will be used.

stop_words : string {‘english’}, list, or None (default)

If ‘english’, a built-in stop word list for English is used.

If a list, that list is assumed to contain stop words, all of which will be removed from
the resulting tokens. Only applies if analyzer == ’word’.

lowercase : boolean, default=True

Convert all characters to lowercase before tokenizing.
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token_pattern : string

Regular expression denoting what constitutes a “token”, only used if analyzer ==
’word’. The default regexp selects tokens of 2 or more alphanumeric characters
(punctuation is completely ignored and always treated as a token separator).

n_features : integer, default=(2 ** 20)

The number of features (columns) in the output matrices. Small numbers of features are
likely to cause hash collisions, but large numbers will cause larger coefficient dimen-
sions in linear learners.

norm : ‘l1’, ‘l2’ or None, optional

Norm used to normalize term vectors. None for no normalization.

binary: boolean, default=False. :

If True, all non zero counts are set to 1. This is useful for discrete probabilistic models
that model binary events rather than integer counts.

dtype: type, optional :

Type of the matrix returned by fit_transform() or transform().

non_negative : boolean, default=False

Whether output matrices should contain non-negative values only; effectively calls abs
on the matrix prior to returning it. When True, output values can be interpreted as
frequencies. When False, output values will have expected value zero.

See also:

CountVectorizer, TfidfVectorizer

Methods

build_analyzer() Return a callable that handles preprocessing and tokenization
build_preprocessor() Return a function to preprocess the text before tokenization
build_tokenizer() Return a function that splits a string into a sequence of tokens
decode(doc) Decode the input into a string of unicode symbols
fit(X[, y]) Does nothing: this transformer is stateless.
fit_transform(X[, y]) Transform a sequence of documents to a document-term matrix.
get_params([deep]) Get parameters for this estimator.
get_stop_words() Build or fetch the effective stop words list
partial_fit(X[, y]) Does nothing: this transformer is stateless.
set_params(**params) Set the parameters of this estimator.
transform(X[, y]) Transform a sequence of documents to a document-term matrix.

__init__(input=’content’, encoding=’utf-8’, decode_error=’strict’, strip_accents=None,
lowercase=True, preprocessor=None, tokenizer=None, stop_words=None,
token_pattern=’(?u)\\b\\w\\w+\\b’, ngram_range=(1, 1), analyzer=’word’,
n_features=1048576, binary=False, norm=’l2’, non_negative=False, dtype=<class
‘numpy.float64’>)

build_analyzer()
Return a callable that handles preprocessing and tokenization

build_preprocessor()
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Return a function to preprocess the text before tokenization

build_tokenizer()
Return a function that splits a string into a sequence of tokens

decode(doc)
Decode the input into a string of unicode symbols

The decoding strategy depends on the vectorizer parameters.

fit(X, y=None)
Does nothing: this transformer is stateless.

fit_transform(X, y=None)
Transform a sequence of documents to a document-term matrix.

ParametersX : iterable over raw text documents, length = n_samples

Samples. Each sample must be a text document (either bytes or unicode strings, file
name or file object depending on the constructor argument) which will be tokenized and
hashed.

y : (ignored)

ReturnsX : scipy.sparse matrix, shape = (n_samples, self.n_features)

Document-term matrix.

fixed_vocabulary
DEPRECATED: The fixed_vocabulary attribute is deprecated and will be removed in 0.18. Please use
fixed_vocabulary_ instead.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

get_stop_words()
Build or fetch the effective stop words list

partial_fit(X, y=None)
Does nothing: this transformer is stateless.

This method is just there to mark the fact that this transformer can work in a streaming setup.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X, y=None)
Transform a sequence of documents to a document-term matrix.

ParametersX : iterable over raw text documents, length = n_samples
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Samples. Each sample must be a text document (either bytes or unicode strings, file
name or file object depending on the constructor argument) which will be tokenized and
hashed.

y : (ignored)

ReturnsX : scipy.sparse matrix, shape = (n_samples, self.n_features)

Document-term matrix.

Examples using sklearn.feature_extraction.text.HashingVectorizer

• Out-of-core classification of text documents

• Clustering text documents using k-means

• Classification of text documents using sparse features

sklearn.feature_extraction.text.TfidfTransformer

class sklearn.feature_extraction.text.TfidfTransformer(norm=’l2’, use_idf=True,
smooth_idf=True, sublin-
ear_tf=False)

Transform a count matrix to a normalized tf or tf-idf representation

Tf means term-frequency while tf-idf means term-frequency times inverse document-frequency. This is a com-
mon term weighting scheme in information retrieval, that has also found good use in document classification.

The goal of using tf-idf instead of the raw frequencies of occurrence of a token in a given document is to scale
down the impact of tokens that occur very frequently in a given corpus and that are hence empirically less
informative than features that occur in a small fraction of the training corpus.

The actual formula used for tf-idf is tf * (idf + 1) = tf + tf * idf, instead of tf * idf. The effect of this is that terms
with zero idf, i.e. that occur in all documents of a training set, will not be entirely ignored. The formulas used to
compute tf and idf depend on parameter settings that correspond to the SMART notation used in IR, as follows:

Tf is “n” (natural) by default, “l” (logarithmic) when sublinear_tf=True. Idf is “t” when use_idf is given, “n”
(none) otherwise. Normalization is “c” (cosine) when norm=’l2’, “n” (none) when norm=None.

Read more in the User Guide.

Parametersnorm : ‘l1’, ‘l2’ or None, optional

Norm used to normalize term vectors. None for no normalization.

use_idf : boolean, default=True

Enable inverse-document-frequency reweighting.

smooth_idf : boolean, default=True

Smooth idf weights by adding one to document frequencies, as if an extra document
was seen containing every term in the collection exactly once. Prevents zero divisions.

sublinear_tf : boolean, default=False

Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf).

References

[Yates2011], [MRS2008]
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Methods

fit(X[, y]) Learn the idf vector (global term weights)
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X[, copy]) Transform a count matrix to a tf or tf-idf representation

__init__(norm=’l2’, use_idf=True, smooth_idf=True, sublinear_tf=False)

fit(X, y=None)
Learn the idf vector (global term weights)

ParametersX : sparse matrix, [n_samples, n_features]

a matrix of term/token counts

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X, copy=True)
Transform a count matrix to a tf or tf-idf representation

ParametersX : sparse matrix, [n_samples, n_features]

a matrix of term/token counts

copy : boolean, default True
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Whether to copy X and operate on the copy or perform in-place operations.

Returnsvectors : sparse matrix, [n_samples, n_features]

Examples using sklearn.feature_extraction.text.TfidfTransformer

• Sample pipeline for text feature extraction and evaluation

• Clustering text documents using k-means

sklearn.feature_extraction.text.TfidfVectorizer

class sklearn.feature_extraction.text.TfidfVectorizer(input=’content’, encoding=’utf-
8’, decode_error=’strict’,
strip_accents=None, low-
ercase=True, preproces-
sor=None, tokenizer=None, ana-
lyzer=’word’, stop_words=None,
token_pattern=’(?u)\b\w\w+\b’,
ngram_range=(1, 1),
max_df=1.0, min_df=1,
max_features=None, vocab-
ulary=None, binary=False,
dtype=<class ‘numpy.int64’>,
norm=’l2’, use_idf=True,
smooth_idf=True, sublin-
ear_tf=False)

Convert a collection of raw documents to a matrix of TF-IDF features.

Equivalent to CountVectorizer followed by TfidfTransformer.

Read more in the User Guide.

Parametersinput : string {‘filename’, ‘file’, ‘content’}

If ‘filename’, the sequence passed as an argument to fit is expected to be a list of file-
names that need reading to fetch the raw content to analyze.

If ‘file’, the sequence items must have a ‘read’ method (file-like object) that is called to
fetch the bytes in memory.

Otherwise the input is expected to be the sequence strings or bytes items are expected
to be analyzed directly.

encoding : string, ‘utf-8’ by default.

If bytes or files are given to analyze, this encoding is used to decode.

decode_error : {‘strict’, ‘ignore’, ‘replace’}

Instruction on what to do if a byte sequence is given to analyze that contains characters
not of the given encoding. By default, it is ‘strict’, meaning that a UnicodeDecodeError
will be raised. Other values are ‘ignore’ and ‘replace’.

strip_accents : {‘ascii’, ‘unicode’, None}

Remove accents during the preprocessing step. ‘ascii’ is a fast method that only works
on characters that have an direct ASCII mapping. ‘unicode’ is a slightly slower method
that works on any characters. None (default) does nothing.
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analyzer : string, {‘word’, ‘char’} or callable

Whether the feature should be made of word or character n-grams.

If a callable is passed it is used to extract the sequence of features out of the raw, unpro-
cessed input.

preprocessor : callable or None (default)

Override the preprocessing (string transformation) stage while preserving the tokenizing
and n-grams generation steps.

tokenizer : callable or None (default)

Override the string tokenization step while preserving the preprocessing and n-grams
generation steps. Only applies if analyzer == ’word’.

ngram_range : tuple (min_n, max_n)

The lower and upper boundary of the range of n-values for different n-grams to be
extracted. All values of n such that min_n <= n <= max_n will be used.

stop_words : string {‘english’}, list, or None (default)

If a string, it is passed to _check_stop_list and the appropriate stop list is returned.
‘english’ is currently the only supported string value.

If a list, that list is assumed to contain stop words, all of which will be removed from
the resulting tokens. Only applies if analyzer == ’word’.

If None, no stop words will be used. max_df can be set to a value in the range [0.7, 1.0)
to automatically detect and filter stop words based on intra corpus document frequency
of terms.

lowercase : boolean, default True

Convert all characters to lowercase before tokenizing.

token_pattern : string

Regular expression denoting what constitutes a “token”, only used if analyzer ==
’word’. The default regexp selects tokens of 2 or more alphanumeric characters
(punctuation is completely ignored and always treated as a token separator).

max_df : float in range [0.0, 1.0] or int, default=1.0

When building the vocabulary ignore terms that have a document frequency strictly
higher than the given threshold (corpus-specific stop words). If float, the parameter
represents a proportion of documents, integer absolute counts. This parameter is ignored
if vocabulary is not None.

min_df : float in range [0.0, 1.0] or int, default=1

When building the vocabulary ignore terms that have a document frequency strictly
lower than the given threshold. This value is also called cut-off in the literature. If
float, the parameter represents a proportion of documents, integer absolute counts. This
parameter is ignored if vocabulary is not None.

max_features : int or None, default=None

If not None, build a vocabulary that only consider the top max_features ordered by term
frequency across the corpus.

This parameter is ignored if vocabulary is not None.

vocabulary : Mapping or iterable, optional
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Either a Mapping (e.g., a dict) where keys are terms and values are indices in the feature
matrix, or an iterable over terms. If not given, a vocabulary is determined from the input
documents.

binary : boolean, default=False

If True, all non-zero term counts are set to 1. This does not mean outputs will have only
0/1 values, only that the tf term in tf-idf is binary. (Set idf and normalization to False to
get 0/1 outputs.)

dtype : type, optional

Type of the matrix returned by fit_transform() or transform().

norm : ‘l1’, ‘l2’ or None, optional

Norm used to normalize term vectors. None for no normalization.

use_idf : boolean, default=True

Enable inverse-document-frequency reweighting.

smooth_idf : boolean, default=True

Smooth idf weights by adding one to document frequencies, as if an extra document
was seen containing every term in the collection exactly once. Prevents zero divisions.

sublinear_tf : boolean, default=False

Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf).

Attributesidf_ : array, shape = [n_features], or None

The learned idf vector (global term weights) when use_idf is set to True, None oth-
erwise.

stop_words_ : set

Terms that were ignored because they either:

•occurred in too many documents (max_df )

•occurred in too few documents (min_df )

•were cut off by feature selection (max_features).

This is only available if no vocabulary was given.

See also:

CountVectorizerTokenize the documents and count the occurrences of token and return them as a sparse
matrix

TfidfTransformerApply Term Frequency Inverse Document Frequency normalization to a sparse matrix
of occurrence counts.

Notes

The stop_words_ attribute can get large and increase the model size when pickling. This attribute is provided
only for introspection and can be safely removed using delattr or set to None before pickling.

Methods
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build_analyzer() Return a callable that handles preprocessing and tokenization
build_preprocessor() Return a function to preprocess the text before tokenization
build_tokenizer() Return a function that splits a string into a sequence of tokens
decode(doc) Decode the input into a string of unicode symbols
fit(raw_documents[, y]) Learn vocabulary and idf from training set.
fit_transform(raw_documents[, y]) Learn vocabulary and idf, return term-document matrix.
get_feature_names() Array mapping from feature integer indices to feature name
get_params([deep]) Get parameters for this estimator.
get_stop_words() Build or fetch the effective stop words list
inverse_transform(X) Return terms per document with nonzero entries in X.
set_params(**params) Set the parameters of this estimator.
transform(raw_documents[, copy]) Transform documents to document-term matrix.

__init__(input=’content’, encoding=’utf-8’, decode_error=’strict’, strip_accents=None, lower-
case=True, preprocessor=None, tokenizer=None, analyzer=’word’, stop_words=None,
token_pattern=’(?u)\\b\\w\\w+\\b’, ngram_range=(1, 1), max_df=1.0, min_df=1,
max_features=None, vocabulary=None, binary=False, dtype=<class ‘numpy.int64’>,
norm=’l2’, use_idf=True, smooth_idf=True, sublinear_tf=False)

build_analyzer()
Return a callable that handles preprocessing and tokenization

build_preprocessor()
Return a function to preprocess the text before tokenization

build_tokenizer()
Return a function that splits a string into a sequence of tokens

decode(doc)
Decode the input into a string of unicode symbols

The decoding strategy depends on the vectorizer parameters.

fit(raw_documents, y=None)
Learn vocabulary and idf from training set.

Parametersraw_documents : iterable

an iterable which yields either str, unicode or file objects

Returnsself : TfidfVectorizer

fit_transform(raw_documents, y=None)
Learn vocabulary and idf, return term-document matrix.

This is equivalent to fit followed by transform, but more efficiently implemented.

Parametersraw_documents : iterable

an iterable which yields either str, unicode or file objects

ReturnsX : sparse matrix, [n_samples, n_features]

Tf-idf-weighted document-term matrix.

fixed_vocabulary
DEPRECATED: The fixed_vocabulary attribute is deprecated and will be removed in 0.18. Please use
fixed_vocabulary_ instead.

get_feature_names()
Array mapping from feature integer indices to feature name
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get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

get_stop_words()
Build or fetch the effective stop words list

inverse_transform(X)
Return terms per document with nonzero entries in X.

ParametersX : {array, sparse matrix}, shape = [n_samples, n_features]

ReturnsX_inv : list of arrays, len = n_samples

List of arrays of terms.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(raw_documents, copy=True)
Transform documents to document-term matrix.

Uses the vocabulary and document frequencies (df) learned by fit (or fit_transform).

Parametersraw_documents : iterable

an iterable which yields either str, unicode or file objects

copy : boolean, default True

Whether to copy X and operate on the copy or perform in-place operations.

ReturnsX : sparse matrix, [n_samples, n_features]

Tf-idf-weighted document-term matrix.

Examples using sklearn.feature_extraction.text.TfidfVectorizer

• Feature Union with Heterogeneous Data Sources

• Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation

• Biclustering documents with the Spectral Co-clustering algorithm

• Classification of text documents: using a MLComp dataset

• Clustering text documents using k-means

• Classification of text documents using sparse features
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5.11 sklearn.feature_selection: Feature Selection

The sklearn.feature_selection module implements feature selection algorithms. It currently includes uni-
variate filter selection methods and the recursive feature elimination algorithm.

User guide: See the Feature selection section for further details.

feature_selection.GenericUnivariateSelect([...]) Univariate feature selector with configurable strategy.
feature_selection.SelectPercentile([...]) Select features according to a percentile of the highest scores.
feature_selection.SelectKBest([score_func, k]) Select features according to the k highest scores.
feature_selection.SelectFpr([score_func, alpha]) Filter: Select the pvalues below alpha based on a FPR test.
feature_selection.SelectFdr([score_func, alpha]) Filter: Select the p-values for an estimated false discovery rate
feature_selection.SelectFromModel(estimator) Meta-transformer for selecting features based on importance weights.
feature_selection.SelectFwe([score_func, alpha]) Filter: Select the p-values corresponding to Family-wise error rate
feature_selection.RFE(estimator[, ...]) Feature ranking with recursive feature elimination.
feature_selection.RFECV(estimator[, step, ...]) Feature ranking with recursive feature elimination and cross-validated selection of the best number of features.
feature_selection.VarianceThreshold([threshold]) Feature selector that removes all low-variance features.

5.11.1 sklearn.feature_selection.GenericUnivariateSelect

class sklearn.feature_selection.GenericUnivariateSelect(score_func=<function
f_classif at 0x7f003be6be18>,
mode=’percentile’,
param=1e-05)

Univariate feature selector with configurable strategy.

Read more in the User Guide.

Parametersscore_func : callable

Function taking two arrays X and y, and returning a pair of arrays (scores, pvalues).

mode : {‘percentile’, ‘k_best’, ‘fpr’, ‘fdr’, ‘fwe’}

Feature selection mode.

param : float or int depending on the feature selection mode

Parameter of the corresponding mode.

Attributesscores_ : array-like, shape=(n_features,)

Scores of features.

pvalues_ : array-like, shape=(n_features,)

p-values of feature scores.

See also:

f_classifANOVA F-value between labe/feature for classification tasks.

chi2Chi-squared stats of non-negative features for classification tasks.

f_regressionF-value between label/feature for regression tasks.

SelectPercentileSelect features based on percentile of the highest scores.

SelectKBestSelect features based on the k highest scores.

SelectFprSelect features based on a false positive rate test.
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SelectFdrSelect features based on an estimated false discovery rate.

SelectFweSelect features based on family-wise error rate.

Methods

fit(X, y) Run score function on (X, y) and get the appropriate features.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(score_func=<function f_classif at 0x7f003be6be18>, mode=’percentile’, param=1e-05)

fit(X, y)
Run score function on (X, y) and get the appropriate features.

ParametersX : array-like, shape = [n_samples, n_features]

The training input samples.

y : array-like, shape = [n_samples]

The target values (class labels in classification, real numbers in regression).

Returnsself : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected
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Parametersindices : boolean (default False)

If True, the return value will be an array of integers, rather than a boolean mask.

Returnssupport : array

An index that selects the retained features from a feature vector. If indices is False,
this is a boolean array of shape [# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is True, this is an integer array
of shape [# output features] whose values are indices into the input feature vector.

inverse_transform(X)
Reverse the transformation operation

ParametersX : array of shape [n_samples, n_selected_features]

The input samples.

ReturnsX_r : array of shape [n_samples, n_original_features]

X with columns of zeros inserted where features would have been removed by trans-
form.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X)
Reduce X to the selected features.

ParametersX : array of shape [n_samples, n_features]

The input samples.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

5.11.2 sklearn.feature_selection.SelectPercentile

class sklearn.feature_selection.SelectPercentile(score_func=<function f_classif at
0x7f2324ad6378>, percentile=10)

Select features according to a percentile of the highest scores.

Read more in the User Guide.

Parametersscore_func : callable

Function taking two arrays X and y, and returning a pair of arrays (scores, pvalues).

percentile : int, optional, default=10

Percent of features to keep.

Attributesscores_ : array-like, shape=(n_features,)

Scores of features.

pvalues_ : array-like, shape=(n_features,)

p-values of feature scores.
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See also:

f_classifANOVA F-value between labe/feature for classification tasks.

chi2Chi-squared stats of non-negative features for classification tasks.

f_regressionF-value between label/feature for regression tasks.

SelectKBestSelect features based on the k highest scores.

SelectFprSelect features based on a false positive rate test.

SelectFdrSelect features based on an estimated false discovery rate.

SelectFweSelect features based on family-wise error rate.

GenericUnivariateSelectUnivariate feature selector with configurable mode.

Notes

Ties between features with equal scores will be broken in an unspecified way.

Methods

fit(X, y) Run score function on (X, y) and get the appropriate features.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(score_func=<function f_classif at 0x7f2324ad6378>, percentile=10)

fit(X, y)
Run score function on (X, y) and get the appropriate features.

ParametersX : array-like, shape = [n_samples, n_features]

The training input samples.

y : array-like, shape = [n_samples]

The target values (class labels in classification, real numbers in regression).

Returnsself : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.
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ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parametersindices : boolean (default False)

If True, the return value will be an array of integers, rather than a boolean mask.

Returnssupport : array

An index that selects the retained features from a feature vector. If indices is False,
this is a boolean array of shape [# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is True, this is an integer array
of shape [# output features] whose values are indices into the input feature vector.

inverse_transform(X)
Reverse the transformation operation

ParametersX : array of shape [n_samples, n_selected_features]

The input samples.

ReturnsX_r : array of shape [n_samples, n_original_features]

X with columns of zeros inserted where features would have been removed by trans-
form.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X)
Reduce X to the selected features.

ParametersX : array of shape [n_samples, n_features]

The input samples.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.
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Examples using sklearn.feature_selection.SelectPercentile

• Feature agglomeration vs. univariate selection

• Univariate Feature Selection

• SVM-Anova: SVM with univariate feature selection

5.11.3 sklearn.feature_selection.SelectKBest

class sklearn.feature_selection.SelectKBest(score_func=<function f_classif at
0x7f2324ad6378>, k=10)

Select features according to the k highest scores.

Read more in the User Guide.

Parametersscore_func : callable

Function taking two arrays X and y, and returning a pair of arrays (scores, pvalues).

k : int or “all”, optional, default=10

Number of top features to select. The “all” option bypasses selection, for use in a
parameter search.

Attributesscores_ : array-like, shape=(n_features,)

Scores of features.

pvalues_ : array-like, shape=(n_features,)

p-values of feature scores.

See also:

f_classifANOVA F-value between labe/feature for classification tasks.

chi2Chi-squared stats of non-negative features for classification tasks.

f_regressionF-value between label/feature for regression tasks.

SelectPercentileSelect features based on percentile of the highest scores.

SelectFprSelect features based on a false positive rate test.

SelectFdrSelect features based on an estimated false discovery rate.

SelectFweSelect features based on family-wise error rate.

GenericUnivariateSelectUnivariate feature selector with configurable mode.

Notes

Ties between features with equal scores will be broken in an unspecified way.

Methods

fit(X, y) Run score function on (X, y) and get the appropriate features.
fit_transform(X[, y]) Fit to data, then transform it.

Continued on next page
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Table 5.85 – continued from previous page
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(score_func=<function f_classif at 0x7f2324ad6378>, k=10)

fit(X, y)
Run score function on (X, y) and get the appropriate features.

ParametersX : array-like, shape = [n_samples, n_features]

The training input samples.

y : array-like, shape = [n_samples]

The target values (class labels in classification, real numbers in regression).

Returnsself : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parametersindices : boolean (default False)

If True, the return value will be an array of integers, rather than a boolean mask.

Returnssupport : array

An index that selects the retained features from a feature vector. If indices is False,
this is a boolean array of shape [# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is True, this is an integer array
of shape [# output features] whose values are indices into the input feature vector.
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inverse_transform(X)
Reverse the transformation operation

ParametersX : array of shape [n_samples, n_selected_features]

The input samples.

ReturnsX_r : array of shape [n_samples, n_original_features]

X with columns of zeros inserted where features would have been removed by trans-
form.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X)
Reduce X to the selected features.

ParametersX : array of shape [n_samples, n_features]

The input samples.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

Examples using sklearn.feature_selection.SelectKBest

• Concatenating multiple feature extraction methods

• Pipeline Anova SVM

• Classification of text documents using sparse features

5.11.4 sklearn.feature_selection.SelectFpr

class sklearn.feature_selection.SelectFpr(score_func=<function f_classif at
0x7f003be6be18>, alpha=0.05)

Filter: Select the pvalues below alpha based on a FPR test.

FPR test stands for False Positive Rate test. It controls the total amount of false detections.

Read more in the User Guide.

Parametersscore_func : callable

Function taking two arrays X and y, and returning a pair of arrays (scores, pvalues).

alpha : float, optional

The highest p-value for features to be kept.

Attributesscores_ : array-like, shape=(n_features,)

Scores of features.

pvalues_ : array-like, shape=(n_features,)

p-values of feature scores.
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See also:

f_classifANOVA F-value between labe/feature for classification tasks.

chi2Chi-squared stats of non-negative features for classification tasks.

f_regressionF-value between label/feature for regression tasks.

SelectPercentileSelect features based on percentile of the highest scores.

SelectKBestSelect features based on the k highest scores.

SelectFdrSelect features based on an estimated false discovery rate.

SelectFweSelect features based on family-wise error rate.

GenericUnivariateSelectUnivariate feature selector with configurable mode.

Methods

fit(X, y) Run score function on (X, y) and get the appropriate features.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(score_func=<function f_classif at 0x7f003be6be18>, alpha=0.05)

fit(X, y)
Run score function on (X, y) and get the appropriate features.

ParametersX : array-like, shape = [n_samples, n_features]

The training input samples.

y : array-like, shape = [n_samples]

The target values (class labels in classification, real numbers in regression).

Returnsself : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.
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get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parametersindices : boolean (default False)

If True, the return value will be an array of integers, rather than a boolean mask.

Returnssupport : array

An index that selects the retained features from a feature vector. If indices is False,
this is a boolean array of shape [# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is True, this is an integer array
of shape [# output features] whose values are indices into the input feature vector.

inverse_transform(X)
Reverse the transformation operation

ParametersX : array of shape [n_samples, n_selected_features]

The input samples.

ReturnsX_r : array of shape [n_samples, n_original_features]

X with columns of zeros inserted where features would have been removed by trans-
form.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X)
Reduce X to the selected features.

ParametersX : array of shape [n_samples, n_features]

The input samples.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

5.11.5 sklearn.feature_selection.SelectFdr

class sklearn.feature_selection.SelectFdr(score_func=<function f_classif at
0x7f003be6be18>, alpha=0.05)

Filter: Select the p-values for an estimated false discovery rate

This uses the Benjamini-Hochberg procedure. alpha is an upper bound on the expected false discovery rate.
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Read more in the User Guide.

Parametersscore_func : callable

Function taking two arrays X and y, and returning a pair of arrays (scores, pvalues).

alpha : float, optional

The highest uncorrected p-value for features to keep.

Attributesscores_ : array-like, shape=(n_features,)

Scores of features.

pvalues_ : array-like, shape=(n_features,)

p-values of feature scores.

See also:

f_classifANOVA F-value between labe/feature for classification tasks.

chi2Chi-squared stats of non-negative features for classification tasks.

f_regressionF-value between label/feature for regression tasks.

SelectPercentileSelect features based on percentile of the highest scores.

SelectKBestSelect features based on the k highest scores.

SelectFprSelect features based on a false positive rate test.

SelectFweSelect features based on family-wise error rate.

GenericUnivariateSelectUnivariate feature selector with configurable mode.

References

http://en.wikipedia.org/wiki/False_discovery_rate

Methods

fit(X, y) Run score function on (X, y) and get the appropriate features.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(score_func=<function f_classif at 0x7f003be6be18>, alpha=0.05)

fit(X, y)
Run score function on (X, y) and get the appropriate features.

ParametersX : array-like, shape = [n_samples, n_features]

The training input samples.

y : array-like, shape = [n_samples]
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The target values (class labels in classification, real numbers in regression).

Returnsself : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parametersindices : boolean (default False)

If True, the return value will be an array of integers, rather than a boolean mask.

Returnssupport : array

An index that selects the retained features from a feature vector. If indices is False,
this is a boolean array of shape [# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is True, this is an integer array
of shape [# output features] whose values are indices into the input feature vector.

inverse_transform(X)
Reverse the transformation operation

ParametersX : array of shape [n_samples, n_selected_features]

The input samples.

ReturnsX_r : array of shape [n_samples, n_original_features]

X with columns of zeros inserted where features would have been removed by trans-
form.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.
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Returnsself :

transform(X)
Reduce X to the selected features.

ParametersX : array of shape [n_samples, n_features]

The input samples.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

5.11.6 sklearn.feature_selection.SelectFromModel

class sklearn.feature_selection.SelectFromModel(estimator, threshold=None, prefit=False)
Meta-transformer for selecting features based on importance weights.

New in version 0.17.

Parametersestimator : object

The base estimator from which the transformer is built. This can be both a fitted (if
prefit is set to True) or a non-fitted estimator.

threshold : string, float, optional default None

The threshold value to use for feature selection. Features whose importance is greater
or equal are kept while the others are discarded. If “median” (resp. “mean”), then
the threshold value is the median (resp. the mean) of the feature importances. A
scaling factor (e.g., “1.25*mean”) may also be used. If None and if the estimator has
a parameter penalty set to l1, either explicitly or implicity (e.g, Lasso), the threshold is
used is 1e-5. Otherwise, “mean” is used by default.

prefit : bool, default False

Whether a prefit model is expected to be passed into the constructor directly or not. If
True, transform must be called directly and SelectFromModel cannot be used with
cross_val_score, GridSearchCV and similar utilities that clone the estimator.
Otherwise train the model using fit and then transform to do feature selection.

Attributes‘estimator_‘: an estimator :

The base estimator from which the transformer is built. This is stored only when a
non-fitted estimator is passed to the SelectFromModel, i.e when prefit is False.

‘threshold_‘: float :

The threshold value used for feature selection.

Methods

fit(X[, y]) Fit the SelectFromModel meta-transformer.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
partial_fit(X[, y]) Fit the SelectFromModel meta-transformer only once.
set_params(**params) Set the parameters of this estimator.

Continued on next page
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Table 5.88 – continued from previous page
transform(X) Reduce X to the selected features.

__init__(estimator, threshold=None, prefit=False)

fit(X, y=None, **fit_params)
Fit the SelectFromModel meta-transformer.

ParametersX : array-like of shape (n_samples, n_features)

The training input samples.

y : array-like, shape (n_samples,)

The target values (integers that correspond to classes in classification, real numbers in
regression).

**fit_params : Other estimator specific parameters

Returnsself : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parametersindices : boolean (default False)

If True, the return value will be an array of integers, rather than a boolean mask.

Returnssupport : array

An index that selects the retained features from a feature vector. If indices is False,
this is a boolean array of shape [# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is True, this is an integer array
of shape [# output features] whose values are indices into the input feature vector.
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inverse_transform(X)
Reverse the transformation operation

ParametersX : array of shape [n_samples, n_selected_features]

The input samples.

ReturnsX_r : array of shape [n_samples, n_original_features]

X with columns of zeros inserted where features would have been removed by trans-
form.

partial_fit(X, y=None, **fit_params)
Fit the SelectFromModel meta-transformer only once.

ParametersX : array-like of shape (n_samples, n_features)

The training input samples.

y : array-like, shape (n_samples,)

The target values (integers that correspond to classes in classification, real numbers in
regression).

**fit_params : Other estimator specific parameters

Returnsself : object

Returns self.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X)
Reduce X to the selected features.

ParametersX : array of shape [n_samples, n_features]

The input samples.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

Examples using sklearn.feature_selection.SelectFromModel

• Feature selection using SelectFromModel and LassoCV

5.11.7 sklearn.feature_selection.SelectFwe

class sklearn.feature_selection.SelectFwe(score_func=<function f_classif at
0x7f003be6be18>, alpha=0.05)

Filter: Select the p-values corresponding to Family-wise error rate

Read more in the User Guide.

Parametersscore_func : callable
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Function taking two arrays X and y, and returning a pair of arrays (scores, pvalues).

alpha : float, optional

The highest uncorrected p-value for features to keep.

Attributesscores_ : array-like, shape=(n_features,)

Scores of features.

pvalues_ : array-like, shape=(n_features,)

p-values of feature scores.

See also:

f_classifANOVA F-value between labe/feature for classification tasks.

chi2Chi-squared stats of non-negative features for classification tasks.

f_regressionF-value between label/feature for regression tasks.

SelectPercentileSelect features based on percentile of the highest scores.

SelectKBestSelect features based on the k highest scores.

SelectFprSelect features based on a false positive rate test.

SelectFdrSelect features based on an estimated false discovery rate.

GenericUnivariateSelectUnivariate feature selector with configurable mode.

Methods

fit(X, y) Run score function on (X, y) and get the appropriate features.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(score_func=<function f_classif at 0x7f003be6be18>, alpha=0.05)

fit(X, y)
Run score function on (X, y) and get the appropriate features.

ParametersX : array-like, shape = [n_samples, n_features]

The training input samples.

y : array-like, shape = [n_samples]

The target values (class labels in classification, real numbers in regression).

Returnsself : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
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ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parametersindices : boolean (default False)

If True, the return value will be an array of integers, rather than a boolean mask.

Returnssupport : array

An index that selects the retained features from a feature vector. If indices is False,
this is a boolean array of shape [# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is True, this is an integer array
of shape [# output features] whose values are indices into the input feature vector.

inverse_transform(X)
Reverse the transformation operation

ParametersX : array of shape [n_samples, n_selected_features]

The input samples.

ReturnsX_r : array of shape [n_samples, n_original_features]

X with columns of zeros inserted where features would have been removed by trans-
form.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X)
Reduce X to the selected features.

ParametersX : array of shape [n_samples, n_features]

The input samples.

ReturnsX_r : array of shape [n_samples, n_selected_features]
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The input samples with only the selected features.

5.11.8 sklearn.feature_selection.RFE

class sklearn.feature_selection.RFE(estimator, n_features_to_select=None, step=1, estima-
tor_params=None, verbose=0)

Feature ranking with recursive feature elimination.

Given an external estimator that assigns weights to features (e.g., the coefficients of a linear model), the goal of
recursive feature elimination (RFE) is to select features by recursively considering smaller and smaller sets of
features. First, the estimator is trained on the initial set of features and weights are assigned to each one of them.
Then, features whose absolute weights are the smallest are pruned from the current set features. That procedure
is recursively repeated on the pruned set until the desired number of features to select is eventually reached.

Read more in the User Guide.

Parametersestimator : object

A supervised learning estimator with a fit method that updates a coef_ attribute that
holds the fitted parameters. Important features must correspond to high absolute values
in the coef_ array.

For instance, this is the case for most supervised learning algorithms such as Support
Vector Classifiers and Generalized Linear Models from the svm and linear_model mod-
ules.

n_features_to_select : int or None (default=None)

The number of features to select. If None, half of the features are selected.

step : int or float, optional (default=1)

If greater than or equal to 1, then step corresponds to the (integer) number of features
to remove at each iteration. If within (0.0, 1.0), then step corresponds to the percentage
(rounded down) of features to remove at each iteration.

estimator_params : dict

Parameters for the external estimator. This attribute is deprecated as of version 0.16 and
will be removed in 0.18. Use estimator initialisation or set_params method instead.

verbose : int, default=0

Controls verbosity of output.

Attributesn_features_ : int

The number of selected features.

support_ : array of shape [n_features]

The mask of selected features.

ranking_ : array of shape [n_features]

The feature ranking, such that ranking_[i] corresponds to the ranking position of
the i-th feature. Selected (i.e., estimated best) features are assigned rank 1.

estimator_ : object

The external estimator fit on the reduced dataset.
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References

[R25]

Examples

The following example shows how to retrieve the 5 right informative features in the Friedman #1 dataset.

>>> from sklearn.datasets import make_friedman1
>>> from sklearn.feature_selection import RFE
>>> from sklearn.svm import SVR
>>> X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)
>>> estimator = SVR(kernel="linear")
>>> selector = RFE(estimator, 5, step=1)
>>> selector = selector.fit(X, y)
>>> selector.support_
array([ True, True, True, True, True,

False, False, False, False, False], dtype=bool)
>>> selector.ranking_
array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5])

Methods

decision_function(X)
fit(X, y) Fit the RFE model and then the underlying estimator on the selected features.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
predict(X) Reduce X to the selected features and then predict using the underlying estimator.
predict_log_proba(X)
predict_proba(X)
score(X, y) Reduce X to the selected features and then return the score of the underlying estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(estimator, n_features_to_select=None, step=1, estimator_params=None, verbose=0)

fit(X, y)

Fit the RFE model and then the underlying estimator on the selectedfeatures.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

The training input samples.

y : array-like, shape = [n_samples]

The target values.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
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ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parametersindices : boolean (default False)

If True, the return value will be an array of integers, rather than a boolean mask.

Returnssupport : array

An index that selects the retained features from a feature vector. If indices is False,
this is a boolean array of shape [# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is True, this is an integer array
of shape [# output features] whose values are indices into the input feature vector.

inverse_transform(X)
Reverse the transformation operation

ParametersX : array of shape [n_samples, n_selected_features]

The input samples.

ReturnsX_r : array of shape [n_samples, n_original_features]

X with columns of zeros inserted where features would have been removed by trans-
form.

predict(X)

Reduce X to the selected features and then predict using theunderlying estimator.

ParametersX : array of shape [n_samples, n_features]

The input samples.

Returnsy : array of shape [n_samples]

The predicted target values.

score(X, y)

Reduce X to the selected features and then return the score of theunderlying estimator.

ParametersX : array of shape [n_samples, n_features]
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The input samples.

y : array of shape [n_samples]

The target values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X)
Reduce X to the selected features.

ParametersX : array of shape [n_samples, n_features]

The input samples.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

Examples using sklearn.feature_selection.RFE

• Recursive feature elimination

5.11.9 sklearn.feature_selection.RFECV

class sklearn.feature_selection.RFECV(estimator, step=1, cv=None, scoring=None, estima-
tor_params=None, verbose=0)

Feature ranking with recursive feature elimination and cross-validated selection of the best number of features.

Read more in the User Guide.

Parametersestimator : object

A supervised learning estimator with a fit method that updates a coef_ attribute that
holds the fitted parameters. Important features must correspond to high absolute values
in the coef_ array.

For instance, this is the case for most supervised learning algorithms such as Support
Vector Classifiers and Generalized Linear Models from the svm and linear_model mod-
ules.

step : int or float, optional (default=1)

If greater than or equal to 1, then step corresponds to the (integer) number of features
to remove at each iteration. If within (0.0, 1.0), then step corresponds to the percentage
(rounded down) of features to remove at each iteration.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

•None, to use the default 3-fold cross-validation,

•integer, to specify the number of folds.

•An object to be used as a cross-validation generator.
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•An iterable yielding train/test splits.

For integer/None inputs, if y is binary or multiclass, StratifiedKFold used. If the
estimator is a classifier or if y is neither binary nor multiclass, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

scoring : string, callable or None, optional, default: None

A string (see model evaluation documentation) or a scorer callable object / function with
signature scorer(estimator, X, y).

estimator_params : dict

Parameters for the external estimator. This attribute is deprecated as of version 0.16 and
will be removed in 0.18. Use estimator initialisation or set_params method instead.

verbose : int, default=0

Controls verbosity of output.

Attributesn_features_ : int

The number of selected features with cross-validation.

support_ : array of shape [n_features]

The mask of selected features.

ranking_ : array of shape [n_features]

The feature ranking, such that ranking_[i] corresponds to the ranking position of the
i-th feature. Selected (i.e., estimated best) features are assigned rank 1.

grid_scores_ : array of shape [n_subsets_of_features]

The cross-validation scores such that grid_scores_[i] corresponds to the CV
score of the i-th subset of features.

estimator_ : object

The external estimator fit on the reduced dataset.

Notes

The size of grid_scores_ is equal to ceil((n_features - 1) / step) + 1, where step is the number of features
removed at each iteration.

References

[R26]

Examples

The following example shows how to retrieve the a-priori not known 5 informative features in the Friedman #1
dataset.
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>>> from sklearn.datasets import make_friedman1
>>> from sklearn.feature_selection import RFECV
>>> from sklearn.svm import SVR
>>> X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)
>>> estimator = SVR(kernel="linear")
>>> selector = RFECV(estimator, step=1, cv=5)
>>> selector = selector.fit(X, y)
>>> selector.support_
array([ True, True, True, True, True,

False, False, False, False, False], dtype=bool)
>>> selector.ranking_
array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5])

Methods

decision_function(X)
fit(X, y) Fit the RFE model and automatically tune the number of selected features.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
predict(X) Reduce X to the selected features and then predict using the underlying estimator.
predict_log_proba(X)
predict_proba(X)
score(X, y) Reduce X to the selected features and then return the score of the underlying estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(estimator, step=1, cv=None, scoring=None, estimator_params=None, verbose=0)

fit(X, y)

Fit the RFE model and automatically tune the number of selectedfeatures.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vector, where n_samples is the number of samples and n_features is the total
number of features.

y : array-like, shape = [n_samples]

Target values (integers for classification, real numbers for regression).

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]
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Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parametersindices : boolean (default False)

If True, the return value will be an array of integers, rather than a boolean mask.

Returnssupport : array

An index that selects the retained features from a feature vector. If indices is False,
this is a boolean array of shape [# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is True, this is an integer array
of shape [# output features] whose values are indices into the input feature vector.

inverse_transform(X)
Reverse the transformation operation

ParametersX : array of shape [n_samples, n_selected_features]

The input samples.

ReturnsX_r : array of shape [n_samples, n_original_features]

X with columns of zeros inserted where features would have been removed by trans-
form.

predict(X)

Reduce X to the selected features and then predict using theunderlying estimator.

ParametersX : array of shape [n_samples, n_features]

The input samples.

Returnsy : array of shape [n_samples]

The predicted target values.

score(X, y)

Reduce X to the selected features and then return the score of theunderlying estimator.

ParametersX : array of shape [n_samples, n_features]

The input samples.

y : array of shape [n_samples]

The target values.
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set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X)
Reduce X to the selected features.

ParametersX : array of shape [n_samples, n_features]

The input samples.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

Examples using sklearn.feature_selection.RFECV

• Recursive feature elimination with cross-validation

5.11.10 sklearn.feature_selection.VarianceThreshold

class sklearn.feature_selection.VarianceThreshold(threshold=0.0)
Feature selector that removes all low-variance features.

This feature selection algorithm looks only at the features (X), not the desired outputs (y), and can thus be used
for unsupervised learning.

Read more in the User Guide.

Parametersthreshold : float, optional

Features with a training-set variance lower than this threshold will be removed. The
default is to keep all features with non-zero variance, i.e. remove the features that have
the same value in all samples.

Attributesvariances_ : array, shape (n_features,)

Variances of individual features.

Examples

The following dataset has integer features, two of which are the same in every sample. These are removed with
the default setting for threshold:

>>> X = [[0, 2, 0, 3], [0, 1, 4, 3], [0, 1, 1, 3]]
>>> selector = VarianceThreshold()
>>> selector.fit_transform(X)
array([[2, 0],

[1, 4],
[1, 1]])
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Methods
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fit(X[, y]) Learn empirical variances from X.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(threshold=0.0)

fit(X, y=None)
Learn empirical variances from X.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Sample vectors from which to compute variances.

y : any

Ignored. This parameter exists only for compatibility with sklearn.pipeline.Pipeline.

Returnsself :

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parametersindices : boolean (default False)

If True, the return value will be an array of integers, rather than a boolean mask.

Returnssupport : array

An index that selects the retained features from a feature vector. If indices is False,
this is a boolean array of shape [# input features], in which an element is True iff its
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corresponding feature is selected for retention. If indices is True, this is an integer array
of shape [# output features] whose values are indices into the input feature vector.

inverse_transform(X)
Reverse the transformation operation

ParametersX : array of shape [n_samples, n_selected_features]

The input samples.

ReturnsX_r : array of shape [n_samples, n_original_features]

X with columns of zeros inserted where features would have been removed by trans-
form.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X)
Reduce X to the selected features.

ParametersX : array of shape [n_samples, n_features]

The input samples.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

feature_selection.chi2(X, y) Compute chi-squared stats between each non-negative feature and class.
feature_selection.f_classif(X, y) Compute the ANOVA F-value for the provided sample.
feature_selection.f_regression(X, y[, center]) Univariate linear regression tests.

5.11.11 sklearn.feature_selection.chi2

sklearn.feature_selection.chi2(X, y)
Compute chi-squared stats between each non-negative feature and class.

This score can be used to select the n_features features with the highest values for the test chi-squared statistic
from X, which must contain only non-negative features such as booleans or frequencies (e.g., term counts in
document classification), relative to the classes.

Recall that the chi-square test measures dependence between stochastic variables, so using this function “weeds
out” the features that are the most likely to be independent of class and therefore irrelevant for classification.

Read more in the User Guide.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features_in)

Sample vectors.

y : array-like, shape = (n_samples,)

Target vector (class labels).

Returnschi2 : array, shape = (n_features,)

chi2 statistics of each feature.
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pval : array, shape = (n_features,)

p-values of each feature.

See also:

f_classifANOVA F-value between labe/feature for classification tasks.

f_regressionF-value between label/feature for regression tasks.

Notes

Complexity of this algorithm is O(n_classes * n_features).

Examples using sklearn.feature_selection.chi2

• Classification of text documents using sparse features

5.11.12 sklearn.feature_selection.f_classif

sklearn.feature_selection.f_classif(X, y)
Compute the ANOVA F-value for the provided sample.

Read more in the User Guide.

ParametersX : {array-like, sparse matrix} shape = [n_samples, n_features]

The set of regressors that will tested sequentially.

y : array of shape(n_samples)

The data matrix.

ReturnsF : array, shape = [n_features,]

The set of F values.

pval : array, shape = [n_features,]

The set of p-values.

See also:

chi2Chi-squared stats of non-negative features for classification tasks.

f_regressionF-value between label/feature for regression tasks.

Examples using sklearn.feature_selection.f_classif

• Univariate Feature Selection

• SVM-Anova: SVM with univariate feature selection
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5.11.13 sklearn.feature_selection.f_regression

sklearn.feature_selection.f_regression(X, y, center=True)
Univariate linear regression tests.

Quick linear model for testing the effect of a single regressor, sequentially for many regressors.

This is done in 3 steps:

1.The regressor of interest and the data are orthogonalized wrt constant regressors.

2.The cross correlation between data and regressors is computed.

3.It is converted to an F score then to a p-value.

Read more in the User Guide.

ParametersX : {array-like, sparse matrix} shape = (n_samples, n_features)

The set of regressors that will tested sequentially.

y : array of shape(n_samples).

The data matrix

center : True, bool,

If true, X and y will be centered.

ReturnsF : array, shape=(n_features,)

F values of features.

pval : array, shape=(n_features,)

p-values of F-scores.

See also:

f_classifANOVA F-value between labe/feature for classification tasks.

chi2Chi-squared stats of non-negative features for classification tasks.

Examples using sklearn.feature_selection.f_regression

• Feature agglomeration vs. univariate selection

• Pipeline Anova SVM

• Sparse recovery: feature selection for sparse linear models

5.12 sklearn.gaussian_process: Gaussian Processes

The sklearn.gaussian_process module implements scalar Gaussian Process based predictions.

User guide: See the Gaussian Processes section for further details.

gaussian_process.GaussianProcess([regr, ...]) The Gaussian Process model class.
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5.12.1 sklearn.gaussian_process.GaussianProcess

class sklearn.gaussian_process.GaussianProcess(regr=’constant’,
corr=’squared_exponential’, beta0=None,
storage_mode=’full’, verbose=False,
theta0=0.1, thetaL=None, thetaU=None,
optimizer=’fmin_cobyla’, ran-
dom_start=1, normalize=True,
nugget=2.2204460492503131e-15, ran-
dom_state=None)

The Gaussian Process model class.

Read more in the User Guide.

Parametersregr : string or callable, optional

A regression function returning an array of outputs of the linear regression functional
basis. The number of observations n_samples should be greater than the size p of this
basis. Default assumes a simple constant regression trend. Available built-in regression
models are:

'constant', 'linear', 'quadratic'

corr : string or callable, optional

A stationary autocorrelation function returning the autocorrelation between two points
x and x’. Default assumes a squared-exponential autocorrelation model. Built-in corre-
lation models are:

'absolute_exponential', 'squared_exponential',
'generalized_exponential', 'cubic', 'linear'

beta0 : double array_like, optional

The regression weight vector to perform Ordinary Kriging (OK). Default assumes Uni-
versal Kriging (UK) so that the vector beta of regression weights is estimated using the
maximum likelihood principle.

storage_mode : string, optional

A string specifying whether the Cholesky decomposition of the correlation matrix
should be stored in the class (storage_mode = ‘full’) or not (storage_mode = ‘light’).
Default assumes storage_mode = ‘full’, so that the Cholesky decomposition of the cor-
relation matrix is stored. This might be a useful parameter when one is not interested
in the MSE and only plan to estimate the BLUP, for which the correlation matrix is not
required.

verbose : boolean, optional

A boolean specifying the verbose level. Default is verbose = False.

theta0 : double array_like, optional

An array with shape (n_features, ) or (1, ). The parameters in the autocorrelation model.
If thetaL and thetaU are also specified, theta0 is considered as the starting point for the
maximum likelihood estimation of the best set of parameters. Default assumes isotropic
autocorrelation model with theta0 = 1e-1.

thetaL : double array_like, optional
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An array with shape matching theta0’s. Lower bound on the autocorrelation parame-
ters for maximum likelihood estimation. Default is None, so that it skips maximum
likelihood estimation and it uses theta0.

thetaU : double array_like, optional

An array with shape matching theta0’s. Upper bound on the autocorrelation parame-
ters for maximum likelihood estimation. Default is None, so that it skips maximum
likelihood estimation and it uses theta0.

normalize : boolean, optional

Input X and observations y are centered and reduced wrt means and standard deviations
estimated from the n_samples observations provided. Default is normalize = True so
that data is normalized to ease maximum likelihood estimation.

nugget : double or ndarray, optional

Introduce a nugget effect to allow smooth predictions from noisy data. If nugget is
an ndarray, it must be the same length as the number of data points used for the fit.
The nugget is added to the diagonal of the assumed training covariance; in this way
it acts as a Tikhonov regularization in the problem. In the special case of the squared
exponential correlation function, the nugget mathematically represents the variance of
the input values. Default assumes a nugget close to machine precision for the sake of
robustness (nugget = 10. * MACHINE_EPSILON).

optimizer : string, optional

A string specifying the optimization algorithm to be used. Default uses ‘fmin_cobyla’
algorithm from scipy.optimize. Available optimizers are:

'fmin_cobyla', 'Welch'

‘Welch’ optimizer is dued to Welch et al., see reference [WBSWM1992]. It consists
in iterating over several one-dimensional optimizations instead of running one single
multi-dimensional optimization.

random_start : int, optional

The number of times the Maximum Likelihood Estimation should be performed from a
random starting point. The first MLE always uses the specified starting point (theta0),
the next starting points are picked at random according to an exponential distribution
(log-uniform on [thetaL, thetaU]). Default does not use random starting point (ran-
dom_start = 1).

random_state: integer or numpy.RandomState, optional :

The generator used to shuffle the sequence of coordinates of theta in the Welch opti-
mizer. If an integer is given, it fixes the seed. Defaults to the global numpy random
number generator.

Attributestheta_ : array

Specified theta OR the best set of autocorrelation parameters (the sought maximizer of
the reduced likelihood function).

reduced_likelihood_function_value_ : array

The optimal reduced likelihood function value.
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Notes

The presentation implementation is based on a translation of the DACE Matlab toolbox, see reference
[NLNS2002].

References

[NLNS2002], [WBSWM1992]

Examples

>>> import numpy as np
>>> from sklearn.gaussian_process import GaussianProcess
>>> X = np.array([[1., 3., 5., 6., 7., 8.]]).T
>>> y = (X * np.sin(X)).ravel()
>>> gp = GaussianProcess(theta0=0.1, thetaL=.001, thetaU=1.)
>>> gp.fit(X, y)
GaussianProcess(beta0=None...

...

Methods

fit(X, y) The Gaussian Process model fitting method.
get_params([deep]) Get parameters for this estimator.
predict(X[, eval_MSE, batch_size]) This function evaluates the Gaussian Process model at x.
reduced_likelihood_function([theta]) This function determines the BLUP parameters and evaluates the reduced likelihood function for the given autocorrelation parameters theta.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(regr=’constant’, corr=’squared_exponential’, beta0=None, storage_mode=’full’, ver-
bose=False, theta0=0.1, thetaL=None, thetaU=None, optimizer=’fmin_cobyla’, ran-
dom_start=1, normalize=True, nugget=2.2204460492503131e-15, random_state=None)

fit(X, y)
The Gaussian Process model fitting method.

ParametersX : double array_like

An array with shape (n_samples, n_features) with the input at which observations were
made.

y : double array_like

An array with shape (n_samples, ) or shape (n_samples, n_targets) with the observations
of the output to be predicted.

Returnsgp : self

A fitted Gaussian Process model object awaiting data to perform predictions.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :
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If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X, eval_MSE=False, batch_size=None)
This function evaluates the Gaussian Process model at x.

ParametersX : array_like

An array with shape (n_eval, n_features) giving the point(s) at which the prediction(s)
should be made.

eval_MSE : boolean, optional

A boolean specifying whether the Mean Squared Error should be evaluated or not. De-
fault assumes evalMSE = False and evaluates only the BLUP (mean prediction).

batch_size : integer, optional

An integer giving the maximum number of points that can be evaluated simultaneously
(depending on the available memory). Default is None so that all given points are eval-
uated at the same time.

Returnsy : array_like, shape (n_samples, ) or (n_samples, n_targets)

An array with shape (n_eval, ) if the Gaussian Process was trained on an array of shape
(n_samples, ) or an array with shape (n_eval, n_targets) if the Gaussian Process was
trained on an array of shape (n_samples, n_targets) with the Best Linear Unbiased Pre-
diction at x.

MSE : array_like, optional (if eval_MSE == True)

An array with shape (n_eval, ) or (n_eval, n_targets) as with y, with the Mean Squared
Error at x.

reduced_likelihood_function(theta=None)
This function determines the BLUP parameters and evaluates the reduced likelihood function for the given
autocorrelation parameters theta.

Maximizing this function wrt the autocorrelation parameters theta is equivalent to maximizing the likeli-
hood of the assumed joint Gaussian distribution of the observations y evaluated onto the design of experi-
ments X.

Parameterstheta : array_like, optional

An array containing the autocorrelation parameters at which the Gaussian Process
model parameters should be determined. Default uses the built-in autocorrelation pa-
rameters (ie theta = self.theta_).

Returnsreduced_likelihood_function_value : double

The value of the reduced likelihood function associated to the given autocorrelation
parameters theta.

par : dict

A dictionary containing the requested Gaussian Process model parameters:

sigma2Gaussian Process variance.

betaGeneralized least-squares regression weights for Universal Kriging or given
beta0 for Ordinary Kriging.
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gammaGaussian Process weights.

CCholesky decomposition of the correlation matrix [R].

FtSolution of the linear equation system : [R] x Ft = F

GQR decomposition of the matrix Ft.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.gaussian_process.GaussianProcess

• Gaussian Processes regression: goodness-of-fit on the ‘diabetes’ dataset

• Gaussian Processes classification example: exploiting the probabilistic output

• Gaussian Processes regression: basic introductory example

gaussian_process.correlation_models.absolute_exponential(...) Absolute exponential autocorrelation model.
gaussian_process.correlation_models.squared_exponential(...) Squared exponential correlation model (Radial Basis Function).
gaussian_process.correlation_models.generalized_exponential(...) Generalized exponential correlation model.
gaussian_process.correlation_models.pure_nugget(...) Spatial independence correlation model (pure nugget).
gaussian_process.correlation_models.cubic(...) Cubic correlation model:
gaussian_process.correlation_models.linear(...) Linear correlation model:
gaussian_process.regression_models.constant(x) Zero order polynomial (constant, p = 1) regression model.
gaussian_process.regression_models.linear(x) First order polynomial (linear, p = n+1) regression model.
gaussian_process.regression_models.quadratic(x) Second order polynomial (quadratic, p = n*(n-1)/2+n+1) regression model.
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5.12.2 sklearn.gaussian_process.correlation_models.absolute_exponential

sklearn.gaussian_process.correlation_models.absolute_exponential(theta, d)
Absolute exponential autocorrelation model. (Ornstein-Uhlenbeck stochastic process):

n
theta, d --> r(theta, d) = exp( sum - theta_i * |d_i| )

i = 1

Parameterstheta : array_like

An array with shape 1 (isotropic) or n (anisotropic) giving the autocorrelation parame-
ter(s).

d : array_like

An array with shape (n_eval, n_features) giving the componentwise distances between
locations x and x’ at which the correlation model should be evaluated.

Returnsr : array_like

An array with shape (n_eval, ) containing the values of the autocorrelation model.

5.12.3 sklearn.gaussian_process.correlation_models.squared_exponential

sklearn.gaussian_process.correlation_models.squared_exponential(theta, d)
Squared exponential correlation model (Radial Basis Function). (Infinitely differentiable stochastic process,
very smooth):

n
theta, d --> r(theta, d) = exp( sum - theta_i * (d_i)^2 )

i = 1

Parameterstheta : array_like

An array with shape 1 (isotropic) or n (anisotropic) giving the autocorrelation parame-
ter(s).

d : array_like

An array with shape (n_eval, n_features) giving the componentwise distances between
locations x and x’ at which the correlation model should be evaluated.

Returnsr : array_like

An array with shape (n_eval, ) containing the values of the autocorrelation model.

5.12.4 sklearn.gaussian_process.correlation_models.generalized_exponential

sklearn.gaussian_process.correlation_models.generalized_exponential(theta, d)
Generalized exponential correlation model. (Useful when one does not know the smoothness of the function to
be predicted.):

n
theta, d --> r(theta, d) = exp( sum - theta_i * |d_i|^p )

i = 1

Parameterstheta : array_like
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An array with shape 1+1 (isotropic) or n+1 (anisotropic) giving the autocorrelation pa-
rameter(s) (theta, p).

d : array_like

An array with shape (n_eval, n_features) giving the componentwise distances between
locations x and x’ at which the correlation model should be evaluated.

Returnsr : array_like

An array with shape (n_eval, ) with the values of the autocorrelation model.

5.12.5 sklearn.gaussian_process.correlation_models.pure_nugget

sklearn.gaussian_process.correlation_models.pure_nugget(theta, d)
Spatial independence correlation model (pure nugget). (Useful when one wants to solve an ordinary least squares
problem!):

n
theta, d --> r(theta, d) = 1 if sum |d_i| == 0

i = 1
0 otherwise

Parameterstheta : array_like

None.

d : array_like

An array with shape (n_eval, n_features) giving the componentwise distances between
locations x and x’ at which the correlation model should be evaluated.

Returnsr : array_like

An array with shape (n_eval, ) with the values of the autocorrelation model.

5.12.6 sklearn.gaussian_process.correlation_models.cubic

sklearn.gaussian_process.correlation_models.cubic(theta, d)
Cubic correlation model:

theta, d --> r(theta, d) =
n

prod max(0, 1 - 3(theta_j*d_ij)^2 + 2(theta_j*d_ij)^3) , i = 1,...,m
j = 1

Parameterstheta : array_like

An array with shape 1 (isotropic) or n (anisotropic) giving the autocorrelation parame-
ter(s).

d : array_like

An array with shape (n_eval, n_features) giving the componentwise distances between
locations x and x’ at which the correlation model should be evaluated.

Returnsr : array_like

An array with shape (n_eval, ) with the values of the autocorrelation model.
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5.12.7 sklearn.gaussian_process.correlation_models.linear

sklearn.gaussian_process.correlation_models.linear(theta, d)
Linear correlation model:

theta, d --> r(theta, d) =
n

prod max(0, 1 - theta_j*d_ij) , i = 1,...,m
j = 1

Parameterstheta : array_like

An array with shape 1 (isotropic) or n (anisotropic) giving the autocorrelation parame-
ter(s).

d : array_like

An array with shape (n_eval, n_features) giving the componentwise distances between
locations x and x’ at which the correlation model should be evaluated.

Returnsr : array_like

An array with shape (n_eval, ) with the values of the autocorrelation model.

5.12.8 sklearn.gaussian_process.regression_models.constant

sklearn.gaussian_process.regression_models.constant(x)
Zero order polynomial (constant, p = 1) regression model.

x –> f(x) = 1

Parametersx : array_like

An array with shape (n_eval, n_features) giving the locations x at which the regression
model should be evaluated.

Returnsf : array_like

An array with shape (n_eval, p) with the values of the regression model.

5.12.9 sklearn.gaussian_process.regression_models.linear

sklearn.gaussian_process.regression_models.linear(x)
First order polynomial (linear, p = n+1) regression model.

x –> f(x) = [ 1, x_1, ..., x_n ].T

Parametersx : array_like

An array with shape (n_eval, n_features) giving the locations x at which the regression
model should be evaluated.

Returnsf : array_like

An array with shape (n_eval, p) with the values of the regression model.
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5.12.10 sklearn.gaussian_process.regression_models.quadratic

sklearn.gaussian_process.regression_models.quadratic(x)
Second order polynomial (quadratic, p = n*(n-1)/2+n+1) regression model.

x –> f(x) = [ 1, { x_i, i = 1,...,n }, { x_i * x_j, (i,j) = 1,...,n } ].Ti > j

Parametersx : array_like

An array with shape (n_eval, n_features) giving the locations x at which the regression
model should be evaluated.

Returnsf : array_like

An array with shape (n_eval, p) with the values of the regression model.

5.13 sklearn.grid_search: Grid Search

The sklearn.grid_search includes utilities to fine-tune the parameters of an estimator.

User guide: See the Grid Search: Searching for estimator parameters section for further details.

grid_search.GridSearchCV(estimator, param_grid) Exhaustive search over specified parameter values for an estimator.
grid_search.ParameterGrid(param_grid) Grid of parameters with a discrete number of values for each.
grid_search.ParameterSampler(...[, random_state]) Generator on parameters sampled from given distributions.
grid_search.RandomizedSearchCV(estimator, ...) Randomized search on hyper parameters.

5.13.1 sklearn.grid_search.GridSearchCV

class sklearn.grid_search.GridSearchCV(estimator, param_grid, scoring=None,
fit_params=None, n_jobs=1, iid=True, refit=True,
cv=None, verbose=0, pre_dispatch=‘2*n_jobs’,
error_score=’raise’)

Exhaustive search over specified parameter values for an estimator.

Important members are fit, predict.

GridSearchCV implements a “fit” and a “score” method. It also implements “predict”, “predict_proba”, “deci-
sion_function”, “transform” and “inverse_transform” if they are implemented in the estimator used.

The parameters of the estimator used to apply these methods are optimized by cross-validated grid-search over
a parameter grid.

Read more in the User Guide.

Parametersestimator : estimator object.

A object of that type is instantiated for each grid point. This is assumed to implement
the scikit-learn estimator interface. Either estimator needs to provide a score function,
or scoring must be passed.

param_grid : dict or list of dictionaries

Dictionary with parameters names (string) as keys and lists of parameter settings to try
as values, or a list of such dictionaries, in which case the grids spanned by each dic-
tionary in the list are explored. This enables searching over any sequence of parameter
settings.
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scoring : string, callable or None, default=None

A string (see model evaluation documentation) or a scorer callable object / function
with signature scorer(estimator, X, y). If None, the score method of the
estimator is used.

fit_params : dict, optional

Parameters to pass to the fit method.

n_jobs : int, default=1

Number of jobs to run in parallel.

Changed in version 0.17: Upgraded to joblib 0.9.3.

pre_dispatch : int, or string, optional

Controls the number of jobs that get dispatched during parallel execution. Reducing
this number can be useful to avoid an explosion of memory consumption when more
jobs get dispatched than CPUs can process. This parameter can be:

•None, in which case all the jobs are immediately created and spawned. Use this for
lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the
jobs

•An int, giving the exact number of total jobs that are spawned

•A string, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

iid : boolean, default=True

If True, the data is assumed to be identically distributed across the folds, and the loss
minimized is the total loss per sample, and not the mean loss across the folds.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

•None, to use the default 3-fold cross-validation,

•integer, to specify the number of folds.

•An object to be used as a cross-validation generator.

•An iterable yielding train/test splits.

For integer/None inputs, if y is binary or multiclass, StratifiedKFold used. If the
estimator is a classifier or if y is neither binary nor multiclass, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

refit : boolean, default=True

Refit the best estimator with the entire dataset. If “False”, it is impossible to make
predictions using this GridSearchCV instance after fitting.

verbose : integer

Controls the verbosity: the higher, the more messages.

error_score : ‘raise’ (default) or numeric

Value to assign to the score if an error occurs in estimator fitting. If set to ‘raise’, the
error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter
does not affect the refit step, which will always raise the error.

Attributesgrid_scores_ : list of named tuples
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Contains scores for all parameter combinations in param_grid. Each entry corresponds
to one parameter setting. Each named tuple has the attributes:

•parameters, a dict of parameter settings

•mean_validation_score, the mean score over the cross-validation folds

•cv_validation_scores, the list of scores for each fold

best_estimator_ : estimator

Estimator that was chosen by the search, i.e. estimator which gave highest score (or
smallest loss if specified) on the left out data. Not available if refit=False.

best_score_ : float

Score of best_estimator on the left out data.

best_params_ : dict

Parameter setting that gave the best results on the hold out data.

scorer_ : function

Scorer function used on the held out data to choose the best parameters for the model.

See also:

ParameterGridgenerates all the combinations of a an hyperparameter grid.

sklearn.cross_validation.train_test_splitutility function to split the data into a development
set usable for fitting a GridSearchCV instance and an evaluation set for its final evaluation.

sklearn.metrics.make_scorerMake a scorer from a performance metric or loss function.

Notes

The parameters selected are those that maximize the score of the left out data, unless an explicit score is passed
in which case it is used instead.

If n_jobs was set to a value higher than one, the data is copied for each point in the grid (and not n_jobs times).
This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is
large and not enough memory is available. A workaround in this case is to set pre_dispatch. Then, the memory
is copied only pre_dispatch many times. A reasonable value for pre_dispatch is 2 * n_jobs.

Examples

>>> from sklearn import svm, grid_search, datasets
>>> iris = datasets.load_iris()
>>> parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]}
>>> svr = svm.SVC()
>>> clf = grid_search.GridSearchCV(svr, parameters)
>>> clf.fit(iris.data, iris.target)
...
GridSearchCV(cv=None, error_score=...,

estimator=SVC(C=1.0, cache_size=..., class_weight=..., coef0=...,
decision_function_shape=None, degree=..., gamma=...,
kernel='rbf', max_iter=-1, probability=False,
random_state=None, shrinking=True, tol=...,
verbose=False),

1276 Chapter 5. API Reference



scikit-learn user guide, Release 0.17

fit_params={}, iid=..., n_jobs=1,
param_grid=..., pre_dispatch=..., refit=...,
scoring=..., verbose=...)

Methods

decision_function(X) Call decision_function on the estimator with the best found parameters.
fit(X[, y]) Run fit with all sets of parameters.
get_params([deep]) Get parameters for this estimator.
inverse_transform(Xt) Call inverse_transform on the estimator with the best found parameters.
predict(X) Call predict on the estimator with the best found parameters.
predict_log_proba(X) Call predict_log_proba on the estimator with the best found parameters.
predict_proba(X) Call predict_proba on the estimator with the best found parameters.
score(X[, y]) Returns the score on the given data, if the estimator has been refit.
set_params(**params) Set the parameters of this estimator.
transform(X) Call transform on the estimator with the best found parameters.

__init__(estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True,
cv=None, verbose=0, pre_dispatch=‘2*n_jobs’, error_score=’raise’)

decision_function(X)
Call decision_function on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports decision_function.

ParametersX : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

fit(X, y=None)
Run fit with all sets of parameters.

ParametersX : array-like, shape = [n_samples, n_features]

Training vector, where n_samples is the number of samples and n_features is the number
of features.

y : array-like, shape = [n_samples] or [n_samples, n_output], optional

Target relative to X for classification or regression; None for unsupervised learning.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

inverse_transform(Xt)
Call inverse_transform on the estimator with the best found parameters.

Only available if the underlying estimator implements inverse_transform and refit=True.

ParametersXt : indexable, length n_samples
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Must fulfill the input assumptions of the underlying estimator.

predict(X)
Call predict on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict.

ParametersX : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

predict_log_proba(X)
Call predict_log_proba on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict_log_proba.

ParametersX : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

predict_proba(X)
Call predict_proba on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict_proba.

ParametersX : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

score(X, y=None)
Returns the score on the given data, if the estimator has been refit.

This uses the score defined by scoring where provided, and the best_estimator_.score method
otherwise.

ParametersX : array-like, shape = [n_samples, n_features]

Input data, where n_samples is the number of samples and n_features is the number of
features.

y : array-like, shape = [n_samples] or [n_samples, n_output], optional

Target relative to X for classification or regression; None for unsupervised learning.

Returnsscore : float

Notes

•The long-standing behavior of this method changed in version 0.16.

•It no longer uses the metric provided by estimator.score if the scoring parameter was set
when fitting.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :
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transform(X)
Call transform on the estimator with the best found parameters.

Only available if the underlying estimator supports transform and refit=True.

ParametersX : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

Examples using sklearn.grid_search.GridSearchCV

• Concatenating multiple feature extraction methods

• Pipelining: chaining a PCA and a logistic regression

• Comparison of kernel ridge regression and SVR

• Faces recognition example using eigenfaces and SVMs

• Feature agglomeration vs. univariate selection

• Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood

• Model selection with Probabilistic PCA and Factor Analysis (FA)

• Parameter estimation using grid search with cross-validation

• Comparing randomized search and grid search for hyperparameter estimation

• Sample pipeline for text feature extraction and evaluation

• Kernel Density Estimation

• Scaling the regularization parameter for SVCs

• RBF SVM parameters

5.13.2 sklearn.grid_search.ParameterGrid

class sklearn.grid_search.ParameterGrid(param_grid)
Grid of parameters with a discrete number of values for each.

Can be used to iterate over parameter value combinations with the Python built-in function iter.

Read more in the User Guide.

Parametersparam_grid : dict of string to sequence, or sequence of such

The parameter grid to explore, as a dictionary mapping estimator parameters to se-
quences of allowed values.

An empty dict signifies default parameters.

A sequence of dicts signifies a sequence of grids to search, and is useful to avoid ex-
ploring parameter combinations that make no sense or have no effect. See the examples
below.

See also:

GridSearchCVuses ParameterGrid to perform a full parallelized parameter search.
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Examples

>>> from sklearn.grid_search import ParameterGrid
>>> param_grid = {'a': [1, 2], 'b': [True, False]}
>>> list(ParameterGrid(param_grid)) == (
... [{'a': 1, 'b': True}, {'a': 1, 'b': False},
... {'a': 2, 'b': True}, {'a': 2, 'b': False}])
True

>>> grid = [{'kernel': ['linear']}, {'kernel': ['rbf'], 'gamma': [1, 10]}]
>>> list(ParameterGrid(grid)) == [{'kernel': 'linear'},
... {'kernel': 'rbf', 'gamma': 1},
... {'kernel': 'rbf', 'gamma': 10}]
True
>>> ParameterGrid(grid)[1] == {'kernel': 'rbf', 'gamma': 1}
True
.. automethod:: __init__

5.13.3 sklearn.grid_search.ParameterSampler

class sklearn.grid_search.ParameterSampler(param_distributions, n_iter, ran-
dom_state=None)

Generator on parameters sampled from given distributions.

Non-deterministic iterable over random candidate combinations for hyper- parameter search. If all parameters
are presented as a list, sampling without replacement is performed. If at least one parameter is given as a
distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for
continuous parameters.

Note that as of SciPy 0.12, the scipy.stats.distributions do not accept a custom RNG instance and
always use the singleton RNG from numpy.random. Hence setting random_state will not guarantee a
deterministic iteration whenever scipy.stats distributions are used to define the parameter search space.

Read more in the User Guide.

Parametersparam_distributions : dict

Dictionary where the keys are parameters and values are distributions from which a
parameter is to be sampled. Distributions either have to provide a rvs function to
sample from them, or can be given as a list of values, where a uniform distribution is
assumed.

n_iter : integer

Number of parameter settings that are produced.

random_state : int or RandomState

Pseudo random number generator state used for random uniform sampling from lists of
possible values instead of scipy.stats distributions.

Returnsparams : dict of string to any

Yields dictionaries mapping each estimator parameter to as sampled value.
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Examples

>>> from sklearn.grid_search import ParameterSampler
>>> from scipy.stats.distributions import expon
>>> import numpy as np
>>> np.random.seed(0)
>>> param_grid = {'a':[1, 2], 'b': expon()}
>>> param_list = list(ParameterSampler(param_grid, n_iter=4))
>>> rounded_list = [dict((k, round(v, 6)) for (k, v) in d.items())
... for d in param_list]
>>> rounded_list == [{'b': 0.89856, 'a': 1},
... {'b': 0.923223, 'a': 1},
... {'b': 1.878964, 'a': 2},
... {'b': 1.038159, 'a': 2}]
True
.. automethod:: __init__

5.13.4 sklearn.grid_search.RandomizedSearchCV

class sklearn.grid_search.RandomizedSearchCV(estimator, param_distributions, n_iter=10,
scoring=None, fit_params=None, n_jobs=1,
iid=True, refit=True, cv=None, ver-
bose=0, pre_dispatch=‘2*n_jobs’, ran-
dom_state=None, error_score=’raise’)

Randomized search on hyper parameters.

RandomizedSearchCV implements a “fit” and a “score” method. It also implements “predict”, “predict_proba”,
“decision_function”, “transform” and “inverse_transform” if they are implemented in the estimator used.

The parameters of the estimator used to apply these methods are optimized by cross-validated search over
parameter settings.

In contrast to GridSearchCV, not all parameter values are tried out, but rather a fixed number of parameter
settings is sampled from the specified distributions. The number of parameter settings that are tried is given by
n_iter.

If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter
is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous
distributions for continuous parameters.

Read more in the User Guide.

Parametersestimator : estimator object.

A object of that type is instantiated for each grid point. This is assumed to implement
the scikit-learn estimator interface. Either estimator needs to provide a score function,
or scoring must be passed.

param_distributions : dict

Dictionary with parameters names (string) as keys and distributions or lists of parame-
ters to try. Distributions must provide a rvs method for sampling (such as those from
scipy.stats.distributions). If a list is given, it is sampled uniformly.

n_iter : int, default=10

Number of parameter settings that are sampled. n_iter trades off runtime vs quality of
the solution.

scoring : string, callable or None, default=None

5.13. sklearn.grid_search: Grid Search 1281



scikit-learn user guide, Release 0.17

A string (see model evaluation documentation) or a scorer callable object / function
with signature scorer(estimator, X, y). If None, the score method of the
estimator is used.

fit_params : dict, optional

Parameters to pass to the fit method.

n_jobs : int, default=1

Number of jobs to run in parallel.

pre_dispatch : int, or string, optional

Controls the number of jobs that get dispatched during parallel execution. Reducing
this number can be useful to avoid an explosion of memory consumption when more
jobs get dispatched than CPUs can process. This parameter can be:

•None, in which case all the jobs are immediately created and spawned. Use this for
lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the
jobs

•An int, giving the exact number of total jobs that are spawned

•A string, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

iid : boolean, default=True

If True, the data is assumed to be identically distributed across the folds, and the loss
minimized is the total loss per sample, and not the mean loss across the folds.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

•None, to use the default 3-fold cross-validation,

•integer, to specify the number of folds.

•An object to be used as a cross-validation generator.

•An iterable yielding train/test splits.

For integer/None inputs, if y is binary or multiclass, StratifiedKFold used. If the
estimator is a classifier or if y is neither binary nor multiclass, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

refit : boolean, default=True

Refit the best estimator with the entire dataset. If “False”, it is impossible to make
predictions using this RandomizedSearchCV instance after fitting.

verbose : integer

Controls the verbosity: the higher, the more messages.

random_state : int or RandomState

Pseudo random number generator state used for random uniform sampling from lists of
possible values instead of scipy.stats distributions.

error_score : ‘raise’ (default) or numeric

Value to assign to the score if an error occurs in estimator fitting. If set to ‘raise’, the
error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter
does not affect the refit step, which will always raise the error.
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Attributesgrid_scores_ : list of named tuples

Contains scores for all parameter combinations in param_grid. Each entry corresponds
to one parameter setting. Each named tuple has the attributes:

•parameters, a dict of parameter settings

•mean_validation_score, the mean score over the cross-validation folds

•cv_validation_scores, the list of scores for each fold

best_estimator_ : estimator

Estimator that was chosen by the search, i.e. estimator which gave highest score (or
smallest loss if specified) on the left out data. Not available if refit=False.

best_score_ : float

Score of best_estimator on the left out data.

best_params_ : dict

Parameter setting that gave the best results on the hold out data.

See also:

GridSearchCVDoes exhaustive search over a grid of parameters.

ParameterSamplerA generator over parameter settins, constructed from param_distributions.

Notes

The parameters selected are those that maximize the score of the held-out data, according to the scoring param-
eter.

If n_jobs was set to a value higher than one, the data is copied for each parameter setting(and not n_jobs times).
This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is
large and not enough memory is available. A workaround in this case is to set pre_dispatch. Then, the memory
is copied only pre_dispatch many times. A reasonable value for pre_dispatch is 2 * n_jobs.

Methods

decision_function(X) Call decision_function on the estimator with the best found parameters.
fit(X[, y]) Run fit on the estimator with randomly drawn parameters.
get_params([deep]) Get parameters for this estimator.
inverse_transform(Xt) Call inverse_transform on the estimator with the best found parameters.
predict(X) Call predict on the estimator with the best found parameters.
predict_log_proba(X) Call predict_log_proba on the estimator with the best found parameters.
predict_proba(X) Call predict_proba on the estimator with the best found parameters.
score(X[, y]) Returns the score on the given data, if the estimator has been refit.
set_params(**params) Set the parameters of this estimator.
transform(X) Call transform on the estimator with the best found parameters.

__init__(estimator, param_distributions, n_iter=10, scoring=None, fit_params=None, n_jobs=1,
iid=True, refit=True, cv=None, verbose=0, pre_dispatch=‘2*n_jobs’, random_state=None,
error_score=’raise’)

decision_function(X)
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Call decision_function on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports decision_function.

ParametersX : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

fit(X, y=None)
Run fit on the estimator with randomly drawn parameters.

ParametersX : array-like, shape = [n_samples, n_features]

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples] or [n_samples, n_output], optional

Target relative to X for classification or regression; None for unsupervised learning.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

inverse_transform(Xt)
Call inverse_transform on the estimator with the best found parameters.

Only available if the underlying estimator implements inverse_transform and refit=True.

ParametersXt : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

predict(X)
Call predict on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict.

ParametersX : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

predict_log_proba(X)
Call predict_log_proba on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict_log_proba.

ParametersX : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

predict_proba(X)
Call predict_proba on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict_proba.

ParametersX : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.
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score(X, y=None)
Returns the score on the given data, if the estimator has been refit.

This uses the score defined by scoring where provided, and the best_estimator_.score method
otherwise.

ParametersX : array-like, shape = [n_samples, n_features]

Input data, where n_samples is the number of samples and n_features is the number of
features.

y : array-like, shape = [n_samples] or [n_samples, n_output], optional

Target relative to X for classification or regression; None for unsupervised learning.

Returnsscore : float

Notes

•The long-standing behavior of this method changed in version 0.16.

•It no longer uses the metric provided by estimator.score if the scoring parameter was set
when fitting.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X)
Call transform on the estimator with the best found parameters.

Only available if the underlying estimator supports transform and refit=True.

ParametersX : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

Examples using sklearn.grid_search.RandomizedSearchCV

• Comparing randomized search and grid search for hyperparameter estimation

5.14 sklearn.isotonic: Isotonic regression

User guide: See the Isotonic regression section for further details.

isotonic.IsotonicRegression([y_min, y_max, ...]) Isotonic regression model.
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5.14.1 sklearn.isotonic.IsotonicRegression

class sklearn.isotonic.IsotonicRegression(y_min=None, y_max=None, increasing=True,
out_of_bounds=’nan’)

Isotonic regression model.

The isotonic regression optimization problem is defined by:

min sum w_i (y[i] - y_[i]) ** 2

subject to y_[i] <= y_[j] whenever X[i] <= X[j]
and min(y_) = y_min, max(y_) = y_max

where:

•y[i] are inputs (real numbers)

•y_[i] are fitted

•X specifies the order. If X is non-decreasing then y_ is non-decreasing.

•w[i] are optional strictly positive weights (default to 1.0)

Read more in the User Guide.

Parametersy_min : optional, default: None

If not None, set the lowest value of the fit to y_min.

y_max : optional, default: None

If not None, set the highest value of the fit to y_max.

increasing : boolean or string, optional, default: True

If boolean, whether or not to fit the isotonic regression with y increasing or decreasing.

The string value “auto” determines whether y should increase or decrease based on the
Spearman correlation estimate’s sign.

out_of_bounds : string, optional, default: “nan”

The out_of_bounds parameter handles how x-values outside of the training domain
are handled. When set to “nan”, predicted y-values will be NaN. When set to “clip”,
predicted y-values will be set to the value corresponding to the nearest train interval
endpoint. When set to “raise”, allow interp1d to throw ValueError.

AttributesX_ : ndarray (n_samples, )

A copy of the input X.

y_ : ndarray (n_samples, )

Isotonic fit of y.

X_min_ : float

Minimum value of input array X_ for left bound.

X_max_ : float

Maximum value of input array X_ for right bound.

f_ : function

The stepwise interpolating function that covers the domain X_.
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Notes

Ties are broken using the secondary method from Leeuw, 1977.

References

Isotonic Median Regression: A Linear Programming Approach Nilotpal Chakravarti Mathematics of Operations
Research Vol. 14, No. 2 (May, 1989), pp. 303-308

Isotone Optimization in R : Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods Leeuw, Hornik,
Mair Journal of Statistical Software 2009

Correctness of Kruskal’s algorithms for monotone regression with ties Leeuw, Psychometrica, 1977

Methods

fit(X, y[, sample_weight]) Fit the model using X, y as training data.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
predict(T) Predict new data by linear interpolation.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.
transform(T) Transform new data by linear interpolation

__init__(y_min=None, y_max=None, increasing=True, out_of_bounds=’nan’)

fit(X, y, sample_weight=None)
Fit the model using X, y as training data.

ParametersX : array-like, shape=(n_samples,)

Training data.

y : array-like, shape=(n_samples,)

Training target.

sample_weight : array-like, shape=(n_samples,), optional, default: None

Weights. If set to None, all weights will be set to 1 (equal weights).

Returnsself : object

Returns an instance of self.

Notes

X is stored for future use, as transform needs X to interpolate new input data.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.
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y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(T)
Predict new data by linear interpolation.

ParametersT : array-like, shape=(n_samples,)

Data to transform.

ReturnsT_ : array, shape=(n_samples,)

Transformed data.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(T)
Transform new data by linear interpolation

ParametersT : array-like, shape=(n_samples,)
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Data to transform.

ReturnsT_ : array, shape=(n_samples,)

The transformed data

Examples using sklearn.isotonic.IsotonicRegression

• Isotonic Regression

isotonic.isotonic_regression(y[, ...]) Solve the isotonic regression model:
isotonic.check_increasing(x, y) Determine whether y is monotonically correlated with x.

5.14.2 sklearn.isotonic.isotonic_regression

sklearn.isotonic.isotonic_regression(y, sample_weight=None, y_min=None, y_max=None,
increasing=True)

Solve the isotonic regression model:

min sum w[i] (y[i] - y_[i]) ** 2

subject to y_min = y_[1] <= y_[2] ... <= y_[n] = y_max

where:

•y[i] are inputs (real numbers)

•y_[i] are fitted

•w[i] are optional strictly positive weights (default to 1.0)

Read more in the User Guide.

Parametersy : iterable of floating-point values

The data.

sample_weight : iterable of floating-point values, optional, default: None

Weights on each point of the regression. If None, weight is set to 1 (equal weights).

y_min : optional, default: None

If not None, set the lowest value of the fit to y_min.

y_max : optional, default: None

If not None, set the highest value of the fit to y_max.

increasing : boolean, optional, default: True

Whether to compute y_ is increasing (if set to True) or decreasing (if set to False)

Returnsy_ : list of floating-point values

Isotonic fit of y.
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References

“Active set algorithms for isotonic regression; A unifying framework” by Michael J. Best and Nilotpal
Chakravarti, section 3.

5.14.3 sklearn.isotonic.check_increasing

sklearn.isotonic.check_increasing(x, y)
Determine whether y is monotonically correlated with x.

y is found increasing or decreasing with respect to x based on a Spearman correlation test.

Parametersx : array-like, shape=(n_samples,)

Training data.

y : array-like, shape=(n_samples,)

Training target.

Returns‘increasing_bool‘ : boolean

Whether the relationship is increasing or decreasing.

Notes

The Spearman correlation coefficient is estimated from the data, and the sign of the resulting estimate is used as
the result.

In the event that the 95% confidence interval based on Fisher transform spans zero, a warning is raised.

References

Fisher transformation. Wikipedia. http://en.wikipedia.org/w/index.php?title=Fisher_transformation

5.15 sklearn.kernel_approximation Kernel Approximation

The sklearn.kernel_approximation module implements several approximate kernel feature maps base on
Fourier transforms.

User guide: See the Kernel Approximation section for further details.

kernel_approximation.AdditiveChi2Sampler([...]) Approximate feature map for additive chi2 kernel.
kernel_approximation.Nystroem([kernel, ...]) Approximate a kernel map using a subset of the training data.
kernel_approximation.RBFSampler([gamma, ...]) Approximates feature map of an RBF kernel by Monte Carlo approximation of its Fourier transform.
kernel_approximation.SkewedChi2Sampler([...]) Approximates feature map of the “skewed chi-squared” kernel by Monte Carlo approximation of its Fourier transform.

5.15.1 sklearn.kernel_approximation.AdditiveChi2Sampler

class sklearn.kernel_approximation.AdditiveChi2Sampler(sample_steps=2, sam-
ple_interval=None)

Approximate feature map for additive chi2 kernel.
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Uses sampling the fourier transform of the kernel characteristic at regular intervals.

Since the kernel that is to be approximated is additive, the components of the input vectors can be treated
separately. Each entry in the original space is transformed into 2*sample_steps+1 features, where sample_steps
is a parameter of the method. Typical values of sample_steps include 1, 2 and 3.

Optimal choices for the sampling interval for certain data ranges can be computed (see the reference). The
default values should be reasonable.

Read more in the User Guide.

Parameterssample_steps : int, optional

Gives the number of (complex) sampling points.

sample_interval : float, optional

Sampling interval. Must be specified when sample_steps not in {1,2,3}.

See also:

SkewedChi2SamplerA Fourier-approximation to a non-additive variant of the chi squared kernel.

sklearn.metrics.pairwise.chi2_kernelThe exact chi squared kernel.

sklearn.metrics.pairwise.additive_chi2_kernelThe exact additive chi squared kernel.

Notes

This estimator approximates a slightly different version of the additive chi squared kernel then
metric.additive_chi2 computes.

References

See “Efficient additive kernels via explicit feature maps” A. Vedaldi and A. Zisserman, Pattern Analysis and
Machine Intelligence, 2011

Methods

fit(X[, y]) Set parameters.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X[, y]) Apply approximate feature map to X.

__init__(sample_steps=2, sample_interval=None)

fit(X, y=None)
Set parameters.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]
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Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X, y=None)
Apply approximate feature map to X.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

ReturnsX_new : {array, sparse matrix}, shape = (n_samples, n_features * (2*sample_steps +
1))

Whether the return value is an array of sparse matrix depends on the type of the input
X.

5.15.2 sklearn.kernel_approximation.Nystroem

class sklearn.kernel_approximation.Nystroem(kernel=’rbf’, gamma=None, coef0=1,
degree=3, kernel_params=None,
n_components=100, random_state=None)

Approximate a kernel map using a subset of the training data.

Constructs an approximate feature map for an arbitrary kernel using a subset of the data as basis.

Read more in the User Guide.

Parameterskernel : string or callable, default=”rbf”

Kernel map to be approximated. A callable should accept two arguments and the key-
word arguments passed to this object as kernel_params, and should return a floating
point number.

n_components : int

Number of features to construct. How many data points will be used to construct the
mapping.

gamma : float, default=None
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Gamma parameter for the RBF, polynomial, exponential chi2 and sigmoid kernels.
Interpretation of the default value is left to the kernel; see the documentation for
sklearn.metrics.pairwise. Ignored by other kernels.

degree : float, default=3

Degree of the polynomial kernel. Ignored by other kernels.

coef0 : float, default=1

Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels.

kernel_params : mapping of string to any, optional

Additional parameters (keyword arguments) for kernel function passed as callable ob-
ject.

random_state : {int, RandomState}, optional

If int, random_state is the seed used by the random number generator; if RandomState
instance, random_state is the random number generator.

Attributescomponents_ : array, shape (n_components, n_features)

Subset of training points used to construct the feature map.

component_indices_ : array, shape (n_components)

Indices of components_ in the training set.

normalization_ : array, shape (n_components, n_components)

Normalization matrix needed for embedding. Square root of the kernel matrix on
components_.

See also:

RBFSamplerAn approximation to the RBF kernel using random Fourier features.

sklearn.metrics.pairwise.kernel_metricsList of built-in kernels.

References

•Williams, C.K.I. and Seeger, M. “Using the Nystroem method to speed up kernel machines”, Advances in
neural information processing systems 2001

•T. Yang, Y. Li, M. Mahdavi, R. Jin and Z. Zhou “Nystroem Method vs Random Fourier Features: A
Theoretical and Empirical Comparison”, Advances in Neural Information Processing Systems 2012

Methods

fit(X[, y]) Fit estimator to data.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Apply feature map to X.

__init__(kernel=’rbf’, gamma=None, coef0=1, degree=3, kernel_params=None,
n_components=100, random_state=None)
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fit(X, y=None)
Fit estimator to data.

Samples a subset of training points, computes kernel on these and computes normalization matrix.

ParametersX : array-like, shape=(n_samples, n_feature)

Training data.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X)
Apply feature map to X.

Computes an approximate feature map using the kernel between some training points and X.

ParametersX : array-like, shape=(n_samples, n_features)

Data to transform.

ReturnsX_transformed : array, shape=(n_samples, n_components)

Transformed data.

Examples using sklearn.kernel_approximation.Nystroem

• Explicit feature map approximation for RBF kernels
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5.15.3 sklearn.kernel_approximation.RBFSampler

class sklearn.kernel_approximation.RBFSampler(gamma=1.0, n_components=100, ran-
dom_state=None)

Approximates feature map of an RBF kernel by Monte Carlo approximation of its Fourier transform.

It implements a variant of Random Kitchen Sinks.[1]

Read more in the User Guide.

Parametersgamma : float

Parameter of RBF kernel: exp(-gamma * x^2)

n_components : int

Number of Monte Carlo samples per original feature. Equals the dimensionality of the
computed feature space.

random_state : {int, RandomState}, optional

If int, random_state is the seed used by the random number generator; if RandomState
instance, random_state is the random number generator.

Notes

See “Random Features for Large-Scale Kernel Machines” by A. Rahimi and Benjamin Recht.

[1] “Weighted Sums of Random Kitchen Sinks: Replacing minimization with randomization in learning” by A.
Rahimi and Benjamin Recht. (http://www.eecs.berkeley.edu/~brecht/papers/08.rah.rec.nips.pdf)

Methods

fit(X[, y]) Fit the model with X.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X[, y]) Apply the approximate feature map to X.

__init__(gamma=1.0, n_components=100, random_state=None)

fit(X, y=None)
Fit the model with X.

Samples random projection according to n_features.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Training data, where n_samples in the number of samples and n_features is the number
of features.

Returnsself : object

Returns the transformer.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
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ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X, y=None)
Apply the approximate feature map to X.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

New data, where n_samples in the number of samples and n_features is the number of
features.

ReturnsX_new : array-like, shape (n_samples, n_components)

Examples using sklearn.kernel_approximation.RBFSampler

• Explicit feature map approximation for RBF kernels

5.15.4 sklearn.kernel_approximation.SkewedChi2Sampler

class sklearn.kernel_approximation.SkewedChi2Sampler(skewedness=1.0,
n_components=100, ran-
dom_state=None)

Approximates feature map of the “skewed chi-squared” kernel by Monte Carlo approximation of its Fourier
transform.

Read more in the User Guide.

Parametersskewedness : float

“skewedness” parameter of the kernel. Needs to be cross-validated.

n_components : int
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number of Monte Carlo samples per original feature. Equals the dimensionality of the
computed feature space.

random_state : {int, RandomState}, optional

If int, random_state is the seed used by the random number generator; if RandomState
instance, random_state is the random number generator.

See also:

AdditiveChi2SamplerA different approach for approximating an additive variant of the chi squared ker-
nel.

sklearn.metrics.pairwise.chi2_kernelThe exact chi squared kernel.

References

See “Random Fourier Approximations for Skewed Multiplicative Histogram Kernels” by Fuxin Li, Catalin
Ionescu and Cristian Sminchisescu.

Methods

fit(X[, y]) Fit the model with X.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X[, y]) Apply the approximate feature map to X.

__init__(skewedness=1.0, n_components=100, random_state=None)

fit(X, y=None)
Fit the model with X.

Samples random projection according to n_features.

ParametersX : array-like, shape (n_samples, n_features)

Training data, where n_samples in the number of samples and n_features is the number
of features.

Returnsself : object

Returns the transformer.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.
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get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X, y=None)
Apply the approximate feature map to X.

ParametersX : array-like, shape (n_samples, n_features)

New data, where n_samples in the number of samples and n_features is the number of
features.

ReturnsX_new : array-like, shape (n_samples, n_components)

5.16 sklearn.kernel_ridge Kernel Ridge Regression

Module sklearn.kernel_ridge implements kernel ridge regression.

User guide: See the Kernel ridge regression section for further details.

kernel_ridge.KernelRidge([alpha, kernel, ...]) Kernel ridge regression.

5.16.1 sklearn.kernel_ridge.KernelRidge

class sklearn.kernel_ridge.KernelRidge(alpha=1, kernel=’linear’, gamma=None, degree=3,
coef0=1, kernel_params=None)

Kernel ridge regression.

Kernel ridge regression (KRR) combines ridge regression (linear least squares with l2-norm regularization) with
the kernel trick. It thus learns a linear function in the space induced by the respective kernel and the data. For
non-linear kernels, this corresponds to a non-linear function in the original space.

The form of the model learned by KRR is identical to support vector regression (SVR). However, different loss
functions are used: KRR uses squared error loss while support vector regression uses epsilon-insensitive loss,
both combined with l2 regularization. In contrast to SVR, fitting a KRR model can be done in closed-form and
is typically faster for medium-sized datasets. On the other hand, the learned model is non-sparse and thus slower
than SVR, which learns a sparse model for epsilon > 0, at prediction-time.

This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape [n_samples,
n_targets]).

Read more in the User Guide.
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Parametersalpha : {float, array-like}, shape = [n_targets]

Small positive values of alpha improve the conditioning of the problem and reduce the
variance of the estimates. Alpha corresponds to (2*C)^-1 in other linear models such
as LogisticRegression or LinearSVC. If an array is passed, penalties are assumed to be
specific to the targets. Hence they must correspond in number.

kernel : string or callable, default=”linear”

Kernel mapping used internally. A callable should accept two arguments and the key-
word arguments passed to this object as kernel_params, and should return a floating
point number.

gamma : float, default=None

Gamma parameter for the RBF, laplacian, polynomial, exponential chi2 and sigmoid
kernels. Interpretation of the default value is left to the kernel; see the documentation
for sklearn.metrics.pairwise. Ignored by other kernels.

degree : float, default=3

Degree of the polynomial kernel. Ignored by other kernels.

coef0 : float, default=1

Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels.

kernel_params : mapping of string to any, optional

Additional parameters (keyword arguments) for kernel function passed as callable ob-
ject.

Attributesdual_coef_ : array, shape = [n_features] or [n_targets, n_features]

Weight vector(s) in kernel space

X_fit_ : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training data, which is also required for prediction

See also:

RidgeLinear ridge regression.

SVRSupport Vector Regression implemented using libsvm.

References

•Kevin P. Murphy “Machine Learning: A Probabilistic Perspective”, The MIT Press chapter 14.4.3, pp.
492-493

Examples

>>> from sklearn.kernel_ridge import KernelRidge
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> rng = np.random.RandomState(0)
>>> y = rng.randn(n_samples)
>>> X = rng.randn(n_samples, n_features)
>>> clf = KernelRidge(alpha=1.0)
>>> clf.fit(X, y)
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KernelRidge(alpha=1.0, coef0=1, degree=3, gamma=None, kernel='linear',
kernel_params=None)

Methods

fit(X[, y, sample_weight]) Fit Kernel Ridge regression model
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the the kernel ridge model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(alpha=1, kernel=’linear’, gamma=None, degree=3, coef0=1, kernel_params=None)

fit(X, y=None, sample_weight=None)
Fit Kernel Ridge regression model

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training data

y : array-like, shape = [n_samples] or [n_samples, n_targets]

Target values

sample_weight : float or numpy array of shape [n_samples]

Individual weights for each sample, ignored if None is passed.

Returnsself : returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the the kernel ridge model

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Samples.

ReturnsC : array, shape = [n_samples] or [n_samples, n_targets]

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.
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ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.kernel_ridge.KernelRidge

• Comparison of kernel ridge regression and SVR

5.17 sklearn.discriminant_analysis: Discriminant Analysis

Linear Discriminant Analysis and Quadratic Discriminant Analysis

User guide: See the Linear and Quadratic Discriminant Analysis section for further details.

discriminant_analysis.LinearDiscriminantAnalysis([...]) Linear Discriminant Analysis
discriminant_analysis.QuadraticDiscriminantAnalysis([...]) Quadratic Discriminant Analysis

5.17.1 sklearn.discriminant_analysis.LinearDiscriminantAnalysis

class sklearn.discriminant_analysis.LinearDiscriminantAnalysis(solver=’svd’,
shrinkage=None,
priors=None,
n_components=None,
store_covariance=False,
tol=0.0001)

Linear Discriminant Analysis

A classifier with a linear decision boundary, generated by fitting class conditional densities to the data and using
Bayes’ rule.

The model fits a Gaussian density to each class, assuming that all classes share the same covariance matrix.

The fitted model can also be used to reduce the dimensionality of the input by projecting it to the most discrim-
inative directions.

New in version 0.17: LinearDiscriminantAnalysis.

Changed in version 0.17: Deprecated lda.LDA have been moved to LinearDiscriminantAnalysis.
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Parameterssolver : string, optional

Solver to use, possible values:

•‘svd’: Singular value decomposition (default). Does not compute the
covariance matrix, therefore this solver is recommended for data with a
large number of features.

•‘lsqr’: Least squares solution, can be combined with shrinkage.

•‘eigen’: Eigenvalue decomposition, can be combined with shrinkage.

shrinkage : string or float, optional

Shrinkage parameter, possible values:

•None: no shrinkage (default).

•‘auto’: automatic shrinkage using the Ledoit-Wolf lemma.

•float between 0 and 1: fixed shrinkage parameter.

Note that shrinkage works only with ‘lsqr’ and ‘eigen’ solvers.

priors : array, optional, shape (n_classes,)

Class priors.

n_components : int, optional

Number of components (< n_classes - 1) for dimensionality reduction.

store_covariance : bool, optional

Additionally compute class covariance matrix (default False).

New in version 0.17.

tol : float, optional

Threshold used for rank estimation in SVD solver.

New in version 0.17.

Attributescoef_ : array, shape (n_features,) or (n_classes, n_features)

Weight vector(s).

intercept_ : array, shape (n_features,)

Intercept term.

covariance_ : array-like, shape (n_features, n_features)

Covariance matrix (shared by all classes).

explained_variance_ratio_ : array, shape (n_components,)

Percentage of variance explained by each of the selected components. If
n_components is not set then all components are stored and the sum of explained
variances is equal to 1.0. Only available when eigen solver is used.

means_ : array-like, shape (n_classes, n_features)

Class means.

priors_ : array-like, shape (n_classes,)

Class priors (sum to 1).
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scalings_ : array-like, shape (rank, n_classes - 1)

Scaling of the features in the space spanned by the class centroids.

xbar_ : array-like, shape (n_features,)

Overall mean.

classes_ : array-like, shape (n_classes,)

Unique class labels.

See also:

sklearn.discriminant_analysis.QuadraticDiscriminantAnalysisQuadratic Discrimi-
nant Analysis

Notes

The default solver is ‘svd’. It can perform both classification and transform, and it does not rely on the calcu-
lation of the covariance matrix. This can be an advantage in situations where the number of features is large.
However, the ‘svd’ solver cannot be used with shrinkage.

The ‘lsqr’ solver is an efficient algorithm that only works for classification. It supports shrinkage.

The ‘eigen’ solver is based on the optimization of the between class scatter to within class scatter ratio. It can
be used for both classification and transform, and it supports shrinkage. However, the ‘eigen’ solver needs to
compute the covariance matrix, so it might not be suitable for situations with a high number of features.

Examples

>>> import numpy as np
>>> from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> clf = LinearDiscriminantAnalysis()
>>> clf.fit(X, y)
LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=None,

solver='svd', store_covariance=False, tol=0.0001)
>>> print(clf.predict([[-0.8, -1]]))
[1]

Methods

decision_function(X) Predict confidence scores for samples.
fit(X, y[, store_covariance, tol]) Fit LinearDiscriminantAnalysis model according to the given training data and parameters.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class labels for samples in X.
predict_log_proba(X) Estimate log probability.
predict_proba(X) Estimate probability.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.
transform(X) Project data to maximize class separation.
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__init__(solver=’svd’, shrinkage=None, priors=None, n_components=None,
store_covariance=False, tol=0.0001)

decision_function(X)
Predict confidence scores for samples.

The confidence score for a sample is the signed distance of that sample to the hyperplane.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returnsarray, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) :

Confidence scores per (sample, class) combination. In the binary case, confidence score
for self.classes_[1] where >0 means this class would be predicted.

fit(X, y, store_covariance=None, tol=None)

Fit LinearDiscriminantAnalysis model according to the giventraining data and parameters.

Changed in version 0.17: Deprecated store_covariance have been moved to main constructor.

Changed in version 0.17: Deprecated tol have been moved to main constructor.

ParametersX : array-like, shape (n_samples, n_features)

Training data.

y : array, shape (n_samples,)

Target values.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict class labels for samples in X.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Samples.
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ReturnsC : array, shape = [n_samples]

Predicted class label per sample.

predict_log_proba(X)
Estimate log probability.

ParametersX : array-like, shape (n_samples, n_features)

Input data.

ReturnsC : array, shape (n_samples, n_classes)

Estimated log probabilities.

predict_proba(X)
Estimate probability.

ParametersX : array-like, shape (n_samples, n_features)

Input data.

ReturnsC : array, shape (n_samples, n_classes)

Estimated probabilities.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X)
Project data to maximize class separation.

ParametersX : array-like, shape (n_samples, n_features)

Input data.

ReturnsX_new : array, shape (n_samples, n_components)

Transformed data.
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Examples using sklearn.discriminant_analysis.LinearDiscriminantAnalysis

• Normal and Shrinkage Linear Discriminant Analysis for classification

• Classifier comparison

• Linear and Quadratic Discriminant Analysis with confidence ellipsoid

• Comparison of LDA and PCA 2D projection of Iris dataset

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap...

5.17.2 sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis

class sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis(priors=None,
reg_param=0.0,
store_covariances=False,
tol=0.0001)

Quadratic Discriminant Analysis

A classifier with a quadratic decision boundary, generated by fitting class conditional densities to the data and
using Bayes’ rule.

The model fits a Gaussian density to each class.

New in version 0.17: QuadraticDiscriminantAnalysis

Changed in version 0.17: Deprecated qda.QDA have been moved to QuadraticDiscriminantAnalysis.

Parameterspriors : array, optional, shape = [n_classes]

Priors on classes

reg_param : float, optional

Regularizes the covariance estimate as (1-reg_param)*Sigma +
reg_param*np.eye(n_features)

Attributescovariances_ : list of array-like, shape = [n_features, n_features]

Covariance matrices of each class.

means_ : array-like, shape = [n_classes, n_features]

Class means.

priors_ : array-like, shape = [n_classes]

Class priors (sum to 1).

rotations_ : list of arrays

For each class k an array of shape [n_features, n_k], with n_k =
min(n_features, number of elements in class k) It is the rota-
tion of the Gaussian distribution, i.e. its principal axis.

scalings_ : list of arrays

For each class k an array of shape [n_k]. It contains the scaling of the Gaussian distri-
butions along its principal axes, i.e. the variance in the rotated coordinate system.

store_covariances : boolean
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If True the covariance matrices are computed and stored in the self.covariances_ at-
tribute.

New in version 0.17.

tol : float, optional, default 1.0e-4

Threshold used for rank estimation.

New in version 0.17.

See also:

sklearn.discriminant_analysis.LinearDiscriminantAnalysisLinear Discriminant Anal-
ysis

Examples

>>> from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> clf = QuadraticDiscriminantAnalysis()
>>> clf.fit(X, y)
...
QuadraticDiscriminantAnalysis(priors=None, reg_param=0.0,

store_covariances=False, tol=0.0001)
>>> print(clf.predict([[-0.8, -1]]))
[1]

Methods

decision_function(X) Apply decision function to an array of samples.
fit(X, y[, store_covariances, tol]) Fit the model according to the given training data and parameters.
get_params([deep]) Get parameters for this estimator.
predict(X) Perform classification on an array of test vectors X.
predict_log_proba(X) Return posterior probabilities of classification.
predict_proba(X) Return posterior probabilities of classification.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.

__init__(priors=None, reg_param=0.0, store_covariances=False, tol=0.0001)

decision_function(X)
Apply decision function to an array of samples.

ParametersX : array-like, shape = [n_samples, n_features]

Array of samples (test vectors).

ReturnsC : array, shape = [n_samples, n_classes] or [n_samples,]

Decision function values related to each class, per sample. In the two-class case, the
shape is [n_samples,], giving the log likelihood ratio of the positive class.

fit(X, y, store_covariances=None, tol=None)
Fit the model according to the given training data and parameters.
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Changed in version 0.17: Deprecated store_covariance have been moved to main constructor.

Changed in version 0.17: Deprecated tol have been moved to main constructor.

ParametersX : array-like, shape = [n_samples, n_features]

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

y : array, shape = [n_samples]

Target values (integers)

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Perform classification on an array of test vectors X.

The predicted class C for each sample in X is returned.

ParametersX : array-like, shape = [n_samples, n_features]

ReturnsC : array, shape = [n_samples]

predict_log_proba(X)
Return posterior probabilities of classification.

ParametersX : array-like, shape = [n_samples, n_features]

Array of samples/test vectors.

ReturnsC : array, shape = [n_samples, n_classes]

Posterior log-probabilities of classification per class.

predict_proba(X)
Return posterior probabilities of classification.

ParametersX : array-like, shape = [n_samples, n_features]

Array of samples/test vectors.

ReturnsC : array, shape = [n_samples, n_classes]

Posterior probabilities of classification per class.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)
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True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis

• Classifier comparison

• Linear and Quadratic Discriminant Analysis with confidence ellipsoid

5.18 sklearn.learning_curve Learning curve evaluation

Utilities to evaluate models with respect to a variable

learning_curve.learning_curve(estimator, X, y) Learning curve.
learning_curve.validation_curve(estimator, ...) Validation curve.

5.18.1 sklearn.learning_curve.learning_curve

sklearn.learning_curve.learning_curve(estimator, X, y, train_sizes=array([ 0.1, 0.33,
0.55, 0.78, 1. ]), cv=None, scoring=None,
exploit_incremental_learning=False, n_jobs=1,
pre_dispatch=’all’, verbose=0)

Learning curve.

Determines cross-validated training and test scores for different training set sizes.

A cross-validation generator splits the whole dataset k times in training and test data. Subsets of the training set
with varying sizes will be used to train the estimator and a score for each training subset size and the test set
will be computed. Afterwards, the scores will be averaged over all k runs for each training subset size.

Read more in the User Guide.

Parametersestimator : object type that implements the “fit” and “predict” methods

An object of that type which is cloned for each validation.

X : array-like, shape (n_samples, n_features)

Training vector, where n_samples is the number of samples and n_features is the number
of features.

y : array-like, shape (n_samples) or (n_samples, n_features), optional
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Target relative to X for classification or regression; None for unsupervised learning.

train_sizes : array-like, shape (n_ticks,), dtype float or int

Relative or absolute numbers of training examples that will be used to generate the
learning curve. If the dtype is float, it is regarded as a fraction of the maximum size
of the training set (that is determined by the selected validation method), i.e. it has to
be within (0, 1]. Otherwise it is interpreted as absolute sizes of the training sets. Note
that for classification the number of samples usually have to be big enough to contain at
least one sample from each class. (default: np.linspace(0.1, 1.0, 5))

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

•None, to use the default 3-fold cross-validation,

•integer, to specify the number of folds.

•An object to be used as a cross-validation generator.

•An iterable yielding train/test splits.

For integer/None inputs, if y is binary or multiclass, StratifiedKFold used. If the
estimator is a classifier or if y is neither binary nor multiclass, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

scoring : string, callable or None, optional, default: None

A string (see model evaluation documentation) or a scorer callable object / function with
signature scorer(estimator, X, y).

exploit_incremental_learning : boolean, optional, default: False

If the estimator supports incremental learning, this will be used to speed up fitting for
different training set sizes.

n_jobs : integer, optional

Number of jobs to run in parallel (default 1).

pre_dispatch : integer or string, optional

Number of predispatched jobs for parallel execution (default is all). The option can
reduce the allocated memory. The string can be an expression like ‘2*n_jobs’.

verbose : integer, optional

Controls the verbosity: the higher, the more messages.

Returnstrain_sizes_abs : array, shape = (n_unique_ticks,), dtype int

Numbers of training examples that has been used to generate the learning curve. Note
that the number of ticks might be less than n_ticks because duplicate entries will be
removed.

train_scores : array, shape (n_ticks, n_cv_folds)

Scores on training sets.

test_scores : array, shape (n_ticks, n_cv_folds)

Scores on test set.
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Notes

See examples/model_selection/plot_learning_curve.py

5.18.2 sklearn.learning_curve.validation_curve

sklearn.learning_curve.validation_curve(estimator, X, y, param_name, param_range,
cv=None, scoring=None, n_jobs=1,
pre_dispatch=’all’, verbose=0)

Validation curve.

Determine training and test scores for varying parameter values.

Compute scores for an estimator with different values of a specified parameter. This is similar to grid search
with one parameter. However, this will also compute training scores and is merely a utility for plotting the
results.

Read more in the User Guide.

Parametersestimator : object type that implements the “fit” and “predict” methods

An object of that type which is cloned for each validation.

X : array-like, shape (n_samples, n_features)

Training vector, where n_samples is the number of samples and n_features is the number
of features.

y : array-like, shape (n_samples) or (n_samples, n_features), optional

Target relative to X for classification or regression; None for unsupervised learning.

param_name : string

Name of the parameter that will be varied.

param_range : array-like, shape (n_values,)

The values of the parameter that will be evaluated.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

•None, to use the default 3-fold cross-validation,

•integer, to specify the number of folds.

•An object to be used as a cross-validation generator.

•An iterable yielding train/test splits.

For integer/None inputs, if y is binary or multiclass, StratifiedKFold used. If the
estimator is a classifier or if y is neither binary nor multiclass, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

scoring : string, callable or None, optional, default: None

A string (see model evaluation documentation) or a scorer callable object / function with
signature scorer(estimator, X, y).

n_jobs : integer, optional

Number of jobs to run in parallel (default 1).
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pre_dispatch : integer or string, optional

Number of predispatched jobs for parallel execution (default is all). The option can
reduce the allocated memory. The string can be an expression like ‘2*n_jobs’.

verbose : integer, optional

Controls the verbosity: the higher, the more messages.

Returnstrain_scores : array, shape (n_ticks, n_cv_folds)

Scores on training sets.

test_scores : array, shape (n_ticks, n_cv_folds)

Scores on test set.

Notes

See examples/model_selection/plot_validation_curve.py

Examples using sklearn.learning_curve.validation_curve

• Plotting Validation Curves

5.19 sklearn.linear_model: Generalized Linear Models

The sklearn.linear_model module implements generalized linear models. It includes Ridge regression,
Bayesian Regression, Lasso and Elastic Net estimators computed with Least Angle Regression and coordinate de-
scent. It also implements Stochastic Gradient Descent related algorithms.

User guide: See the Generalized Linear Models section for further details.

linear_model.ARDRegression([n_iter, tol, ...]) Bayesian ARD regression.
linear_model.BayesianRidge([n_iter, tol, ...]) Bayesian ridge regression
linear_model.ElasticNet([alpha, l1_ratio, ...]) Linear regression with combined L1 and L2 priors as regularizer.
linear_model.ElasticNetCV([l1_ratio, eps, ...]) Elastic Net model with iterative fitting along a regularization path
linear_model.Lars([fit_intercept, verbose, ...]) Least Angle Regression model a.k.a.
linear_model.LarsCV([fit_intercept, ...]) Cross-validated Least Angle Regression model
linear_model.Lasso([alpha, fit_intercept, ...]) Linear Model trained with L1 prior as regularizer (aka the Lasso)
linear_model.LassoCV([eps, n_alphas, ...]) Lasso linear model with iterative fitting along a regularization path
linear_model.LassoLars([alpha, ...]) Lasso model fit with Least Angle Regression a.k.a.
linear_model.LassoLarsCV([fit_intercept, ...]) Cross-validated Lasso, using the LARS algorithm
linear_model.LassoLarsIC([criterion, ...]) Lasso model fit with Lars using BIC or AIC for model selection
linear_model.LinearRegression([...]) Ordinary least squares Linear Regression.
linear_model.LogisticRegression([penalty, ...]) Logistic Regression (aka logit, MaxEnt) classifier.
linear_model.LogisticRegressionCV([Cs, ...]) Logistic Regression CV (aka logit, MaxEnt) classifier.
linear_model.MultiTaskLasso([alpha, ...]) Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer
linear_model.MultiTaskElasticNet([alpha, ...]) Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer
linear_model.MultiTaskLassoCV([eps, ...]) Multi-task L1/L2 Lasso with built-in cross-validation.
linear_model.MultiTaskElasticNetCV([...]) Multi-task L1/L2 ElasticNet with built-in cross-validation.
linear_model.OrthogonalMatchingPursuit([...]) Orthogonal Matching Pursuit model (OMP)
linear_model.OrthogonalMatchingPursuitCV([...]) Cross-validated Orthogonal Matching Pursuit model (OMP)
linear_model.PassiveAggressiveClassifier([...]) Passive Aggressive Classifier

Continued on next page
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Table 5.114 – continued from previous page
linear_model.PassiveAggressiveRegressor([C, ...]) Passive Aggressive Regressor
linear_model.Perceptron([penalty, alpha, ...]) Perceptron
linear_model.RandomizedLasso([alpha, ...]) Randomized Lasso.
linear_model.RandomizedLogisticRegression([...]) Randomized Logistic Regression
linear_model.RANSACRegressor([...]) RANSAC (RANdom SAmple Consensus) algorithm.
linear_model.Ridge([alpha, fit_intercept, ...]) Linear least squares with l2 regularization.
linear_model.RidgeClassifier([alpha, ...]) Classifier using Ridge regression.
linear_model.RidgeClassifierCV([alphas, ...]) Ridge classifier with built-in cross-validation.
linear_model.RidgeCV([alphas, ...]) Ridge regression with built-in cross-validation.
linear_model.SGDClassifier([loss, penalty, ...]) Linear classifiers (SVM, logistic regression, a.o.) with SGD training.
linear_model.SGDRegressor([loss, penalty, ...]) Linear model fitted by minimizing a regularized empirical loss with SGD
linear_model.TheilSenRegressor([...]) Theil-Sen Estimator: robust multivariate regression model.

5.19.1 sklearn.linear_model.ARDRegression

class sklearn.linear_model.ARDRegression(n_iter=300, tol=0.001, alpha_1=1e-
06, alpha_2=1e-06, lambda_1=1e-06,
lambda_2=1e-06, compute_score=False, thresh-
old_lambda=10000.0, fit_intercept=True, normal-
ize=False, copy_X=True, verbose=False)

Bayesian ARD regression.

Fit the weights of a regression model, using an ARD prior. The weights of the regression model are assumed
to be in Gaussian distributions. Also estimate the parameters lambda (precisions of the distributions of the
weights) and alpha (precision of the distribution of the noise). The estimation is done by an iterative procedures
(Evidence Maximization)

Read more in the User Guide.

Parametersn_iter : int, optional

Maximum number of iterations. Default is 300

tol : float, optional

Stop the algorithm if w has converged. Default is 1.e-3.

alpha_1 : float, optional

Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha
parameter. Default is 1.e-6.

alpha_2 : float, optional

Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution
prior over the alpha parameter. Default is 1.e-6.

lambda_1 : float, optional

Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda
parameter. Default is 1.e-6.

lambda_2 : float, optional

Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution
prior over the lambda parameter. Default is 1.e-6.

compute_score : boolean, optional

If True, compute the objective function at each step of the model. Default is False.
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threshold_lambda : float, optional

threshold for removing (pruning) weights with high precision from the computation.
Default is 1.e+4.

fit_intercept : boolean, optional

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered). Default is True.

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.

copy_X : boolean, optional, default True.

If True, X will be copied; else, it may be overwritten.

verbose : boolean, optional, default False

Verbose mode when fitting the model.

Attributescoef_ : array, shape = (n_features)

Coefficients of the regression model (mean of distribution)

alpha_ : float

estimated precision of the noise.

lambda_ : array, shape = (n_features)

estimated precisions of the weights.

sigma_ : array, shape = (n_features, n_features)

estimated variance-covariance matrix of the weights

scores_ : float

if computed, value of the objective function (to be maximized)

Notes

See examples/linear_model/plot_ard.py for an example.

Examples

>>> from sklearn import linear_model
>>> clf = linear_model.ARDRegression()
>>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
...
ARDRegression(alpha_1=1e-06, alpha_2=1e-06, compute_score=False,

copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06,
n_iter=300, normalize=False, threshold_lambda=10000.0, tol=0.001,
verbose=False)

>>> clf.predict([[1, 1]])
array([ 1.])

Methods
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decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
fit(X, y) Fit the ARDRegression model according to the given training data and parameters.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(n_iter=300, tol=0.001, alpha_1=1e-06, alpha_2=1e-06, lambda_1=1e-06, lambda_2=1e-
06, compute_score=False, threshold_lambda=10000.0, fit_intercept=True, normal-
ize=False, copy_X=True, verbose=False)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19.

Decision function of the linear model.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

fit(X, y)
Fit the ARDRegression model according to the given training data and parameters.

Iterative procedure to maximize the evidence

ParametersX : array-like, shape = [n_samples, n_features]

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

y : array, shape = [n_samples]

Target values (integers)

Returnsself : returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.
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score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.linear_model.ARDRegression

• Automatic Relevance Determination Regression (ARD)

5.19.2 sklearn.linear_model.BayesianRidge

class sklearn.linear_model.BayesianRidge(n_iter=300, tol=0.001, alpha_1=1e-06,
alpha_2=1e-06, lambda_1=1e-06, lambda_2=1e-
06, compute_score=False, fit_intercept=True,
normalize=False, copy_X=True, verbose=False)

Bayesian ridge regression

Fit a Bayesian ridge model and optimize the regularization parameters lambda (precision of the weights) and
alpha (precision of the noise).

Read more in the User Guide.

Parametersn_iter : int, optional

Maximum number of iterations. Default is 300.

tol : float, optional

Stop the algorithm if w has converged. Default is 1.e-3.

alpha_1 : float, optional

Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha
parameter. Default is 1.e-6
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alpha_2 : float, optional

Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution
prior over the alpha parameter. Default is 1.e-6.

lambda_1 : float, optional

Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda
parameter. Default is 1.e-6.

lambda_2 : float, optional

Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution
prior over the lambda parameter. Default is 1.e-6

compute_score : boolean, optional

If True, compute the objective function at each step of the model. Default is False

fit_intercept : boolean, optional

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered). Default is True.

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

verbose : boolean, optional, default False

Verbose mode when fitting the model.

Attributescoef_ : array, shape = (n_features)

Coefficients of the regression model (mean of distribution)

alpha_ : float

estimated precision of the noise.

lambda_ : array, shape = (n_features)

estimated precisions of the weights.

scores_ : float

if computed, value of the objective function (to be maximized)

Notes

See examples/linear_model/plot_bayesian_ridge.py for an example.

Examples

>>> from sklearn import linear_model
>>> clf = linear_model.BayesianRidge()
>>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
...
BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False,

copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06,
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n_iter=300, normalize=False, tol=0.001, verbose=False)
>>> clf.predict([[1, 1]])
array([ 1.])

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
fit(X, y) Fit the model
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(n_iter=300, tol=0.001, alpha_1=1e-06, alpha_2=1e-06, lambda_1=1e-06, lambda_2=1e-
06, compute_score=False, fit_intercept=True, normalize=False, copy_X=True, ver-
bose=False)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19.

Decision function of the linear model.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

fit(X, y)
Fit the model

ParametersX : numpy array of shape [n_samples,n_features]

Training data

y : numpy array of shape [n_samples]

Target values

Returnsself : returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.
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ReturnsC : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.linear_model.BayesianRidge

• Feature agglomeration vs. univariate selection

• Bayesian Ridge Regression

5.19.3 sklearn.linear_model.ElasticNet

class sklearn.linear_model.ElasticNet(alpha=1.0, l1_ratio=0.5, fit_intercept=True, nor-
malize=False, precompute=False, max_iter=1000,
copy_X=True, tol=0.0001, warm_start=False, posi-
tive=False, random_state=None, selection=’cyclic’)

Linear regression with combined L1 and L2 priors as regularizer.

Minimizes the objective function:

1 / (2 * n_samples) * ||y - Xw||^2_2 +
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:

a * L1 + b * L2

where:
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alpha = a + b and l1_ratio = a / (a + b)

The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda
parameter in glmnet. Specifically, l1_ratio = 1 is the lasso penalty. Currently, l1_ratio <= 0.01 is not reliable,
unless you supply your own sequence of alpha.

Read more in the User Guide.

Parametersalpha : float

Constant that multiplies the penalty terms. Defaults to 1.0 See the notes for the ex-
act mathematical meaning of this parameter. alpha = 0 is equivalent to an ordinary
least square, solved by the LinearRegression object. For numerical reasons, using
alpha = 0 with the Lasso object is not advised and you should prefer the Linear-
Regression object.

l1_ratio : float

The ElasticNet mixing parameter, with 0 <= l1_ratio <= 1. For l1_ratio =
0 the penalty is an L2 penalty. For l1_ratio = 1 it is an L1 penalty. For 0 <
l1_ratio < 1, the penalty is a combination of L1 and L2.

fit_intercept : bool

Whether the intercept should be estimated or not. If False, the data is assumed to be
already centered.

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ’auto’
let us decide. The Gram matrix can also be passed as argument. For sparse input
this option is always True to preserve sparsity. WARNING : The ’auto’ option is
deprecated and will be removed in 0.18.

max_iter : int, optional

The maximum number of iterations

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

tol : float, optional

The tolerance for the optimization: if the updates are smaller than tol, the optimization
code checks the dual gap for optimality and continues until it is smaller than tol.

warm_start : bool, optional

When set to True, reuse the solution of the previous call to fit as initialization, other-
wise, just erase the previous solution.

positive : bool, optional

When set to True, forces the coefficients to be positive.

selection : str, default ‘cyclic’

If set to ‘random’, a random coefficient is updated every iteration rather than looping
over features sequentially by default. This (setting to ‘random’) often leads to signifi-
cantly faster convergence especially when tol is higher than 1e-4.
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random_state : int, RandomState instance, or None (default)

The seed of the pseudo random number generator that selects a random feature to up-
date. Useful only when selection is set to ‘random’.

Attributescoef_ : array, shape (n_features,) | (n_targets, n_features)

parameter vector (w in the cost function formula)

sparse_coef_ : scipy.sparse matrix, shape (n_features, 1) | (n_targets, n_features)

sparse_coef_ is a readonly property derived from coef_

intercept_ : float | array, shape (n_targets,)

independent term in decision function.

n_iter_ : array-like, shape (n_targets,)

number of iterations run by the coordinate descent solver to reach the specified toler-
ance.

See also:

SGDRegressorimplements elastic net regression with incremental training.

SGDClassifierimplements logistic regression with elastic net penalty
(SGDClassifier(loss="log", penalty="elasticnet")).

Notes

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19
fit(X, y[, check_input]) Fit model with coordinate descent.
get_params([deep]) Get parameters for this estimator.
path(X, y[, l1_ratio, eps, n_alphas, ...]) Compute elastic net path with coordinate descent
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, precompute=False,
max_iter=1000, copy_X=True, tol=0.0001, warm_start=False, positive=False, ran-
dom_state=None, selection=’cyclic’)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19

Decision function of the linear model

ParametersX : numpy array or scipy.sparse matrix of shape (n_samples, n_features)

ReturnsT : array, shape (n_samples,)

The predicted decision function
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fit(X, y, check_input=True)
Fit model with coordinate descent.

ParametersX : ndarray or scipy.sparse matrix, (n_samples, n_features)

Data

y : ndarray, shape (n_samples,) or (n_samples, n_targets)

Target

Notes

Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically
convert the X input as a Fortran-contiguous numpy array if necessary.

To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

static path(X, y, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’,
Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, posi-
tive=False, check_input=True, **params)

Compute elastic net path with coordinate descent

The elastic net optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

1 / (2 * n_samples) * ||y - Xw||^2_2 +
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

ParametersX : {array-like}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output then X can be sparse.

y : ndarray, shape (n_samples,) or (n_samples, n_outputs)
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Target values

l1_ratio : float, optional

float between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties).
l1_ratio=1 corresponds to the Lasso

eps : float

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3

n_alphas : int, optional

Number of alphas along the regularization path

alphas : ndarray, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ’auto’
let us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

coef_init : array, shape (n_features, ) | None

The initial values of the coefficients.

verbose : bool or integer

Amount of verbosity.

params : kwargs

keyword arguments passed to the coordinate descent solver.

return_n_iter : bool

whether to return the number of iterations or not.

positive : bool, default False

If set to True, forces coefficients to be positive.

check_input : bool, default True

Skip input validation checks, including the Gram matrix when provided assuming there
are handled by the caller when check_input=False.

Returnsalphas : array, shape (n_alphas,)

The alphas along the path where models are computed.

coefs : array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)

Coefficients along the path.

dual_gaps : array, shape (n_alphas,)

The dual gaps at the end of the optimization for each alpha.
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n_iters : array-like, shape (n_alphas,)

The number of iterations taken by the coordinate descent optimizer to reach the specified
tolerance for each alpha. (Is returned when return_n_iter is set to True).

See also:

MultiTaskElasticNet, MultiTaskElasticNetCV, ElasticNet, ElasticNetCV

Notes

See examples/plot_lasso_coordinate_descent_path.py for an example.

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

sparse_coef_
sparse representation of the fitted coef
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Examples using sklearn.linear_model.ElasticNet

• Lasso and Elastic Net for Sparse Signals

• Train error vs Test error

5.19.4 sklearn.linear_model.ElasticNetCV

class sklearn.linear_model.ElasticNetCV(l1_ratio=0.5, eps=0.001, n_alphas=100, al-
phas=None, fit_intercept=True, normalize=False,
precompute=’auto’, max_iter=1000, tol=0.0001,
cv=None, copy_X=True, verbose=0, n_jobs=1, posi-
tive=False, random_state=None, selection=’cyclic’)

Elastic Net model with iterative fitting along a regularization path

The best model is selected by cross-validation.

Read more in the User Guide.

Parametersl1_ratio : float or array of floats, optional

float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For
l1_ratio = 0 the penalty is an L2 penalty. For l1_ratio = 1 it is an L1 penalty.
For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2 This parameter
can be a list, in which case the different values are tested by cross-validation and the
one giving the best prediction score is used. Note that a good choice of list of values
for l1_ratio is often to put more values close to 1 (i.e. Lasso) and less close to 0 (i.e.
Ridge), as in [.1, .5, .7, .9, .95, .99, 1]

eps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3.

n_alphas : int, optional

Number of alphas along the regularization path, used for each l1_ratio.

alphas : numpy array, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ’auto’
let us decide. The Gram matrix can also be passed as argument.

max_iter : int, optional

The maximum number of iterations

tol : float, optional

The tolerance for the optimization: if the updates are smaller than tol, the optimization
code checks the dual gap for optimality and continues until it is smaller than tol.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

•None, to use the default 3-fold cross-validation,

•integer, to specify the number of folds.

•An object to be used as a cross-validation generator.
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•An iterable yielding train/test splits.

For integer/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

verbose : bool or integer

Amount of verbosity.

n_jobs : integer, optional

Number of CPUs to use during the cross validation. If -1, use all the CPUs.

positive : bool, optional

When set to True, forces the coefficients to be positive.

selection : str, default ‘cyclic’

If set to ‘random’, a random coefficient is updated every iteration rather than looping
over features sequentially by default. This (setting to ‘random’) often leads to signifi-
cantly faster convergence especially when tol is higher than 1e-4.

random_state : int, RandomState instance, or None (default)

The seed of the pseudo random number generator that selects a random feature to up-
date. Useful only when selection is set to ‘random’.

fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

Attributesalpha_ : float

The amount of penalization chosen by cross validation

l1_ratio_ : float

The compromise between l1 and l2 penalization chosen by cross validation

coef_ : array, shape (n_features,) | (n_targets, n_features)

Parameter vector (w in the cost function formula),

intercept_ : float | array, shape (n_targets, n_features)

Independent term in the decision function.

mse_path_ : array, shape (n_l1_ratio, n_alpha, n_folds)

Mean square error for the test set on each fold, varying l1_ratio and alpha.

alphas_ : numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas)

The grid of alphas used for fitting, for each l1_ratio.

n_iter_ : int

number of iterations run by the coordinate descent solver to reach the specified tolerance
for the optimal alpha.
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See also:

enet_path, ElasticNet

Notes

See examples/linear_model/lasso_path_with_crossvalidation.py for an example.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda
parameter in glmnet. More specifically, the optimization objective is:

1 / (2 * n_samples) * ||y - Xw||^2_2 +
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:

a * L1 + b * L2

for:

alpha = a + b and l1_ratio = a / (a + b).

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
fit(X, y) Fit linear model with coordinate descent
get_params([deep]) Get parameters for this estimator.
path(X, y[, l1_ratio, eps, n_alphas, ...]) Compute elastic net path with coordinate descent
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normal-
ize=False, precompute=’auto’, max_iter=1000, tol=0.0001, cv=None, copy_X=True, ver-
bose=0, n_jobs=1, positive=False, random_state=None, selection=’cyclic’)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19.

Decision function of the linear model.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

fit(X, y)
Fit linear model with coordinate descent

Fit is on grid of alphas and best alpha estimated by cross-validation.
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ParametersX : {array-like}, shape (n_samples, n_features)

Training data. Pass directly as float64, Fortran-contiguous data to avoid unnecessary
memory duplication. If y is mono-output, X can be sparse.

y : array-like, shape (n_samples,) or (n_samples, n_targets)

Target values

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

static path(X, y, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’,
Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, posi-
tive=False, check_input=True, **params)

Compute elastic net path with coordinate descent

The elastic net optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

1 / (2 * n_samples) * ||y - Xw||^2_2 +
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

ParametersX : {array-like}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output then X can be sparse.

y : ndarray, shape (n_samples,) or (n_samples, n_outputs)

Target values

l1_ratio : float, optional

float between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties).
l1_ratio=1 corresponds to the Lasso

eps : float

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3
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n_alphas : int, optional

Number of alphas along the regularization path

alphas : ndarray, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ’auto’
let us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

coef_init : array, shape (n_features, ) | None

The initial values of the coefficients.

verbose : bool or integer

Amount of verbosity.

params : kwargs

keyword arguments passed to the coordinate descent solver.

return_n_iter : bool

whether to return the number of iterations or not.

positive : bool, default False

If set to True, forces coefficients to be positive.

check_input : bool, default True

Skip input validation checks, including the Gram matrix when provided assuming there
are handled by the caller when check_input=False.

Returnsalphas : array, shape (n_alphas,)

The alphas along the path where models are computed.

coefs : array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)

Coefficients along the path.

dual_gaps : array, shape (n_alphas,)

The dual gaps at the end of the optimization for each alpha.

n_iters : array-like, shape (n_alphas,)

The number of iterations taken by the coordinate descent optimizer to reach the specified
tolerance for each alpha. (Is returned when return_n_iter is set to True).

See also:

MultiTaskElasticNet, MultiTaskElasticNetCV, ElasticNet, ElasticNetCV

5.19. sklearn.linear_model: Generalized Linear Models 1329



scikit-learn user guide, Release 0.17

Notes

See examples/plot_lasso_coordinate_descent_path.py for an example.

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

5.19.5 sklearn.linear_model.Lars

class sklearn.linear_model.Lars(fit_intercept=True, verbose=False, normalize=True, precom-
pute=’auto’, n_nonzero_coefs=500, eps=2.2204460492503131e-
16, copy_X=True, fit_path=True, positive=False)

Least Angle Regression model a.k.a. LAR

Read more in the User Guide.

Parametersn_nonzero_coefs : int, optional

Target number of non-zero coefficients. Use np.inf for no limit.

fit_intercept : boolean

1330 Chapter 5. API Reference



scikit-learn user guide, Release 0.17

Whether to calculate the intercept for this model. If set to false, no intercept will be
used in calculations (e.g. data is expected to be already centered).

positive : boolean (default=False)

Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept
which is set True by default.

verbose : boolean or integer, optional

Sets the verbosity amount

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ’auto’
let us decide. The Gram matrix can also be passed as argument.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

eps : float, optional

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems. Unlike the tol parameter in some
iterative optimization-based algorithms, this parameter does not control the tolerance of
the optimization.

fit_path : boolean

If True the full path is stored in the coef_path_ attribute. If you compute the solu-
tion for a large problem or many targets, setting fit_path to False will lead to a
speedup, especially with a small alpha.

Attributesalphas_ : array, shape (n_alphas + 1,) | list of n_targets such arrays

Maximum of covariances (in absolute value) at each iteration. n_alphas is either
n_nonzero_coefs or n_features, whichever is smaller.

active_ : list, length = n_alphas | list of n_targets such lists

Indices of active variables at the end of the path.

coef_path_ : array, shape (n_features, n_alphas + 1) | list of n_targets such arrays

The varying values of the coefficients along the path. It is not present if the fit_path
parameter is False.

coef_ : array, shape (n_features,) or (n_targets, n_features)

Parameter vector (w in the formulation formula).

intercept_ : float | array, shape (n_targets,)

Independent term in decision function.

n_iter_ : array-like or int

The number of iterations taken by lars_path to find the grid of alphas for each target.

See also:

lars_path, LarsCV, sklearn.decomposition.sparse_encode
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Examples

>>> from sklearn import linear_model
>>> clf = linear_model.Lars(n_nonzero_coefs=1)
>>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111])
...
Lars(copy_X=True, eps=..., fit_intercept=True, fit_path=True,

n_nonzero_coefs=1, normalize=True, positive=False, precompute='auto',
verbose=False)

>>> print(clf.coef_)
[ 0. -1.11...]

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
fit(X, y[, Xy]) Fit the model using X, y as training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(fit_intercept=True, verbose=False, normalize=True, precompute=’auto’,
n_nonzero_coefs=500, eps=2.2204460492503131e-16, copy_X=True, fit_path=True,
positive=False)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19.

Decision function of the linear model.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

fit(X, y, Xy=None)
Fit the model using X, y as training data.

ParametersX : array-like, shape (n_samples, n_features)

Training data.

y : array-like, shape (n_samples,) or (n_samples, n_targets)

Target values.

Xy : array-like, shape (n_samples,) or (n_samples, n_targets), optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

Returnsself : object

returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.
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Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

5.19.6 sklearn.linear_model.LarsCV

class sklearn.linear_model.LarsCV(fit_intercept=True, verbose=False, max_iter=500, normal-
ize=True, precompute=’auto’, cv=None, max_n_alphas=1000,
n_jobs=1, eps=2.2204460492503131e-16, copy_X=True, posi-
tive=False)

Cross-validated Least Angle Regression model

Read more in the User Guide.

Parametersfit_intercept : boolean
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whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

positive : boolean (default=False)

Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept
which is set True by default.

verbose : boolean or integer, optional

Sets the verbosity amount

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ’auto’
let us decide. The Gram matrix can also be passed as argument.

max_iter: integer, optional :

Maximum number of iterations to perform.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

•None, to use the default 3-fold cross-validation,

•integer, to specify the number of folds.

•An object to be used as a cross-validation generator.

•An iterable yielding train/test splits.

For integer/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

max_n_alphas : integer, optional

The maximum number of points on the path used to compute the residuals in the cross-
validation

n_jobs : integer, optional

Number of CPUs to use during the cross validation. If -1, use all the CPUs

eps : float, optional

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems.

Attributescoef_ : array, shape (n_features,)

parameter vector (w in the formulation formula)

intercept_ : float

independent term in decision function

coef_path_ : array, shape (n_features, n_alphas)

the varying values of the coefficients along the path
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alpha_ : float

the estimated regularization parameter alpha

alphas_ : array, shape (n_alphas,)

the different values of alpha along the path

cv_alphas_ : array, shape (n_cv_alphas,)

all the values of alpha along the path for the different folds

cv_mse_path_ : array, shape (n_folds, n_cv_alphas)

the mean square error on left-out for each fold along the path (alpha values given by
cv_alphas)

n_iter_ : array-like or int

the number of iterations run by Lars with the optimal alpha.

See also:

lars_path, LassoLars, LassoLarsCV

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
fit(X, y) Fit the model using X, y as training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute=’auto’,
cv=None, max_n_alphas=1000, n_jobs=1, eps=2.2204460492503131e-16, copy_X=True,
positive=False)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19.

Decision function of the linear model.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

fit(X, y)
Fit the model using X, y as training data.

ParametersX : array-like, shape (n_samples, n_features)

Training data.

y : array-like, shape (n_samples,)

Target values.

Returnsself : object

5.19. sklearn.linear_model: Generalized Linear Models 1335



scikit-learn user guide, Release 0.17

returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

5.19.7 sklearn.linear_model.Lasso

class sklearn.linear_model.Lasso(alpha=1.0, fit_intercept=True, normalize=False, precom-
pute=False, copy_X=True, max_iter=1000, tol=0.0001,
warm_start=False, positive=False, random_state=None, selec-
tion=’cyclic’)

Linear Model trained with L1 prior as regularizer (aka the Lasso)
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The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

Technically the Lasso model is optimizing the same objective function as the Elastic Net with l1_ratio=1.0
(no L2 penalty).

Read more in the User Guide.

Parametersalpha : float, optional

Constant that multiplies the L1 term. Defaults to 1.0. alpha = 0 is equivalent to
an ordinary least square, solved by the LinearRegression object. For numerical
reasons, using alpha = 0 is with the Lasso object is not advised and you should
prefer the LinearRegression object.

fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ’auto’
let us decide. The Gram matrix can also be passed as argument. For sparse input
this option is always True to preserve sparsity. WARNING : The ’auto’ option is
deprecated and will be removed in 0.18.

max_iter : int, optional

The maximum number of iterations

tol : float, optional

The tolerance for the optimization: if the updates are smaller than tol, the optimization
code checks the dual gap for optimality and continues until it is smaller than tol.

warm_start : bool, optional

When set to True, reuse the solution of the previous call to fit as initialization, otherwise,
just erase the previous solution.

positive : bool, optional

When set to True, forces the coefficients to be positive.

selection : str, default ‘cyclic’

If set to ‘random’, a random coefficient is updated every iteration rather than looping
over features sequentially by default. This (setting to ‘random’) often leads to signifi-
cantly faster convergence especially when tol is higher than 1e-4.

random_state : int, RandomState instance, or None (default)

The seed of the pseudo random number generator that selects a random feature to up-
date. Useful only when selection is set to ‘random’.

Attributescoef_ : array, shape (n_features,) | (n_targets, n_features)
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parameter vector (w in the cost function formula)

sparse_coef_ : scipy.sparse matrix, shape (n_features, 1) | (n_targets, n_features)

sparse_coef_ is a readonly property derived from coef_

intercept_ : float | array, shape (n_targets,)

independent term in decision function.

n_iter_ : int | array-like, shape (n_targets,)

number of iterations run by the coordinate descent solver to reach the specified toler-
ance.

See also:

lars_path, lasso_path, LassoLars, LassoCV, LassoLarsCV,
sklearn.decomposition.sparse_encode

Notes

The algorithm used to fit the model is coordinate descent.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

Examples

>>> from sklearn import linear_model
>>> clf = linear_model.Lasso(alpha=0.1)
>>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000,

normalize=False, positive=False, precompute=False, random_state=None,
selection='cyclic', tol=0.0001, warm_start=False)

>>> print(clf.coef_)
[ 0.85 0. ]
>>> print(clf.intercept_)
0.15

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19
fit(X, y[, check_input]) Fit model with coordinate descent.
get_params([deep]) Get parameters for this estimator.
path(X, y[, l1_ratio, eps, n_alphas, ...]) Compute elastic net path with coordinate descent
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(alpha=1.0, fit_intercept=True, normalize=False, precompute=False, copy_X=True,
max_iter=1000, tol=0.0001, warm_start=False, positive=False, random_state=None,
selection=’cyclic’)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19
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Decision function of the linear model

ParametersX : numpy array or scipy.sparse matrix of shape (n_samples, n_features)

ReturnsT : array, shape (n_samples,)

The predicted decision function

fit(X, y, check_input=True)
Fit model with coordinate descent.

ParametersX : ndarray or scipy.sparse matrix, (n_samples, n_features)

Data

y : ndarray, shape (n_samples,) or (n_samples, n_targets)

Target

Notes

Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically
convert the X input as a Fortran-contiguous numpy array if necessary.

To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

static path(X, y, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’,
Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, posi-
tive=False, check_input=True, **params)

Compute elastic net path with coordinate descent

The elastic net optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

1 / (2 * n_samples) * ||y - Xw||^2_2 +
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.
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ParametersX : {array-like}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output then X can be sparse.

y : ndarray, shape (n_samples,) or (n_samples, n_outputs)

Target values

l1_ratio : float, optional

float between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties).
l1_ratio=1 corresponds to the Lasso

eps : float

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3

n_alphas : int, optional

Number of alphas along the regularization path

alphas : ndarray, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ’auto’
let us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

coef_init : array, shape (n_features, ) | None

The initial values of the coefficients.

verbose : bool or integer

Amount of verbosity.

params : kwargs

keyword arguments passed to the coordinate descent solver.

return_n_iter : bool

whether to return the number of iterations or not.

positive : bool, default False

If set to True, forces coefficients to be positive.

check_input : bool, default True

Skip input validation checks, including the Gram matrix when provided assuming there
are handled by the caller when check_input=False.

Returnsalphas : array, shape (n_alphas,)

The alphas along the path where models are computed.

coefs : array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)
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Coefficients along the path.

dual_gaps : array, shape (n_alphas,)

The dual gaps at the end of the optimization for each alpha.

n_iters : array-like, shape (n_alphas,)

The number of iterations taken by the coordinate descent optimizer to reach the specified
tolerance for each alpha. (Is returned when return_n_iter is set to True).

See also:

MultiTaskElasticNet, MultiTaskElasticNetCV, ElasticNet, ElasticNetCV

Notes

See examples/plot_lasso_coordinate_descent_path.py for an example.

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

sparse_coef_
sparse representation of the fitted coef
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Examples using sklearn.linear_model.Lasso

• Compressive sensing: tomography reconstruction with L1 prior (Lasso)

• Cross-validation on diabetes Dataset Exercise

• Joint feature selection with multi-task Lasso

• Lasso on dense and sparse data

• Lasso and Elastic Net for Sparse Signals

5.19.8 sklearn.linear_model.LassoCV

class sklearn.linear_model.LassoCV(eps=0.001, n_alphas=100, alphas=None, fit_intercept=True,
normalize=False, precompute=’auto’, max_iter=1000,
tol=0.0001, copy_X=True, cv=None, verbose=False,
n_jobs=1, positive=False, random_state=None, selec-
tion=’cyclic’)

Lasso linear model with iterative fitting along a regularization path

The best model is selected by cross-validation.

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

Read more in the User Guide.

Parameterseps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3.

n_alphas : int, optional

Number of alphas along the regularization path

alphas : numpy array, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ’auto’
let us decide. The Gram matrix can also be passed as argument.

max_iter : int, optional

The maximum number of iterations

tol : float, optional

The tolerance for the optimization: if the updates are smaller than tol, the optimization
code checks the dual gap for optimality and continues until it is smaller than tol.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

•None, to use the default 3-fold cross-validation,

•integer, to specify the number of folds.

•An object to be used as a cross-validation generator.

•An iterable yielding train/test splits.
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For integer/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

verbose : bool or integer

Amount of verbosity.

n_jobs : integer, optional

Number of CPUs to use during the cross validation. If -1, use all the CPUs.

positive : bool, optional

If positive, restrict regression coefficients to be positive

selection : str, default ‘cyclic’

If set to ‘random’, a random coefficient is updated every iteration rather than looping
over features sequentially by default. This (setting to ‘random’) often leads to signifi-
cantly faster convergence especially when tol is higher than 1e-4.

random_state : int, RandomState instance, or None (default)

The seed of the pseudo random number generator that selects a random feature to up-
date. Useful only when selection is set to ‘random’.

fit_intercept : boolean, default True

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

Attributesalpha_ : float

The amount of penalization chosen by cross validation

coef_ : array, shape (n_features,) | (n_targets, n_features)

parameter vector (w in the cost function formula)

intercept_ : float | array, shape (n_targets,)

independent term in decision function.

mse_path_ : array, shape (n_alphas, n_folds)

mean square error for the test set on each fold, varying alpha

alphas_ : numpy array, shape (n_alphas,)

The grid of alphas used for fitting

dual_gap_ : ndarray, shape ()

The dual gap at the end of the optimization for the optimal alpha (alpha_).

n_iter_ : int

number of iterations run by the coordinate descent solver to reach the specified tolerance
for the optimal alpha.
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See also:

lars_path, lasso_path, LassoLars, Lasso, LassoLarsCV

Notes

See examples/linear_model/lasso_path_with_crossvalidation.py for an example.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
fit(X, y) Fit linear model with coordinate descent
get_params([deep]) Get parameters for this estimator.
path(X, y[, eps, n_alphas, alphas, ...]) Compute Lasso path with coordinate descent
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, pre-
compute=’auto’, max_iter=1000, tol=0.0001, copy_X=True, cv=None, verbose=False,
n_jobs=1, positive=False, random_state=None, selection=’cyclic’)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19.

Decision function of the linear model.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

fit(X, y)
Fit linear model with coordinate descent

Fit is on grid of alphas and best alpha estimated by cross-validation.

ParametersX : {array-like}, shape (n_samples, n_features)

Training data. Pass directly as float64, Fortran-contiguous data to avoid unnecessary
memory duplication. If y is mono-output, X can be sparse.

y : array-like, shape (n_samples,) or (n_samples, n_targets)

Target values

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.
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Returnsparams : mapping of string to any

Parameter names mapped to their values.

static path(X, y, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’, Xy=None,
copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False,
**params)

Compute Lasso path with coordinate descent

The Lasso optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output then X can be sparse.

y : ndarray, shape (n_samples,), or (n_samples, n_outputs)

Target values

eps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3

n_alphas : int, optional

Number of alphas along the regularization path

alphas : ndarray, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ’auto’
let us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

coef_init : array, shape (n_features, ) | None

The initial values of the coefficients.

verbose : bool or integer
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Amount of verbosity.

params : kwargs

keyword arguments passed to the coordinate descent solver.

positive : bool, default False

If set to True, forces coefficients to be positive.

return_n_iter : bool

whether to return the number of iterations or not.

Returnsalphas : array, shape (n_alphas,)

The alphas along the path where models are computed.

coefs : array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)

Coefficients along the path.

dual_gaps : array, shape (n_alphas,)

The dual gaps at the end of the optimization for each alpha.

n_iters : array-like, shape (n_alphas,)

The number of iterations taken by the coordinate descent optimizer to reach the specified
tolerance for each alpha.

See also:

lars_path, Lasso, LassoLars, LassoCV, LassoLarsCV,
sklearn.decomposition.sparse_encode

Notes

See examples/linear_model/plot_lasso_coordinate_descent_path.py for an example.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

Note that in certain cases, the Lars solver may be significantly faster to implement this functionality. In
particular, linear interpolation can be used to retrieve model coefficients between the values output by
lars_path

Examples

Comparing lasso_path and lars_path with interpolation:

>>> X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T
>>> y = np.array([1, 2, 3.1])
>>> # Use lasso_path to compute a coefficient path
>>> _, coef_path, _ = lasso_path(X, y, alphas=[5., 1., .5])
>>> print(coef_path)
[[ 0. 0. 0.46874778]
[ 0.2159048 0.4425765 0.23689075]]
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>>> # Now use lars_path and 1D linear interpolation to compute the
>>> # same path
>>> from sklearn.linear_model import lars_path
>>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso')
>>> from scipy import interpolate
>>> coef_path_continuous = interpolate.interp1d(alphas[::-1],
... coef_path_lars[:, ::-1])
>>> print(coef_path_continuous([5., 1., .5]))
[[ 0. 0. 0.46915237]
[ 0.2159048 0.4425765 0.23668876]]

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.linear_model.LassoCV

• Cross-validation on diabetes Dataset Exercise

• Feature selection using SelectFromModel and LassoCV

• Lasso model selection: Cross-Validation / AIC / BIC
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5.19.9 sklearn.linear_model.LassoLars

class sklearn.linear_model.LassoLars(alpha=1.0, fit_intercept=True, verbose=False, nor-
malize=True, precompute=’auto’, max_iter=500,
eps=2.2204460492503131e-16, copy_X=True,
fit_path=True, positive=False)

Lasso model fit with Least Angle Regression a.k.a. Lars

It is a Linear Model trained with an L1 prior as regularizer.

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

Read more in the User Guide.

Parametersalpha : float

Constant that multiplies the penalty term. Defaults to 1.0. alpha = 0 is equivalent
to an ordinary least square, solved by LinearRegression. For numerical reasons,
using alpha = 0 with the LassoLars object is not advised and you should prefer the
LinearRegression object.

fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

positive : boolean (default=False)

Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept
which is set True by default. Under the positive restriction the model coefficients will
not converge to the ordinary-least-squares solution for small values of alpha. Only co-
effiencts up to the smallest alpha value (alphas_[alphas_ > 0.].min() when
fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congru-
ence with the solution of the coordinate descent Lasso estimator.

verbose : boolean or integer, optional

Sets the verbosity amount

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ’auto’
let us decide. The Gram matrix can also be passed as argument.

max_iter : integer, optional

Maximum number of iterations to perform.

eps : float, optional

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems. Unlike the tol parameter in some
iterative optimization-based algorithms, this parameter does not control the tolerance of
the optimization.
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fit_path : boolean

If True the full path is stored in the coef_path_ attribute. If you compute the
solution for a large problem or many targets, setting fit_path to False will lead to
a speedup, especially with a small alpha.

Attributesalphas_ : array, shape (n_alphas + 1,) | list of n_targets such arrays

Maximum of covariances (in absolute value) at each iteration. n_alphas is either
max_iter, n_features, or the number of nodes in the path with correlation greater
than alpha, whichever is smaller.

active_ : list, length = n_alphas | list of n_targets such lists

Indices of active variables at the end of the path.

coef_path_ : array, shape (n_features, n_alphas + 1) or list

If a list is passed it’s expected to be one of n_targets such arrays. The varying values of
the coefficients along the path. It is not present if the fit_path parameter is False.

coef_ : array, shape (n_features,) or (n_targets, n_features)

Parameter vector (w in the formulation formula).

intercept_ : float | array, shape (n_targets,)

Independent term in decision function.

n_iter_ : array-like or int.

The number of iterations taken by lars_path to find the grid of alphas for each target.

See also:

lars_path, lasso_path, Lasso, LassoCV, LassoLarsCV, sklearn.decomposition.sparse_encode

Examples

>>> from sklearn import linear_model
>>> clf = linear_model.LassoLars(alpha=0.01)
>>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1, 0, -1])
...
LassoLars(alpha=0.01, copy_X=True, eps=..., fit_intercept=True,

fit_path=True, max_iter=500, normalize=True, positive=False,
precompute='auto', verbose=False)

>>> print(clf.coef_)
[ 0. -0.963257...]

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
fit(X, y[, Xy]) Fit the model using X, y as training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.
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__init__(alpha=1.0, fit_intercept=True, verbose=False, normalize=True, precompute=’auto’,
max_iter=500, eps=2.2204460492503131e-16, copy_X=True, fit_path=True, posi-
tive=False)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19.

Decision function of the linear model.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

fit(X, y, Xy=None)
Fit the model using X, y as training data.

ParametersX : array-like, shape (n_samples, n_features)

Training data.

y : array-like, shape (n_samples,) or (n_samples, n_targets)

Target values.

Xy : array-like, shape (n_samples,) or (n_samples, n_targets), optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

Returnsself : object

returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.
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ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

5.19.10 sklearn.linear_model.LassoLarsCV

class sklearn.linear_model.LassoLarsCV(fit_intercept=True, verbose=False, max_iter=500,
normalize=True, precompute=’auto’,
cv=None, max_n_alphas=1000, n_jobs=1,
eps=2.2204460492503131e-16, copy_X=True, posi-
tive=False)

Cross-validated Lasso, using the LARS algorithm

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

Read more in the User Guide.

Parametersfit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

positive : boolean (default=False)

Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept
which is set True by default. Under the positive restriction the model coefficients do
not converge to the ordinary-least-squares solution for small values of alpha. Only co-
effiencts up to the smallest alpha value (alphas_[alphas_ > 0.].min() when
fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congru-
ence with the solution of the coordinate descent Lasso estimator. As a consequence
using LassoLarsCV only makes sense for problems where a sparse solution is expected
and/or reached.

verbose : boolean or integer, optional

Sets the verbosity amount

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.
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precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ’auto’
let us decide. The Gram matrix can also be passed as argument.

max_iter : integer, optional

Maximum number of iterations to perform.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

•None, to use the default 3-fold cross-validation,

•integer, to specify the number of folds.

•An object to be used as a cross-validation generator.

•An iterable yielding train/test splits.

For integer/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

max_n_alphas : integer, optional

The maximum number of points on the path used to compute the residuals in the cross-
validation

n_jobs : integer, optional

Number of CPUs to use during the cross validation. If -1, use all the CPUs

eps : float, optional

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

Attributescoef_ : array, shape (n_features,)

parameter vector (w in the formulation formula)

intercept_ : float

independent term in decision function.

coef_path_ : array, shape (n_features, n_alphas)

the varying values of the coefficients along the path

alpha_ : float

the estimated regularization parameter alpha

alphas_ : array, shape (n_alphas,)

the different values of alpha along the path

cv_alphas_ : array, shape (n_cv_alphas,)

all the values of alpha along the path for the different folds

cv_mse_path_ : array, shape (n_folds, n_cv_alphas)
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the mean square error on left-out for each fold along the path (alpha values given by
cv_alphas)

n_iter_ : array-like or int

the number of iterations run by Lars with the optimal alpha.

See also:

lars_path, LassoLars, LarsCV, LassoCV

Notes

The object solves the same problem as the LassoCV object. However, unlike the LassoCV, it find the relevant
alphas values by itself. In general, because of this property, it will be more stable. However, it is more fragile to
heavily multicollinear datasets.

It is more efficient than the LassoCV if only a small number of features are selected compared to the total
number, for instance if there are very few samples compared to the number of features.

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
fit(X, y) Fit the model using X, y as training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute=’auto’,
cv=None, max_n_alphas=1000, n_jobs=1, eps=2.2204460492503131e-16, copy_X=True,
positive=False)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19.

Decision function of the linear model.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

fit(X, y)
Fit the model using X, y as training data.

ParametersX : array-like, shape (n_samples, n_features)

Training data.

y : array-like, shape (n_samples,)

Target values.

Returnsself : object

returns an instance of self.
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get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.linear_model.LassoLarsCV

• Lasso model selection: Cross-Validation / AIC / BIC

• Sparse recovery: feature selection for sparse linear models
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5.19.11 sklearn.linear_model.LassoLarsIC

class sklearn.linear_model.LassoLarsIC(criterion=’aic’, fit_intercept=True, verbose=False,
normalize=True, precompute=’auto’, max_iter=500,
eps=2.2204460492503131e-16, copy_X=True, posi-
tive=False)

Lasso model fit with Lars using BIC or AIC for model selection

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

AIC is the Akaike information criterion and BIC is the Bayes Information criterion. Such criteria are useful
to select the value of the regularization parameter by making a trade-off between the goodness of fit and the
complexity of the model. A good model should explain well the data while being simple.

Read more in the User Guide.

Parameterscriterion : ‘bic’ | ‘aic’

The type of criterion to use.

fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

positive : boolean (default=False)

Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept
which is set True by default. Under the positive restriction the model coefficients do
not converge to the ordinary-least-squares solution for small values of alpha. Only co-
effiencts up to the smallest alpha value (alphas_[alphas_ > 0.].min() when
fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congru-
ence with the solution of the coordinate descent Lasso estimator. As a consequence
using LassoLarsIC only makes sense for problems where a sparse solution is expected
and/or reached.

verbose : boolean or integer, optional

Sets the verbosity amount

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ’auto’
let us decide. The Gram matrix can also be passed as argument.

max_iter : integer, optional

Maximum number of iterations to perform. Can be used for early stopping.

eps : float, optional

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems. Unlike the tol parameter in some
iterative optimization-based algorithms, this parameter does not control the tolerance of
the optimization.
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Attributescoef_ : array, shape (n_features,)

parameter vector (w in the formulation formula)

intercept_ : float

independent term in decision function.

alpha_ : float

the alpha parameter chosen by the information criterion

n_iter_ : int

number of iterations run by lars_path to find the grid of alphas.

criterion_ : array, shape (n_alphas,)

The value of the information criteria (‘aic’, ‘bic’) across all alphas. The alpha which
has the smallest information criteria is chosen.

See also:

lars_path, LassoLars, LassoLarsCV

Notes

The estimation of the number of degrees of freedom is given by:

“On the degrees of freedom of the lasso” Hui Zou, Trevor Hastie, and Robert Tibshirani Ann. Statist. Volume
35, Number 5 (2007), 2173-2192.

http://en.wikipedia.org/wiki/Akaike_information_criterion http://en.wikipedia.org/wiki/Bayesian_information_criterion

Examples

>>> from sklearn import linear_model
>>> clf = linear_model.LassoLarsIC(criterion='bic')
>>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111])
...
LassoLarsIC(copy_X=True, criterion='bic', eps=..., fit_intercept=True,

max_iter=500, normalize=True, positive=False, precompute='auto',
verbose=False)

>>> print(clf.coef_)
[ 0. -1.11...]

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
fit(X, y[, copy_X]) Fit the model using X, y as training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(criterion=’aic’, fit_intercept=True, verbose=False, normalize=True, precompute=’auto’,
max_iter=500, eps=2.2204460492503131e-16, copy_X=True, positive=False)
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decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19.

Decision function of the linear model.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

fit(X, y, copy_X=True)
Fit the model using X, y as training data.

ParametersX : array-like, shape (n_samples, n_features)

training data.

y : array-like, shape (n_samples,)

target values.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

Returnsself : object

returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)
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True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.linear_model.LassoLarsIC

• Lasso model selection: Cross-Validation / AIC / BIC

5.19.12 sklearn.linear_model.LinearRegression

class sklearn.linear_model.LinearRegression(fit_intercept=True, normalize=False,
copy_X=True, n_jobs=1)

Ordinary least squares Linear Regression.

Parametersfit_intercept : boolean, optional

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

n_jobs : int, optional, default 1

The number of jobs to use for the computation. If -1 all CPUs are used. This will only
provide speedup for n_targets > 1 and sufficient large problems.

Attributescoef_ : array, shape (n_features, ) or (n_targets, n_features)

Estimated coefficients for the linear regression problem. If multiple targets are passed
during the fit (y 2D), this is a 2D array of shape (n_targets, n_features), while if only
one target is passed, this is a 1D array of length n_features.

intercept_ : array

Independent term in the linear model.

Notes

From the implementation point of view, this is just plain Ordinary Least Squares (scipy.linalg.lstsq) wrapped as
a predictor object.
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Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
fit(X, y[, sample_weight]) Fit linear model.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(fit_intercept=True, normalize=False, copy_X=True, n_jobs=1)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19.

Decision function of the linear model.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

fit(X, y, sample_weight=None)
Fit linear model.

ParametersX : numpy array or sparse matrix of shape [n_samples,n_features]

Training data

y : numpy array of shape [n_samples, n_targets]

Target values

sample_weight : numpy array of shape [n_samples]

Individual weights for each sample

New in version 0.17: parameter sample_weight support to LinearRegression.

Returnsself : returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.
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residues_
DEPRECATED: residues_ is deprecated and will be removed in 0.19

Get the residues of the fitted model.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.linear_model.LinearRegression

• Plotting Cross-Validated Predictions

• Isotonic Regression

• Face completion with a multi-output estimators

• Robust linear model estimation using RANSAC

• Linear Regression Example

• Ordinary Least Squares and Ridge Regression Variance

• Logit function

• Bayesian Ridge Regression

• Sparsity Example: Fitting only features 1 and 2

• Robust linear estimator fitting

• Automatic Relevance Determination Regression (ARD)

• Theil-Sen Regression

• Underfitting vs. Overfitting
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5.19.13 sklearn.linear_model.LogisticRegression

class sklearn.linear_model.LogisticRegression(penalty=’l2’, dual=False, tol=0.0001,
C=1.0, fit_intercept=True, inter-
cept_scaling=1, class_weight=None,
random_state=None, solver=’liblinear’,
max_iter=100, multi_class=’ovr’, ver-
bose=0, warm_start=False, n_jobs=1)

Logistic Regression (aka logit, MaxEnt) classifier.

In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the ‘multi_class’ option is
set to ‘ovr’ and uses the cross-entropy loss, if the ‘multi_class’ option is set to ‘multinomial’. (Currently the
‘multinomial’ option is supported only by the ‘lbfgs’ and ‘newton-cg’ solvers.)

This class implements regularized logistic regression using the liblinear library, newton-cg and lbfgs solvers.
It can handle both dense and sparse input. Use C-ordered arrays or CSR matrices containing 64-bit floats for
optimal performance; any other input format will be converted (and copied).

The newton-cg and lbfgs solvers support only L2 regularization with primal formulation. The liblinear solver
supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty.

Read more in the User Guide.

Parameterspenalty : str, ‘l1’ or ‘l2’

Used to specify the norm used in the penalization. The newton-cg and lbfgs solvers
support only l2 penalties.

dual : bool

Dual or primal formulation. Dual formulation is only implemented for l2 penalty with
liblinear solver. Prefer dual=False when n_samples > n_features.

C : float, optional (default=1.0)

Inverse of regularization strength; must be a positive float. Like in support vector ma-
chines, smaller values specify stronger regularization.

fit_intercept : bool, default: True

Specifies if a constant (a.k.a. bias or intercept) should be added to the decision function.

intercept_scaling : float, default: 1

Useful only if solver is liblinear. when self.fit_intercept is True, instance vector x be-
comes [x, self.intercept_scaling], i.e. a “synthetic” feature with constant value equals
to intercept_scaling is appended to the instance vector. The intercept becomes inter-
cept_scaling * synthetic feature weight Note! the synthetic feature weight is subject
to l1/l2 regularization as all other features. To lessen the effect of regularization on
synthetic feature weight (and therefore on the intercept) intercept_scaling has to be in-
creased.

class_weight : dict or ‘balanced’, optional

Weights associated with classes in the form {class_label: weight}. If not
given, all classes are supposed to have weight one.

The “balanced” mode uses the values of y to automatically adjust weights inversely
proportional to class frequencies in the input data as n_samples / (n_classes

* np.bincount(y))

Note that these weights will be multiplied with sample_weight (passed through the fit
method) if sample_weight is specified.
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New in version 0.17: class_weight=’balanced’ instead of deprecated
class_weight=’auto’.

max_iter : int

Useful only for the newton-cg, sag and lbfgs solvers. Maximum number of iterations
taken for the solvers to converge.

random_state : int seed, RandomState instance, or None (default)

The seed of the pseudo random number generator to use when shuffling the data.

solver : {‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’}

Algorithm to use in the optimization problem.

•For small datasets, ‘liblinear’ is a good choice, whereas ‘sag’ isfaster for large
ones.

•For multiclass problems, only ‘newton-cg’ and ‘lbfgs’ handlemultinomial loss;
‘sag’ and ‘liblinear’ are limited to one-versus-rest schemes.

•‘newton-cg’, ‘lbfgs’ and ‘sag’ only handle L2 penalty.

Note that ‘sag’ fast convergence is only guaranteed on features with approximately the
same scale. You can preprocess the data with a scaler from sklearn.preprocessing.

New in version 0.17: Stochastic Average Gradient descent solver.

tol : float, optional

Tolerance for stopping criteria.

multi_class : str, {‘ovr’, ‘multinomial’}

Multiclass option can be either ‘ovr’ or ‘multinomial’. If the option chosen is ‘ovr’,
then a binary problem is fit for each label. Else the loss minimised is the multinomial
loss fit across the entire probability distribution. Works only for the ‘lbfgs’ solver.

verbose : int

For the liblinear and lbfgs solvers set verbose to any positive number for verbosity.

warm_start : bool, optional

When set to True, reuse the solution of the previous call to fit as initialization, otherwise,
just erase the previous solution. Useless for liblinear solver.

New in version 0.17: warm_start to support lbfgs, newton-cg, sag solvers.

n_jobs : int, optional

Number of CPU cores used during the cross-validation loop. If given a value of -1, all
cores are used.

Attributescoef_ : array, shape (n_classes, n_features)

Coefficient of the features in the decision function.

intercept_ : array, shape (n_classes,)

Intercept (a.k.a. bias) added to the decision function. If fit_intercept is set to False, the
intercept is set to zero.

n_iter_ : array, shape (n_classes,) or (1, )
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Actual number of iterations for all classes. If binary or multinomial, it returns only 1
element. For liblinear solver, only the maximum number of iteration across all classes
is given.

See also:

SGDClassifierincrementally trained logistic regression (when given the parameter loss="log").

sklearn.svm.LinearSVClearns SVM models using the same algorithm.

Notes

The underlying C implementation uses a random number generator to select features when fitting the model.
It is thus not uncommon, to have slightly different results for the same input data. If that happens, try with a
smaller tol parameter.

Predict output may not match that of standalone liblinear in certain cases. See differences from liblinear in the
narrative documentation.

References

LIBLINEAR – A Library for Large Linear Classificationhttp://www.csie.ntu.edu.tw/~cjlin/liblinear/

Hsiang-Fu Yu, Fang-Lan Huang, Chih-Jen Lin (2011). Dual coordinate descentmethods for lo-
gistic regression and maximum entropy models. Machine Learning 85(1-2):41-75.
http://www.csie.ntu.edu.tw/~cjlin/papers/maxent_dual.pdf

Methods

decision_function(X) Predict confidence scores for samples.
densify() Convert coefficient matrix to dense array format.
fit(X, y[, sample_weight]) Fit the model according to the given training data.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class labels for samples in X.
predict_log_proba(X) Log of probability estimates.
predict_proba(X) Probability estimates.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.
sparsify() Convert coefficient matrix to sparse format.
transform(*args, **kwargs) DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19.

__init__(penalty=’l2’, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1,
class_weight=None, random_state=None, solver=’liblinear’, max_iter=100,
multi_class=’ovr’, verbose=0, warm_start=False, n_jobs=1)

decision_function(X)
Predict confidence scores for samples.

The confidence score for a sample is the signed distance of that sample to the hyperplane.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.
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Returnsarray, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) :

Confidence scores per (sample, class) combination. In the binary case, confidence score
for self.classes_[1] where >0 means this class would be predicted.

densify()
Convert coefficient matrix to dense array format.

Converts the coef_ member (back) to a numpy.ndarray. This is the default format of coef_ and is
required for fitting, so calling this method is only required on models that have previously been sparsified;
otherwise, it is a no-op.

Returnsself: estimator :

fit(X, y, sample_weight=None)
Fit the model according to the given training data.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

y : array-like, shape (n_samples,)

Target vector relative to X.

sample_weight : array-like, shape (n_samples,) optional

Array of weights that are assigned to individual samples. If not provided, then each
sample is given unit weight.

New in version 0.17: sample_weight support to LogisticRegression.

Returnsself : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict class labels for samples in X.
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ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Samples.

ReturnsC : array, shape = [n_samples]

Predicted class label per sample.

predict_log_proba(X)
Log of probability estimates.

The returned estimates for all classes are ordered by the label of classes.

ParametersX : array-like, shape = [n_samples, n_features]

ReturnsT : array-like, shape = [n_samples, n_classes]

Returns the log-probability of the sample for each class in the model, where classes are
ordered as they are in self.classes_.

predict_proba(X)
Probability estimates.

The returned estimates for all classes are ordered by the label of classes.

For a multi_class problem, if multi_class is set to be “multinomial” the softmax function is used to find
the predicted probability of each class. Else use a one-vs-rest approach, i.e calculate the probability of
each class assuming it to be positive using the logistic function. and normalize these values across all the
classes.

ParametersX : array-like, shape = [n_samples, n_features]

ReturnsT : array-like, shape = [n_samples, n_classes]

Returns the probability of the sample for each class in the model, where classes are
ordered as they are in self.classes_.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :
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sparsify()
Convert coefficient matrix to sparse format.

Converts the coef_ member to a scipy.sparse matrix, which for L1-regularized models can be much more
memory- and storage-efficient than the usual numpy.ndarray representation.

The intercept_ member is not converted.

Returnsself: estimator :

Notes

For non-sparse models, i.e. when there are not many zeros in coef_, this may actually increase memory
usage, so use this method with care. A rule of thumb is that the number of zero elements, which can be
computed with (coef_ == 0).sum(), must be more than 50% for this to provide significant benefits.

After calling this method, further fitting with the partial_fit method (if any) will not work until you call
densify.

transform(*args, **kwargs)
DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19. Use
SelectFromModel instead.

Reduce X to its most important features.

Uses coef_ or feature_importances_ to determine the most important features. For
models with a coef_ for each class, the absolute sum over the classes is used.

ParametersX : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold[string, float or None, optional (default=None)] The threshold value to use for
feature selection. Features whose importance is greater or equal are kept while the
others are discarded. If “median” (resp. “mean”), then the threshold value is the me-
dian (resp. the mean) of the feature importances. A scaling factor (e.g., “1.25*mean”)
may also be used. If None and if available, the object attribute threshold is used.
Otherwise, “mean” is used by default.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

Examples using sklearn.linear_model.LogisticRegression

• Pipelining: chaining a PCA and a logistic regression

• Comparison of Calibration of Classifiers

• Probability Calibration curves

• Plot classification probability

• Plot class probabilities calculated by the VotingClassifier

• Feature transformations with ensembles of trees

• Digits Classification Exercise

• Logistic Regression 3-class Classifier
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• Path with L1- Logistic Regression

• Comparing various online solvers

• Logit function

• L1 Penalty and Sparsity in Logistic Regression

• Restricted Boltzmann Machine features for digit classification

5.19.14 sklearn.linear_model.LogisticRegressionCV

class sklearn.linear_model.LogisticRegressionCV(Cs=10, fit_intercept=True, cv=None,
dual=False, penalty=’l2’, scor-
ing=None, solver=’lbfgs’, tol=0.0001,
max_iter=100, class_weight=None,
n_jobs=1, verbose=0, refit=True, in-
tercept_scaling=1.0, multi_class=’ovr’,
random_state=None)

Logistic Regression CV (aka logit, MaxEnt) classifier.

This class implements logistic regression using liblinear, newton-cg, sag of lbfgs optimizer. The newton-cg, sag
and lbfgs solvers support only L2 regularization with primal formulation. The liblinear solver supports both L1
and L2 regularization, with a dual formulation only for the L2 penalty.

For the grid of Cs values (that are set by default to be ten values in a logarithmic scale between 1e-4 and
1e4), the best hyperparameter is selected by the cross-validator StratifiedKFold, but it can be changed using
the cv parameter. In the case of newton-cg and lbfgs solvers, we warm start along the path i.e guess the initial
coefficients of the present fit to be the coefficients got after convergence in the previous fit, so it is supposed to
be faster for high-dimensional dense data.

For a multiclass problem, the hyperparameters for each class are computed using the best scores got by doing a
one-vs-rest in parallel across all folds and classes. Hence this is not the true multinomial loss.

Read more in the User Guide.

ParametersCs : list of floats | int

Each of the values in Cs describes the inverse of regularization strength. If Cs is as an
int, then a grid of Cs values are chosen in a logarithmic scale between 1e-4 and 1e4.
Like in support vector machines, smaller values specify stronger regularization.

fit_intercept : bool, default: True

Specifies if a constant (a.k.a. bias or intercept) should be added to the decision function.

class_weight : dict or ‘balanced’, optional

Weights associated with classes in the form {class_label: weight}. If not
given, all classes are supposed to have weight one.

The “balanced” mode uses the values of y to automatically adjust weights inversely
proportional to class frequencies in the input data as n_samples / (n_classes

* np.bincount(y))

Note that these weights will be multiplied with sample_weight (passed through the fit
method) if sample_weight is specified.

New in version 0.17: class_weight == ‘balanced’

cv : integer or cross-validation generator
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The default cross-validation generator used is Stratified K-Folds. If an in-
teger is provided, then it is the number of folds used. See the module
sklearn.cross_validation module for the list of possible cross-validation ob-
jects.

penalty : str, ‘l1’ or ‘l2’

Used to specify the norm used in the penalization. The newton-cg and lbfgs solvers
support only l2 penalties.

dual : bool

Dual or primal formulation. Dual formulation is only implemented for l2 penalty with
liblinear solver. Prefer dual=False when n_samples > n_features.

scoring : callabale

Scoring function to use as cross-validation criteria. For a list of scoring functions that
can be used, look at sklearn.metrics. The default scoring option used is accu-
racy_score.

solver : {‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’}

Algorithm to use in the optimization problem.

•For small datasets, ‘liblinear’ is a good choice, whereas ‘sag’ isfaster for large
ones.

•For multiclass problems, only ‘newton-cg’ and ‘lbfgs’ handlemultinomial loss;
‘sag’ and ‘liblinear’ are limited to one-versus-rest schemes.

•‘newton-cg’, ‘lbfgs’ and ‘sag’ only handle L2 penalty.

•‘liblinear’ might be slower in LogisticRegressionCV because it doesnot handle
warm-starting.

tol : float, optional

Tolerance for stopping criteria.

max_iter : int, optional

Maximum number of iterations of the optimization algorithm.

n_jobs : int, optional

Number of CPU cores used during the cross-validation loop. If given a value of -1, all
cores are used.

verbose : int

For the ‘liblinear’, ‘sag’ and ‘lbfgs’ solvers set verbose to any positive number for ver-
bosity.

refit : bool

If set to True, the scores are averaged across all folds, and the coefs and the C that
corresponds to the best score is taken, and a final refit is done using these parameters.
Otherwise the coefs, intercepts and C that correspond to the best scores across folds are
averaged.

multi_class : str, {‘ovr’, ‘multinomial’}

Multiclass option can be either ‘ovr’ or ‘multinomial’. If the option chosen is ‘ovr’,
then a binary problem is fit for each label. Else the loss minimised is the multinomial
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loss fit across the entire probability distribution. Works only for ‘lbfgs’ and ‘newton-cg’
solvers.

intercept_scaling : float, default 1.

Useful only if solver is liblinear. This parameter is useful only when the solver ‘li-
blinear’ is used and self.fit_intercept is set to True. In this case, x becomes [x,
self.intercept_scaling], i.e. a “synthetic” feature with constant value equals to in-
tercept_scaling is appended to the instance vector. The intercept becomes inter-
cept_scaling * synthetic feature weight Note! the synthetic feature weight is subject
to l1/l2 regularization as all other features. To lessen the effect of regularization on
synthetic feature weight (and therefore on the intercept) intercept_scaling has to be in-
creased.

random_state : int seed, RandomState instance, or None (default)

The seed of the pseudo random number generator to use when shuffling the data.

Attributescoef_ : array, shape (1, n_features) or (n_classes, n_features)

Coefficient of the features in the decision function.

coef_ is of shape (1, n_features) when the given problem is binary. coef_ is readonly
property derived from raw_coef_ that follows the internal memory layout of liblinear.

intercept_ : array, shape (1,) or (n_classes,)

Intercept (a.k.a. bias) added to the decision function. It is available only when parameter
intercept is set to True and is of shape(1,) when the problem is binary.

Cs_ : array

Array of C i.e. inverse of regularization parameter values used for cross-validation.

coefs_paths_ : array, shape (n_folds, len(Cs_), n_features) or (n_folds,
len(Cs_), n_features + 1)

dict with classes as the keys, and the path of coefficients obtained during cross-
validating across each fold and then across each Cs after doing an OvR for the cor-
responding class as values. If the ‘multi_class’ option is set to ‘multinomial’, then
the coefs_paths are the coefficients corresponding to each class. Each dict value has
shape (n_folds, len(Cs_), n_features) or (n_folds, len(Cs_),
n_features + 1) depending on whether the intercept is fit or not.

scores_ : dict

dict with classes as the keys, and the values as the grid of scores obtained during cross-
validating each fold, after doing an OvR for the corresponding class. If the ‘multi_class’
option given is ‘multinomial’ then the same scores are repeated across all classes, since
this is the multinomial class. Each dict value has shape (n_folds, len(Cs))

C_ : array, shape (n_classes,) or (n_classes - 1,)

Array of C that maps to the best scores across every class. If refit is set to False, then
for each class, the best C is the average of the C’s that correspond to the best scores for
each fold.

n_iter_ : array, shape (n_classes, n_folds, n_cs) or (1, n_folds, n_cs)

Actual number of iterations for all classes, folds and Cs. In the binary or multinomial
cases, the first dimension is equal to 1.

See also:
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LogisticRegression

Methods

decision_function(X) Predict confidence scores for samples.
densify() Convert coefficient matrix to dense array format.
fit(X, y[, sample_weight]) Fit the model according to the given training data.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class labels for samples in X.
predict_log_proba(X) Log of probability estimates.
predict_proba(X) Probability estimates.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.
sparsify() Convert coefficient matrix to sparse format.
transform(*args, **kwargs) DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19.

__init__(Cs=10, fit_intercept=True, cv=None, dual=False, penalty=’l2’, scoring=None,
solver=’lbfgs’, tol=0.0001, max_iter=100, class_weight=None, n_jobs=1, verbose=0,
refit=True, intercept_scaling=1.0, multi_class=’ovr’, random_state=None)

decision_function(X)
Predict confidence scores for samples.

The confidence score for a sample is the signed distance of that sample to the hyperplane.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returnsarray, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) :

Confidence scores per (sample, class) combination. In the binary case, confidence score
for self.classes_[1] where >0 means this class would be predicted.

densify()
Convert coefficient matrix to dense array format.

Converts the coef_ member (back) to a numpy.ndarray. This is the default format of coef_ and is
required for fitting, so calling this method is only required on models that have previously been sparsified;
otherwise, it is a no-op.

Returnsself: estimator :

fit(X, y, sample_weight=None)
Fit the model according to the given training data.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

y : array-like, shape (n_samples,)

Target vector relative to X.

sample_weight : array-like, shape (n_samples,) optional

Array of weights that are assigned to individual samples. If not provided, then each
sample is given unit weight.
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Returnsself : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict class labels for samples in X.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Samples.

ReturnsC : array, shape = [n_samples]

Predicted class label per sample.

predict_log_proba(X)
Log of probability estimates.

The returned estimates for all classes are ordered by the label of classes.

ParametersX : array-like, shape = [n_samples, n_features]

ReturnsT : array-like, shape = [n_samples, n_classes]

Returns the log-probability of the sample for each class in the model, where classes are
ordered as they are in self.classes_.

predict_proba(X)
Probability estimates.

The returned estimates for all classes are ordered by the label of classes.

For a multi_class problem, if multi_class is set to be “multinomial” the softmax function is used to find
the predicted probability of each class. Else use a one-vs-rest approach, i.e calculate the probability of
each class assuming it to be positive using the logistic function. and normalize these values across all the
classes.

ParametersX : array-like, shape = [n_samples, n_features]
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ReturnsT : array-like, shape = [n_samples, n_classes]

Returns the probability of the sample for each class in the model, where classes are
ordered as they are in self.classes_.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

sparsify()
Convert coefficient matrix to sparse format.

Converts the coef_ member to a scipy.sparse matrix, which for L1-regularized models can be much more
memory- and storage-efficient than the usual numpy.ndarray representation.

The intercept_ member is not converted.

Returnsself: estimator :

Notes

For non-sparse models, i.e. when there are not many zeros in coef_, this may actually increase memory
usage, so use this method with care. A rule of thumb is that the number of zero elements, which can be
computed with (coef_ == 0).sum(), must be more than 50% for this to provide significant benefits.

After calling this method, further fitting with the partial_fit method (if any) will not work until you call
densify.

transform(*args, **kwargs)
DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19. Use
SelectFromModel instead.

Reduce X to its most important features.

Uses coef_ or feature_importances_ to determine the most important features. For
models with a coef_ for each class, the absolute sum over the classes is used.
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ParametersX : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold[string, float or None, optional (default=None)] The threshold value to use for
feature selection. Features whose importance is greater or equal are kept while the
others are discarded. If “median” (resp. “mean”), then the threshold value is the me-
dian (resp. the mean) of the feature importances. A scaling factor (e.g., “1.25*mean”)
may also be used. If None and if available, the object attribute threshold is used.
Otherwise, “mean” is used by default.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

5.19.15 sklearn.linear_model.MultiTaskLasso

class sklearn.linear_model.MultiTaskLasso(alpha=1.0, fit_intercept=True, normalize=False,
copy_X=True, max_iter=1000, tol=0.0001,
warm_start=False, random_state=None, selec-
tion=’cyclic’)

Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of earch row.

Read more in the User Guide.

Parametersalpha : float, optional

Constant that multiplies the L1/L2 term. Defaults to 1.0

fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

max_iter : int, optional

The maximum number of iterations

tol : float, optional

The tolerance for the optimization: if the updates are smaller than tol, the optimization
code checks the dual gap for optimality and continues until it is smaller than tol.

warm_start : bool, optional
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When set to True, reuse the solution of the previous call to fit as initialization, other-
wise, just erase the previous solution.

selection : str, default ‘cyclic’

If set to ‘random’, a random coefficient is updated every iteration rather than looping
over features sequentially by default. This (setting to ‘random’) often leads to signifi-
cantly faster convergence especially when tol is higher than 1e-4

random_state : int, RandomState instance, or None (default)

The seed of the pseudo random number generator that selects a random feature to up-
date. Useful only when selection is set to ‘random’.

Attributescoef_ : array, shape (n_tasks, n_features)

parameter vector (W in the cost function formula)

intercept_ : array, shape (n_tasks,)

independent term in decision function.

n_iter_ : int

number of iterations run by the coordinate descent solver to reach the specified toler-
ance.

See also:

Lasso, MultiTaskElasticNet

Notes

The algorithm used to fit the model is coordinate descent.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

Examples

>>> from sklearn import linear_model
>>> clf = linear_model.MultiTaskLasso(alpha=0.1)
>>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]])
MultiTaskLasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000,

normalize=False, random_state=None, selection='cyclic', tol=0.0001,
warm_start=False)

>>> print(clf.coef_)
[[ 0.89393398 0. ]
[ 0.89393398 0. ]]
>>> print(clf.intercept_)
[ 0.10606602 0.10606602]

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19
fit(X, y) Fit MultiTaskLasso model with coordinate descent
get_params([deep]) Get parameters for this estimator.

Continued on next page
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Table 5.129 – continued from previous page
path(X, y[, l1_ratio, eps, n_alphas, ...]) Compute elastic net path with coordinate descent
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000,
tol=0.0001, warm_start=False, random_state=None, selection=’cyclic’)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19

Decision function of the linear model

ParametersX : numpy array or scipy.sparse matrix of shape (n_samples, n_features)

ReturnsT : array, shape (n_samples,)

The predicted decision function

fit(X, y)
Fit MultiTaskLasso model with coordinate descent

ParametersX : ndarray, shape (n_samples, n_features)

Data

y : ndarray, shape (n_samples, n_tasks)

Target

Notes

Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically
convert the X input as a Fortran-contiguous numpy array if necessary.

To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

path(X, y, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’, Xy=None,
copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False,
check_input=True, **params)

Compute elastic net path with coordinate descent

The elastic net optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

1 / (2 * n_samples) * ||y - Xw||^2_2 +
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2
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For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

ParametersX : {array-like}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output then X can be sparse.

y : ndarray, shape (n_samples,) or (n_samples, n_outputs)

Target values

l1_ratio : float, optional

float between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties).
l1_ratio=1 corresponds to the Lasso

eps : float

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3

n_alphas : int, optional

Number of alphas along the regularization path

alphas : ndarray, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ’auto’
let us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

coef_init : array, shape (n_features, ) | None

The initial values of the coefficients.

verbose : bool or integer

Amount of verbosity.

params : kwargs

keyword arguments passed to the coordinate descent solver.

return_n_iter : bool
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whether to return the number of iterations or not.

positive : bool, default False

If set to True, forces coefficients to be positive.

check_input : bool, default True

Skip input validation checks, including the Gram matrix when provided assuming there
are handled by the caller when check_input=False.

Returnsalphas : array, shape (n_alphas,)

The alphas along the path where models are computed.

coefs : array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)

Coefficients along the path.

dual_gaps : array, shape (n_alphas,)

The dual gaps at the end of the optimization for each alpha.

n_iters : array-like, shape (n_alphas,)

The number of iterations taken by the coordinate descent optimizer to reach the specified
tolerance for each alpha. (Is returned when return_n_iter is set to True).

See also:

MultiTaskElasticNet, MultiTaskElasticNetCV, ElasticNet, ElasticNetCV

Notes

See examples/plot_lasso_coordinate_descent_path.py for an example.

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.
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Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

sparse_coef_
sparse representation of the fitted coef

Examples using sklearn.linear_model.MultiTaskLasso

• Joint feature selection with multi-task Lasso

5.19.16 sklearn.linear_model.MultiTaskElasticNet

class sklearn.linear_model.MultiTaskElasticNet(alpha=1.0, l1_ratio=0.5,
fit_intercept=True, normalize=False,
copy_X=True, max_iter=1000, tol=0.0001,
warm_start=False, random_state=None,
selection=’cyclic’)

Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer

The optimization objective for MultiTaskElasticNet is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

Parametersalpha : float, optional

Constant that multiplies the L1/L2 term. Defaults to 1.0

l1_ratio : float

The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For l1_ratio = 0 the penalty is
an L1/L2 penalty. For l1_ratio = 1 it is an L1 penalty. For 0 < l1_ratio < 1, the
penalty is a combination of L1/L2 and L2.

fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.
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copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

max_iter : int, optional

The maximum number of iterations

tol : float, optional

The tolerance for the optimization: if the updates are smaller than tol, the optimization
code checks the dual gap for optimality and continues until it is smaller than tol.

warm_start : bool, optional

When set to True, reuse the solution of the previous call to fit as initialization, other-
wise, just erase the previous solution.

selection : str, default ‘cyclic’

If set to ‘random’, a random coefficient is updated every iteration rather than looping
over features sequentially by default. This (setting to ‘random’) often leads to signifi-
cantly faster convergence especially when tol is higher than 1e-4.

random_state : int, RandomState instance, or None (default)

The seed of the pseudo random number generator that selects a random feature to up-
date. Useful only when selection is set to ‘random’.

Attributesintercept_ : array, shape (n_tasks,)

Independent term in decision function.

coef_ : array, shape (n_tasks, n_features)

Parameter vector (W in the cost function formula). If a 1D y is passed in at fit (non
multi-task usage), coef_ is then a 1D array

n_iter_ : int

number of iterations run by the coordinate descent solver to reach the specified toler-
ance.

See also:

ElasticNet, MultiTaskLasso

Notes

The algorithm used to fit the model is coordinate descent.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

Examples

>>> from sklearn import linear_model
>>> clf = linear_model.MultiTaskElasticNet(alpha=0.1)
>>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]])
...
MultiTaskElasticNet(alpha=0.1, copy_X=True, fit_intercept=True,

l1_ratio=0.5, max_iter=1000, normalize=False, random_state=None,
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selection='cyclic', tol=0.0001, warm_start=False)
>>> print(clf.coef_)
[[ 0.45663524 0.45612256]
[ 0.45663524 0.45612256]]
>>> print(clf.intercept_)
[ 0.0872422 0.0872422]

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19
fit(X, y) Fit MultiTaskLasso model with coordinate descent
get_params([deep]) Get parameters for this estimator.
path(X, y[, l1_ratio, eps, n_alphas, ...]) Compute elastic net path with coordinate descent
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, copy_X=True,
max_iter=1000, tol=0.0001, warm_start=False, random_state=None, selection=’cyclic’)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19

Decision function of the linear model

ParametersX : numpy array or scipy.sparse matrix of shape (n_samples, n_features)

ReturnsT : array, shape (n_samples,)

The predicted decision function

fit(X, y)
Fit MultiTaskLasso model with coordinate descent

ParametersX : ndarray, shape (n_samples, n_features)

Data

y : ndarray, shape (n_samples, n_tasks)

Target

Notes

Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically
convert the X input as a Fortran-contiguous numpy array if necessary.

To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any
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Parameter names mapped to their values.

path(X, y, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’, Xy=None,
copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False,
check_input=True, **params)

Compute elastic net path with coordinate descent

The elastic net optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

1 / (2 * n_samples) * ||y - Xw||^2_2 +
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

ParametersX : {array-like}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output then X can be sparse.

y : ndarray, shape (n_samples,) or (n_samples, n_outputs)

Target values

l1_ratio : float, optional

float between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties).
l1_ratio=1 corresponds to the Lasso

eps : float

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3

n_alphas : int, optional

Number of alphas along the regularization path

alphas : ndarray, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ’auto’
let us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

copy_X : boolean, optional, default True
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If True, X will be copied; else, it may be overwritten.

coef_init : array, shape (n_features, ) | None

The initial values of the coefficients.

verbose : bool or integer

Amount of verbosity.

params : kwargs

keyword arguments passed to the coordinate descent solver.

return_n_iter : bool

whether to return the number of iterations or not.

positive : bool, default False

If set to True, forces coefficients to be positive.

check_input : bool, default True

Skip input validation checks, including the Gram matrix when provided assuming there
are handled by the caller when check_input=False.

Returnsalphas : array, shape (n_alphas,)

The alphas along the path where models are computed.

coefs : array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)

Coefficients along the path.

dual_gaps : array, shape (n_alphas,)

The dual gaps at the end of the optimization for each alpha.

n_iters : array-like, shape (n_alphas,)

The number of iterations taken by the coordinate descent optimizer to reach the specified
tolerance for each alpha. (Is returned when return_n_iter is set to True).

See also:

MultiTaskElasticNet, MultiTaskElasticNetCV, ElasticNet, ElasticNetCV

Notes

See examples/plot_lasso_coordinate_descent_path.py for an example.

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.
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The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

sparse_coef_
sparse representation of the fitted coef

5.19.17 sklearn.linear_model.MultiTaskLassoCV

class sklearn.linear_model.MultiTaskLassoCV(eps=0.001, n_alphas=100, alphas=None,
fit_intercept=True, normalize=False,
max_iter=1000, tol=0.0001, copy_X=True,
cv=None, verbose=False, n_jobs=1, ran-
dom_state=None, selection=’cyclic’)

Multi-task L1/L2 Lasso with built-in cross-validation.

The optimization objective for MultiTaskLasso is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * ||W||_21

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

Parameterseps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3.

alphas : array-like, optional

List of alphas where to compute the models. If not provided, set automaticlly.

n_alphas : int, optional
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Number of alphas along the regularization path

fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

max_iter : int, optional

The maximum number of iterations.

tol : float, optional

The tolerance for the optimization: if the updates are smaller than tol, the optimization
code checks the dual gap for optimality and continues until it is smaller than tol.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

•None, to use the default 3-fold cross-validation,

•integer, to specify the number of folds.

•An object to be used as a cross-validation generator.

•An iterable yielding train/test splits.

For integer/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

verbose : bool or integer

Amount of verbosity.

n_jobs : integer, optional

Number of CPUs to use during the cross validation. If -1, use all the CPUs. Note that
this is used only if multiple values for l1_ratio are given.

selection : str, default ‘cyclic’

If set to ‘random’, a random coefficient is updated every iteration rather than looping
over features sequentially by default. This (setting to ‘random’) often leads to signifi-
cantly faster convergence especially when tol is higher than 1e-4.

random_state : int, RandomState instance, or None (default)

The seed of the pseudo random number generator that selects a random feature to up-
date. Useful only when selection is set to ‘random’.

Attributesintercept_ : array, shape (n_tasks,)

Independent term in decision function.

coef_ : array, shape (n_tasks, n_features)

Parameter vector (W in the cost function formula).

alpha_ : float
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The amount of penalization chosen by cross validation

mse_path_ : array, shape (n_alphas, n_folds)

mean square error for the test set on each fold, varying alpha

alphas_ : numpy array, shape (n_alphas,)

The grid of alphas used for fitting.

n_iter_ : int

number of iterations run by the coordinate descent solver to reach the specified tolerance
for the optimal alpha.

See also:

MultiTaskElasticNet, ElasticNetCV, MultiTaskElasticNetCV

Notes

The algorithm used to fit the model is coordinate descent.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
fit(X, y) Fit linear model with coordinate descent
get_params([deep]) Get parameters for this estimator.
path(X, y[, eps, n_alphas, alphas, ...]) Compute Lasso path with coordinate descent
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False,
max_iter=1000, tol=0.0001, copy_X=True, cv=None, verbose=False, n_jobs=1, ran-
dom_state=None, selection=’cyclic’)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19.

Decision function of the linear model.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

fit(X, y)
Fit linear model with coordinate descent

Fit is on grid of alphas and best alpha estimated by cross-validation.

ParametersX : {array-like}, shape (n_samples, n_features)
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Training data. Pass directly as float64, Fortran-contiguous data to avoid unnecessary
memory duplication. If y is mono-output, X can be sparse.

y : array-like, shape (n_samples,) or (n_samples, n_targets)

Target values

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

static path(X, y, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’, Xy=None,
copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False,
**params)

Compute Lasso path with coordinate descent

The Lasso optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output then X can be sparse.

y : ndarray, shape (n_samples,), or (n_samples, n_outputs)

Target values

eps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3

n_alphas : int, optional

Number of alphas along the regularization path

alphas : ndarray, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ’auto’
let us decide. The Gram matrix can also be passed as argument.
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Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

coef_init : array, shape (n_features, ) | None

The initial values of the coefficients.

verbose : bool or integer

Amount of verbosity.

params : kwargs

keyword arguments passed to the coordinate descent solver.

positive : bool, default False

If set to True, forces coefficients to be positive.

return_n_iter : bool

whether to return the number of iterations or not.

Returnsalphas : array, shape (n_alphas,)

The alphas along the path where models are computed.

coefs : array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)

Coefficients along the path.

dual_gaps : array, shape (n_alphas,)

The dual gaps at the end of the optimization for each alpha.

n_iters : array-like, shape (n_alphas,)

The number of iterations taken by the coordinate descent optimizer to reach the specified
tolerance for each alpha.

See also:

lars_path, Lasso, LassoLars, LassoCV, LassoLarsCV,
sklearn.decomposition.sparse_encode

Notes

See examples/linear_model/plot_lasso_coordinate_descent_path.py for an example.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

Note that in certain cases, the Lars solver may be significantly faster to implement this functionality. In
particular, linear interpolation can be used to retrieve model coefficients between the values output by
lars_path
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Examples

Comparing lasso_path and lars_path with interpolation:

>>> X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T
>>> y = np.array([1, 2, 3.1])
>>> # Use lasso_path to compute a coefficient path
>>> _, coef_path, _ = lasso_path(X, y, alphas=[5., 1., .5])
>>> print(coef_path)
[[ 0. 0. 0.46874778]
[ 0.2159048 0.4425765 0.23689075]]

>>> # Now use lars_path and 1D linear interpolation to compute the
>>> # same path
>>> from sklearn.linear_model import lars_path
>>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso')
>>> from scipy import interpolate
>>> coef_path_continuous = interpolate.interp1d(alphas[::-1],
... coef_path_lars[:, ::-1])
>>> print(coef_path_continuous([5., 1., .5]))
[[ 0. 0. 0.46915237]
[ 0.2159048 0.4425765 0.23668876]]

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.
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Returnsself :

5.19.18 sklearn.linear_model.MultiTaskElasticNetCV

class sklearn.linear_model.MultiTaskElasticNetCV(l1_ratio=0.5, eps=0.001, n_alphas=100,
alphas=None, fit_intercept=True,
normalize=False, max_iter=1000,
tol=0.0001, cv=None, copy_X=True,
verbose=0, n_jobs=1, ran-
dom_state=None, selection=’cyclic’)

Multi-task L1/L2 ElasticNet with built-in cross-validation.

The optimization objective for MultiTaskElasticNet is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

Parameterseps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3.

alphas : array-like, optional

List of alphas where to compute the models. If not provided, set automatically.

n_alphas : int, optional

Number of alphas along the regularization path

l1_ratio : float or array of floats

The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For l1_ratio = 0 the penalty is
an L1/L2 penalty. For l1_ratio = 1 it is an L1 penalty. For 0 < l1_ratio < 1, the
penalty is a combination of L1/L2 and L2. This parameter can be a list, in which case
the different values are tested by cross-validation and the one giving the best prediction
score is used. Note that a good choice of list of values for l1_ratio is often to put more
values close to 1 (i.e. Lasso) and less close to 0 (i.e. Ridge), as in [.1, .5, .7,
.9, .95, .99, 1]

fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

max_iter : int, optional
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The maximum number of iterations

tol : float, optional

The tolerance for the optimization: if the updates are smaller than tol, the optimization
code checks the dual gap for optimality and continues until it is smaller than tol.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

•None, to use the default 3-fold cross-validation,

•integer, to specify the number of folds.

•An object to be used as a cross-validation generator.

•An iterable yielding train/test splits.

For integer/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

verbose : bool or integer

Amount of verbosity.

n_jobs : integer, optional

Number of CPUs to use during the cross validation. If -1, use all the CPUs. Note that
this is used only if multiple values for l1_ratio are given.

selection : str, default ‘cyclic’

If set to ‘random’, a random coefficient is updated every iteration rather than looping
over features sequentially by default. This (setting to ‘random’) often leads to signifi-
cantly faster convergence especially when tol is higher than 1e-4.

random_state : int, RandomState instance, or None (default)

The seed of the pseudo random number generator that selects a random feature to up-
date. Useful only when selection is set to ‘random’.

Attributesintercept_ : array, shape (n_tasks,)

Independent term in decision function.

coef_ : array, shape (n_tasks, n_features)

Parameter vector (W in the cost function formula).

alpha_ : float

The amount of penalization chosen by cross validation

mse_path_ : array, shape (n_alphas, n_folds) or (n_l1_ratio, n_alphas, n_folds)

mean square error for the test set on each fold, varying alpha

alphas_ : numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas)

The grid of alphas used for fitting, for each l1_ratio

l1_ratio_ : float

best l1_ratio obtained by cross-validation.

n_iter_ : int

1390 Chapter 5. API Reference



scikit-learn user guide, Release 0.17

number of iterations run by the coordinate descent solver to reach the specified tolerance
for the optimal alpha.

See also:

MultiTaskElasticNet, ElasticNetCV, MultiTaskLassoCV

Notes

The algorithm used to fit the model is coordinate descent.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

Examples

>>> from sklearn import linear_model
>>> clf = linear_model.MultiTaskElasticNetCV()
>>> clf.fit([[0,0], [1, 1], [2, 2]],
... [[0, 0], [1, 1], [2, 2]])
...
MultiTaskElasticNetCV(alphas=None, copy_X=True, cv=None, eps=0.001,

fit_intercept=True, l1_ratio=0.5, max_iter=1000, n_alphas=100,
n_jobs=1, normalize=False, random_state=None, selection='cyclic',
tol=0.0001, verbose=0)

>>> print(clf.coef_)
[[ 0.52875032 0.46958558]
[ 0.52875032 0.46958558]]
>>> print(clf.intercept_)
[ 0.00166409 0.00166409]

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
fit(X, y) Fit linear model with coordinate descent
get_params([deep]) Get parameters for this estimator.
path(X, y[, l1_ratio, eps, n_alphas, ...]) Compute elastic net path with coordinate descent
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normal-
ize=False, max_iter=1000, tol=0.0001, cv=None, copy_X=True, verbose=0, n_jobs=1, ran-
dom_state=None, selection=’cyclic’)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19.

Decision function of the linear model.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)
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Returns predicted values.

fit(X, y)
Fit linear model with coordinate descent

Fit is on grid of alphas and best alpha estimated by cross-validation.

ParametersX : {array-like}, shape (n_samples, n_features)

Training data. Pass directly as float64, Fortran-contiguous data to avoid unnecessary
memory duplication. If y is mono-output, X can be sparse.

y : array-like, shape (n_samples,) or (n_samples, n_targets)

Target values

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

static path(X, y, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’,
Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, posi-
tive=False, check_input=True, **params)

Compute elastic net path with coordinate descent

The elastic net optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

1 / (2 * n_samples) * ||y - Xw||^2_2 +
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

ParametersX : {array-like}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output then X can be sparse.

y : ndarray, shape (n_samples,) or (n_samples, n_outputs)

Target values

l1_ratio : float, optional
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float between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties).
l1_ratio=1 corresponds to the Lasso

eps : float

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3

n_alphas : int, optional

Number of alphas along the regularization path

alphas : ndarray, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ’auto’
let us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

coef_init : array, shape (n_features, ) | None

The initial values of the coefficients.

verbose : bool or integer

Amount of verbosity.

params : kwargs

keyword arguments passed to the coordinate descent solver.

return_n_iter : bool

whether to return the number of iterations or not.

positive : bool, default False

If set to True, forces coefficients to be positive.

check_input : bool, default True

Skip input validation checks, including the Gram matrix when provided assuming there
are handled by the caller when check_input=False.

Returnsalphas : array, shape (n_alphas,)

The alphas along the path where models are computed.

coefs : array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)

Coefficients along the path.

dual_gaps : array, shape (n_alphas,)

The dual gaps at the end of the optimization for each alpha.

n_iters : array-like, shape (n_alphas,)

The number of iterations taken by the coordinate descent optimizer to reach the specified
tolerance for each alpha. (Is returned when return_n_iter is set to True).
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See also:

MultiTaskElasticNet, MultiTaskElasticNetCV, ElasticNet, ElasticNetCV

Notes

See examples/plot_lasso_coordinate_descent_path.py for an example.

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

5.19.19 sklearn.linear_model.OrthogonalMatchingPursuit

class sklearn.linear_model.OrthogonalMatchingPursuit(n_nonzero_coefs=None,
tol=None, fit_intercept=True, nor-
malize=True, precompute=’auto’)

Orthogonal Matching Pursuit model (OMP)

Parametersn_nonzero_coefs : int, optional

Desired number of non-zero entries in the solution. If None (by default) this value is set
to 10% of n_features.
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tol : float, optional

Maximum norm of the residual. If not None, overrides n_nonzero_coefs.

fit_intercept : boolean, optional

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional

If False, the regressors X are assumed to be already normalized.

precompute : {True, False, ‘auto’}, default ‘auto’

Whether to use a precomputed Gram and Xy matrix to speed up calculations. Improves
performance when n_targets or n_samples is very large. Note that if you already have
such matrices, you can pass them directly to the fit method.

Read more in the :ref:‘User Guide <omp>‘. :

Attributescoef_ : array, shape (n_features,) or (n_features, n_targets)

parameter vector (w in the formula)

intercept_ : float or array, shape (n_targets,)

independent term in decision function.

n_iter_ : int or array-like

Number of active features across every target.

See also:

orthogonal_mp, orthogonal_mp_gram, lars_path, Lars, LassoLars,
decomposition.sparse_encode

Notes

Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang, Matching pursuits with time-frequency
dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415.
(http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)

This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of
the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008.
http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
fit(X, y) Fit the model using X, y as training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(n_nonzero_coefs=None, tol=None, fit_intercept=True, normalize=True, precom-
pute=’auto’)
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decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19.

Decision function of the linear model.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

fit(X, y)
Fit the model using X, y as training data.

ParametersX : array-like, shape (n_samples, n_features)

Training data.

y : array-like, shape (n_samples,) or (n_samples, n_targets)

Target values.

Returnsself : object

returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional
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Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.linear_model.OrthogonalMatchingPursuit

• Orthogonal Matching Pursuit

5.19.20 sklearn.linear_model.OrthogonalMatchingPursuitCV

class sklearn.linear_model.OrthogonalMatchingPursuitCV(copy=True, fit_intercept=True,
normalize=True,
max_iter=None, cv=None,
n_jobs=1, verbose=False)

Cross-validated Orthogonal Matching Pursuit model (OMP)

Parameterscopy : bool, optional

Whether the design matrix X must be copied by the algorithm. A false value is only
helpful if X is already Fortran-ordered, otherwise a copy is made anyway.

fit_intercept : boolean, optional

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional

If False, the regressors X are assumed to be already normalized.

max_iter : integer, optional

Maximum numbers of iterations to perform, therefore maximum features to include.
10% of n_features but at least 5 if available.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

•None, to use the default 3-fold cross-validation,

•integer, to specify the number of folds.

•An object to be used as a cross-validation generator.

•An iterable yielding train/test splits.

For integer/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

n_jobs : integer, optional
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Number of CPUs to use during the cross validation. If -1, use all the CPUs

verbose : boolean or integer, optional

Sets the verbosity amount

Read more in the :ref:‘User Guide <omp>‘. :

Attributesintercept_ : float or array, shape (n_targets,)

Independent term in decision function.

coef_ : array, shape (n_features,) or (n_features, n_targets)

Parameter vector (w in the problem formulation).

n_nonzero_coefs_ : int

Estimated number of non-zero coefficients giving the best mean squared error over the
cross-validation folds.

n_iter_ : int or array-like

Number of active features across every target for the model refit with the best hyperpa-
rameters got by cross-validating across all folds.

See also:

orthogonal_mp, orthogonal_mp_gram, lars_path, Lars, LassoLars,
OrthogonalMatchingPursuit, LarsCV, LassoLarsCV, decomposition.sparse_encode

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
fit(X, y) Fit the model using X, y as training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(copy=True, fit_intercept=True, normalize=True, max_iter=None, cv=None, n_jobs=1, ver-
bose=False)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19.

Decision function of the linear model.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

fit(X, y)
Fit the model using X, y as training data.

ParametersX : array-like, shape [n_samples, n_features]

Training data.
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y : array-like, shape [n_samples]

Target values.

Returnsself : object

returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :
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Examples using sklearn.linear_model.OrthogonalMatchingPursuitCV

• Orthogonal Matching Pursuit

5.19.21 sklearn.linear_model.PassiveAggressiveClassifier

class sklearn.linear_model.PassiveAggressiveClassifier(C=1.0, fit_intercept=True,
n_iter=5, shuffle=True,
verbose=0, loss=’hinge’,
n_jobs=1, random_state=None,
warm_start=False,
class_weight=None)

Passive Aggressive Classifier

Read more in the User Guide.

ParametersC : float

Maximum step size (regularization). Defaults to 1.0.

fit_intercept : bool, default=False

Whether the intercept should be estimated or not. If False, the data is assumed to be
already centered.

n_iter : int, optional

The number of passes over the training data (aka epochs). Defaults to 5.

shuffle : bool, default=True

Whether or not the training data should be shuffled after each epoch.

random_state : int seed, RandomState instance, or None (default)

The seed of the pseudo random number generator to use when shuffling the data.

verbose : integer, optional

The verbosity level

n_jobs : integer, optional

The number of CPUs to use to do the OVA (One Versus All, for multi-class problems)
computation. -1 means ‘all CPUs’. Defaults to 1.

loss : string, optional

The loss function to be used: hinge: equivalent to PA-I in the reference paper.
squared_hinge: equivalent to PA-II in the reference paper.

warm_start : bool, optional

When set to True, reuse the solution of the previous call to fit as initialization, otherwise,
just erase the previous solution.

class_weight : dict, {class_label: weight} or “balanced” or None, optional

Preset for the class_weight fit parameter.

Weights associated with classes. If not given, all classes are supposed to have weight
one.
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The “balanced” mode uses the values of y to automatically adjust weights inversely
proportional to class frequencies in the input data as n_samples / (n_classes

* np.bincount(y))

New in version 0.17: parameter class_weight to automatically weight samples.

Attributescoef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes, n_features]

Weights assigned to the features.

intercept_ : array, shape = [1] if n_classes == 2 else [n_classes]

Constants in decision function.

See also:

SGDClassifier, Perceptron

References

Online Passive-Aggressive Algorithms <http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf>
K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006)

Methods

decision_function(X) Predict confidence scores for samples.
densify() Convert coefficient matrix to dense array format.
fit(X, y[, coef_init, intercept_init]) Fit linear model with Passive Aggressive algorithm.
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y[, classes]) Fit linear model with Passive Aggressive algorithm.
predict(X) Predict class labels for samples in X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(*args, **kwargs)
sparsify() Convert coefficient matrix to sparse format.

__init__(C=1.0, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, loss=’hinge’, n_jobs=1, ran-
dom_state=None, warm_start=False, class_weight=None)

decision_function(X)
Predict confidence scores for samples.

The confidence score for a sample is the signed distance of that sample to the hyperplane.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returnsarray, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) :

Confidence scores per (sample, class) combination. In the binary case, confidence score
for self.classes_[1] where >0 means this class would be predicted.

densify()
Convert coefficient matrix to dense array format.

Converts the coef_ member (back) to a numpy.ndarray. This is the default format of coef_ and is
required for fitting, so calling this method is only required on models that have previously been sparsified;
otherwise, it is a no-op.
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Returnsself: estimator :

fit(X, y, coef_init=None, intercept_init=None)
Fit linear model with Passive Aggressive algorithm.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training data

y : numpy array of shape [n_samples]

Target values

coef_init : array, shape = [n_classes,n_features]

The initial coefficients to warm-start the optimization.

intercept_init : array, shape = [n_classes]

The initial intercept to warm-start the optimization.

Returnsself : returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

partial_fit(X, y, classes=None)
Fit linear model with Passive Aggressive algorithm.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Subset of the training data

y : numpy array of shape [n_samples]

Subset of the target values

classes : array, shape = [n_classes]

Classes across all calls to partial_fit. Can be obtained by via np.unique(y_all), where
y_all is the target vector of the entire dataset. This argument is required for the first call
to partial_fit and can be omitted in the subsequent calls. Note that y doesn’t need to
contain all labels in classes.

Returnsself : returns an instance of self.

predict(X)
Predict class labels for samples in X.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Samples.

ReturnsC : array, shape = [n_samples]

Predicted class label per sample.
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score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

sparsify()
Convert coefficient matrix to sparse format.

Converts the coef_ member to a scipy.sparse matrix, which for L1-regularized models can be much more
memory- and storage-efficient than the usual numpy.ndarray representation.

The intercept_ member is not converted.

Returnsself: estimator :

Notes

For non-sparse models, i.e. when there are not many zeros in coef_, this may actually increase memory
usage, so use this method with care. A rule of thumb is that the number of zero elements, which can be
computed with (coef_ == 0).sum(), must be more than 50% for this to provide significant benefits.

After calling this method, further fitting with the partial_fit method (if any) will not work until you call
densify.

Examples using sklearn.linear_model.PassiveAggressiveClassifier

• Out-of-core classification of text documents

• Comparing various online solvers

• Classification of text documents using sparse features

5.19.22 sklearn.linear_model.PassiveAggressiveRegressor

class sklearn.linear_model.PassiveAggressiveRegressor(C=1.0, fit_intercept=True,
n_iter=5, shuf-
fle=True, verbose=0,
loss=’epsilon_insensitive’, ep-
silon=0.1, random_state=None,
warm_start=False)

Passive Aggressive Regressor

Read more in the User Guide.
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ParametersC : float

Maximum step size (regularization). Defaults to 1.0.

epsilon : float

If the difference between the current prediction and the correct label is below this thresh-
old, the model is not updated.

fit_intercept : bool

Whether the intercept should be estimated or not. If False, the data is assumed to be
already centered. Defaults to True.

n_iter : int, optional

The number of passes over the training data (aka epochs). Defaults to 5.

shuffle : bool, default=True

Whether or not the training data should be shuffled after each epoch.

random_state : int seed, RandomState instance, or None (default)

The seed of the pseudo random number generator to use when shuffling the data.

verbose : integer, optional

The verbosity level

loss : string, optional

The loss function to be used: epsilon_insensitive: equivalent to PA-I in the reference
paper. squared_epsilon_insensitive: equivalent to PA-II in the reference paper.

warm_start : bool, optional

When set to True, reuse the solution of the previous call to fit as initialization, otherwise,
just erase the previous solution.

Attributescoef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes, n_features]

Weights assigned to the features.

intercept_ : array, shape = [1] if n_classes == 2 else [n_classes]

Constants in decision function.

See also:

SGDRegressor

References

Online Passive-Aggressive Algorithms <http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf>
K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006)

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
densify() Convert coefficient matrix to dense array format.
fit(X, y[, coef_init, intercept_init]) Fit linear model with Passive Aggressive algorithm.

Continued on next page
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Table 5.136 – continued from previous page
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y) Fit linear model with Passive Aggressive algorithm.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(*args, **kwargs)
sparsify() Convert coefficient matrix to sparse format.

__init__(C=1.0, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, loss=’epsilon_insensitive’,
epsilon=0.1, random_state=None, warm_start=False)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19.

Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Returnsarray, shape (n_samples,) :

Predicted target values per element in X.

densify()
Convert coefficient matrix to dense array format.

Converts the coef_ member (back) to a numpy.ndarray. This is the default format of coef_ and is
required for fitting, so calling this method is only required on models that have previously been sparsified;
otherwise, it is a no-op.

Returnsself: estimator :

fit(X, y, coef_init=None, intercept_init=None)
Fit linear model with Passive Aggressive algorithm.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training data

y : numpy array of shape [n_samples]

Target values

coef_init : array, shape = [n_features]

The initial coefficients to warm-start the optimization.

intercept_init : array, shape = [1]

The initial intercept to warm-start the optimization.

Returnsself : returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.
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partial_fit(X, y)
Fit linear model with Passive Aggressive algorithm.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Subset of training data

y : numpy array of shape [n_samples]

Subset of target values

Returnsself : returns an instance of self.

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Returnsarray, shape (n_samples,) :

Predicted target values per element in X.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

sparsify()
Convert coefficient matrix to sparse format.

Converts the coef_ member to a scipy.sparse matrix, which for L1-regularized models can be much more
memory- and storage-efficient than the usual numpy.ndarray representation.

The intercept_ member is not converted.

Returnsself: estimator :

Notes

For non-sparse models, i.e. when there are not many zeros in coef_, this may actually increase memory
usage, so use this method with care. A rule of thumb is that the number of zero elements, which can be
computed with (coef_ == 0).sum(), must be more than 50% for this to provide significant benefits.

After calling this method, further fitting with the partial_fit method (if any) will not work until you call
densify.
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5.19.23 sklearn.linear_model.Perceptron

class sklearn.linear_model.Perceptron(penalty=None, alpha=0.0001, fit_intercept=True,
n_iter=5, shuffle=True, verbose=0, eta0=1.0,
n_jobs=1, random_state=0, class_weight=None,
warm_start=False)

Perceptron

Read more in the User Guide.

Parameterspenalty : None, ‘l2’ or ‘l1’ or ‘elasticnet’

The penalty (aka regularization term) to be used. Defaults to None.

alpha : float

Constant that multiplies the regularization term if regularization is used. Defaults to
0.0001

fit_intercept : bool

Whether the intercept should be estimated or not. If False, the data is assumed to be
already centered. Defaults to True.

n_iter : int, optional

The number of passes over the training data (aka epochs). Defaults to 5.

shuffle : bool, optional, default True

Whether or not the training data should be shuffled after each epoch.

random_state : int seed, RandomState instance, or None (default)

The seed of the pseudo random number generator to use when shuffling the data.

verbose : integer, optional

The verbosity level

n_jobs : integer, optional

The number of CPUs to use to do the OVA (One Versus All, for multi-class problems)
computation. -1 means ‘all CPUs’. Defaults to 1.

eta0 : double

Constant by which the updates are multiplied. Defaults to 1.

class_weight : dict, {class_label: weight} or “balanced” or None, optional

Preset for the class_weight fit parameter.

Weights associated with classes. If not given, all classes are supposed to have weight
one.

The “balanced” mode uses the values of y to automatically adjust weights inversely
proportional to class frequencies in the input data as n_samples / (n_classes

* np.bincount(y))

warm_start : bool, optional

When set to True, reuse the solution of the previous call to fit as initialization, otherwise,
just erase the previous solution.

Attributescoef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes, n_features]

Weights assigned to the features.
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intercept_ : array, shape = [1] if n_classes == 2 else [n_classes]

Constants in decision function.

See also:

SGDClassifier

Notes

Perceptron and SGDClassifier share the same underlying implementation. In fact, Perceptron() is equivalent to
SGDClassifier(loss=”perceptron”, eta0=1, learning_rate=”constant”, penalty=None).

References

http://en.wikipedia.org/wiki/Perceptron and references therein.

Methods

decision_function(X) Predict confidence scores for samples.
densify() Convert coefficient matrix to dense array format.
fit(X, y[, coef_init, intercept_init, ...]) Fit linear model with Stochastic Gradient Descent.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y[, classes, sample_weight]) Fit linear model with Stochastic Gradient Descent.
predict(X) Predict class labels for samples in X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(*args, **kwargs)
sparsify() Convert coefficient matrix to sparse format.
transform(*args, **kwargs) DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19.

__init__(penalty=None, alpha=0.0001, fit_intercept=True, n_iter=5, shuffle=True, verbose=0,
eta0=1.0, n_jobs=1, random_state=0, class_weight=None, warm_start=False)

decision_function(X)
Predict confidence scores for samples.

The confidence score for a sample is the signed distance of that sample to the hyperplane.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returnsarray, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) :

Confidence scores per (sample, class) combination. In the binary case, confidence score
for self.classes_[1] where >0 means this class would be predicted.

densify()
Convert coefficient matrix to dense array format.

Converts the coef_ member (back) to a numpy.ndarray. This is the default format of coef_ and is
required for fitting, so calling this method is only required on models that have previously been sparsified;
otherwise, it is a no-op.

Returnsself: estimator :
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fit(X, y, coef_init=None, intercept_init=None, sample_weight=None)
Fit linear model with Stochastic Gradient Descent.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Training data

y : numpy array, shape (n_samples,)

Target values

coef_init : array, shape (n_classes, n_features)

The initial coefficients to warm-start the optimization.

intercept_init : array, shape (n_classes,)

The initial intercept to warm-start the optimization.

sample_weight : array-like, shape (n_samples,), optional

Weights applied to individual samples. If not provided, uniform weights are assumed.
These weights will be multiplied with class_weight (passed through the contructor) if
class_weight is specified

Returnsself : returns an instance of self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

partial_fit(X, y, classes=None, sample_weight=None)
Fit linear model with Stochastic Gradient Descent.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Subset of the training data

y : numpy array, shape (n_samples,)

Subset of the target values

classes : array, shape (n_classes,)
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Classes across all calls to partial_fit. Can be obtained by via np.unique(y_all), where
y_all is the target vector of the entire dataset. This argument is required for the first call
to partial_fit and can be omitted in the subsequent calls. Note that y doesn’t need to
contain all labels in classes.

sample_weight : array-like, shape (n_samples,), optional

Weights applied to individual samples. If not provided, uniform weights are assumed.

Returnsself : returns an instance of self.

predict(X)
Predict class labels for samples in X.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Samples.

ReturnsC : array, shape = [n_samples]

Predicted class label per sample.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

sparsify()
Convert coefficient matrix to sparse format.

Converts the coef_ member to a scipy.sparse matrix, which for L1-regularized models can be much more
memory- and storage-efficient than the usual numpy.ndarray representation.

The intercept_ member is not converted.

Returnsself: estimator :

Notes

For non-sparse models, i.e. when there are not many zeros in coef_, this may actually increase memory
usage, so use this method with care. A rule of thumb is that the number of zero elements, which can be
computed with (coef_ == 0).sum(), must be more than 50% for this to provide significant benefits.

After calling this method, further fitting with the partial_fit method (if any) will not work until you call
densify.
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transform(*args, **kwargs)
DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19. Use
SelectFromModel instead.

Reduce X to its most important features.

Uses coef_ or feature_importances_ to determine the most important features. For
models with a coef_ for each class, the absolute sum over the classes is used.

ParametersX : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold[string, float or None, optional (default=None)] The threshold value to use for
feature selection. Features whose importance is greater or equal are kept while the
others are discarded. If “median” (resp. “mean”), then the threshold value is the me-
dian (resp. the mean) of the feature importances. A scaling factor (e.g., “1.25*mean”)
may also be used. If None and if available, the object attribute threshold is used.
Otherwise, “mean” is used by default.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

Examples using sklearn.linear_model.Perceptron

• Out-of-core classification of text documents

• Comparing various online solvers

• Classification of text documents using sparse features

5.19.24 sklearn.linear_model.RandomizedLasso

class sklearn.linear_model.RandomizedLasso(alpha=’aic’, scaling=0.5, sample_fraction=0.75,
n_resampling=200, selection_threshold=0.25,
fit_intercept=True, verbose=False,
normalize=True, precompute=’auto’,
max_iter=500, eps=2.2204460492503131e-
16, random_state=None, n_jobs=1,
pre_dispatch=‘3*n_jobs’, mem-
ory=Memory(cachedir=None))

Randomized Lasso.

Randomized Lasso works by resampling the train data and computing a Lasso on each resampling. In short, the
features selected more often are good features. It is also known as stability selection.

Read more in the User Guide.

Parametersalpha : float, ‘aic’, or ‘bic’, optional

The regularization parameter alpha parameter in the Lasso. Warning: this is not the
alpha parameter in the stability selection article which is scaling.

scaling : float, optional

The alpha parameter in the stability selection article used to randomly scale the features.
Should be between 0 and 1.
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sample_fraction : float, optional

The fraction of samples to be used in each randomized design. Should be between 0
and 1. If 1, all samples are used.

n_resampling : int, optional

Number of randomized models.

selection_threshold: float, optional :

The score above which features should be selected.

fit_intercept : boolean, optional

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

verbose : boolean or integer, optional

Sets the verbosity amount

normalize : boolean, optional, default True

If True, the regressors X will be normalized before regression.

precompute : True | False | ‘auto’

Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let
us decide. The Gram matrix can also be passed as argument.

max_iter : integer, optional

Maximum number of iterations to perform in the Lars algorithm.

eps : float, optional

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems. Unlike the ‘tol’ parameter in some
iterative optimization-based algorithms, this parameter does not control the tolerance of
the optimization.

n_jobs : integer, optional

Number of CPUs to use during the resampling. If ‘-1’, use all the CPUs

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

pre_dispatch : int, or string, optional

Controls the number of jobs that get dispatched during parallel execution. Reducing
this number can be useful to avoid an explosion of memory consumption when more
jobs get dispatched than CPUs can process. This parameter can be:

•None, in which case all the jobs are immediately created and spawned. Use this for
lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the
jobs

•An int, giving the exact number of total jobs that are spawned

•A string, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

memory : Instance of joblib.Memory or string
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Used for internal caching. By default, no caching is done. If a string is given, it is the
path to the caching directory.

Attributesscores_ : array, shape = [n_features]

Feature scores between 0 and 1.

all_scores_ : array, shape = [n_features, n_reg_parameter]

Feature scores between 0 and 1 for all values of the regularization parameter. The
reference article suggests scores_ is the max of all_scores_.

See also:

RandomizedLogisticRegression, LogisticRegression

Notes

See examples/linear_model/plot_sparse_recovery.py for an example.

References

Stability selection Nicolai Meinshausen, Peter Buhlmann Journal of the Royal Statistical Society: Series B
Volume 72, Issue 4, pages 417-473, September 2010 DOI: 10.1111/j.1467-9868.2010.00740.x

Examples

>>> from sklearn.linear_model import RandomizedLasso
>>> randomized_lasso = RandomizedLasso()

Methods

fit(X, y) Fit the model using X, y as training data.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Return a mask, or list, of the features/indices selected.
inverse_transform(X) Transform a new matrix using the selected features
set_params(**params) Set the parameters of this estimator.
transform(X) Transform a new matrix using the selected features

__init__(alpha=’aic’, scaling=0.5, sample_fraction=0.75, n_resampling=200, selec-
tion_threshold=0.25, fit_intercept=True, verbose=False, normalize=True, precom-
pute=’auto’, max_iter=500, eps=2.2204460492503131e-16, random_state=None,
n_jobs=1, pre_dispatch=‘3*n_jobs’, memory=Memory(cachedir=None))

fit(X, y)
Fit the model using X, y as training data.

ParametersX : array-like, sparse matrix shape = [n_samples, n_features]

Training data.

y : array-like, shape = [n_samples]
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Target values.

Returnsself : object

Returns an instance of self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

get_support(indices=False)
Return a mask, or list, of the features/indices selected.

inverse_transform(X)
Transform a new matrix using the selected features

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X)
Transform a new matrix using the selected features

Examples using sklearn.linear_model.RandomizedLasso

• Sparse recovery: feature selection for sparse linear models
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5.19.25 sklearn.linear_model.RandomizedLogisticRegression

class sklearn.linear_model.RandomizedLogisticRegression(C=1, scaling=0.5,
sample_fraction=0.75,
n_resampling=200, se-
lection_threshold=0.25,
tol=0.001, fit_intercept=True,
verbose=False, nor-
malize=True, ran-
dom_state=None, n_jobs=1,
pre_dispatch=‘3*n_jobs’,
mem-
ory=Memory(cachedir=None))

Randomized Logistic Regression

Randomized Regression works by resampling the train data and computing a LogisticRegression on each re-
sampling. In short, the features selected more often are good features. It is also known as stability selection.

Read more in the User Guide.

ParametersC : float, optional, default=1

The regularization parameter C in the LogisticRegression.

scaling : float, optional, default=0.5

The alpha parameter in the stability selection article used to randomly scale the features.
Should be between 0 and 1.

sample_fraction : float, optional, default=0.75

The fraction of samples to be used in each randomized design. Should be between 0
and 1. If 1, all samples are used.

n_resampling : int, optional, default=200

Number of randomized models.

selection_threshold : float, optional, default=0.25

The score above which features should be selected.

fit_intercept : boolean, optional, default=True

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

verbose : boolean or integer, optional

Sets the verbosity amount

normalize : boolean, optional, default=True

If True, the regressors X will be normalized before regression.

tol : float, optional, default=1e-3

tolerance for stopping criteria of LogisticRegression

n_jobs : integer, optional

Number of CPUs to use during the resampling. If ‘-1’, use all the CPUs

random_state : int, RandomState instance or None, optional (default=None)
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If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

pre_dispatch : int, or string, optional

Controls the number of jobs that get dispatched during parallel execution. Reducing
this number can be useful to avoid an explosion of memory consumption when more
jobs get dispatched than CPUs can process. This parameter can be:

•None, in which case all the jobs are immediately created and spawned. Use this for
lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the
jobs

•An int, giving the exact number of total jobs that are spawned

•A string, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

memory : Instance of joblib.Memory or string

Used for internal caching. By default, no caching is done. If a string is given, it is the
path to the caching directory.

Attributesscores_ : array, shape = [n_features]

Feature scores between 0 and 1.

all_scores_ : array, shape = [n_features, n_reg_parameter]

Feature scores between 0 and 1 for all values of the regularization parameter. The
reference article suggests scores_ is the max of all_scores_.

See also:

RandomizedLasso, Lasso, ElasticNet

Notes

See examples/linear_model/plot_sparse_recovery.py for an example.

References

Stability selection Nicolai Meinshausen, Peter Buhlmann Journal of the Royal Statistical Society: Series B
Volume 72, Issue 4, pages 417-473, September 2010 DOI: 10.1111/j.1467-9868.2010.00740.x

Examples

>>> from sklearn.linear_model import RandomizedLogisticRegression
>>> randomized_logistic = RandomizedLogisticRegression()

Methods

fit(X, y) Fit the model using X, y as training data.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.

Continued on next page
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Table 5.139 – continued from previous page
get_support([indices]) Return a mask, or list, of the features/indices selected.
inverse_transform(X) Transform a new matrix using the selected features
set_params(**params) Set the parameters of this estimator.
transform(X) Transform a new matrix using the selected features

__init__(C=1, scaling=0.5, sample_fraction=0.75, n_resampling=200, selection_threshold=0.25,
tol=0.001, fit_intercept=True, verbose=False, normalize=True, random_state=None,
n_jobs=1, pre_dispatch=‘3*n_jobs’, memory=Memory(cachedir=None))

fit(X, y)
Fit the model using X, y as training data.

ParametersX : array-like, sparse matrix shape = [n_samples, n_features]

Training data.

y : array-like, shape = [n_samples]

Target values.

Returnsself : object

Returns an instance of self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

get_support(indices=False)
Return a mask, or list, of the features/indices selected.

inverse_transform(X)
Transform a new matrix using the selected features

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

5.19. sklearn.linear_model: Generalized Linear Models 1417



scikit-learn user guide, Release 0.17

Returnsself :

transform(X)
Transform a new matrix using the selected features

5.19.26 sklearn.linear_model.RANSACRegressor

class sklearn.linear_model.RANSACRegressor(base_estimator=None, min_samples=None,
residual_threshold=None, is_data_valid=None,
is_model_valid=None, max_trials=100,
stop_n_inliers=inf, stop_score=inf,
stop_probability=0.99, residual_metric=None,
random_state=None)

RANSAC (RANdom SAmple Consensus) algorithm.

RANSAC is an iterative algorithm for the robust estimation of parameters from a subset of inliers from the
complete data set. More information can be found in the general documentation of linear models.

A detailed description of the algorithm can be found in the documentation of the linear_model sub-package.

Read more in the User Guide.

Parametersbase_estimator : object, optional

Base estimator object which implements the following methods:

•fit(X, y): Fit model to given training data and target values.

•score(X, y): Returns the mean accuracy on the given test data, which is used for the
stop criterion defined by stop_score. Additionally, the score is used to decide which
of two equally large consensus sets is chosen as the better one.

If base_estimator is None, then base_estimator=sklearn.linear_model.LinearRegression()
is used for target values of dtype float.

Note that the current implementation only supports regression estimators.

min_samples : int (>= 1) or float ([0, 1]), optional

Minimum number of samples chosen randomly from original data. Treated as an
absolute number of samples for min_samples >= 1, treated as a relative number
ceil(min_samples * X.shape[0]) for min_samples < 1. This is typically chosen as the
minimal number of samples necessary to estimate the given base_estimator. By default
a sklearn.linear_model.LinearRegression() estimator is assumed and
min_samples is chosen as X.shape[1] + 1.

residual_threshold : float, optional

Maximum residual for a data sample to be classified as an inlier. By default the threshold
is chosen as the MAD (median absolute deviation) of the target values y.

is_data_valid : callable, optional

This function is called with the randomly selected data before the model is fitted to it:
is_data_valid(X, y). If its return value is False the current randomly chosen sub-sample
is skipped.

is_model_valid : callable, optional

This function is called with the estimated model and the randomly selected data:
is_model_valid(model, X, y). If its return value is False the current randomly chosen
sub-sample is skipped. Rejecting samples with this function is computationally costlier
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than with is_data_valid. is_model_valid should therefore only be used if the estimated
model is needed for making the rejection decision.

max_trials : int, optional

Maximum number of iterations for random sample selection.

stop_n_inliers : int, optional

Stop iteration if at least this number of inliers are found.

stop_score : float, optional

Stop iteration if score is greater equal than this threshold.

stop_probability : float in range [0, 1], optional

RANSAC iteration stops if at least one outlier-free set of the training data is sampled in
RANSAC. This requires to generate at least N samples (iterations):

N >= log(1 - probability) / log(1 - e**m)

where the probability (confidence) is typically set to high value such as 0.99 (the default)
and e is the current fraction of inliers w.r.t. the total number of samples.

residual_metric : callable, optional

Metric to reduce the dimensionality of the residuals to 1 for multi-dimensional target
values y.shape[1] > 1. By default the sum of absolute differences is used:

lambda dy: np.sum(np.abs(dy), axis=1)

random_state : integer or numpy.RandomState, optional

The generator used to initialize the centers. If an integer is given, it fixes the seed.
Defaults to the global numpy random number generator.

Attributesestimator_ : object

Best fitted model (copy of the base_estimator object).

n_trials_ : int

Number of random selection trials until one of the stop criteria is met. It is always <=
max_trials.

inlier_mask_ : bool array of shape [n_samples]

Boolean mask of inliers classified as True.

References

[R27], [R28], [R29]

Methods

fit(X, y) Fit estimator using RANSAC algorithm.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the estimated model.

Continued on next page
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Table 5.140 – continued from previous page
score(X, y) Returns the score of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(base_estimator=None, min_samples=None, residual_threshold=None,
is_data_valid=None, is_model_valid=None, max_trials=100, stop_n_inliers=inf,
stop_score=inf, stop_probability=0.99, residual_metric=None, random_state=None)

fit(X, y)
Fit estimator using RANSAC algorithm.

ParametersX : array-like or sparse matrix, shape [n_samples, n_features]

Training data.

y : array-like, shape = [n_samples] or [n_samples, n_targets]

Target values.

RaisesValueError :

If no valid consensus set could be found. This occurs if is_data_valid and
is_model_valid return False for all max_trials randomly chosen sub-samples.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the estimated model.

This is a wrapper for estimator_.predict(X).

ParametersX : numpy array of shape [n_samples, n_features]

Returnsy : array, shape = [n_samples] or [n_samples, n_targets]

Returns predicted values.

score(X, y)
Returns the score of the prediction.

This is a wrapper for estimator_.score(X, y).

ParametersX : numpy array or sparse matrix of shape [n_samples, n_features]

Training data.

y : array, shape = [n_samples] or [n_samples, n_targets]

Target values.

Returnsz : float

Score of the prediction.
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set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.linear_model.RANSACRegressor

• Robust linear model estimation using RANSAC

• Robust linear estimator fitting

• Theil-Sen Regression

5.19.27 sklearn.linear_model.Ridge

class sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True, normalize=False,
copy_X=True, max_iter=None, tol=0.001, solver=’auto’,
random_state=None)

Linear least squares with l2 regularization.

This model solves a regression model where the loss function is the linear least squares function and regulariza-
tion is given by the l2-norm. Also known as Ridge Regression or Tikhonov regularization. This estimator has
built-in support for multi-variate regression (i.e., when y is a 2d-array of shape [n_samples, n_targets]).

Read more in the User Guide.

Parametersalpha : {float, array-like}, shape (n_targets)

Small positive values of alpha improve the conditioning of the problem and reduce the
variance of the estimates. Alpha corresponds to C^-1 in other linear models such as
LogisticRegression or LinearSVC. If an array is passed, penalties are assumed to be
specific to the targets. Hence they must correspond in number.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

fit_intercept : boolean

Whether to calculate the intercept for this model. If set to false, no intercept will be
used in calculations (e.g. data is expected to be already centered).

max_iter : int, optional

Maximum number of iterations for conjugate gradient solver. For ‘sparse_cg’ and ‘lsqr’
solvers, the default value is determined by scipy.sparse.linalg. For ‘sag’ solver, the
default value is 1000.

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.

solver : {‘auto’, ‘svd’, ‘cholesky’, ‘lsqr’, ‘sparse_cg’, ‘sag’}

Solver to use in the computational routines:

•‘auto’ chooses the solver automatically based on the type of data.
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•‘svd’ uses a Singular Value Decomposition of X to compute the Ridge coefficients.
More stable for singular matrices than ‘cholesky’.

•‘cholesky’ uses the standard scipy.linalg.solve function to obtain a closed-form solu-
tion.

•‘sparse_cg’ uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As
an iterative algorithm, this solver is more appropriate than ‘cholesky’ for large-scale
data (possibility to set tol and max_iter).

•‘lsqr’ uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It
is the fatest but may not be available in old scipy versions. It also uses an iterative
procedure.

•‘sag’ uses a Stochastic Average Gradient descent. It also uses an iterative procedure,
and is often faster than other solvers when both n_samples and n_features are large.
Note that ‘sag’ fast convergence is only guaranteed on features with approximately
the same scale. You can preprocess the data with a scaler from sklearn.preprocessing.

All last four solvers support both dense and sparse data. However, only ‘sag’ supports
sparse input when fit_intercept is True.

New in version 0.17: Stochastic Average Gradient descent solver.

tol : float

Precision of the solution.

random_state : int seed, RandomState instance, or None (default)

The seed of the pseudo random number generator to use when shuffling the data. Used
in ‘sag’ solver.

New in version 0.17: random_state to support Stochastic Average Gradient.

Attributescoef_ : array, shape (n_features,) or (n_targets, n_features)

Weight vector(s).

intercept_ : float | array, shape = (n_targets,)

Independent term in decision function. Set to 0.0 if fit_intercept = False.

n_iter_ : array or None, shape (n_targets,)

Actual number of iterations for each target. Available only for sag and lsqr solvers.
Other solvers will return None.

See also:

RidgeClassifier, RidgeCV, KernelRidge

Examples

>>> from sklearn.linear_model import Ridge
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> np.random.seed(0)
>>> y = np.random.randn(n_samples)
>>> X = np.random.randn(n_samples, n_features)
>>> clf = Ridge(alpha=1.0)
>>> clf.fit(X, y)
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Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None,
normalize=False, random_state=None, solver='auto', tol=0.001)

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
fit(X, y[, sample_weight]) Fit Ridge regression model
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001,
solver=’auto’, random_state=None)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19.

Decision function of the linear model.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

fit(X, y, sample_weight=None)
Fit Ridge regression model

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training data

y : array-like, shape = [n_samples] or [n_samples, n_targets]

Target values

sample_weight : float or numpy array of shape [n_samples]

Individual weights for each sample

Returnsself : returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

5.19. sklearn.linear_model: Generalized Linear Models 1423



scikit-learn user guide, Release 0.17

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.linear_model.Ridge

• Compressive sensing: tomography reconstruction with L1 prior (Lasso)

• Prediction Latency

• Plot Ridge coefficients as a function of the regularization

• Polynomial interpolation

• Ordinary Least Squares and Ridge Regression Variance

5.19.28 sklearn.linear_model.RidgeClassifier

class sklearn.linear_model.RidgeClassifier(alpha=1.0, fit_intercept=True, normalize=False,
copy_X=True, max_iter=None, tol=0.001,
class_weight=None, solver=’auto’, ran-
dom_state=None)

Classifier using Ridge regression.

Read more in the User Guide.

Parametersalpha : float

1424 Chapter 5. API Reference



scikit-learn user guide, Release 0.17

Small positive values of alpha improve the conditioning of the problem and reduce the
variance of the estimates. Alpha corresponds to C^-1 in other linear models such as
LogisticRegression or LinearSVC.

class_weight : dict or ‘balanced’, optional

Weights associated with classes in the form {class_label: weight}. If not
given, all classes are supposed to have weight one.

The “balanced” mode uses the values of y to automatically adjust weights inversely
proportional to class frequencies in the input data as n_samples / (n_classes

* np.bincount(y))

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

fit_intercept : boolean

Whether to calculate the intercept for this model. If set to false, no intercept will be
used in calculations (e.g. data is expected to be already centered).

max_iter : int, optional

Maximum number of iterations for conjugate gradient solver. The default value is de-
termined by scipy.sparse.linalg.

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.

solver : {‘auto’, ‘svd’, ‘cholesky’, ‘lsqr’, ‘sparse_cg’, ‘sag’}

Solver to use in the computational routines:

•‘auto’ chooses the solver automatically based on the type of data.

•‘svd’ uses a Singular Value Decomposition of X to compute the Ridge coefficients.
More stable for singular matrices than ‘cholesky’.

•‘cholesky’ uses the standard scipy.linalg.solve function to obtain a closed-form solu-
tion.

•‘sparse_cg’ uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As
an iterative algorithm, this solver is more appropriate than ‘cholesky’ for large-scale
data (possibility to set tol and max_iter).

•‘lsqr’ uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It
is the fatest but may not be available in old scipy versions. It also uses an iterative
procedure.

•‘sag’ uses a Stochastic Average Gradient descent. It also uses an iterative procedure,
and is faster than other solvers when both n_samples and n_features are large.

New in version 0.17: Stochastic Average Gradient descent solver.

tol : float

Precision of the solution.

random_state : int seed, RandomState instance, or None (default)

The seed of the pseudo random number generator to use when shuffling the data. Used
in ‘sag’ solver.

Attributescoef_ : array, shape (n_features,) or (n_classes, n_features)
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Weight vector(s).

intercept_ : float | array, shape = (n_targets,)

Independent term in decision function. Set to 0.0 if fit_intercept = False.

n_iter_ : array or None, shape (n_targets,)

Actual number of iterations for each target. Available only for sag and lsqr solvers.
Other solvers will return None.

See also:

Ridge, RidgeClassifierCV

Notes

For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is
implemented by taking advantage of the multi-variate response support in Ridge.

Methods

decision_function(X) Predict confidence scores for samples.
fit(X, y[, sample_weight]) Fit Ridge regression model.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class labels for samples in X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.

__init__(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001,
class_weight=None, solver=’auto’, random_state=None)

decision_function(X)
Predict confidence scores for samples.

The confidence score for a sample is the signed distance of that sample to the hyperplane.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returnsarray, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) :

Confidence scores per (sample, class) combination. In the binary case, confidence score
for self.classes_[1] where >0 means this class would be predicted.

fit(X, y, sample_weight=None)
Fit Ridge regression model.

ParametersX : {array-like, sparse matrix}, shape = [n_samples,n_features]

Training data

y : array-like, shape = [n_samples]

Target values

sample_weight : float or numpy array of shape (n_samples,)

Sample weight.
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New in version 0.17: sample_weight support to Classifier.

Returnsself : returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict class labels for samples in X.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Samples.

ReturnsC : array, shape = [n_samples]

Predicted class label per sample.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.linear_model.RidgeClassifier

• Classification of text documents using sparse features
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5.19.29 sklearn.linear_model.RidgeClassifierCV

class sklearn.linear_model.RidgeClassifierCV(alphas=(0.1, 1.0, 10.0), fit_intercept=True,
normalize=False, scoring=None, cv=None,
class_weight=None)

Ridge classifier with built-in cross-validation.

By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-
validation. Currently, only the n_features > n_samples case is handled efficiently.

Read more in the User Guide.

Parametersalphas : numpy array of shape [n_alphas]

Array of alpha values to try. Small positive values of alpha improve the conditioning of
the problem and reduce the variance of the estimates. Alpha corresponds to C^-1 in
other linear models such as LogisticRegression or LinearSVC.

fit_intercept : boolean

Whether to calculate the intercept for this model. If set to false, no intercept will be
used in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.

scoring : string, callable or None, optional, default: None

A string (see model evaluation documentation) or a scorer callable object / function with
signature scorer(estimator, X, y).

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

•None, to use the efficient Leave-One-Out cross-validation

•integer, to specify the number of folds.

•An object to be used as a cross-validation generator.

•An iterable yielding train/test splits.

Refer User Guide for the various cross-validation strategies that can be used here.

class_weight : dict or ‘balanced’, optional

Weights associated with classes in the form {class_label: weight}. If not
given, all classes are supposed to have weight one.

The “balanced” mode uses the values of y to automatically adjust weights inversely
proportional to class frequencies in the input data as n_samples / (n_classes

* np.bincount(y))

Attributescv_values_ : array, shape = [n_samples, n_alphas] or shape = [n_samples, n_responses,
n_alphas], optional

Cross-validation values for each alpha (if store_cv_values=True and

‘cv=None‘). After ‘fit()‘ has been called, this attribute will contain the mean squared errors
(by default) or the values of the ‘{loss,score}_func‘ function (if provided in the constructor).
:

coef_ : array, shape = [n_features] or [n_targets, n_features]

Weight vector(s).
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intercept_ : float | array, shape = (n_targets,)

Independent term in decision function. Set to 0.0 if fit_intercept = False.

alpha_ : float

Estimated regularization parameter

See also:

RidgeRidge regression

RidgeClassifierRidge classifier

RidgeCVRidge regression with built-in cross validation

Notes

For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is
implemented by taking advantage of the multi-variate response support in Ridge.

Methods

decision_function(X) Predict confidence scores for samples.
fit(X, y[, sample_weight]) Fit the ridge classifier.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class labels for samples in X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.

__init__(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None,
class_weight=None)

decision_function(X)
Predict confidence scores for samples.

The confidence score for a sample is the signed distance of that sample to the hyperplane.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returnsarray, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) :

Confidence scores per (sample, class) combination. In the binary case, confidence score
for self.classes_[1] where >0 means this class would be predicted.

fit(X, y, sample_weight=None)
Fit the ridge classifier.

ParametersX : array-like, shape (n_samples, n_features)

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape (n_samples,)

Target values.

sample_weight : float or numpy array of shape (n_samples,)
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Sample weight.

Returnsself : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict class labels for samples in X.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Samples.

ReturnsC : array, shape = [n_samples]

Predicted class label per sample.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

5.19.30 sklearn.linear_model.RidgeCV

class sklearn.linear_model.RidgeCV(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normal-
ize=False, scoring=None, cv=None, gcv_mode=None,
store_cv_values=False)

Ridge regression with built-in cross-validation.
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By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-
validation.

Read more in the User Guide.

Parametersalphas : numpy array of shape [n_alphas]

Array of alpha values to try. Small positive values of alpha improve the conditioning of
the problem and reduce the variance of the estimates. Alpha corresponds to C^-1 in
other linear models such as LogisticRegression or LinearSVC.

fit_intercept : boolean

Whether to calculate the intercept for this model. If set to false, no intercept will be
used in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.

scoring : string, callable or None, optional, default: None

A string (see model evaluation documentation) or a scorer callable object / function with
signature scorer(estimator, X, y).

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

•None, to use the efficient Leave-One-Out cross-validation

•integer, to specify the number of folds.

•An object to be used as a cross-validation generator.

•An iterable yielding train/test splits.

For integer/None inputs, if y is binary or multiclass, StratifiedKFold used, else,
KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

gcv_mode : {None, ‘auto’, ‘svd’, eigen’}, optional

Flag indicating which strategy to use when performing Generalized Cross-Validation.
Options are:

'auto' : use svd if n_samples > n_features or when X is a sparse
matrix, otherwise use eigen

'svd' : force computation via singular value decomposition of X
(does not work for sparse matrices)

'eigen' : force computation via eigendecomposition of X^T X

The ‘auto’ mode is the default and is intended to pick the cheaper option of the two
depending upon the shape and format of the training data.

store_cv_values : boolean, default=False

Flag indicating if the cross-validation values corresponding to each alpha should be
stored in the cv_values_ attribute (see below). This flag is only compatible with
cv=None (i.e. using Generalized Cross-Validation).

Attributescv_values_ : array, shape = [n_samples, n_alphas] or shape = [n_samples, n_targets,
n_alphas], optional
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Cross-validation values for each alpha (if store_cv_values=True and cv=None). After
fit() has been called, this attribute will contain the mean squared errors (by default) or
the values of the {loss,score}_func function (if provided in the constructor).

coef_ : array, shape = [n_features] or [n_targets, n_features]

Weight vector(s).

intercept_ : float | array, shape = (n_targets,)

Independent term in decision function. Set to 0.0 if fit_intercept = False.

alpha_ : float

Estimated regularization parameter.

See also:

RidgeRidge regression

RidgeClassifierRidge classifier

RidgeClassifierCVRidge classifier with built-in cross validation

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
fit(X, y[, sample_weight]) Fit Ridge regression model
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None,
gcv_mode=None, store_cv_values=False)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19.

Decision function of the linear model.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

fit(X, y, sample_weight=None)
Fit Ridge regression model

ParametersX : array-like, shape = [n_samples, n_features]

Training data

y : array-like, shape = [n_samples] or [n_samples, n_targets]

Target values

sample_weight : float or array-like of shape [n_samples]

Sample weight
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Returnsself : Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.linear_model.RidgeCV

• Face completion with a multi-output estimators
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5.19.31 sklearn.linear_model.SGDClassifier

class sklearn.linear_model.SGDClassifier(loss=’hinge’, penalty=’l2’, alpha=0.0001,
l1_ratio=0.15, fit_intercept=True, n_iter=5, shuf-
fle=True, verbose=0, epsilon=0.1, n_jobs=1,
random_state=None, learning_rate=’optimal’,
eta0=0.0, power_t=0.5, class_weight=None,
warm_start=False, average=False)

Linear classifiers (SVM, logistic regression, a.o.) with SGD training.

This estimator implements regularized linear models with stochastic gradient descent (SGD) learning: the gra-
dient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing
strength schedule (aka learning rate). SGD allows minibatch (online/out-of-core) learning, see the partial_fit
method. For best results using the default learning rate schedule, the data should have zero mean and unit
variance.

This implementation works with data represented as dense or sparse arrays of floating point values for the
features. The model it fits can be controlled with the loss parameter; by default, it fits a linear support vector
machine (SVM).

The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector
using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If
the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for
learning sparse models and achieve online feature selection.

Read more in the User Guide.

Parametersloss : str, ‘hinge’, ‘log’, ‘modified_huber’, ‘squared_hinge’, ‘perceptron’, or a regression
loss: ‘squared_loss’, ‘huber’, ‘epsilon_insensitive’, or ‘squared_epsilon_insensitive’

The loss function to be used. Defaults to ‘hinge’, which gives a linear SVM. The
‘log’ loss gives logistic regression, a probabilistic classifier. ‘modified_huber’ is an-
other smooth loss that brings tolerance to outliers as well as probability estimates.
‘squared_hinge’ is like hinge but is quadratically penalized. ‘perceptron’ is the lin-
ear loss used by the perceptron algorithm. The other losses are designed for regression
but can be useful in classification as well; see SGDRegressor for a description.

penalty : str, ‘none’, ‘l2’, ‘l1’, or ‘elasticnet’

The penalty (aka regularization term) to be used. Defaults to ‘l2’ which is the standard
regularizer for linear SVM models. ‘l1’ and ‘elasticnet’ might bring sparsity to the
model (feature selection) not achievable with ‘l2’.

alpha : float

Constant that multiplies the regularization term. Defaults to 0.0001 Also used to com-
pute learning_rate when set to ‘optimal’.

l1_ratio : float

The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to
L2 penalty, l1_ratio=1 to L1. Defaults to 0.15.

fit_intercept : bool

Whether the intercept should be estimated or not. If False, the data is assumed to be
already centered. Defaults to True.

n_iter : int, optional

The number of passes over the training data (aka epochs). The number of iterations is
set to 1 if using partial_fit. Defaults to 5.
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shuffle : bool, optional

Whether or not the training data should be shuffled after each epoch. Defaults to True.

random_state : int seed, RandomState instance, or None (default)

The seed of the pseudo random number generator to use when shuffling the data.

verbose : integer, optional

The verbosity level

epsilon : float

Epsilon in the epsilon-insensitive loss functions; only if loss is ‘huber’, ‘ep-
silon_insensitive’, or ‘squared_epsilon_insensitive’. For ‘huber’, determines the thresh-
old at which it becomes less important to get the prediction exactly right. For epsilon-
insensitive, any differences between the current prediction and the correct label are
ignored if they are less than this threshold.

n_jobs : integer, optional

The number of CPUs to use to do the OVA (One Versus All, for multi-class problems)
computation. -1 means ‘all CPUs’. Defaults to 1.

learning_rate : string, optional

The learning rate schedule: constant: eta = eta0 optimal: eta = 1.0 / (alpha * (t + t0))
[default] invscaling: eta = eta0 / pow(t, power_t) where t0 is chosen by a heuristic
proposed by Leon Bottou.

eta0 : double

The initial learning rate for the ‘constant’ or ‘invscaling’ schedules. The default value
is 0.0 as eta0 is not used by the default schedule ‘optimal’.

power_t : double

The exponent for inverse scaling learning rate [default 0.5].

class_weight : dict, {class_label: weight} or “balanced” or None, optional

Preset for the class_weight fit parameter.

Weights associated with classes. If not given, all classes are supposed to have weight
one.

The “balanced” mode uses the values of y to automatically adjust weights inversely
proportional to class frequencies in the input data as n_samples / (n_classes

* np.bincount(y))

warm_start : bool, optional

When set to True, reuse the solution of the previous call to fit as initialization, otherwise,
just erase the previous solution.

average : bool or int, optional

When set to True, computes the averaged SGD weights and stores the result in the
coef_ attribute. If set to an int greater than 1, averaging will begin once the total
number of samples seen reaches average. So average=10 will begin averaging after
seeing 10 samples.

Attributescoef_ : array, shape (1, n_features) if n_classes == 2 else (n_classes, n_features)

Weights assigned to the features.
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intercept_ : array, shape (1,) if n_classes == 2 else (n_classes,)

Constants in decision function.

See also:

LinearSVC, LogisticRegression, Perceptron

Examples

>>> import numpy as np
>>> from sklearn import linear_model
>>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
>>> Y = np.array([1, 1, 2, 2])
>>> clf = linear_model.SGDClassifier()
>>> clf.fit(X, Y)
...
SGDClassifier(alpha=0.0001, average=False, class_weight=None, epsilon=0.1,

eta0=0.0, fit_intercept=True, l1_ratio=0.15,
learning_rate='optimal', loss='hinge', n_iter=5, n_jobs=1,
penalty='l2', power_t=0.5, random_state=None, shuffle=True,
verbose=0, warm_start=False)

>>> print(clf.predict([[-0.8, -1]]))
[1]

Methods

decision_function(X) Predict confidence scores for samples.
densify() Convert coefficient matrix to dense array format.
fit(X, y[, coef_init, intercept_init, ...]) Fit linear model with Stochastic Gradient Descent.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y[, classes, sample_weight]) Fit linear model with Stochastic Gradient Descent.
predict(X) Predict class labels for samples in X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(*args, **kwargs)
sparsify() Convert coefficient matrix to sparse format.
transform(*args, **kwargs) DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19.

__init__(loss=’hinge’, penalty=’l2’, alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5,
shuffle=True, verbose=0, epsilon=0.1, n_jobs=1, random_state=None, learn-
ing_rate=’optimal’, eta0=0.0, power_t=0.5, class_weight=None, warm_start=False,
average=False)

decision_function(X)
Predict confidence scores for samples.

The confidence score for a sample is the signed distance of that sample to the hyperplane.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returnsarray, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) :
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Confidence scores per (sample, class) combination. In the binary case, confidence score
for self.classes_[1] where >0 means this class would be predicted.

densify()
Convert coefficient matrix to dense array format.

Converts the coef_ member (back) to a numpy.ndarray. This is the default format of coef_ and is
required for fitting, so calling this method is only required on models that have previously been sparsified;
otherwise, it is a no-op.

Returnsself: estimator :

fit(X, y, coef_init=None, intercept_init=None, sample_weight=None)
Fit linear model with Stochastic Gradient Descent.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Training data

y : numpy array, shape (n_samples,)

Target values

coef_init : array, shape (n_classes, n_features)

The initial coefficients to warm-start the optimization.

intercept_init : array, shape (n_classes,)

The initial intercept to warm-start the optimization.

sample_weight : array-like, shape (n_samples,), optional

Weights applied to individual samples. If not provided, uniform weights are assumed.
These weights will be multiplied with class_weight (passed through the contructor) if
class_weight is specified

Returnsself : returns an instance of self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.
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partial_fit(X, y, classes=None, sample_weight=None)
Fit linear model with Stochastic Gradient Descent.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Subset of the training data

y : numpy array, shape (n_samples,)

Subset of the target values

classes : array, shape (n_classes,)

Classes across all calls to partial_fit. Can be obtained by via np.unique(y_all), where
y_all is the target vector of the entire dataset. This argument is required for the first call
to partial_fit and can be omitted in the subsequent calls. Note that y doesn’t need to
contain all labels in classes.

sample_weight : array-like, shape (n_samples,), optional

Weights applied to individual samples. If not provided, uniform weights are assumed.

Returnsself : returns an instance of self.

predict(X)
Predict class labels for samples in X.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Samples.

ReturnsC : array, shape = [n_samples]

Predicted class label per sample.

predict_log_proba
Log of probability estimates.

This method is only available for log loss and modified Huber loss.

When loss=”modified_huber”, probability estimates may be hard zeros and ones, so taking the logarithm
is not possible.

See predict_proba for details.

ParametersX : array-like, shape (n_samples, n_features)

ReturnsT : array-like, shape (n_samples, n_classes)

Returns the log-probability of the sample for each class in the model, where classes are
ordered as they are in self.classes_.

predict_proba
Probability estimates.

This method is only available for log loss and modified Huber loss.

Multiclass probability estimates are derived from binary (one-vs.-rest) estimates by simple normalization,
as recommended by Zadrozny and Elkan.

Binary probability estimates for loss=”modified_huber” are given by (clip(decision_function(X), -1, 1) +
1) / 2.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Returnsarray, shape (n_samples, n_classes) :
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Returns the probability of the sample for each class in the model, where classes are
ordered as they are in self.classes_.

References

Zadrozny and Elkan, “Transforming classifier scores into multiclass probability estimates”, SIGKDD‘02,
http://www.research.ibm.com/people/z/zadrozny/kdd2002-Transf.pdf

The justification for the formula in the loss=”modified_huber” case is in the appendix B in:
http://jmlr.csail.mit.edu/papers/volume2/zhang02c/zhang02c.pdf

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

sparsify()
Convert coefficient matrix to sparse format.

Converts the coef_ member to a scipy.sparse matrix, which for L1-regularized models can be much more
memory- and storage-efficient than the usual numpy.ndarray representation.

The intercept_ member is not converted.

Returnsself: estimator :

Notes

For non-sparse models, i.e. when there are not many zeros in coef_, this may actually increase memory
usage, so use this method with care. A rule of thumb is that the number of zero elements, which can be
computed with (coef_ == 0).sum(), must be more than 50% for this to provide significant benefits.

After calling this method, further fitting with the partial_fit method (if any) will not work until you call
densify.

transform(*args, **kwargs)
DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19. Use
SelectFromModel instead.

Reduce X to its most important features.

Uses coef_ or feature_importances_ to determine the most important features. For
models with a coef_ for each class, the absolute sum over the classes is used.

ParametersX : array or scipy sparse matrix of shape [n_samples, n_features]
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The input samples.

threshold[string, float or None, optional (default=None)] The threshold value to use for
feature selection. Features whose importance is greater or equal are kept while the
others are discarded. If “median” (resp. “mean”), then the threshold value is the me-
dian (resp. the mean) of the feature importances. A scaling factor (e.g., “1.25*mean”)
may also be used. If None and if available, the object attribute threshold is used.
Otherwise, “mean” is used by default.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

Examples using sklearn.linear_model.SGDClassifier

• Model Complexity Influence

• Out-of-core classification of text documents

• SGD: Maximum margin separating hyperplane

• SGD: Weighted samples

• Comparing various online solvers

• Plot multi-class SGD on the iris dataset

• Sample pipeline for text feature extraction and evaluation

• Classification of text documents: using a MLComp dataset

• Classification of text documents using sparse features

5.19.32 sklearn.linear_model.SGDRegressor

class sklearn.linear_model.SGDRegressor(loss=’squared_loss’, penalty=’l2’, alpha=0.0001,
l1_ratio=0.15, fit_intercept=True, n_iter=5,
shuffle=True, verbose=0, epsilon=0.1, ran-
dom_state=None, learning_rate=’invscaling’,
eta0=0.01, power_t=0.25, warm_start=False,
average=False)

Linear model fitted by minimizing a regularized empirical loss with SGD

SGD stands for Stochastic Gradient Descent: the gradient of the loss is estimated each sample at a time and the
model is updated along the way with a decreasing strength schedule (aka learning rate).

The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector
using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If
the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for
learning sparse models and achieve online feature selection.

This implementation works with data represented as dense numpy arrays of floating point values for the features.

Read more in the User Guide.

Parametersloss : str, ‘squared_loss’, ‘huber’, ‘epsilon_insensitive’, or ‘squared_epsilon_insensitive’

The loss function to be used. Defaults to ‘squared_loss’ which refers to the ordinary
least squares fit. ‘huber’ modifies ‘squared_loss’ to focus less on getting outliers correct
by switching from squared to linear loss past a distance of epsilon. ‘epsilon_insensitive’
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ignores errors less than epsilon and is linear past that; this is the loss function used in
SVR. ‘squared_epsilon_insensitive’ is the same but becomes squared loss past a toler-
ance of epsilon.

penalty : str, ‘none’, ‘l2’, ‘l1’, or ‘elasticnet’

The penalty (aka regularization term) to be used. Defaults to ‘l2’ which is the standard
regularizer for linear SVM models. ‘l1’ and ‘elasticnet’ might bring sparsity to the
model (feature selection) not achievable with ‘l2’.

alpha : float

Constant that multiplies the regularization term. Defaults to 0.0001 Also used to com-
pute learning_rate when set to ‘optimal’.

l1_ratio : float

The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to
L2 penalty, l1_ratio=1 to L1. Defaults to 0.15.

fit_intercept : bool

Whether the intercept should be estimated or not. If False, the data is assumed to be
already centered. Defaults to True.

n_iter : int, optional

The number of passes over the training data (aka epochs). The number of iterations is
set to 1 if using partial_fit. Defaults to 5.

shuffle : bool, optional

Whether or not the training data should be shuffled after each epoch. Defaults to True.

random_state : int seed, RandomState instance, or None (default)

The seed of the pseudo random number generator to use when shuffling the data.

verbose : integer, optional

The verbosity level.

epsilon : float

Epsilon in the epsilon-insensitive loss functions; only if loss is ‘huber’, ‘ep-
silon_insensitive’, or ‘squared_epsilon_insensitive’. For ‘huber’, determines the thresh-
old at which it becomes less important to get the prediction exactly right. For epsilon-
insensitive, any differences between the current prediction and the correct label are
ignored if they are less than this threshold.

learning_rate : string, optional

The learning rate: constant: eta = eta0 optimal: eta = 1.0/(alpha * t) invscaling: eta =
eta0 / pow(t, power_t) [default]

eta0 : double, optional

The initial learning rate [default 0.01].

power_t : double, optional

The exponent for inverse scaling learning rate [default 0.25].

warm_start : bool, optional

When set to True, reuse the solution of the previous call to fit as initialization, otherwise,
just erase the previous solution.
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average : bool or int, optional

When set to True, computes the averaged SGD weights and stores the result in the
coef_ attribute. If set to an int greater than 1, averaging will begin once the total
number of samples seen reaches average. So average=10 will begin averaging
after seeing 10 samples.

Attributescoef_ : array, shape (n_features,)

Weights assigned to the features.

intercept_ : array, shape (1,)

The intercept term.

average_coef_ : array, shape (n_features,)

Averaged weights assigned to the features.

average_intercept_ : array, shape (1,)

The averaged intercept term.

See also:

Ridge, ElasticNet, Lasso, SVR

Examples

>>> import numpy as np
>>> from sklearn import linear_model
>>> n_samples, n_features = 10, 5
>>> np.random.seed(0)
>>> y = np.random.randn(n_samples)
>>> X = np.random.randn(n_samples, n_features)
>>> clf = linear_model.SGDRegressor()
>>> clf.fit(X, y)
...
SGDRegressor(alpha=0.0001, average=False, epsilon=0.1, eta0=0.01,

fit_intercept=True, l1_ratio=0.15, learning_rate='invscaling',
loss='squared_loss', n_iter=5, penalty='l2', power_t=0.25,
random_state=None, shuffle=True, verbose=0, warm_start=False)

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
densify() Convert coefficient matrix to dense array format.
fit(X, y[, coef_init, intercept_init, ...]) Fit linear model with Stochastic Gradient Descent.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y[, sample_weight]) Fit linear model with Stochastic Gradient Descent.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(*args, **kwargs)
sparsify() Convert coefficient matrix to sparse format.
transform(*args, **kwargs) DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19.
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__init__(loss=’squared_loss’, penalty=’l2’, alpha=0.0001, l1_ratio=0.15, fit_intercept=True,
n_iter=5, shuffle=True, verbose=0, epsilon=0.1, random_state=None, learn-
ing_rate=’invscaling’, eta0=0.01, power_t=0.25, warm_start=False, average=False)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19.

Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Returnsarray, shape (n_samples,) :

Predicted target values per element in X.

densify()
Convert coefficient matrix to dense array format.

Converts the coef_ member (back) to a numpy.ndarray. This is the default format of coef_ and is
required for fitting, so calling this method is only required on models that have previously been sparsified;
otherwise, it is a no-op.

Returnsself: estimator :

fit(X, y, coef_init=None, intercept_init=None, sample_weight=None)
Fit linear model with Stochastic Gradient Descent.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Training data

y : numpy array, shape (n_samples,)

Target values

coef_init : array, shape (n_features,)

The initial coefficients to warm-start the optimization.

intercept_init : array, shape (1,)

The initial intercept to warm-start the optimization.

sample_weight : array-like, shape (n_samples,), optional

Weights applied to individual samples (1. for unweighted).

Returnsself : returns an instance of self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.
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Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

partial_fit(X, y, sample_weight=None)
Fit linear model with Stochastic Gradient Descent.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Subset of training data

y : numpy array of shape (n_samples,)

Subset of target values

sample_weight : array-like, shape (n_samples,), optional

Weights applied to individual samples. If not provided, uniform weights are assumed.

Returnsself : returns an instance of self.

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Returnsarray, shape (n_samples,) :

Predicted target values per element in X.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

sparsify()
Convert coefficient matrix to sparse format.

Converts the coef_ member to a scipy.sparse matrix, which for L1-regularized models can be much more
memory- and storage-efficient than the usual numpy.ndarray representation.

The intercept_ member is not converted.

Returnsself: estimator :
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Notes

For non-sparse models, i.e. when there are not many zeros in coef_, this may actually increase memory
usage, so use this method with care. A rule of thumb is that the number of zero elements, which can be
computed with (coef_ == 0).sum(), must be more than 50% for this to provide significant benefits.

After calling this method, further fitting with the partial_fit method (if any) will not work until you call
densify.

transform(*args, **kwargs)
DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19. Use
SelectFromModel instead.

Reduce X to its most important features.

Uses coef_ or feature_importances_ to determine the most important features. For
models with a coef_ for each class, the absolute sum over the classes is used.

ParametersX : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold[string, float or None, optional (default=None)] The threshold value to use for
feature selection. Features whose importance is greater or equal are kept while the
others are discarded. If “median” (resp. “mean”), then the threshold value is the me-
dian (resp. the mean) of the feature importances. A scaling factor (e.g., “1.25*mean”)
may also be used. If None and if available, the object attribute threshold is used.
Otherwise, “mean” is used by default.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

Examples using sklearn.linear_model.SGDRegressor

• Prediction Latency

5.19.33 sklearn.linear_model.TheilSenRegressor

class sklearn.linear_model.TheilSenRegressor(fit_intercept=True, copy_X=True,
max_subpopulation=10000.0,
n_subsamples=None, max_iter=300,
tol=0.001, random_state=None, n_jobs=1,
verbose=False)

Theil-Sen Estimator: robust multivariate regression model.

The algorithm calculates least square solutions on subsets with size n_subsamples of the samples in X. Any value
of n_subsamples between the number of features and samples leads to an estimator with a compromise between
robustness and efficiency. Since the number of least square solutions is “n_samples choose n_subsamples”, it
can be extremely large and can therefore be limited with max_subpopulation. If this limit is reached, the subsets
are chosen randomly. In a final step, the spatial median (or L1 median) is calculated of all least square solutions.

Read more in the User Guide.

Parametersfit_intercept : boolean, optional, default True
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Whether to calculate the intercept for this model. If set to false, no intercept will be
used in calculations.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

max_subpopulation : int, optional, default 1e4

Instead of computing with a set of cardinality ‘n choose k’, where n is the number
of samples and k is the number of subsamples (at least number of features), consider
only a stochastic subpopulation of a given maximal size if ‘n choose k’ is larger than
max_subpopulation. For other than small problem sizes this parameter will determine
memory usage and runtime if n_subsamples is not changed.

n_subsamples : int, optional, default None

Number of samples to calculate the parameters. This is at least the number of features
(plus 1 if fit_intercept=True) and the number of samples as a maximum. A lower num-
ber leads to a higher breakdown point and a low efficiency while a high number leads
to a low breakdown point and a high efficiency. If None, take the minimum number
of subsamples leading to maximal robustness. If n_subsamples is set to n_samples,
Theil-Sen is identical to least squares.

max_iter : int, optional, default 300

Maximum number of iterations for the calculation of spatial median.

tol : float, optional, default 1.e-3

Tolerance when calculating spatial median.

random_state : RandomState or an int seed, optional, default None

A random number generator instance to define the state of the random permutations
generator.

n_jobs : integer, optional, default 1

Number of CPUs to use during the cross validation. If -1, use all the CPUs.

verbose : boolean, optional, default False

Verbose mode when fitting the model.

Attributescoef_ : array, shape = (n_features)

Coefficients of the regression model (median of distribution).

intercept_ : float

Estimated intercept of regression model.

breakdown_ : float

Approximated breakdown point.

n_iter_ : int

Number of iterations needed for the spatial median.

n_subpopulation_ : int

Number of combinations taken into account from ‘n choose k’, where n is the number
of samples and k is the number of subsamples.
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References

•Theil-Sen Estimators in a Multiple Linear Regression Model, 2009 Xin Dang, Hanxiang Peng, Xueqin
Wang and Heping Zhang http://www.math.iupui.edu/~hpeng/MTSE_0908.pdf

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
fit(X, y) Fit linear model.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(fit_intercept=True, copy_X=True, max_subpopulation=10000.0, n_subsamples=None,
max_iter=300, tol=0.001, random_state=None, n_jobs=1, verbose=False)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19.

Decision function of the linear model.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

fit(X, y)
Fit linear model.

ParametersX : numpy array of shape [n_samples, n_features]

Training data

y : numpy array of shape [n_samples]

Target values

Returnsself : returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.
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ReturnsC : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.linear_model.TheilSenRegressor

• Robust linear estimator fitting

• Theil-Sen Regression

linear_model.lars_path(X, y[, Xy, Gram, ...]) Compute Least Angle Regression or Lasso path using LARS algorithm [1]
linear_model.lasso_path(X, y[, eps, ...]) Compute Lasso path with coordinate descent
linear_model.lasso_stability_path(X, y[, ...]) Stabiliy path based on randomized Lasso estimates
linear_model.orthogonal_mp(X, y[, ...]) Orthogonal Matching Pursuit (OMP)
linear_model.orthogonal_mp_gram(Gram, Xy[, ...]) Gram Orthogonal Matching Pursuit (OMP)

5.19.34 sklearn.linear_model.lars_path

sklearn.linear_model.lars_path(X, y, Xy=None, Gram=None, max_iter=500, alpha_min=0,
method=’lar’, copy_X=True, eps=2.2204460492503131e-
16, copy_Gram=True, verbose=0, return_path=True, re-
turn_n_iter=False, positive=False)

Compute Least Angle Regression or Lasso path using LARS algorithm [1]

The optimization objective for the case method=’lasso’ is:
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(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

in the case of method=’lars’, the objective function is only known in the form of an implicit equation (see
discussion in [1])

Read more in the User Guide.

ParametersX : array, shape: (n_samples, n_features)

Input data.

y : array, shape: (n_samples)

Input targets.

positive : boolean (default=False)

Restrict coefficients to be >= 0. When using this option together with method ‘lasso’
the model coefficients will not converge to the ordinary-least-squares solution for small
values of alpha (neither will they when using method ‘lar’ ..). Only coeffiencts up to
the smallest alpha value (alphas_[alphas_ > 0.].min() when fit_path=True)
reached by the stepwise Lars-Lasso algorithm are typically in congruence with the so-
lution of the coordinate descent lasso_path function.

max_iter : integer, optional (default=500)

Maximum number of iterations to perform, set to infinity for no limit.

Gram : None, ‘auto’, array, shape: (n_features, n_features), optional

Precomputed Gram matrix (X’ * X), if ’auto’, the Gram matrix is precomputed from
the given X, if there are more samples than features.

alpha_min : float, optional (default=0)

Minimum correlation along the path. It corresponds to the regularization parameter
alpha parameter in the Lasso.

method : {‘lar’, ‘lasso’}, optional (default=’lar’)

Specifies the returned model. Select ’lar’ for Least Angle Regression, ’lasso’ for
the Lasso.

eps : float, optional (default=‘‘np.finfo(np.float).eps‘‘)

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems.

copy_X : bool, optional (default=True)

If False, X is overwritten.

copy_Gram : bool, optional (default=True)

If False, Gram is overwritten.

verbose : int (default=0)

Controls output verbosity.

return_path : bool, optional (default=True)

If return_path==True returns the entire path, else returns only the last point of the
path.

return_n_iter : bool, optional (default=False)
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Whether to return the number of iterations.

Returnsalphas : array, shape: [n_alphas + 1]

Maximum of covariances (in absolute value) at each iteration. n_alphas is ei-
ther max_iter, n_features or the number of nodes in the path with alpha >=
alpha_min, whichever is smaller.

active : array, shape [n_alphas]

Indices of active variables at the end of the path.

coefs : array, shape (n_features, n_alphas + 1)

Coefficients along the path

n_iter : int

Number of iterations run. Returned only if return_n_iter is set to True.

See also:

lasso_path, LassoLars, Lars, LassoLarsCV, LarsCV, sklearn.decomposition.sparse_encode

References

[R30], [R31], [R32]

Examples using sklearn.linear_model.lars_path

• Lasso path using LARS

5.19.35 sklearn.linear_model.lasso_path

sklearn.linear_model.lasso_path(X, y, eps=0.001, n_alphas=100, alphas=None, precom-
pute=’auto’, Xy=None, copy_X=True, coef_init=None, ver-
bose=False, return_n_iter=False, positive=False, **params)

Compute Lasso path with coordinate descent

The Lasso optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output then X can be sparse.
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y : ndarray, shape (n_samples,), or (n_samples, n_outputs)

Target values

eps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3

n_alphas : int, optional

Number of alphas along the regularization path

alphas : ndarray, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ’auto’
let us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

coef_init : array, shape (n_features, ) | None

The initial values of the coefficients.

verbose : bool or integer

Amount of verbosity.

params : kwargs

keyword arguments passed to the coordinate descent solver.

positive : bool, default False

If set to True, forces coefficients to be positive.

return_n_iter : bool

whether to return the number of iterations or not.

Returnsalphas : array, shape (n_alphas,)

The alphas along the path where models are computed.

coefs : array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)

Coefficients along the path.

dual_gaps : array, shape (n_alphas,)

The dual gaps at the end of the optimization for each alpha.

n_iters : array-like, shape (n_alphas,)

The number of iterations taken by the coordinate descent optimizer to reach the specified
tolerance for each alpha.

See also:

lars_path, Lasso, LassoLars, LassoCV, LassoLarsCV, sklearn.decomposition.sparse_encode
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Notes

See examples/linear_model/plot_lasso_coordinate_descent_path.py for an example.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

Note that in certain cases, the Lars solver may be significantly faster to implement this functionality. In particu-
lar, linear interpolation can be used to retrieve model coefficients between the values output by lars_path

Examples

Comparing lasso_path and lars_path with interpolation:

>>> X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T
>>> y = np.array([1, 2, 3.1])
>>> # Use lasso_path to compute a coefficient path
>>> _, coef_path, _ = lasso_path(X, y, alphas=[5., 1., .5])
>>> print(coef_path)
[[ 0. 0. 0.46874778]
[ 0.2159048 0.4425765 0.23689075]]

>>> # Now use lars_path and 1D linear interpolation to compute the
>>> # same path
>>> from sklearn.linear_model import lars_path
>>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso')
>>> from scipy import interpolate
>>> coef_path_continuous = interpolate.interp1d(alphas[::-1],
... coef_path_lars[:, ::-1])
>>> print(coef_path_continuous([5., 1., .5]))
[[ 0. 0. 0.46915237]
[ 0.2159048 0.4425765 0.23668876]]

Examples using sklearn.linear_model.lasso_path

• Lasso and Elastic Net

5.19.36 sklearn.linear_model.lasso_stability_path

sklearn.linear_model.lasso_stability_path(X, y, scaling=0.5, ran-
dom_state=None, n_resampling=200,
n_grid=100, sample_fraction=0.75,
eps=8.8817841970012523e-16, n_jobs=1,
verbose=False)

Stabiliy path based on randomized Lasso estimates

Read more in the User Guide.

ParametersX : array-like, shape = [n_samples, n_features]

training data.

y : array-like, shape = [n_samples]

target values.

scaling : float, optional, default=0.5
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The alpha parameter in the stability selection article used to randomly scale the features.
Should be between 0 and 1.

random_state : integer or numpy.random.RandomState, optional

The generator used to randomize the design.

n_resampling : int, optional, default=200

Number of randomized models.

n_grid : int, optional, default=100

Number of grid points. The path is linearly reinterpolated on a grid between 0 and 1
before computing the scores.

sample_fraction : float, optional, default=0.75

The fraction of samples to be used in each randomized design. Should be between 0
and 1. If 1, all samples are used.

eps : float, optional

Smallest value of alpha / alpha_max considered

n_jobs : integer, optional

Number of CPUs to use during the resampling. If ‘-1’, use all the CPUs

verbose : boolean or integer, optional

Sets the verbosity amount

Returnsalphas_grid : array, shape ~ [n_grid]

The grid points between 0 and 1: alpha/alpha_max

scores_path : array, shape = [n_features, n_grid]

The scores for each feature along the path.

Notes

See examples/linear_model/plot_sparse_recovery.py for an example.

Examples using sklearn.linear_model.lasso_stability_path

• Sparse recovery: feature selection for sparse linear models

5.19.37 sklearn.linear_model.orthogonal_mp

sklearn.linear_model.orthogonal_mp(X, y, n_nonzero_coefs=None, tol=None, precom-
pute=False, copy_X=True, return_path=False, re-
turn_n_iter=False)

Orthogonal Matching Pursuit (OMP)

Solves n_targets Orthogonal Matching Pursuit problems. An instance of the problem has the form:

When parametrized by the number of non-zero coefficients using n_nonzero_coefs: argmin ||y - Xgamma||^2
subject to ||gamma||_0 <= n_{nonzero coefs}

When parametrized by error using the parameter tol: argmin ||gamma||_0 subject to ||y - Xgamma||^2 <= tol
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Read more in the User Guide.

ParametersX : array, shape (n_samples, n_features)

Input data. Columns are assumed to have unit norm.

y : array, shape (n_samples,) or (n_samples, n_targets)

Input targets

n_nonzero_coefs : int

Desired number of non-zero entries in the solution. If None (by default) this value is set
to 10% of n_features.

tol : float

Maximum norm of the residual. If not None, overrides n_nonzero_coefs.

precompute : {True, False, ‘auto’},

Whether to perform precomputations. Improves performance when n_targets or
n_samples is very large.

copy_X : bool, optional

Whether the design matrix X must be copied by the algorithm. A false value is only
helpful if X is already Fortran-ordered, otherwise a copy is made anyway.

return_path : bool, optional. Default: False

Whether to return every value of the nonzero coefficients along the forward path. Useful
for cross-validation.

return_n_iter : bool, optional default False

Whether or not to return the number of iterations.

Returnscoef : array, shape (n_features,) or (n_features, n_targets)

Coefficients of the OMP solution. If return_path=True, this contains the whole coef-
ficient path. In this case its shape is (n_features, n_features) or (n_features, n_targets,
n_features) and iterating over the last axis yields coefficients in increasing order of ac-
tive features.

n_iters : array-like or int

Number of active features across every target. Returned only if return_n_iter is set to
True.

See also:

OrthogonalMatchingPursuit, orthogonal_mp_gram, lars_path,
decomposition.sparse_encode

Notes

Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang, Matching pursuits with time-frequency
dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415.
(http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)

This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of
the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008.
http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf
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5.19.38 sklearn.linear_model.orthogonal_mp_gram

sklearn.linear_model.orthogonal_mp_gram(Gram, Xy, n_nonzero_coefs=None, tol=None,
norms_squared=None, copy_Gram=True,
copy_Xy=True, return_path=False, re-
turn_n_iter=False)

Gram Orthogonal Matching Pursuit (OMP)

Solves n_targets Orthogonal Matching Pursuit problems using only the Gram matrix X.T * X and the product
X.T * y.

Read more in the User Guide.

ParametersGram : array, shape (n_features, n_features)

Gram matrix of the input data: X.T * X

Xy : array, shape (n_features,) or (n_features, n_targets)

Input targets multiplied by X: X.T * y

n_nonzero_coefs : int

Desired number of non-zero entries in the solution. If None (by default) this value is set
to 10% of n_features.

tol : float

Maximum norm of the residual. If not None, overrides n_nonzero_coefs.

norms_squared : array-like, shape (n_targets,)

Squared L2 norms of the lines of y. Required if tol is not None.

copy_Gram : bool, optional

Whether the gram matrix must be copied by the algorithm. A false value is only helpful
if it is already Fortran-ordered, otherwise a copy is made anyway.

copy_Xy : bool, optional

Whether the covariance vector Xy must be copied by the algorithm. If False, it may be
overwritten.

return_path : bool, optional. Default: False

Whether to return every value of the nonzero coefficients along the forward path. Useful
for cross-validation.

return_n_iter : bool, optional default False

Whether or not to return the number of iterations.

Returnscoef : array, shape (n_features,) or (n_features, n_targets)

Coefficients of the OMP solution. If return_path=True, this contains the whole coef-
ficient path. In this case its shape is (n_features, n_features) or (n_features, n_targets,
n_features) and iterating over the last axis yields coefficients in increasing order of ac-
tive features.

n_iters : array-like or int

Number of active features across every target. Returned only if return_n_iter is set to
True.
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See also:

OrthogonalMatchingPursuit, orthogonal_mp, lars_path, decomposition.sparse_encode

Notes

Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang, Matching pursuits with time-frequency
dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415.
(http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)

This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of
the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008.
http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

5.20 sklearn.manifold: Manifold Learning

The sklearn.manifold module implements data embedding techniques.

User guide: See the Manifold learning section for further details.

manifold.LocallyLinearEmbedding([...]) Locally Linear Embedding
manifold.Isomap([n_neighbors, n_components, ...]) Isomap Embedding
manifold.MDS([n_components, metric, n_init, ...]) Multidimensional scaling
manifold.SpectralEmbedding([n_components, ...]) Spectral embedding for non-linear dimensionality reduction.
manifold.TSNE([n_components, perplexity, ...]) t-distributed Stochastic Neighbor Embedding.

5.20.1 sklearn.manifold.LocallyLinearEmbedding

class sklearn.manifold.LocallyLinearEmbedding(n_neighbors=5, n_components=2,
reg=0.001, eigen_solver=’auto’, tol=1e-
06, max_iter=100, method=’standard’,
hessian_tol=0.0001, modified_tol=1e-
12, neighbors_algorithm=’auto’, ran-
dom_state=None)

Locally Linear Embedding

Read more in the User Guide.

Parametersn_neighbors : integer

number of neighbors to consider for each point.

n_components : integer

number of coordinates for the manifold

reg : float

regularization constant, multiplies the trace of the local covariance matrix of the dis-
tances.

eigen_solver : string, {‘auto’, ‘arpack’, ‘dense’}

auto : algorithm will attempt to choose the best method for input data

1456 Chapter 5. API Reference

http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf
http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf


scikit-learn user guide, Release 0.17

arpack[use arnoldi iteration in shift-invert mode.] For this method, M may be a dense
matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable
for some problems. It is best to try several random seeds in order to check results.

dense[use standard dense matrix operations for the eigenvalue] decomposition. For this
method, M must be an array or matrix type. This method should be avoided for large
problems.

tol : float, optional

Tolerance for ‘arpack’ method Not used if eigen_solver==’dense’.

max_iter : integer

maximum number of iterations for the arpack solver. Not used if
eigen_solver==’dense’.

method : string (‘standard’, ‘hessian’, ‘modified’ or ‘ltsa’)

standard[use the standard locally linear embedding algorithm. see] reference [1]

hessian[use the Hessian eigenmap method. This method requires] n_neighbors >
n_components * (1 + (n_components + 1) / 2 see reference [2]

modified[use the modified locally linear embedding algorithm.] see reference [3]

ltsa[use local tangent space alignment algorithm] see reference [4]

hessian_tol : float, optional

Tolerance for Hessian eigenmapping method. Only used if method == ’hessian’

modified_tol : float, optional

Tolerance for modified LLE method. Only used if method == ’modified’

neighbors_algorithm : string [’auto’|’brute’|’kd_tree’|’ball_tree’]

algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors
instance

random_state: numpy.RandomState or int, optional :

The generator or seed used to determine the starting vector for arpack iterations. De-
faults to numpy.random.

Attributesembedding_vectors_ : array-like, shape [n_components, n_samples]

Stores the embedding vectors

reconstruction_error_ : float

Reconstruction error associated with embedding_vectors_

nbrs_ : NearestNeighbors object

Stores nearest neighbors instance, including BallTree or KDtree if applicable.

References

[R34], [R35], [R36], [R37]

Methods
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fit(X[, y]) Compute the embedding vectors for data X
fit_transform(X[, y]) Compute the embedding vectors for data X and transform X.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform new points into embedding space.

__init__(n_neighbors=5, n_components=2, reg=0.001, eigen_solver=’auto’, tol=1e-06,
max_iter=100, method=’standard’, hessian_tol=0.0001, modified_tol=1e-12, neigh-
bors_algorithm=’auto’, random_state=None)

fit(X, y=None)
Compute the embedding vectors for data X

ParametersX : array-like of shape [n_samples, n_features]

training set.

Returnsself : returns an instance of self.

fit_transform(X, y=None)
Compute the embedding vectors for data X and transform X.

ParametersX : array-like of shape [n_samples, n_features]

training set.

ReturnsX_new: array-like, shape (n_samples, n_components) :

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X)
Transform new points into embedding space.

ParametersX : array-like, shape = [n_samples, n_features]

ReturnsX_new : array, shape = [n_samples, n_components]

Notes

Because of scaling performed by this method, it is discouraged to use it together with methods that are not
scale-invariant (like SVMs)
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Examples using sklearn.manifold.LocallyLinearEmbedding

• Visualizing the stock market structure

• Comparison of Manifold Learning methods

• Manifold Learning methods on a severed sphere

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap...

5.20.2 sklearn.manifold.Isomap

class sklearn.manifold.Isomap(n_neighbors=5, n_components=2, eigen_solver=’auto’, tol=0,
max_iter=None, path_method=’auto’, neighbors_algorithm=’auto’)

Isomap Embedding

Non-linear dimensionality reduction through Isometric Mapping

Read more in the User Guide.

Parametersn_neighbors : integer

number of neighbors to consider for each point.

n_components : integer

number of coordinates for the manifold

eigen_solver : [’auto’|’arpack’|’dense’]

‘auto’ : Attempt to choose the most efficient solver for the given problem.

‘arpack’ : Use Arnoldi decomposition to find the eigenvalues and eigenvectors.

‘dense’ : Use a direct solver (i.e. LAPACK) for the eigenvalue decomposition.

tol : float

Convergence tolerance passed to arpack or lobpcg. not used if eigen_solver == ‘dense’.

max_iter : integer

Maximum number of iterations for the arpack solver. not used if eigen_solver ==
‘dense’.

path_method : string [’auto’|’FW’|’D’]

Method to use in finding shortest path.

‘auto’ : attempt to choose the best algorithm automatically.

‘FW’ : Floyd-Warshall algorithm.

‘D’ : Dijkstra’s algorithm.

neighbors_algorithm : string [’auto’|’brute’|’kd_tree’|’ball_tree’]

Algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors
instance.

Attributesembedding_ : array-like, shape (n_samples, n_components)

Stores the embedding vectors.

kernel_pca_ : object

KernelPCA object used to implement the embedding.
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training_data_ : array-like, shape (n_samples, n_features)

Stores the training data.

nbrs_ : sklearn.neighbors.NearestNeighbors instance

Stores nearest neighbors instance, including BallTree or KDtree if applicable.

dist_matrix_ : array-like, shape (n_samples, n_samples)

Stores the geodesic distance matrix of training data.

References

[R33]

Methods

fit(X[, y]) Compute the embedding vectors for data X
fit_transform(X[, y]) Fit the model from data in X and transform X.
get_params([deep]) Get parameters for this estimator.
reconstruction_error() Compute the reconstruction error for the embedding.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform X.

__init__(n_neighbors=5, n_components=2, eigen_solver=’auto’, tol=0, max_iter=None,
path_method=’auto’, neighbors_algorithm=’auto’)

fit(X, y=None)
Compute the embedding vectors for data X

ParametersX : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors}

Sample data, shape = (n_samples, n_features), in the form of a numpy array, precom-
puted tree, or NearestNeighbors object.

Returnsself : returns an instance of self.

fit_transform(X, y=None)
Fit the model from data in X and transform X.

ParametersX: {array-like, sparse matrix, BallTree, KDTree} :

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

ReturnsX_new: array-like, shape (n_samples, n_components) :

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.
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reconstruction_error()
Compute the reconstruction error for the embedding.

Returnsreconstruction_error : float

Notes

The cost function of an isomap embedding is

E = frobenius_norm[K(D) - K(D_fit)] / n_samples

Where D is the matrix of distances for the input data X, D_fit is the matrix of distances for the output
embedding X_fit, and K is the isomap kernel:

K(D) = -0.5 * (I - 1/n_samples) * D^2 * (I - 1/n_samples)

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X)
Transform X.

This is implemented by linking the points X into the graph of geodesic distances of the training data. First
the n_neighbors nearest neighbors of X are found in the training data, and from these the shortest geodesic
distances from each point in X to each point in the training data are computed in order to construct the
kernel. The embedding of X is the projection of this kernel onto the embedding vectors of the training set.

ParametersX: array-like, shape (n_samples, n_features) :

ReturnsX_new: array-like, shape (n_samples, n_components) :

Examples using sklearn.manifold.Isomap

• Comparison of Manifold Learning methods

• Manifold Learning methods on a severed sphere

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap...

5.20.3 sklearn.manifold.MDS

class sklearn.manifold.MDS(n_components=2, metric=True, n_init=4, max_iter=300, verbose=0,
eps=0.001, n_jobs=1, random_state=None, dissimilarity=’euclidean’)

Multidimensional scaling

Read more in the User Guide.

Parametersmetric : boolean, optional, default: True

compute metric or nonmetric SMACOF (Scaling by Majorizing a Complicated Func-
tion) algorithm

n_components : int, optional, default: 2
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number of dimension in which to immerse the similarities overridden if initial array is
provided.

n_init : int, optional, default: 4

Number of time the smacof algorithm will be run with different initialisation. The final
results will be the best output of the n_init consecutive runs in terms of stress.

max_iter : int, optional, default: 300

Maximum number of iterations of the SMACOF algorithm for a single run

verbose : int, optional, default: 0

level of verbosity

eps : float, optional, default: 1e-6

relative tolerance w.r.t stress to declare converge

n_jobs : int, optional, default: 1

The number of jobs to use for the computation. This works by breaking down the
pairwise matrix into n_jobs even slices and computing them in parallel.

If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which
is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for
n_jobs = -2, all CPUs but one are used.

random_state : integer or numpy.RandomState, optional

The generator used to initialize the centers. If an integer is given, it fixes the seed.
Defaults to the global numpy random number generator.

dissimilarity : string

Which dissimilarity measure to use. Supported are ‘euclidean’ and ‘precomputed’.

Attributesembedding_ : array-like, shape [n_components, n_samples]

Stores the position of the dataset in the embedding space

stress_ : float

The final value of the stress (sum of squared distance of the disparities and the distances
for all constrained points)

References

“Modern Multidimensional Scaling - Theory and Applications” Borg, I.; Groenen P. Springer Series in Statistics
(1997)

“Nonmetric multidimensional scaling: a numerical method” Kruskal, J. Psychometrika, 29 (1964)

“Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis” Kruskal, J. Psychometrika,
29, (1964)

Methods

fit(X[, y, init]) Computes the position of the points in the embedding space
fit_transform(X[, y, init]) Fit the data from X, and returns the embedded coordinates

Continued on next page
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Table 5.152 – continued from previous page
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.

__init__(n_components=2, metric=True, n_init=4, max_iter=300, verbose=0, eps=0.001, n_jobs=1,
random_state=None, dissimilarity=’euclidean’)

fit(X, y=None, init=None)
Computes the position of the points in the embedding space

ParametersX : array, shape=[n_samples, n_features], or [n_samples, n_samples] if dissimilar-
ity=’precomputed’

Input data.

init : {None or ndarray, shape (n_samples,)}, optional

If None, randomly chooses the initial configuration if ndarray, initialize the SMACOF
algorithm with this array.

fit_transform(X, y=None, init=None)
Fit the data from X, and returns the embedded coordinates

ParametersX : array, shape=[n_samples, n_features], or [n_samples, n_samples] if dissimilar-
ity=’precomputed’

Input data.

init : {None or ndarray, shape (n_samples,)}, optional

If None, randomly chooses the initial configuration if ndarray, initialize the SMACOF
algorithm with this array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.manifold.MDS

• Multi-dimensional scaling

• Comparison of Manifold Learning methods

• Manifold Learning methods on a severed sphere

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap...
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5.20.4 sklearn.manifold.SpectralEmbedding

class sklearn.manifold.SpectralEmbedding(n_components=2, affinity=’nearest_neighbors’,
gamma=None, random_state=None,
eigen_solver=None, n_neighbors=None)

Spectral embedding for non-linear dimensionality reduction.

Forms an affinity matrix given by the specified function and applies spectral decomposition to the corresponding
graph laplacian. The resulting transformation is given by the value of the eigenvectors for each data point.

Read more in the User Guide.

Parametersn_components : integer, default: 2

The dimension of the projected subspace.

eigen_solver : {None, ‘arpack’, ‘lobpcg’, or ‘amg’}

The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It
can be faster on very large, sparse problems, but may also lead to instabilities.

random_state : int seed, RandomState instance, or None, default

A pseudo random number generator used for the initialization of the lobpcg eigenvectors
decomposition when eigen_solver == ‘amg’.

affinity : string or callable, default

How to construct the affinity matrix.

•‘nearest_neighbors’ : construct affinity matrix by knn graph

•‘rbf’ : construct affinity matrix by rbf kernel

•‘precomputed’ : interpret X as precomputed affinity matrix

•callable : use passed in function as affinity the function takes in data matrix
(n_samples, n_features) and return affinity matrix (n_samples, n_samples).

gamma : float, optional, default

Kernel coefficient for rbf kernel.

n_neighbors : int, default

Number of nearest neighbors for nearest_neighbors graph building.

Attributesembedding_ : array, shape = (n_samples, n_components)

Spectral embedding of the training matrix.

affinity_matrix_ : array, shape = (n_samples, n_samples)

Affinity_matrix constructed from samples or precomputed.

References

•A Tutorial on Spectral Clustering, 2007 Ulrike von Luxburg
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323

•On Spectral Clustering: Analysis and an algorithm, 2011 Andrew Y. Ng, Michael I. Jordan, Yair Weiss
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.8100

•Normalized cuts and image segmentation, 2000 Jianbo Shi, Jitendra Malik
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324
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Methods

fit(X[, y]) Fit the model from data in X.
fit_transform(X[, y]) Fit the model from data in X and transform X.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.

__init__(n_components=2, affinity=’nearest_neighbors’, gamma=None, random_state=None,
eigen_solver=None, n_neighbors=None)

fit(X, y=None)
Fit the model from data in X.

ParametersX : array-like, shape (n_samples, n_features)

Training vector, where n_samples is the number of samples and n_features is the number
of features.

If affinity is “precomputed” X : array-like, shape (n_samples, n_samples), Interpret X
as precomputed adjacency graph computed from samples.

Returnsself : object

Returns the instance itself.

fit_transform(X, y=None)
Fit the model from data in X and transform X.

ParametersX: array-like, shape (n_samples, n_features) :

Training vector, where n_samples is the number of samples and n_features is the number
of features.

If affinity is “precomputed” X : array-like, shape (n_samples, n_samples), Interpret X
as precomputed adjacency graph computed from samples.

ReturnsX_new: array-like, shape (n_samples, n_components) :

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :
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Examples using sklearn.manifold.SpectralEmbedding

• Various Agglomerative Clustering on a 2D embedding of digits

• Comparison of Manifold Learning methods

• Manifold Learning methods on a severed sphere

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap...

5.20.5 sklearn.manifold.TSNE

class sklearn.manifold.TSNE(n_components=2, perplexity=30.0, early_exaggeration=4.0, learn-
ing_rate=1000.0, n_iter=1000, n_iter_without_progress=30,
min_grad_norm=1e-07, metric=’euclidean’, init=’random’, verbose=0,
random_state=None, method=’barnes_hut’, angle=0.5)

t-distributed Stochastic Neighbor Embedding.

t-SNE [1] is a tool to visualize high-dimensional data. It converts similarities between data points to joint
probabilities and tries to minimize the Kullback-Leibler divergence between the joint probabilities of the low-
dimensional embedding and the high-dimensional data. t-SNE has a cost function that is not convex, i.e. with
different initializations we can get different results.

It is highly recommended to use another dimensionality reduction method (e.g. PCA for dense data or Truncat-
edSVD for sparse data) to reduce the number of dimensions to a reasonable amount (e.g. 50) if the number of
features is very high. This will suppress some noise and speed up the computation of pairwise distances between
samples. For more tips see Laurens van der Maaten’s FAQ [2].

Read more in the User Guide.

Parametersn_components : int, optional (default: 2)

Dimension of the embedded space.

perplexity : float, optional (default: 30)

The perplexity is related to the number of nearest neighbors that is used in other man-
ifold learning algorithms. Larger datasets usually require a larger perplexity. Consider
selcting a value between 5 and 50. The choice is not extremely critical since t-SNE is
quite insensitive to this parameter.

early_exaggeration : float, optional (default: 4.0)

Controls how tight natural clusters in the original space are in the embedded space and
how much space will be between them. For larger values, the space between natural
clusters will be larger in the embedded space. Again, the choice of this parameter is
not very critical. If the cost function increases during initial optimization, the early
exaggeration factor or the learning rate might be too high.

learning_rate : float, optional (default: 1000)

The learning rate can be a critical parameter. It should be between 100 and 1000. If the
cost function increases during initial optimization, the early exaggeration factor or the
learning rate might be too high. If the cost function gets stuck in a bad local minimum
increasing the learning rate helps sometimes.

n_iter : int, optional (default: 1000)

Maximum number of iterations for the optimization. Should be at least 200.

n_iter_without_progress : int, optional (default: 30)

1466 Chapter 5. API Reference



scikit-learn user guide, Release 0.17

Maximum number of iterations without progress before we abort the optimization.

New in version 0.17: parameter n_iter_without_progress to control stopping criteria.

min_grad_norm : float, optional (default: 1E-7)

If the gradient norm is below this threshold, the optimization will be aborted.

metric : string or callable, optional

The metric to use when calculating distance between instances in a feature
array. If metric is a string, it must be one of the options allowed by
scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pair-
wise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is “precomputed”, X is assumed
to be a distance matrix. Alternatively, if metric is a callable function, it is called on each
pair of instances (rows) and the resulting value recorded. The callable should take two
arrays from X as input and return a value indicating the distance between them. The
default is “euclidean” which is interpreted as squared euclidean distance.

init : string, optional (default: “random”)

Initialization of embedding. Possible options are ‘random’ and ‘pca’. PCA initialization
cannot be used with precomputed distances and is usually more globally stable than
random initialization.

verbose : int, optional (default: 0)

Verbosity level.

random_state : int or RandomState instance or None (default)

Pseudo Random Number generator seed control. If None, use the numpy.random sin-
gleton. Note that different initializations might result in different local minima of the
cost function.

method : string (default: ‘barnes_hut’)

By default the gradient calculation algorithm uses Barnes-Hut approximation running in
O(NlogN) time. method=’exact’ will run on the slower, but exact, algorithm in O(N^2)
time. The exact algorithm should be used when nearest-neighbor errors need to be better
than 3%. However, the exact method cannot scale to millions of examples.

New in version 0.17: Approximate optimization method via the Barnes-Hut.

angle : float (default: 0.5)

Only used if method=’barnes_hut’ This is the trade-off between speed and accuracy for
Barnes-Hut T-SNE. ‘angle’ is the angular size (referred to as theta in [3]) of a distant
node as measured from a point. If this size is below ‘angle’ then it is used as a summary
node of all points contained within it. This method is not very sensitive to changes
in this parameter in the range of 0.2 - 0.8. Angle less than 0.2 has quickly increasing
computation time and angle greater 0.8 has quickly increasing error.

Attributesembedding_ : array-like, shape (n_samples, n_components)

Stores the embedding vectors.

References

[1] van der Maaten, L.J.P.; Hinton, G.E. Visualizing High-Dimensional DataUsing t-SNE. Journal of Ma-
chine Learning Research 9:2579-2605, 2008.
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[2] van der Maaten, L.J.P. t-Distributed Stochastic Neighbor Embeddinghttp://homepage.tudelft.nl/19j49/t-
SNE.html

[3] L.J.P. van der Maaten. Accelerating t-SNE using Tree-Based Algorithms.Journal of Machine Learning
Research 15(Oct):3221-3245, 2014. http://lvdmaaten.github.io/publications/papers/JMLR_2014.pdf

Examples

>>> import numpy as np
>>> from sklearn.manifold import TSNE
>>> X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]])
>>> model = TSNE(n_components=2, random_state=0)
>>> np.set_printoptions(suppress=True)
>>> model.fit_transform(X)
array([[ 0.00017599, 0.00003993],

[ 0.00009891, 0.00021913],
[ 0.00018554, -0.00009357],
[ 0.00009528, -0.00001407]])

Methods

fit(X[, y]) Fit X into an embedded space.
fit_transform(X[, y]) Fit X into an embedded space and return that transformed output.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.

__init__(n_components=2, perplexity=30.0, early_exaggeration=4.0, learning_rate=1000.0,
n_iter=1000, n_iter_without_progress=30, min_grad_norm=1e-07, metric=’euclidean’,
init=’random’, verbose=0, random_state=None, method=’barnes_hut’, angle=0.5)

fit(X, y=None)
Fit X into an embedded space.

ParametersX : array, shape (n_samples, n_features) or (n_samples, n_samples)

If the metric is ‘precomputed’ X must be a square distance matrix. Otherwise it contains
a sample per row. If the method is ‘exact’, X may be a sparse matrix of type ‘csr’, ‘csc’
or ‘coo’.

fit_transform(X, y=None)
Fit X into an embedded space and return that transformed output.

ParametersX : array, shape (n_samples, n_features) or (n_samples, n_samples)

If the metric is ‘precomputed’ X must be a square distance matrix. Otherwise it contains
a sample per row.

ReturnsX_new : array, shape (n_samples, n_components)

Embedding of the training data in low-dimensional space.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

1468 Chapter 5. API Reference

http://homepage.tudelft.nl/19j49/t-SNE.html
http://homepage.tudelft.nl/19j49/t-SNE.html
http://lvdmaaten.github.io/publications/papers/JMLR_2014.pdf


scikit-learn user guide, Release 0.17

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.manifold.TSNE

• Comparison of Manifold Learning methods

• Manifold Learning methods on a severed sphere

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap...

manifold.locally_linear_embedding(X, ...[, ...]) Perform a Locally Linear Embedding analysis on the data.
manifold.spectral_embedding(adjacency[, ...]) Project the sample on the first eigenvectors of the graph Laplacian.

5.20.6 sklearn.manifold.locally_linear_embedding

sklearn.manifold.locally_linear_embedding(X, n_neighbors, n_components, reg=0.001,
eigen_solver=’auto’, tol=1e-06, max_iter=100,
method=’standard’, hessian_tol=0.0001,
modified_tol=1e-12, random_state=None)

Perform a Locally Linear Embedding analysis on the data.

Read more in the User Guide.

ParametersX : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors}

Sample data, shape = (n_samples, n_features), in the form of a numpy array, sparse
array, precomputed tree, or NearestNeighbors object.

n_neighbors : integer

number of neighbors to consider for each point.

n_components : integer

number of coordinates for the manifold.

reg : float

regularization constant, multiplies the trace of the local covariance matrix of the dis-
tances.

eigen_solver : string, {‘auto’, ‘arpack’, ‘dense’}

auto : algorithm will attempt to choose the best method for input data

arpack[use arnoldi iteration in shift-invert mode.] For this method, M may be a dense
matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable
for some problems. It is best to try several random seeds in order to check results.
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dense[use standard dense matrix operations for the eigenvalue] decomposition. For this
method, M must be an array or matrix type. This method should be avoided for large
problems.

tol : float, optional

Tolerance for ‘arpack’ method Not used if eigen_solver==’dense’.

max_iter : integer

maximum number of iterations for the arpack solver.

method : {‘standard’, ‘hessian’, ‘modified’, ‘ltsa’}

standard[use the standard locally linear embedding algorithm.] see reference [R38]

hessian[use the Hessian eigenmap method. This method requires] n_neighbors >
n_components * (1 + (n_components + 1) / 2. see reference [R39]

modified[use the modified locally linear embedding algorithm.] see reference [R40]

ltsa[use local tangent space alignment algorithm] see reference [R41]

hessian_tol : float, optional

Tolerance for Hessian eigenmapping method. Only used if method == ‘hessian’

modified_tol : float, optional

Tolerance for modified LLE method. Only used if method == ‘modified’

random_state: numpy.RandomState or int, optional :

The generator or seed used to determine the starting vector for arpack iterations. De-
faults to numpy.random.

ReturnsY : array-like, shape [n_samples, n_components]

Embedding vectors.

squared_error : float

Reconstruction error for the embedding vectors. Equivalent to norm(Y - W Y,
’fro’)**2, where W are the reconstruction weights.

References

[R38], [R39], [R40], [R41]

Examples using sklearn.manifold.locally_linear_embedding

• Swiss Roll reduction with LLE

5.20.7 sklearn.manifold.spectral_embedding

sklearn.manifold.spectral_embedding(adjacency, n_components=8, eigen_solver=None, ran-
dom_state=None, eigen_tol=0.0, norm_laplacian=True,
drop_first=True)

Project the sample on the first eigenvectors of the graph Laplacian.
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The adjacency matrix is used to compute a normalized graph Laplacian whose spectrum (especially the eigen-
vectors associated to the smallest eigenvalues) has an interpretation in terms of minimal number of cuts neces-
sary to split the graph into comparably sized components.

This embedding can also ‘work’ even if the adjacency variable is not strictly the adjacency matrix of a graph
but more generally an affinity or similarity matrix between samples (for instance the heat kernel of a euclidean
distance matrix or a k-NN matrix).

However care must taken to always make the affinity matrix symmetric so that the eigenvector decomposition
works as expected.

Read more in the User Guide.

Parametersadjacency : array-like or sparse matrix, shape: (n_samples, n_samples)

The adjacency matrix of the graph to embed.

n_components : integer, optional, default 8

The dimension of the projection subspace.

eigen_solver : {None, ‘arpack’, ‘lobpcg’, or ‘amg’}, default None

The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It
can be faster on very large, sparse problems, but may also lead to instabilities.

random_state : int seed, RandomState instance, or None (default)

A pseudo random number generator used for the initialization of the lobpcg eigenvectors
decomposition when eigen_solver == ‘amg’. By default, arpack is used.

eigen_tol : float, optional, default=0.0

Stopping criterion for eigendecomposition of the Laplacian matrix when using arpack
eigen_solver.

drop_first : bool, optional, default=True

Whether to drop the first eigenvector. For spectral embedding, this should be True as
the first eigenvector should be constant vector for connected graph, but for spectral
clustering, this should be kept as False to retain the first eigenvector.

norm_laplacian : bool, optional, default=True

If True, then compute normalized Laplacian.

Returnsembedding : array, shape=(n_samples, n_components)

The reduced samples.

Notes

Spectral embedding is most useful when the graph has one connected component. If there graph has many
components, the first few eigenvectors will simply uncover the connected components of the graph.

References

•http://en.wikipedia.org/wiki/LOBPCG

•Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gra-
dient Method Andrew V. Knyazev http://dx.doi.org/10.1137%2FS1064827500366124
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5.21 sklearn.metrics: Metrics

See the Model evaluation: quantifying the quality of predictions section and the Pairwise metrics, Affinities and
Kernels section of the user guide for further details. The sklearn.metrics module includes score functions,
performance metrics and pairwise metrics and distance computations.

5.21.1 Model Selection Interface

See the The scoring parameter: defining model evaluation rules section of the user guide for further details.

metrics.make_scorer(score_func[, ...]) Make a scorer from a performance metric or loss function.
metrics.get_scorer(scoring)

sklearn.metrics.make_scorer

sklearn.metrics.make_scorer(score_func, greater_is_better=True, needs_proba=False,
needs_threshold=False, **kwargs)

Make a scorer from a performance metric or loss function.

This factory function wraps scoring functions for use in GridSearchCV and cross_val_score. It takes
a score function, such as accuracy_score, mean_squared_error, adjusted_rand_index or
average_precision and returns a callable that scores an estimator’s output.

Read more in the User Guide.

Parametersscore_func : callable,

Score function (or loss function) with signature score_func(y, y_pred,

**kwargs).

greater_is_better : boolean, default=True

Whether score_func is a score function (default), meaning high is good, or a loss func-
tion, meaning low is good. In the latter case, the scorer object will sign-flip the outcome
of the score_func.

needs_proba : boolean, default=False

Whether score_func requires predict_proba to get probability estimates out of a classi-
fier.

needs_threshold : boolean, default=False

Whether score_func takes a continuous decision certainty. This only works for binary
classification using estimators that have either a decision_function or predict_proba
method.

For example average_precision or the area under the roc curve can not be com-
puted using discrete predictions alone.

**kwargs : additional arguments

Additional parameters to be passed to score_func.

Returnsscorer : callable

Callable object that returns a scalar score; greater is better.
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Examples

>>> from sklearn.metrics import fbeta_score, make_scorer
>>> ftwo_scorer = make_scorer(fbeta_score, beta=2)
>>> ftwo_scorer
make_scorer(fbeta_score, beta=2)
>>> from sklearn.grid_search import GridSearchCV
>>> from sklearn.svm import LinearSVC
>>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]},
... scoring=ftwo_scorer)

sklearn.metrics.get_scorer

sklearn.metrics.get_scorer(scoring)

5.21.2 Classification metrics

See the Classification metrics section of the user guide for further details.

metrics.accuracy_score(y_true, y_pred[, ...]) Accuracy classification score.
metrics.auc(x, y[, reorder]) Compute Area Under the Curve (AUC) using the trapezoidal rule
metrics.average_precision_score(y_true, y_score) Compute average precision (AP) from prediction scores
metrics.brier_score_loss(y_true, y_prob[, ...]) Compute the Brier score.
metrics.classification_report(y_true, y_pred) Build a text report showing the main classification metrics
metrics.confusion_matrix(y_true, y_pred[, ...]) Compute confusion matrix to evaluate the accuracy of a classification
metrics.f1_score(y_true, y_pred[, labels, ...]) Compute the F1 score, also known as balanced F-score or F-measure
metrics.fbeta_score(y_true, y_pred, beta[, ...]) Compute the F-beta score
metrics.hamming_loss(y_true, y_pred[, classes]) Compute the average Hamming loss.
metrics.hinge_loss(y_true, pred_decision[, ...]) Average hinge loss (non-regularized)
metrics.jaccard_similarity_score(y_true, y_pred) Jaccard similarity coefficient score
metrics.log_loss(y_true, y_pred[, eps, ...]) Log loss, aka logistic loss or cross-entropy loss.
metrics.matthews_corrcoef(y_true, y_pred) Compute the Matthews correlation coefficient (MCC) for binary classes
metrics.precision_recall_curve(y_true, ...) Compute precision-recall pairs for different probability thresholds
metrics.precision_recall_fscore_support(...) Compute precision, recall, F-measure and support for each class
metrics.precision_score(y_true, y_pred[, ...]) Compute the precision
metrics.recall_score(y_true, y_pred[, ...]) Compute the recall
metrics.roc_auc_score(y_true, y_score[, ...]) Compute Area Under the Curve (AUC) from prediction scores
metrics.roc_curve(y_true, y_score[, ...]) Compute Receiver operating characteristic (ROC)
metrics.zero_one_loss(y_true, y_pred[, ...]) Zero-one classification loss.
metrics.brier_score_loss(y_true, y_prob[, ...]) Compute the Brier score.

sklearn.metrics.accuracy_score

sklearn.metrics.accuracy_score(y_true, y_pred, normalize=True, sample_weight=None)
Accuracy classification score.

In multilabel classification, this function computes subset accuracy: the set of labels predicted for a sample must
exactly match the corresponding set of labels in y_true.

Read more in the User Guide.

Parametersy_true : 1d array-like, or label indicator array / sparse matrix
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Ground truth (correct) labels.

y_pred : 1d array-like, or label indicator array / sparse matrix

Predicted labels, as returned by a classifier.

normalize : bool, optional (default=True)

If False, return the number of correctly classified samples. Otherwise, return the
fraction of correctly classified samples.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returnsscore : float

If normalize == True, return the correctly classified samples (float), else it returns
the number of correctly classified samples (int).

The best performance is 1 with normalize == True and the number of samples
with normalize == False.

See also:

jaccard_similarity_score, hamming_loss, zero_one_loss

Notes

In binary and multiclass classification, this function is equal to the jaccard_similarity_score function.

Examples

>>> import numpy as np
>>> from sklearn.metrics import accuracy_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> accuracy_score(y_true, y_pred)
0.5
>>> accuracy_score(y_true, y_pred, normalize=False)
2

In the multilabel case with binary label indicators: >>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2,
2))) 0.5

Examples using sklearn.metrics.accuracy_score

• Multi-class AdaBoosted Decision Trees

• Classification of text documents using sparse features

sklearn.metrics.auc

sklearn.metrics.auc(x, y, reorder=False)
Compute Area Under the Curve (AUC) using the trapezoidal rule

This is a general function, given points on a curve. For computing the area under the ROC-curve, see
roc_auc_score.
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Parametersx : array, shape = [n]

x coordinates.

y : array, shape = [n]

y coordinates.

reorder : boolean, optional (default=False)

If True, assume that the curve is ascending in the case of ties, as for an ROC curve. If
the curve is non-ascending, the result will be wrong.

Returnsauc : float

See also:

roc_auc_scoreComputes the area under the ROC curve

precision_recall_curveCompute precision-recall pairs for different probability thresholds

Examples

>>> import numpy as np
>>> from sklearn import metrics
>>> y = np.array([1, 1, 2, 2])
>>> pred = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = metrics.roc_curve(y, pred, pos_label=2)
>>> metrics.auc(fpr, tpr)
0.75

Examples using sklearn.metrics.auc

• Species distribution modeling

• Sparse recovery: feature selection for sparse linear models

• Receiver Operating Characteristic (ROC) with cross validation

• Receiver Operating Characteristic (ROC)

sklearn.metrics.average_precision_score

sklearn.metrics.average_precision_score(y_true, y_score, average=’macro’, sam-
ple_weight=None)

Compute average precision (AP) from prediction scores

This score corresponds to the area under the precision-recall curve.

Note: this implementation is restricted to the binary classification task or multilabel classification task.

Read more in the User Guide.

Parametersy_true : array, shape = [n_samples] or [n_samples, n_classes]

True binary labels in binary label indicators.

y_score : array, shape = [n_samples] or [n_samples, n_classes]

Target scores, can either be probability estimates of the positive class, confidence values,
or binary decisions.
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average : string, [None, ‘micro’, ‘macro’ (default), ‘samples’, ‘weighted’]

If None, the scores for each class are returned. Otherwise, this determines the type of
averaging performed on the data:

’micro’:Calculate metrics globally by considering each element of the label indicator
matrix as a label.

’macro’:Calculate metrics for each label, and find their unweighted mean. This does
not take label imbalance into account.

’weighted’:Calculate metrics for each label, and find their average, weighted by
support (the number of true instances for each label).

’samples’:Calculate metrics for each instance, and find their average.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returnsaverage_precision : float

See also:

roc_auc_scoreArea under the ROC curve

precision_recall_curveCompute precision-recall pairs for different probability thresholds

References

[R44]

Examples

>>> import numpy as np
>>> from sklearn.metrics import average_precision_score
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> average_precision_score(y_true, y_scores)
0.79...

Examples using sklearn.metrics.average_precision_score

• Precision-Recall

sklearn.metrics.brier_score_loss

sklearn.metrics.brier_score_loss(y_true, y_prob, sample_weight=None, pos_label=None)
Compute the Brier score.

The smaller the Brier score, the better, hence the naming with “loss”.

Across all items in a set N predictions, the Brier score measures the mean squared difference between (1) the
predicted probability assigned to the possible outcomes for item i, and (2) the actual outcome. Therefore, the
lower the Brier score is for a set of predictions, the better the predictions are calibrated. Note that the Brier score
always takes on a value between zero and one, since this is the largest possible difference between a predicted
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probability (which must be between zero and one) and the actual outcome (which can take on values of only 0
and 1).

The Brier score is appropriate for binary and categorical outcomes that can be structured as true or false, but
is inappropriate for ordinal variables which can take on three or more values (this is because the Brier score
assumes that all possible outcomes are equivalently “distant” from one another). Which label is considered to
be the positive label is controlled via the parameter pos_label, which defaults to 1.

Read more in the User Guide.

Parametersy_true : array, shape (n_samples,)

True targets.

y_prob : array, shape (n_samples,)

Probabilities of the positive class.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

pos_label : int (default: None)

Label of the positive class. If None, the maximum label is used as positive class

Returnsscore : float

Brier score

References

http://en.wikipedia.org/wiki/Brier_score

Examples

>>> import numpy as np
>>> from sklearn.metrics import brier_score_loss
>>> y_true = np.array([0, 1, 1, 0])
>>> y_true_categorical = np.array(["spam", "ham", "ham", "spam"])
>>> y_prob = np.array([0.1, 0.9, 0.8, 0.3])
>>> brier_score_loss(y_true, y_prob)
0.037...
>>> brier_score_loss(y_true, 1-y_prob, pos_label=0)
0.037...
>>> brier_score_loss(y_true_categorical, y_prob, pos_label="ham")
0.037...
>>> brier_score_loss(y_true, np.array(y_prob) > 0.5)
0.0

Examples using sklearn.metrics.brier_score_loss

• Probability Calibration curves

• Probability calibration of classifiers
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sklearn.metrics.classification_report

sklearn.metrics.classification_report(y_true, y_pred, labels=None, target_names=None,
sample_weight=None, digits=2)

Build a text report showing the main classification metrics

Read more in the User Guide.

Parametersy_true : 1d array-like, or label indicator array / sparse matrix

Ground truth (correct) target values.

y_pred : 1d array-like, or label indicator array / sparse matrix

Estimated targets as returned by a classifier.

labels : array, shape = [n_labels]

Optional list of label indices to include in the report.

target_names : list of strings

Optional display names matching the labels (same order).

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

digits : int

Number of digits for formatting output floating point values

Returnsreport : string

Text summary of the precision, recall, F1 score for each class.

Examples

>>> from sklearn.metrics import classification_report
>>> y_true = [0, 1, 2, 2, 2]
>>> y_pred = [0, 0, 2, 2, 1]
>>> target_names = ['class 0', 'class 1', 'class 2']
>>> print(classification_report(y_true, y_pred, target_names=target_names))

precision recall f1-score support

class 0 0.50 1.00 0.67 1
class 1 0.00 0.00 0.00 1
class 2 1.00 0.67 0.80 3

avg / total 0.70 0.60 0.61 5

Examples using sklearn.metrics.classification_report

• Feature Union with Heterogeneous Data Sources

• Faces recognition example using eigenfaces and SVMs

• Recognizing hand-written digits

• Parameter estimation using grid search with cross-validation

• Restricted Boltzmann Machine features for digit classification
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• Label Propagation digits: Demonstrating performance

• Label Propagation digits active learning

• Classification of text documents: using a MLComp dataset

• Classification of text documents using sparse features

sklearn.metrics.confusion_matrix

sklearn.metrics.confusion_matrix(y_true, y_pred, labels=None)
Compute confusion matrix to evaluate the accuracy of a classification

By definition a confusion matrix 𝐶 is such that 𝐶𝑖,𝑗 is equal to the number of observations known to be in group
𝑖 but predicted to be in group 𝑗.

Read more in the User Guide.

Parametersy_true : array, shape = [n_samples]

Ground truth (correct) target values.

y_pred : array, shape = [n_samples]

Estimated targets as returned by a classifier.

labels : array, shape = [n_classes], optional

List of labels to index the matrix. This may be used to reorder or select a subset of
labels. If none is given, those that appear at least once in y_true or y_pred are used
in sorted order.

ReturnsC : array, shape = [n_classes, n_classes]

Confusion matrix

References

[R46]

Examples

>>> from sklearn.metrics import confusion_matrix
>>> y_true = [2, 0, 2, 2, 0, 1]
>>> y_pred = [0, 0, 2, 2, 0, 2]
>>> confusion_matrix(y_true, y_pred)
array([[2, 0, 0],

[0, 0, 1],
[1, 0, 2]])

>>> y_true = ["cat", "ant", "cat", "cat", "ant", "bird"]
>>> y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"]
>>> confusion_matrix(y_true, y_pred, labels=["ant", "bird", "cat"])
array([[2, 0, 0],

[0, 0, 1],
[1, 0, 2]])
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Examples using sklearn.metrics.confusion_matrix

• Faces recognition example using eigenfaces and SVMs

• Recognizing hand-written digits

• Confusion matrix

• Label Propagation digits: Demonstrating performance

• Label Propagation digits active learning

• Classification of text documents: using a MLComp dataset

• Classification of text documents using sparse features

sklearn.metrics.f1_score

sklearn.metrics.f1_score(y_true, y_pred, labels=None, pos_label=1, average=’binary’, sam-
ple_weight=None)

Compute the F1 score, also known as balanced F-score or F-measure

The F1 score can be interpreted as a weighted average of the precision and recall, where an F1 score reaches its
best value at 1 and worst score at 0. The relative contribution of precision and recall to the F1 score are equal.
The formula for the F1 score is:

F1 = 2 * (precision * recall) / (precision + recall)

In the multi-class and multi-label case, this is the weighted average of the F1 score of each class.

Read more in the User Guide.

Parametersy_true : 1d array-like, or label indicator array / sparse matrix

Ground truth (correct) target values.

y_pred : 1d array-like, or label indicator array / sparse matrix

Estimated targets as returned by a classifier.

labels : list, optional

The set of labels to include when average != ’binary’, and their order if
average is None. Labels present in the data can be excluded, for example to cal-
culate a multiclass average ignoring a majority negative class, while labels not present
in the data will result in 0 components in a macro average. For multilabel targets, labels
are column indices. By default, all labels in y_true and y_pred are used in sorted
order.

Changed in version 0.17: parameter labels improved for multiclass problem.

pos_label : str or int, 1 by default

The class to report if average=’binary’. Until version 0.18 it is necessary to set
pos_label=None if seeking to use another averaging method over binary targets.

average : string, [None, ‘binary’ (default), ‘micro’, ‘macro’, ‘samples’, ‘weighted’]

This parameter is required for multiclass/multilabel targets. If None, the scores for each
class are returned. Otherwise, this determines the type of averaging performed on the
data:

’binary’:Only report results for the class specified by pos_label. This is appli-
cable only if targets (y_{true,pred}) are binary.
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’micro’:Calculate metrics globally by counting the total true positives, false nega-
tives and false positives.

’macro’:Calculate metrics for each label, and find their unweighted mean. This does
not take label imbalance into account.

’weighted’:Calculate metrics for each label, and find their average, weighted by
support (the number of true instances for each label). This alters ‘macro’ to account
for label imbalance; it can result in an F-score that is not between precision and recall.

’samples’:Calculate metrics for each instance, and find their average (only mean-
ingful for multilabel classification where this differs from accuracy_score).

Note that if pos_label is given in binary classification with average != ‘binary’, only
that positive class is reported. This behavior is deprecated and will change in version
0.18.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returnsf1_score : float or array of float, shape = [n_unique_labels]

F1 score of the positive class in binary classification or weighted average of the F1
scores of each class for the multiclass task.

References

[R47]

Examples

>>> from sklearn.metrics import f1_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> f1_score(y_true, y_pred, average='macro')
0.26...
>>> f1_score(y_true, y_pred, average='micro')
0.33...
>>> f1_score(y_true, y_pred, average='weighted')
0.26...
>>> f1_score(y_true, y_pred, average=None)
array([ 0.8, 0. , 0. ])

Examples using sklearn.metrics.f1_score

• Probability Calibration curves

sklearn.metrics.fbeta_score

sklearn.metrics.fbeta_score(y_true, y_pred, beta, labels=None, pos_label=1, average=’binary’,
sample_weight=None)

Compute the F-beta score

The F-beta score is the weighted harmonic mean of precision and recall, reaching its optimal value at 1 and its
worst value at 0.
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The beta parameter determines the weight of precision in the combined score. beta < 1 lends more weight to
precision, while beta > 1 favors recall (beta -> 0 considers only precision, beta -> inf only recall).

Read more in the User Guide.

Parametersy_true : 1d array-like, or label indicator array / sparse matrix

Ground truth (correct) target values.

y_pred : 1d array-like, or label indicator array / sparse matrix

Estimated targets as returned by a classifier.

beta: float :

Weight of precision in harmonic mean.

labels : list, optional

The set of labels to include when average != ’binary’, and their order if
average is None. Labels present in the data can be excluded, for example to cal-
culate a multiclass average ignoring a majority negative class, while labels not present
in the data will result in 0 components in a macro average. For multilabel targets, labels
are column indices. By default, all labels in y_true and y_pred are used in sorted
order.

Changed in version 0.17: parameter labels improved for multiclass problem.

pos_label : str or int, 1 by default

The class to report if average=’binary’. Until version 0.18 it is necessary to set
pos_label=None if seeking to use another averaging method over binary targets.

average : string, [None, ‘binary’ (default), ‘micro’, ‘macro’, ‘samples’, ‘weighted’]

This parameter is required for multiclass/multilabel targets. If None, the scores for each
class are returned. Otherwise, this determines the type of averaging performed on the
data:

’binary’:Only report results for the class specified by pos_label. This is appli-
cable only if targets (y_{true,pred}) are binary.

’micro’:Calculate metrics globally by counting the total true positives, false nega-
tives and false positives.

’macro’:Calculate metrics for each label, and find their unweighted mean. This does
not take label imbalance into account.

’weighted’:Calculate metrics for each label, and find their average, weighted by
support (the number of true instances for each label). This alters ‘macro’ to account
for label imbalance; it can result in an F-score that is not between precision and recall.

’samples’:Calculate metrics for each instance, and find their average (only mean-
ingful for multilabel classification where this differs from accuracy_score).

Note that if pos_label is given in binary classification with average != ‘binary’, only
that positive class is reported. This behavior is deprecated and will change in version
0.18.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returnsfbeta_score : float (if average is not None) or array of float, shape = [n_unique_labels]

1482 Chapter 5. API Reference



scikit-learn user guide, Release 0.17

F-beta score of the positive class in binary classification or weighted average of the
F-beta score of each class for the multiclass task.

References

[R163], [R164]

Examples

>>> from sklearn.metrics import fbeta_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> fbeta_score(y_true, y_pred, average='macro', beta=0.5)
...
0.23...
>>> fbeta_score(y_true, y_pred, average='micro', beta=0.5)
...
0.33...
>>> fbeta_score(y_true, y_pred, average='weighted', beta=0.5)
...
0.23...
>>> fbeta_score(y_true, y_pred, average=None, beta=0.5)
...
array([ 0.71..., 0. , 0. ])

sklearn.metrics.hamming_loss

sklearn.metrics.hamming_loss(y_true, y_pred, classes=None)
Compute the average Hamming loss.

The Hamming loss is the fraction of labels that are incorrectly predicted.

Read more in the User Guide.

Parametersy_true : 1d array-like, or label indicator array / sparse matrix

Ground truth (correct) labels.

y_pred : 1d array-like, or label indicator array / sparse matrix

Predicted labels, as returned by a classifier.

classes : array, shape = [n_labels], optional

Integer array of labels.

Returnsloss : float or int,

Return the average Hamming loss between element of y_true and y_pred.

See also:

accuracy_score, jaccard_similarity_score, zero_one_loss
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Notes

In multiclass classification, the Hamming loss correspond to the Hamming distance between y_true and
y_pred which is equivalent to the subset zero_one_loss function.

In multilabel classification, the Hamming loss is different from the subset zero-one loss. The zero-one loss
considers the entire set of labels for a given sample incorrect if it does entirely match the true set of labels.
Hamming loss is more forgiving in that it penalizes the individual labels.

The Hamming loss is upperbounded by the subset zero-one loss. When normalized over samples, the Hamming
loss is always between 0 and 1.

References

[R48], [R49]

Examples

>>> from sklearn.metrics import hamming_loss
>>> y_pred = [1, 2, 3, 4]
>>> y_true = [2, 2, 3, 4]
>>> hamming_loss(y_true, y_pred)
0.25

In the multilabel case with binary label indicators:

>>> hamming_loss(np.array([[0, 1], [1, 1]]), np.zeros((2, 2)))
0.75

Examples using sklearn.metrics.hamming_loss

• Model Complexity Influence

sklearn.metrics.hinge_loss

sklearn.metrics.hinge_loss(y_true, pred_decision, labels=None, sample_weight=None)
Average hinge loss (non-regularized)

In binary class case, assuming labels in y_true are encoded with +1 and -1, when a prediction mistake is
made, margin = y_true * pred_decision is always negative (since the signs disagree), implying
1 - margin is always greater than 1. The cumulated hinge loss is therefore an upper bound of the number of
mistakes made by the classifier.

In multiclass case, the function expects that either all the labels are included in y_true or an optional labels
argument is provided which contains all the labels. The multilabel margin is calculated according to Crammer-
Singer’s method. As in the binary case, the cumulated hinge loss is an upper bound of the number of mistakes
made by the classifier.

Read more in the User Guide.

Parametersy_true : array, shape = [n_samples]

True target, consisting of integers of two values. The positive label must be greater than
the negative label.
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pred_decision : array, shape = [n_samples] or [n_samples, n_classes]

Predicted decisions, as output by decision_function (floats).

labels : array, optional, default None

Contains all the labels for the problem. Used in multiclass hinge loss.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returnsloss : float

References

[R167], [R168], [R169]

Examples

>>> from sklearn import svm
>>> from sklearn.metrics import hinge_loss
>>> X = [[0], [1]]
>>> y = [-1, 1]
>>> est = svm.LinearSVC(random_state=0)
>>> est.fit(X, y)
LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,

intercept_scaling=1, loss='squared_hinge', max_iter=1000,
multi_class='ovr', penalty='l2', random_state=0, tol=0.0001,
verbose=0)

>>> pred_decision = est.decision_function([[-2], [3], [0.5]])
>>> pred_decision
array([-2.18..., 2.36..., 0.09...])
>>> hinge_loss([-1, 1, 1], pred_decision)
0.30...

In the multiclass case:

>>> X = np.array([[0], [1], [2], [3]])
>>> Y = np.array([0, 1, 2, 3])
>>> labels = np.array([0, 1, 2, 3])
>>> est = svm.LinearSVC()
>>> est.fit(X, Y)
LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,

intercept_scaling=1, loss='squared_hinge', max_iter=1000,
multi_class='ovr', penalty='l2', random_state=None, tol=0.0001,
verbose=0)

>>> pred_decision = est.decision_function([[-1], [2], [3]])
>>> y_true = [0, 2, 3]
>>> hinge_loss(y_true, pred_decision, labels)
0.56...

sklearn.metrics.jaccard_similarity_score

sklearn.metrics.jaccard_similarity_score(y_true, y_pred, normalize=True, sam-
ple_weight=None)

Jaccard similarity coefficient score
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The Jaccard index [1], or Jaccard similarity coefficient, defined as the size of the intersection divided by the size
of the union of two label sets, is used to compare set of predicted labels for a sample to the corresponding set of
labels in y_true.

Read more in the User Guide.

Parametersy_true : 1d array-like, or label indicator array / sparse matrix

Ground truth (correct) labels.

y_pred : 1d array-like, or label indicator array / sparse matrix

Predicted labels, as returned by a classifier.

normalize : bool, optional (default=True)

If False, return the sum of the Jaccard similarity coefficient over the sample set. Oth-
erwise, return the average of Jaccard similarity coefficient.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returnsscore : float

If normalize == True, return the average Jaccard similarity coefficient, else it
returns the sum of the Jaccard similarity coefficient over the sample set.

The best performance is 1 with normalize == True and the number of samples
with normalize == False.

See also:

accuracy_score, hamming_loss, zero_one_loss

Notes

In binary and multiclass classification, this function is equivalent to the accuracy_score. It differs in the
multilabel classification problem.

References

[R171]

Examples

>>> import numpy as np
>>> from sklearn.metrics import jaccard_similarity_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> jaccard_similarity_score(y_true, y_pred)
0.5
>>> jaccard_similarity_score(y_true, y_pred, normalize=False)
2

In the multilabel case with binary label indicators:

>>> jaccard_similarity_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.75
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sklearn.metrics.log_loss

sklearn.metrics.log_loss(y_true, y_pred, eps=1e-15, normalize=True, sample_weight=None)
Log loss, aka logistic loss or cross-entropy loss.

This is the loss function used in (multinomial) logistic regression and extensions of it such as neural networks,
defined as the negative log-likelihood of the true labels given a probabilistic classifier’s predictions. For a single
sample with true label yt in {0,1} and estimated probability yp that yt = 1, the log loss is

-log P(yt|yp) = -(yt log(yp) + (1 - yt) log(1 - yp))

Read more in the User Guide.

Parametersy_true : array-like or label indicator matrix

Ground truth (correct) labels for n_samples samples.

y_pred : array-like of float, shape = (n_samples, n_classes)

Predicted probabilities, as returned by a classifier’s predict_proba method.

eps : float

Log loss is undefined for p=0 or p=1, so probabilities are clipped to max(eps, min(1 -
eps, p)).

normalize : bool, optional (default=True)

If true, return the mean loss per sample. Otherwise, return the sum of the per-sample
losses.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returnsloss : float

Notes

The logarithm used is the natural logarithm (base-e).

References

C.M. Bishop (2006). Pattern Recognition and Machine Learning. Springer, p. 209.

Examples

>>> log_loss(["spam", "ham", "ham", "spam"],
... [[.1, .9], [.9, .1], [.8, .2], [.35, .65]])
0.21616...

Examples using sklearn.metrics.log_loss

• Probability Calibration for 3-class classification
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sklearn.metrics.matthews_corrcoef

sklearn.metrics.matthews_corrcoef(y_true, y_pred)
Compute the Matthews correlation coefficient (MCC) for binary classes

The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary (two-
class) classifications. It takes into account true and false positives and negatives and is generally regarded as a
balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a
correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average
random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source:
Wikipedia]

Only in the binary case does this relate to information about true and false positives and negatives. See references
below.

Read more in the User Guide.

Parametersy_true : array, shape = [n_samples]

Ground truth (correct) target values.

y_pred : array, shape = [n_samples]

Estimated targets as returned by a classifier.

Returnsmcc : float

The Matthews correlation coefficient (+1 represents a perfect prediction, 0 an average
random prediction and -1 and inverse prediction).

References

[R173], [R174]

Examples

>>> from sklearn.metrics import matthews_corrcoef
>>> y_true = [+1, +1, +1, -1]
>>> y_pred = [+1, -1, +1, +1]
>>> matthews_corrcoef(y_true, y_pred)
-0.33...

sklearn.metrics.precision_recall_curve

sklearn.metrics.precision_recall_curve(y_true, probas_pred, pos_label=None, sam-
ple_weight=None)

Compute precision-recall pairs for different probability thresholds

Note: this implementation is restricted to the binary classification task.

The precision is the ratio tp / (tp + fp) where tp is the number of true positives and fp the number of
false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is
negative.

The recall is the ratio tp / (tp + fn) where tp is the number of true positives and fn the number of false
negatives. The recall is intuitively the ability of the classifier to find all the positive samples.
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The last precision and recall values are 1. and 0. respectively and do not have a corresponding threshold. This
ensures that the graph starts on the x axis.

Read more in the User Guide.

Parametersy_true : array, shape = [n_samples]

True targets of binary classification in range {-1, 1} or {0, 1}.

probas_pred : array, shape = [n_samples]

Estimated probabilities or decision function.

pos_label : int, optional (default=None)

The label of the positive class

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returnsprecision : array, shape = [n_thresholds + 1]

Precision values such that element i is the precision of predictions with score >= thresh-
olds[i] and the last element is 1.

recall : array, shape = [n_thresholds + 1]

Decreasing recall values such that element i is the recall of predictions with score >=
thresholds[i] and the last element is 0.

thresholds : array, shape = [n_thresholds <= len(np.unique(probas_pred))]

Increasing thresholds on the decision function used to compute precision and recall.

Examples

>>> import numpy as np
>>> from sklearn.metrics import precision_recall_curve
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> precision, recall, thresholds = precision_recall_curve(
... y_true, y_scores)
>>> precision
array([ 0.66..., 0.5 , 1. , 1. ])
>>> recall
array([ 1. , 0.5, 0.5, 0. ])
>>> thresholds
array([ 0.35, 0.4 , 0.8 ])

Examples using sklearn.metrics.precision_recall_curve

• Sparse recovery: feature selection for sparse linear models

• Precision-Recall
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sklearn.metrics.precision_recall_fscore_support

sklearn.metrics.precision_recall_fscore_support(y_true, y_pred, beta=1.0, la-
bels=None, pos_label=1, aver-
age=None, warn_for=(‘precision’,
‘recall’, ‘f-score’), sam-
ple_weight=None)

Compute precision, recall, F-measure and support for each class

The precision is the ratio tp / (tp + fp) where tp is the number of true positives and fp the number of
false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is
negative.

The recall is the ratio tp / (tp + fn) where tp is the number of true positives and fn the number of false
negatives. The recall is intuitively the ability of the classifier to find all the positive samples.

The F-beta score can be interpreted as a weighted harmonic mean of the precision and recall, where an F-beta
score reaches its best value at 1 and worst score at 0.

The F-beta score weights recall more than precision by a factor of beta. beta == 1.0 means recall and
precision are equally important.

The support is the number of occurrences of each class in y_true.

If pos_label is None and in binary classification, this function returns the average precision, recall and
F-measure if average is one of ’micro’, ’macro’, ’weighted’ or ’samples’.

Read more in the User Guide.

Parametersy_true : 1d array-like, or label indicator array / sparse matrix

Ground truth (correct) target values.

y_pred : 1d array-like, or label indicator array / sparse matrix

Estimated targets as returned by a classifier.

beta : float, 1.0 by default

The strength of recall versus precision in the F-score.

labels : list, optional

The set of labels to include when average != ’binary’, and their order if
average is None. Labels present in the data can be excluded, for example to cal-
culate a multiclass average ignoring a majority negative class, while labels not present
in the data will result in 0 components in a macro average. For multilabel targets, labels
are column indices. By default, all labels in y_true and y_pred are used in sorted
order.

pos_label : str or int, 1 by default

The class to report if average=’binary’. Until version 0.18 it is necessary to set
pos_label=None if seeking to use another averaging method over binary targets.

average : string, [None (default), ‘binary’, ‘micro’, ‘macro’, ‘samples’, ‘weighted’]

If None, the scores for each class are returned. Otherwise, this determines the type of
averaging performed on the data:

’binary’:Only report results for the class specified by pos_label. This is appli-
cable only if targets (y_{true,pred}) are binary.

’micro’:Calculate metrics globally by counting the total true positives, false nega-
tives and false positives.
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’macro’:Calculate metrics for each label, and find their unweighted mean. This does
not take label imbalance into account.

’weighted’:Calculate metrics for each label, and find their average, weighted by
support (the number of true instances for each label). This alters ‘macro’ to account
for label imbalance; it can result in an F-score that is not between precision and recall.

’samples’:Calculate metrics for each instance, and find their average (only mean-
ingful for multilabel classification where this differs from accuracy_score).

Note that if pos_label is given in binary classification with average != ‘binary’, only
that positive class is reported. This behavior is deprecated and will change in version
0.18.

warn_for : tuple or set, for internal use

This determines which warnings will be made in the case that this function is being used
to return only one of its metrics.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returnsprecision: float (if average is not None) or array of float, shape = [n_unique_labels] :

recall: float (if average is not None) or array of float, , shape = [n_unique_labels] :

fbeta_score: float (if average is not None) or array of float, shape = [n_unique_labels] :

support: int (if average is not None) or array of int, shape = [n_unique_labels] :

The number of occurrences of each label in y_true.

References

[R175], [R176], [R177]

Examples

>>> from sklearn.metrics import precision_recall_fscore_support
>>> y_true = np.array(['cat', 'dog', 'pig', 'cat', 'dog', 'pig'])
>>> y_pred = np.array(['cat', 'pig', 'dog', 'cat', 'cat', 'dog'])
>>> precision_recall_fscore_support(y_true, y_pred, average='macro')
...
(0.22..., 0.33..., 0.26..., None)
>>> precision_recall_fscore_support(y_true, y_pred, average='micro')
...
(0.33..., 0.33..., 0.33..., None)
>>> precision_recall_fscore_support(y_true, y_pred, average='weighted')
...
(0.22..., 0.33..., 0.26..., None)

It is possible to compute per-label precisions, recalls, F1-scores and supports instead of averaging: >>> preci-
sion_recall_fscore_support(y_true, y_pred, average=None, ... labels=[’pig’, ‘dog’, ‘cat’]) ... # doctest: +EL-
LIPSIS,+NORMALIZE_WHITESPACE (array([ 0. , 0. , 0.66...]),

array([ 0., 0., 1.]), array([ 0. , 0. , 0.8]), array([2, 2, 2]))
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sklearn.metrics.precision_score

sklearn.metrics.precision_score(y_true, y_pred, labels=None, pos_label=1, average=’binary’,
sample_weight=None)

Compute the precision

The precision is the ratio tp / (tp + fp) where tp is the number of true positives and fp the number of
false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is
negative.

The best value is 1 and the worst value is 0.

Read more in the User Guide.

Parametersy_true : 1d array-like, or label indicator array / sparse matrix

Ground truth (correct) target values.

y_pred : 1d array-like, or label indicator array / sparse matrix

Estimated targets as returned by a classifier.

labels : list, optional

The set of labels to include when average != ’binary’, and their order if
average is None. Labels present in the data can be excluded, for example to cal-
culate a multiclass average ignoring a majority negative class, while labels not present
in the data will result in 0 components in a macro average. For multilabel targets, labels
are column indices. By default, all labels in y_true and y_pred are used in sorted
order.

Changed in version 0.17: parameter labels improved for multiclass problem.

pos_label : str or int, 1 by default

The class to report if average=’binary’. Until version 0.18 it is necessary to set
pos_label=None if seeking to use another averaging method over binary targets.

average : string, [None, ‘binary’ (default), ‘micro’, ‘macro’, ‘samples’, ‘weighted’]

This parameter is required for multiclass/multilabel targets. If None, the scores for each
class are returned. Otherwise, this determines the type of averaging performed on the
data:

’binary’:Only report results for the class specified by pos_label. This is appli-
cable only if targets (y_{true,pred}) are binary.

’micro’:Calculate metrics globally by counting the total true positives, false nega-
tives and false positives.

’macro’:Calculate metrics for each label, and find their unweighted mean. This does
not take label imbalance into account.

’weighted’:Calculate metrics for each label, and find their average, weighted by
support (the number of true instances for each label). This alters ‘macro’ to account
for label imbalance; it can result in an F-score that is not between precision and recall.

’samples’:Calculate metrics for each instance, and find their average (only mean-
ingful for multilabel classification where this differs from accuracy_score).

Note that if pos_label is given in binary classification with average != ‘binary’, only
that positive class is reported. This behavior is deprecated and will change in version
0.18.

sample_weight : array-like of shape = [n_samples], optional
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Sample weights.

Returnsprecision : float (if average is not None) or array of float, shape = [n_unique_labels]

Precision of the positive class in binary classification or weighted average of the preci-
sion of each class for the multiclass task.

Examples

>>> from sklearn.metrics import precision_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> precision_score(y_true, y_pred, average='macro')
0.22...
>>> precision_score(y_true, y_pred, average='micro')
0.33...
>>> precision_score(y_true, y_pred, average='weighted')
...
0.22...
>>> precision_score(y_true, y_pred, average=None)
array([ 0.66..., 0. , 0. ])

Examples using sklearn.metrics.precision_score

• Probability Calibration curves

sklearn.metrics.recall_score

sklearn.metrics.recall_score(y_true, y_pred, labels=None, pos_label=1, average=’binary’, sam-
ple_weight=None)

Compute the recall

The recall is the ratio tp / (tp + fn) where tp is the number of true positives and fn the number of false
negatives. The recall is intuitively the ability of the classifier to find all the positive samples.

The best value is 1 and the worst value is 0.

Read more in the User Guide.

Parametersy_true : 1d array-like, or label indicator array / sparse matrix

Ground truth (correct) target values.

y_pred : 1d array-like, or label indicator array / sparse matrix

Estimated targets as returned by a classifier.

labels : list, optional

The set of labels to include when average != ’binary’, and their order if
average is None. Labels present in the data can be excluded, for example to cal-
culate a multiclass average ignoring a majority negative class, while labels not present
in the data will result in 0 components in a macro average. For multilabel targets, labels
are column indices. By default, all labels in y_true and y_pred are used in sorted
order.

Changed in version 0.17: parameter labels improved for multiclass problem.

pos_label : str or int, 1 by default
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The class to report if average=’binary’. Until version 0.18 it is necessary to set
pos_label=None if seeking to use another averaging method over binary targets.

average : string, [None, ‘binary’ (default), ‘micro’, ‘macro’, ‘samples’, ‘weighted’]

This parameter is required for multiclass/multilabel targets. If None, the scores for each
class are returned. Otherwise, this determines the type of averaging performed on the
data:

’binary’:Only report results for the class specified by pos_label. This is appli-
cable only if targets (y_{true,pred}) are binary.

’micro’:Calculate metrics globally by counting the total true positives, false nega-
tives and false positives.

’macro’:Calculate metrics for each label, and find their unweighted mean. This does
not take label imbalance into account.

’weighted’:Calculate metrics for each label, and find their average, weighted by
support (the number of true instances for each label). This alters ‘macro’ to account
for label imbalance; it can result in an F-score that is not between precision and recall.

’samples’:Calculate metrics for each instance, and find their average (only mean-
ingful for multilabel classification where this differs from accuracy_score).

Note that if pos_label is given in binary classification with average != ‘binary’, only
that positive class is reported. This behavior is deprecated and will change in version
0.18.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returnsrecall : float (if average is not None) or array of float, shape = [n_unique_labels]

Recall of the positive class in binary classification or weighted average of the recall of
each class for the multiclass task.

Examples

>>> from sklearn.metrics import recall_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> recall_score(y_true, y_pred, average='macro')
0.33...
>>> recall_score(y_true, y_pred, average='micro')
0.33...
>>> recall_score(y_true, y_pred, average='weighted')
0.33...
>>> recall_score(y_true, y_pred, average=None)
array([ 1., 0., 0.])

Examples using sklearn.metrics.recall_score

• Probability Calibration curves
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sklearn.metrics.roc_auc_score

sklearn.metrics.roc_auc_score(y_true, y_score, average=’macro’, sample_weight=None)
Compute Area Under the Curve (AUC) from prediction scores

Note: this implementation is restricted to the binary classification task or multilabel classification task in label
indicator format.

Read more in the User Guide.

Parametersy_true : array, shape = [n_samples] or [n_samples, n_classes]

True binary labels in binary label indicators.

y_score : array, shape = [n_samples] or [n_samples, n_classes]

Target scores, can either be probability estimates of the positive class, confidence values,
or binary decisions.

average : string, [None, ‘micro’, ‘macro’ (default), ‘samples’, ‘weighted’]

If None, the scores for each class are returned. Otherwise, this determines the type of
averaging performed on the data:

’micro’:Calculate metrics globally by considering each element of the label indicator
matrix as a label.

’macro’:Calculate metrics for each label, and find their unweighted mean. This does
not take label imbalance into account.

’weighted’:Calculate metrics for each label, and find their average, weighted by
support (the number of true instances for each label).

’samples’:Calculate metrics for each instance, and find their average.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returnsauc : float

See also:

average_precision_scoreArea under the precision-recall curve

roc_curveCompute Receiver operating characteristic (ROC)

References

[R179]

Examples

>>> import numpy as np
>>> from sklearn.metrics import roc_auc_score
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> roc_auc_score(y_true, y_scores)
0.75
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sklearn.metrics.roc_curve

sklearn.metrics.roc_curve(y_true, y_score, pos_label=None, sample_weight=None,
drop_intermediate=True)

Compute Receiver operating characteristic (ROC)

Note: this implementation is restricted to the binary classification task.

Read more in the User Guide.

Parametersy_true : array, shape = [n_samples]

True binary labels in range {0, 1} or {-1, 1}. If labels are not binary, pos_label should
be explicitly given.

y_score : array, shape = [n_samples]

Target scores, can either be probability estimates of the positive class or confidence
values.

pos_label : int

Label considered as positive and others are considered negative.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

drop_intermediate : boolean, optional (default=True)

Whether to drop some suboptimal thresholds which would not appear on a plotted ROC
curve. This is useful in order to create lighter ROC curves.

New in version 0.17: parameter drop_intermediate.

Returnsfpr : array, shape = [>2]

Increasing false positive rates such that element i is the false positive rate of predictions
with score >= thresholds[i].

tpr : array, shape = [>2]

Increasing true positive rates such that element i is the true positive rate of predictions
with score >= thresholds[i].

thresholds : array, shape = [n_thresholds]

Decreasing thresholds on the decision function used to compute fpr and tpr. thresh-
olds[0] represents no instances being predicted and is arbitrarily set to max(y_score) +
1.

See also:

roc_auc_scoreCompute Area Under the Curve (AUC) from prediction scores

Notes

Since the thresholds are sorted from low to high values, they are reversed upon returning them to ensure they
correspond to both fpr and tpr, which are sorted in reversed order during their calculation.
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References

[R52]

Examples

>>> import numpy as np
>>> from sklearn import metrics
>>> y = np.array([1, 1, 2, 2])
>>> scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2)
>>> fpr
array([ 0. , 0.5, 0.5, 1. ])
>>> tpr
array([ 0.5, 0.5, 1. , 1. ])
>>> thresholds
array([ 0.8 , 0.4 , 0.35, 0.1 ])

Examples using sklearn.metrics.roc_curve

• Species distribution modeling

• Feature transformations with ensembles of trees

• Receiver Operating Characteristic (ROC) with cross validation

• Receiver Operating Characteristic (ROC)

sklearn.metrics.zero_one_loss

sklearn.metrics.zero_one_loss(y_true, y_pred, normalize=True, sample_weight=None)
Zero-one classification loss.

If normalize is True, return the fraction of misclassifications (float), else it returns the number of misclassifica-
tions (int). The best performance is 0.

Read more in the User Guide.

Parametersy_true : 1d array-like, or label indicator array / sparse matrix

Ground truth (correct) labels.

y_pred : 1d array-like, or label indicator array / sparse matrix

Predicted labels, as returned by a classifier.

normalize : bool, optional (default=True)

If False, return the number of misclassifications. Otherwise, return the fraction of
misclassifications.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returnsloss : float or int,

If normalize == True, return the fraction of misclassifications (float), else it re-
turns the number of misclassifications (int).
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See also:

accuracy_score, hamming_loss, jaccard_similarity_score

Notes

In multilabel classification, the zero_one_loss function corresponds to the subset zero-one loss: for each sample,
the entire set of labels must be correctly predicted, otherwise the loss for that sample is equal to one.

Examples

>>> from sklearn.metrics import zero_one_loss
>>> y_pred = [1, 2, 3, 4]
>>> y_true = [2, 2, 3, 4]
>>> zero_one_loss(y_true, y_pred)
0.25
>>> zero_one_loss(y_true, y_pred, normalize=False)
1

In the multilabel case with binary label indicators:

>>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5

Examples using sklearn.metrics.zero_one_loss

• Discrete versus Real AdaBoost

sklearn.metrics.brier_score_loss

sklearn.metrics.brier_score_loss(y_true, y_prob, sample_weight=None, pos_label=None)
Compute the Brier score.

The smaller the Brier score, the better, hence the naming with “loss”.

Across all items in a set N predictions, the Brier score measures the mean squared difference between (1) the
predicted probability assigned to the possible outcomes for item i, and (2) the actual outcome. Therefore, the
lower the Brier score is for a set of predictions, the better the predictions are calibrated. Note that the Brier score
always takes on a value between zero and one, since this is the largest possible difference between a predicted
probability (which must be between zero and one) and the actual outcome (which can take on values of only 0
and 1).

The Brier score is appropriate for binary and categorical outcomes that can be structured as true or false, but
is inappropriate for ordinal variables which can take on three or more values (this is because the Brier score
assumes that all possible outcomes are equivalently “distant” from one another). Which label is considered to
be the positive label is controlled via the parameter pos_label, which defaults to 1.

Read more in the User Guide.

Parametersy_true : array, shape (n_samples,)

True targets.

y_prob : array, shape (n_samples,)

Probabilities of the positive class.
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sample_weight : array-like of shape = [n_samples], optional

Sample weights.

pos_label : int (default: None)

Label of the positive class. If None, the maximum label is used as positive class

Returnsscore : float

Brier score

References

http://en.wikipedia.org/wiki/Brier_score

Examples

>>> import numpy as np
>>> from sklearn.metrics import brier_score_loss
>>> y_true = np.array([0, 1, 1, 0])
>>> y_true_categorical = np.array(["spam", "ham", "ham", "spam"])
>>> y_prob = np.array([0.1, 0.9, 0.8, 0.3])
>>> brier_score_loss(y_true, y_prob)
0.037...
>>> brier_score_loss(y_true, 1-y_prob, pos_label=0)
0.037...
>>> brier_score_loss(y_true_categorical, y_prob, pos_label="ham")
0.037...
>>> brier_score_loss(y_true, np.array(y_prob) > 0.5)
0.0

Examples using sklearn.metrics.brier_score_loss

• Probability Calibration curves

• Probability calibration of classifiers

5.21.3 Regression metrics

See the Regression metrics section of the user guide for further details.

metrics.explained_variance_score(y_true, y_pred) Explained variance regression score function
metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
metrics.mean_squared_error(y_true, y_pred[, ...]) Mean squared error regression loss
metrics.median_absolute_error(y_true, y_pred) Median absolute error regression loss
metrics.r2_score(y_true, y_pred[, ...]) R^2 (coefficient of determination) regression score function.

sklearn.metrics.explained_variance_score

sklearn.metrics.explained_variance_score(y_true, y_pred, sample_weight=None, multiout-
put=’uniform_average’)

Explained variance regression score function
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Best possible score is 1.0, lower values are worse.

Read more in the User Guide.

Parametersy_true : array-like of shape = (n_samples) or (n_samples, n_outputs)

Ground truth (correct) target values.

y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs)

Estimated target values.

sample_weight : array-like of shape = (n_samples), optional

Sample weights.

multioutput : string in [’raw_values’, ‘uniform_average’, ‘variance_weighted’] or array-like of
shape (n_outputs)

Defines aggregating of multiple output scores. Array-like value defines weights used to
average scores.

‘raw_values’ :Returns a full set of scores in case of multioutput input.

‘uniform_average’ :Scores of all outputs are averaged with uniform weight.

‘variance_weighted’ :Scores of all outputs are averaged, weighted by the variances of
each individual output.

Returnsscore : float or ndarray of floats

The explained variance or ndarray if ‘multioutput’ is ‘raw_values’.

Notes

This is not a symmetric function.

Examples

>>> from sklearn.metrics import explained_variance_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> explained_variance_score(y_true, y_pred)
0.957...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> explained_variance_score(y_true, y_pred, multioutput='uniform_average')
...
0.983...

sklearn.metrics.mean_absolute_error

sklearn.metrics.mean_absolute_error(y_true, y_pred, sample_weight=None, multiout-
put=’uniform_average’)

Mean absolute error regression loss

Read more in the User Guide.

Parametersy_true : array-like of shape = (n_samples) or (n_samples, n_outputs)

Ground truth (correct) target values.
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y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs)

Estimated target values.

sample_weight : array-like of shape = (n_samples), optional

Sample weights.

multioutput : string in [’raw_values’, ‘uniform_average’]

or array-like of shape (n_outputs) Defines aggregating of multiple output values. Array-
like value defines weights used to average errors.

‘raw_values’ :Returns a full set of errors in case of multioutput input.

‘uniform_average’ :Errors of all outputs are averaged with uniform weight.

Returnsloss : float or ndarray of floats

If multioutput is ‘raw_values’, then mean absolute error is returned for each output sep-
arately. If multioutput is ‘uniform_average’ or an ndarray of weights, then the weighted
average of all output errors is returned.

MAE output is non-negative floating point. The best value is 0.0.

Examples

>>> from sklearn.metrics import mean_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_absolute_error(y_true, y_pred)
0.5
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_absolute_error(y_true, y_pred)
0.75
>>> mean_absolute_error(y_true, y_pred, multioutput='raw_values')
array([ 0.5, 1. ])
>>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7])
...
0.849...

sklearn.metrics.mean_squared_error

sklearn.metrics.mean_squared_error(y_true, y_pred, sample_weight=None, multiout-
put=’uniform_average’)

Mean squared error regression loss

Read more in the User Guide.

Parametersy_true : array-like of shape = (n_samples) or (n_samples, n_outputs)

Ground truth (correct) target values.

y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs)

Estimated target values.

sample_weight : array-like of shape = (n_samples), optional

Sample weights.
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multioutput : string in [’raw_values’, ‘uniform_average’]

or array-like of shape (n_outputs) Defines aggregating of multiple output values. Array-
like value defines weights used to average errors.

‘raw_values’ :Returns a full set of errors in case of multioutput input.

‘uniform_average’ :Errors of all outputs are averaged with uniform weight.

Returnsloss : float or ndarray of floats

A non-negative floating point value (the best value is 0.0), or an array of floating point
values, one for each individual target.

Examples

>>> from sklearn.metrics import mean_squared_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_squared_error(y_true, y_pred)
0.375
>>> y_true = [[0.5, 1],[-1, 1],[7, -6]]
>>> y_pred = [[0, 2],[-1, 2],[8, -5]]
>>> mean_squared_error(y_true, y_pred)
0.708...
>>> mean_squared_error(y_true, y_pred, multioutput='raw_values')
...
array([ 0.416..., 1. ])
>>> mean_squared_error(y_true, y_pred, multioutput=[0.3, 0.7])
...
0.824...

Examples using sklearn.metrics.mean_squared_error

• Model Complexity Influence

• Gradient Boosting regression

• Robust linear estimator fitting

sklearn.metrics.median_absolute_error

sklearn.metrics.median_absolute_error(y_true, y_pred)
Median absolute error regression loss

Read more in the User Guide.

Parametersy_true : array-like of shape = (n_samples)

Ground truth (correct) target values.

y_pred : array-like of shape = (n_samples)

Estimated target values.

Returnsloss : float

A positive floating point value (the best value is 0.0).
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Examples

>>> from sklearn.metrics import median_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> median_absolute_error(y_true, y_pred)
0.5

sklearn.metrics.r2_score

sklearn.metrics.r2_score(y_true, y_pred, sample_weight=None, multioutput=None)
R^2 (coefficient of determination) regression score function.

Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model
that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Read more in the User Guide.

Parametersy_true : array-like of shape = (n_samples) or (n_samples, n_outputs)

Ground truth (correct) target values.

y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs)

Estimated target values.

sample_weight : array-like of shape = (n_samples), optional

Sample weights.

multioutput : string in [’raw_values’, ‘uniform_average’, ‘variance_weighted’] or None or
array-like of shape (n_outputs)

Defines aggregating of multiple output scores. Array-like value defines weights used
to average scores. Default value correponds to ‘variance_weighted’, this behaviour is
deprecated since version 0.17 and will be changed to ‘uniform_average’ starting from
0.19.

‘raw_values’ :Returns a full set of scores in case of multioutput input.

‘uniform_average’ :Scores of all outputs are averaged with uniform weight.

‘variance_weighted’ :Scores of all outputs are averaged, weighted by the variances of
each individual output.

Returnsz : float or ndarray of floats

The R^2 score or ndarray of scores if ‘multioutput’ is ‘raw_values’.

Notes

This is not a symmetric function.

Unlike most other scores, R^2 score may be negative (it need not actually be the square of a quantity R).

References

[R51]
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Examples

>>> from sklearn.metrics import r2_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> r2_score(y_true, y_pred)
0.948...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred, multioutput='variance_weighted')
0.938...

Examples using sklearn.metrics.r2_score

• Lasso and Elastic Net for Sparse Signals

5.21.4 Multilabel ranking metrics

See the Multilabel ranking metrics section of the user guide for further details.

metrics.coverage_error(y_true, y_score[, ...]) Coverage error measure
metrics.label_ranking_average_precision_score(...) Compute ranking-based average precision
metrics.label_ranking_loss(y_true, y_score) Compute Ranking loss measure

sklearn.metrics.coverage_error

sklearn.metrics.coverage_error(y_true, y_score, sample_weight=None)
Coverage error measure

Compute how far we need to go through the ranked scores to cover all true labels. The best value is equal to the
average number of labels in y_true per sample.

Ties in y_scores are broken by giving maximal rank that would have been assigned to all tied values.

Read more in the User Guide.

Parametersy_true : array, shape = [n_samples, n_labels]

True binary labels in binary indicator format.

y_score : array, shape = [n_samples, n_labels]

Target scores, can either be probability estimates of the positive class, confidence values,
or binary decisions.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returnscoverage_error : float

References

[R161]
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sklearn.metrics.label_ranking_average_precision_score

sklearn.metrics.label_ranking_average_precision_score(y_true, y_score)
Compute ranking-based average precision

Label ranking average precision (LRAP) is the average over each ground truth label assigned to each sample, of
the ratio of true vs. total labels with lower score.

This metric is used in multilabel ranking problem, where the goal is to give better rank to the labels associated
to each sample.

The obtained score is always strictly greater than 0 and the best value is 1.

Read more in the User Guide.

Parametersy_true : array or sparse matrix, shape = [n_samples, n_labels]

True binary labels in binary indicator format.

y_score : array, shape = [n_samples, n_labels]

Target scores, can either be probability estimates of the positive class, confidence values,
or binary decisions.

Returnsscore : float

Examples

>>> import numpy as np
>>> from sklearn.metrics import label_ranking_average_precision_score
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> label_ranking_average_precision_score(y_true, y_score)
0.416...

sklearn.metrics.label_ranking_loss

sklearn.metrics.label_ranking_loss(y_true, y_score, sample_weight=None)
Compute Ranking loss measure

Compute the average number of label pairs that are incorrectly ordered given y_score weighted by the size of
the label set and the number of labels not in the label set.

This is similar to the error set size, but weighted by the number of relevant and irrelevant labels. The best
performance is achieved with a ranking loss of zero.

Read more in the User Guide.

New in version 0.17: A function label_ranking_loss

Parametersy_true : array or sparse matrix, shape = [n_samples, n_labels]

True binary labels in binary indicator format.

y_score : array, shape = [n_samples, n_labels]

Target scores, can either be probability estimates of the positive class, confidence values,
or binary decisions.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.
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Returnsloss : float

References

[R172]

5.21.5 Clustering metrics

See the Clustering performance evaluation section of the user guide for further details. The
sklearn.metrics.cluster submodule contains evaluation metrics for cluster analysis results. There are two
forms of evaluation:

• supervised, which uses a ground truth class values for each sample.

• unsupervised, which does not and measures the ‘quality’ of the model itself.

metrics.adjusted_mutual_info_score(...) Adjusted Mutual Information between two clusterings
metrics.adjusted_rand_score(labels_true, ...) Rand index adjusted for chance
metrics.completeness_score(labels_true, ...) Completeness metric of a cluster labeling given a ground truth
metrics.homogeneity_completeness_v_measure(...) Compute the homogeneity and completeness and V-Measure scores at once
metrics.homogeneity_score(labels_true, ...) Homogeneity metric of a cluster labeling given a ground truth
metrics.mutual_info_score(labels_true, ...) Mutual Information between two clusterings
metrics.normalized_mutual_info_score(...) Normalized Mutual Information between two clusterings
metrics.silhouette_score(X, labels[, ...]) Compute the mean Silhouette Coefficient of all samples.
metrics.silhouette_samples(X, labels[, metric]) Compute the Silhouette Coefficient for each sample.
metrics.v_measure_score(labels_true, labels_pred) V-measure cluster labeling given a ground truth.

sklearn.metrics.adjusted_mutual_info_score

sklearn.metrics.adjusted_mutual_info_score(labels_true, labels_pred)
Adjusted Mutual Information between two clusterings

Adjusted Mutual Information (AMI) is an adjustment of the Mutual Information (MI) score to account for
chance. It accounts for the fact that the MI is generally higher for two clusterings with a larger number of
clusters, regardless of whether there is actually more information shared. For two clusterings 𝑈 and 𝑉 , the AMI
is given as:

AMI(U, V) = [MI(U, V) - E(MI(U, V))] / [max(H(U), H(V)) - E(MI(U, V))]

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values
won’t change the score value in any way.

This metric is furthermore symmetric: switching label_true with label_pred will return the same score
value. This can be useful to measure the agreement of two independent label assignments strategies on the same
dataset when the real ground truth is not known.

Be mindful that this function is an order of magnitude slower than other metrics, such as the Adjusted Rand
Index.

Read more in the User Guide.

Parameterslabels_true : int array, shape = [n_samples]

A clustering of the data into disjoint subsets.

labels_pred : array, shape = [n_samples]
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A clustering of the data into disjoint subsets.

Returnsami: float(upperlimited by 1.0) :

The AMI returns a value of 1 when the two partitions are identical (ie perfectly
matched). Random partitions (independent labellings) have an expected AMI around
0 on average hence can be negative.

See also:

adjusted_rand_scoreAdjusted Rand Index

mutual_information_scoreMutual Information (not adjusted for chance)

References

[R42], [R43]

Examples

Perfect labelings are both homogeneous and complete, hence have score 1.0:

>>> from sklearn.metrics.cluster import adjusted_mutual_info_score
>>> adjusted_mutual_info_score([0, 0, 1, 1], [0, 0, 1, 1])
1.0
>>> adjusted_mutual_info_score([0, 0, 1, 1], [1, 1, 0, 0])
1.0

If classes members are completely split across different clusters, the assignment is totally in-complete, hence
the AMI is null:

>>> adjusted_mutual_info_score([0, 0, 0, 0], [0, 1, 2, 3])
0.0

Examples using sklearn.metrics.adjusted_mutual_info_score

• Demo of affinity propagation clustering algorithm

• Demo of DBSCAN clustering algorithm

• A demo of K-Means clustering on the handwritten digits data

• Adjustment for chance in clustering performance evaluation

sklearn.metrics.adjusted_rand_score

sklearn.metrics.adjusted_rand_score(labels_true, labels_pred)
Rand index adjusted for chance

The Rand Index computes a similarity measure between two clusterings by considering all pairs of samples and
counting pairs that are assigned in the same or different clusters in the predicted and true clusterings.

The raw RI score is then “adjusted for chance” into the ARI score using the following scheme:

ARI = (RI - Expected_RI) / (max(RI) - Expected_RI)

5.21. sklearn.metrics: Metrics 1507



scikit-learn user guide, Release 0.17

The adjusted Rand index is thus ensured to have a value close to 0.0 for random labeling independently of the
number of clusters and samples and exactly 1.0 when the clusterings are identical (up to a permutation).

ARI is a symmetric measure:

adjusted_rand_score(a, b) == adjusted_rand_score(b, a)

Read more in the User Guide.

Parameterslabels_true : int array, shape = [n_samples]

Ground truth class labels to be used as a reference

labels_pred : array, shape = [n_samples]

Cluster labels to evaluate

Returnsari : float

Similarity score between -1.0 and 1.0. Random labelings have an ARI close to 0.0. 1.0
stands for perfect match.

See also:

adjusted_mutual_info_scoreAdjusted Mutual Information

References

[Hubert1985], [wk]

Examples

Perfectly maching labelings have a score of 1 even

>>> from sklearn.metrics.cluster import adjusted_rand_score
>>> adjusted_rand_score([0, 0, 1, 1], [0, 0, 1, 1])
1.0
>>> adjusted_rand_score([0, 0, 1, 1], [1, 1, 0, 0])
1.0

Labelings that assign all classes members to the same clusters are complete be not always pure, hence penalized:

>>> adjusted_rand_score([0, 0, 1, 2], [0, 0, 1, 1])
0.57...

ARI is symmetric, so labelings that have pure clusters with members coming from the same classes but unnec-
essary splits are penalized:

>>> adjusted_rand_score([0, 0, 1, 1], [0, 0, 1, 2])
0.57...

If classes members are completely split across different clusters, the assignment is totally incomplete, hence the
ARI is very low:

>>> adjusted_rand_score([0, 0, 0, 0], [0, 1, 2, 3])
0.0
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Examples using sklearn.metrics.adjusted_rand_score

• Demo of affinity propagation clustering algorithm

• Demo of DBSCAN clustering algorithm

• A demo of K-Means clustering on the handwritten digits data

• Adjustment for chance in clustering performance evaluation

• Clustering text documents using k-means

sklearn.metrics.completeness_score

sklearn.metrics.completeness_score(labels_true, labels_pred)
Completeness metric of a cluster labeling given a ground truth

A clustering result satisfies completeness if all the data points that are members of a given class are elements of
the same cluster.

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values
won’t change the score value in any way.

This metric is not symmetric: switching label_true with label_pred will return the
homogeneity_score which will be different in general.

Read more in the User Guide.

Parameterslabels_true : int array, shape = [n_samples]

ground truth class labels to be used as a reference

labels_pred : array, shape = [n_samples]

cluster labels to evaluate

Returnscompleteness: float :

score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling

See also:

homogeneity_score, v_measure_score

References

[R45]

Examples

Perfect labelings are complete:

>>> from sklearn.metrics.cluster import completeness_score
>>> completeness_score([0, 0, 1, 1], [1, 1, 0, 0])
1.0

Non-perfect labelings that assign all classes members to the same clusters are still complete:
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>>> print(completeness_score([0, 0, 1, 1], [0, 0, 0, 0]))
1.0
>>> print(completeness_score([0, 1, 2, 3], [0, 0, 1, 1]))
1.0

If classes members are split across different clusters, the assignment cannot be complete:

>>> print(completeness_score([0, 0, 1, 1], [0, 1, 0, 1]))
0.0
>>> print(completeness_score([0, 0, 0, 0], [0, 1, 2, 3]))
0.0

Examples using sklearn.metrics.completeness_score

• Demo of affinity propagation clustering algorithm

• Demo of DBSCAN clustering algorithm

• A demo of K-Means clustering on the handwritten digits data

• Clustering text documents using k-means

sklearn.metrics.homogeneity_completeness_v_measure

sklearn.metrics.homogeneity_completeness_v_measure(labels_true, labels_pred)
Compute the homogeneity and completeness and V-Measure scores at once

Those metrics are based on normalized conditional entropy measures of the clustering labeling to evaluate given
the knowledge of a Ground Truth class labels of the same samples.

A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a
single class.

A clustering result satisfies completeness if all the data points that are members of a given class are elements of
the same cluster.

Both scores have positive values between 0.0 and 1.0, larger values being desirable.

Those 3 metrics are independent of the absolute values of the labels: a permutation of the class or cluster label
values won’t change the score values in any way.

V-Measure is furthermore symmetric: swapping labels_true and label_pred will give the same score.
This does not hold for homogeneity and completeness.

Read more in the User Guide.

Parameterslabels_true : int array, shape = [n_samples]

ground truth class labels to be used as a reference

labels_pred : array, shape = [n_samples]

cluster labels to evaluate

Returnshomogeneity: float :

score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling

completeness: float :

score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling
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v_measure: float :

harmonic mean of the first two

See also:

homogeneity_score, completeness_score, v_measure_score

sklearn.metrics.homogeneity_score

sklearn.metrics.homogeneity_score(labels_true, labels_pred)
Homogeneity metric of a cluster labeling given a ground truth

A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a
single class.

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values
won’t change the score value in any way.

This metric is not symmetric: switching label_true with label_pred will return the
completeness_score which will be different in general.

Read more in the User Guide.

Parameterslabels_true : int array, shape = [n_samples]

ground truth class labels to be used as a reference

labels_pred : array, shape = [n_samples]

cluster labels to evaluate

Returnshomogeneity: float :

score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling

See also:

completeness_score, v_measure_score

References

[R50]

Examples

Perfect labelings are homogeneous:

>>> from sklearn.metrics.cluster import homogeneity_score
>>> homogeneity_score([0, 0, 1, 1], [1, 1, 0, 0])
1.0

Non-perfect labelings that further split classes into more clusters can be perfectly homogeneous:

>>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 0, 1, 2]))
...
1.0...
>>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 1, 2, 3]))
...
1.0...
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Clusters that include samples from different classes do not make for an homogeneous labeling:

>>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 1, 0, 1]))
...
0.0...
>>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 0, 0, 0]))
...
0.0...

Examples using sklearn.metrics.homogeneity_score

• Demo of affinity propagation clustering algorithm

• Demo of DBSCAN clustering algorithm

• A demo of K-Means clustering on the handwritten digits data

• Clustering text documents using k-means

sklearn.metrics.mutual_info_score

sklearn.metrics.mutual_info_score(labels_true, labels_pred, contingency=None)
Mutual Information between two clusterings

The Mutual Information is a measure of the similarity between two labels of the same data. Where 𝑃 (𝑖) is
the probability of a random sample occurring in cluster 𝑈𝑖 and 𝑃 ′(𝑗) is the probability of a random sample
occurring in cluster 𝑉𝑗 , the Mutual Information between clusterings 𝑈 and 𝑉 is given as:

𝑀𝐼(𝑈, 𝑉 ) =

𝑅∑︁
𝑖=1

𝐶∑︁
𝑗=1

𝑃 (𝑖, 𝑗) log
𝑃 (𝑖, 𝑗)

𝑃 (𝑖)𝑃 ′(𝑗)

This is equal to the Kullback-Leibler divergence of the joint distribution with the product distribution of the
marginals.

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values
won’t change the score value in any way.

This metric is furthermore symmetric: switching label_true with label_pred will return the same score
value. This can be useful to measure the agreement of two independent label assignments strategies on the same
dataset when the real ground truth is not known.

Read more in the User Guide.

Parameterslabels_true : int array, shape = [n_samples]

A clustering of the data into disjoint subsets.

labels_pred : array, shape = [n_samples]

A clustering of the data into disjoint subsets.

contingency: None or array, shape = [n_classes_true, n_classes_pred] :

A contingency matrix given by the contingency_matrix function. If value is
None, it will be computed, otherwise the given value is used, with labels_true and
labels_pred ignored.

Returnsmi: float :

Mutual information, a non-negative value
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See also:

adjusted_mutual_info_scoreAdjusted against chance Mutual Information

normalized_mutual_info_scoreNormalized Mutual Information

Examples using sklearn.metrics.mutual_info_score

• Adjustment for chance in clustering performance evaluation

sklearn.metrics.normalized_mutual_info_score

sklearn.metrics.normalized_mutual_info_score(labels_true, labels_pred)
Normalized Mutual Information between two clusterings

Normalized Mutual Information (NMI) is an normalization of the Mutual Information (MI) score to scale the
results between 0 (no mutual information) and 1 (perfect correlation). In this function, mutual information is
normalized by sqrt(H(labels_true) * H(labels_pred))

This measure is not adjusted for chance. Therefore adjusted_mustual_info_score might be preferred.

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values
won’t change the score value in any way.

This metric is furthermore symmetric: switching label_true with label_pred will return the same score
value. This can be useful to measure the agreement of two independent label assignments strategies on the same
dataset when the real ground truth is not known.

Read more in the User Guide.

Parameterslabels_true : int array, shape = [n_samples]

A clustering of the data into disjoint subsets.

labels_pred : array, shape = [n_samples]

A clustering of the data into disjoint subsets.

Returnsnmi: float :

score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling

See also:

adjusted_rand_scoreAdjusted Rand Index

adjusted_mutual_info_scoreAdjusted Mutual Information (adjusted against chance)

Examples

Perfect labelings are both homogeneous and complete, hence have score 1.0:

>>> from sklearn.metrics.cluster import normalized_mutual_info_score
>>> normalized_mutual_info_score([0, 0, 1, 1], [0, 0, 1, 1])
1.0
>>> normalized_mutual_info_score([0, 0, 1, 1], [1, 1, 0, 0])
1.0
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If classes members are completely split across different clusters, the assignment is totally in-complete, hence
the NMI is null:

>>> normalized_mutual_info_score([0, 0, 0, 0], [0, 1, 2, 3])
0.0

sklearn.metrics.silhouette_score

sklearn.metrics.silhouette_score(X, labels, metric=’euclidean’, sample_size=None, ran-
dom_state=None, **kwds)

Compute the mean Silhouette Coefficient of all samples.

The Silhouette Coefficient is calculated using the mean intra-cluster distance (a) and the mean nearest-cluster
distance (b) for each sample. The Silhouette Coefficient for a sample is (b - a) / max(a, b). To clarify,
b is the distance between a sample and the nearest cluster that the sample is not a part of. Note that Silhouette
Coefficent is only defined if number of labels is 2 <= n_labels <= n_samples - 1.

This function returns the mean Silhouette Coefficient over all samples. To obtain the values for each sample,
use silhouette_samples.

The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Negative values
generally indicate that a sample has been assigned to the wrong cluster, as a different cluster is more similar.

Read more in the User Guide.

ParametersX : array [n_samples_a, n_samples_a] if metric == “precomputed”, or, [n_samples_a,
n_features] otherwise

Array of pairwise distances between samples, or a feature array.

labels : array, shape = [n_samples]

Predicted labels for each sample.

metric : string, or callable

The metric to use when calculating distance between instances in a feature
array. If metric is a string, it must be one of the options allowed by
metrics.pairwise.pairwise_distances. If X is the distance array itself,
use metric="precomputed".

sample_size : int or None

The size of the sample to use when computing the Silhouette Coefficient on a random
subset of the data. If sample_size is None, no sampling is used.

random_state : integer or numpy.RandomState, optional

The generator used to randomly select a subset of samples if sample_size is not
None. If an integer is given, it fixes the seed. Defaults to the global numpy random
number generator.

‘**kwds‘ : optional keyword parameters

Any further parameters are passed directly to the distance function. If using a
scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy
docs for usage examples.

Returnssilhouette : float

Mean Silhouette Coefficient for all samples.
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References

[R55], [R56]

Examples using sklearn.metrics.silhouette_score

• Demo of affinity propagation clustering algorithm

• Demo of DBSCAN clustering algorithm

• A demo of K-Means clustering on the handwritten digits data

• Selecting the number of clusters with silhouette analysis on KMeans clustering

• Clustering text documents using k-means

sklearn.metrics.silhouette_samples

sklearn.metrics.silhouette_samples(X, labels, metric=’euclidean’, **kwds)
Compute the Silhouette Coefficient for each sample.

The Silhouette Coefficient is a measure of how well samples are clustered with samples that are similar to
themselves. Clustering models with a high Silhouette Coefficient are said to be dense, where samples in the
same cluster are similar to each other, and well separated, where samples in different clusters are not very
similar to each other.

The Silhouette Coefficient is calculated using the mean intra-cluster distance (a) and the mean nearest-cluster
distance (b) for each sample. The Silhouette Coefficient for a sample is (b - a) / max(a, b). Note that
Silhouette Coefficent is only defined if number of labels is 2 <= n_labels <= n_samples - 1.

This function returns the Silhouette Coefficient for each sample.

The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters.

Read more in the User Guide.

ParametersX : array [n_samples_a, n_samples_a] if metric == “precomputed”, or, [n_samples_a,
n_features] otherwise

Array of pairwise distances between samples, or a feature array.

labels : array, shape = [n_samples]

label values for each sample

metric : string, or callable

The metric to use when calculating distance between instances in a feature
array. If metric is a string, it must be one of the options allowed by
sklearn.metrics.pairwise.pairwise_distances. If X is the distance
array itself, use “precomputed” as the metric.

‘**kwds‘ : optional keyword parameters

Any further parameters are passed directly to the distance function. If using a
scipy.spatial.distance metric, the parameters are still metric dependent. See
the scipy docs for usage examples.

Returnssilhouette : array, shape = [n_samples]

Silhouette Coefficient for each samples.
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References

[R53], [R54]

Examples using sklearn.metrics.silhouette_samples

• Selecting the number of clusters with silhouette analysis on KMeans clustering

sklearn.metrics.v_measure_score

sklearn.metrics.v_measure_score(labels_true, labels_pred)
V-measure cluster labeling given a ground truth.

This score is identical to normalized_mutual_info_score.

The V-measure is the harmonic mean between homogeneity and completeness:

v = 2 * (homogeneity * completeness) / (homogeneity + completeness)

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values
won’t change the score value in any way.

This metric is furthermore symmetric: switching label_true with label_pred will return the same score
value. This can be useful to measure the agreement of two independent label assignments strategies on the same
dataset when the real ground truth is not known.

Read more in the User Guide.

Parameterslabels_true : int array, shape = [n_samples]

ground truth class labels to be used as a reference

labels_pred : array, shape = [n_samples]

cluster labels to evaluate

Returnsv_measure: float :

score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling

See also:

homogeneity_score, completeness_score

References

[R57]

Examples

Perfect labelings are both homogeneous and complete, hence have score 1.0:

>>> from sklearn.metrics.cluster import v_measure_score
>>> v_measure_score([0, 0, 1, 1], [0, 0, 1, 1])
1.0
>>> v_measure_score([0, 0, 1, 1], [1, 1, 0, 0])
1.0

1516 Chapter 5. API Reference



scikit-learn user guide, Release 0.17

Labelings that assign all classes members to the same clusters are complete be not homogeneous, hence penal-
ized:

>>> print("%.6f" % v_measure_score([0, 0, 1, 2], [0, 0, 1, 1]))
...
0.8...
>>> print("%.6f" % v_measure_score([0, 1, 2, 3], [0, 0, 1, 1]))
...
0.66...

Labelings that have pure clusters with members coming from the same classes are homogeneous but un-
necessary splits harms completeness and thus penalize V-measure as well:

>>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 0, 1, 2]))
...
0.8...
>>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 1, 2, 3]))
...
0.66...

If classes members are completely split across different clusters, the assignment is totally incomplete, hence the
V-Measure is null:

>>> print("%.6f" % v_measure_score([0, 0, 0, 0], [0, 1, 2, 3]))
...
0.0...

Clusters that include samples from totally different classes totally destroy the homogeneity of the labeling,
hence:

>>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 0, 0, 0]))
...
0.0...

Examples using sklearn.metrics.v_measure_score

• Biclustering documents with the Spectral Co-clustering algorithm

• Demo of affinity propagation clustering algorithm

• Demo of DBSCAN clustering algorithm

• A demo of K-Means clustering on the handwritten digits data

• Adjustment for chance in clustering performance evaluation

• Clustering text documents using k-means

5.21.6 Biclustering metrics

See the Biclustering evaluation section of the user guide for further details.

metrics.consensus_score(a, b[, similarity]) The similarity of two sets of biclusters.
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sklearn.metrics.consensus_score

sklearn.metrics.consensus_score(a, b, similarity=’jaccard’)
The similarity of two sets of biclusters.

Similarity between individual biclusters is computed. Then the best matching between sets is found using the
Hungarian algorithm. The final score is the sum of similarities divided by the size of the larger set.

Read more in the User Guide.

Parametersa : (rows, columns)

Tuple of row and column indicators for a set of biclusters.

b : (rows, columns)

Another set of biclusters like a.

similarity : string or function, optional, default: “jaccard”

May be the string “jaccard” to use the Jaccard coefficient, or any function that takes
four arguments, each of which is a 1d indicator vector: (a_rows, a_columns, b_rows,
b_columns).

References

•Hochreiter, Bodenhofer, et. al., 2010. FABIA: factor analysis for bicluster acquisition.

Examples using sklearn.metrics.consensus_score

• A demo of the Spectral Co-Clustering algorithm

• A demo of the Spectral Biclustering algorithm

5.21.7 Pairwise metrics

See the Pairwise metrics, Affinities and Kernels section of the user guide for further details.

metrics.pairwise.additive_chi2_kernel(X[, Y]) Computes the additive chi-squared kernel between observations in X and Y
metrics.pairwise.chi2_kernel(X[, Y, gamma]) Computes the exponential chi-squared kernel X and Y.
metrics.pairwise.distance_metrics() Valid metrics for pairwise_distances.
metrics.pairwise.euclidean_distances(X[, Y, ...]) Considering the rows of X (and Y=X) as vectors, compute the distance matrix between each pair of vectors.
metrics.pairwise.kernel_metrics() Valid metrics for pairwise_kernels
metrics.pairwise.linear_kernel(X[, Y]) Compute the linear kernel between X and Y.
metrics.pairwise.manhattan_distances(X[, Y, ...]) Compute the L1 distances between the vectors in X and Y.
metrics.pairwise.pairwise_distances(X[, Y, ...]) Compute the distance matrix from a vector array X and optional Y.
metrics.pairwise.pairwise_kernels(X[, Y, ...]) Compute the kernel between arrays X and optional array Y.
metrics.pairwise.polynomial_kernel(X[, Y, ...]) Compute the polynomial kernel between X and Y:
metrics.pairwise.rbf_kernel(X[, Y, gamma]) Compute the rbf (gaussian) kernel between X and Y:
metrics.pairwise.laplacian_kernel(X[, Y, gamma]) Compute the laplacian kernel between X and Y.
metrics.pairwise_distances(X[, Y, metric, ...]) Compute the distance matrix from a vector array X and optional Y.
metrics.pairwise_distances_argmin(X, Y[, ...]) Compute minimum distances between one point and a set of points.
metrics.pairwise_distances_argmin_min(X, Y) Compute minimum distances between one point and a set of points.
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sklearn.metrics.pairwise.additive_chi2_kernel

sklearn.metrics.pairwise.additive_chi2_kernel(X, Y=None)
Computes the additive chi-squared kernel between observations in X and Y

The chi-squared kernel is computed between each pair of rows in X and Y. X and Y have to be non-negative.
This kernel is most commonly applied to histograms.

The chi-squared kernel is given by:

k(x, y) = -Sum [(x - y)^2 / (x + y)]

It can be interpreted as a weighted difference per entry.

Read more in the User Guide.

ParametersX : array-like of shape (n_samples_X, n_features)

Y : array of shape (n_samples_Y, n_features)

Returnskernel_matrix : array of shape (n_samples_X, n_samples_Y)

See also:

chi2_kernelThe exponentiated version of the kernel, which is usually preferable.

sklearn.kernel_approximation.AdditiveChi2SamplerA Fourier approximation to this kernel.

Notes

As the negative of a distance, this kernel is only conditionally positive definite.

References

•Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. Local features and kernels for classification
of texture and object categories: A comprehensive study International Journal of Computer Vision 2007
http://research.microsoft.com/en-us/um/people/manik/projects/trade-off/papers/ZhangIJCV06.pdf

sklearn.metrics.pairwise.chi2_kernel

sklearn.metrics.pairwise.chi2_kernel(X, Y=None, gamma=1.0)
Computes the exponential chi-squared kernel X and Y.

The chi-squared kernel is computed between each pair of rows in X and Y. X and Y have to be non-negative.
This kernel is most commonly applied to histograms.

The chi-squared kernel is given by:

k(x, y) = exp(-gamma Sum [(x - y)^2 / (x + y)])

It can be interpreted as a weighted difference per entry.

Read more in the User Guide.

ParametersX : array-like of shape (n_samples_X, n_features)

Y : array of shape (n_samples_Y, n_features)

gamma : float, default=1.

5.21. sklearn.metrics: Metrics 1519

http://research.microsoft.com/en-us/um/people/manik/projects/trade-off/papers/ZhangIJCV06.pdf


scikit-learn user guide, Release 0.17

Scaling parameter of the chi2 kernel.

Returnskernel_matrix : array of shape (n_samples_X, n_samples_Y)

See also:

additive_chi2_kernelThe additive version of this kernel

sklearn.kernel_approximation.AdditiveChi2SamplerA Fourier approximation to the additive
version of this kernel.

References

•Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. Local features and kernels for classification
of texture and object categories: A comprehensive study International Journal of Computer Vision 2007
http://research.microsoft.com/en-us/um/people/manik/projects/trade-off/papers/ZhangIJCV06.pdf

sklearn.metrics.pairwise.distance_metrics

sklearn.metrics.pairwise.distance_metrics()
Valid metrics for pairwise_distances.

This function simply returns the valid pairwise distance metrics. It exists to allow for a description of the
mapping for each of the valid strings.

The valid distance metrics, and the function they map to, are:

metric Function
‘cityblock’ metrics.pairwise.manhattan_distances
‘cosine’ metrics.pairwise.cosine_distances
‘euclidean’ metrics.pairwise.euclidean_distances
‘l1’ metrics.pairwise.manhattan_distances
‘l2’ metrics.pairwise.euclidean_distances
‘manhattan’ metrics.pairwise.manhattan_distances

Read more in the User Guide.

sklearn.metrics.pairwise.euclidean_distances

sklearn.metrics.pairwise.euclidean_distances(X, Y=None, Y_norm_squared=None,
squared=False, X_norm_squared=None)

Considering the rows of X (and Y=X) as vectors, compute the distance matrix between each pair of vectors.

For efficiency reasons, the euclidean distance between a pair of row vector x and y is computed as:

dist(x, y) = sqrt(dot(x, x) - 2 * dot(x, y) + dot(y, y))

This formulation has two advantages over other ways of computing distances. First, it is computationally ef-
ficient when dealing with sparse data. Second, if one argument varies but the other remains unchanged, then
dot(x, x) and/or dot(y, y) can be pre-computed.

However, this is not the most precise way of doing this computation, and the distance matrix returned by this
function may not be exactly symmetric as required by, e.g., scipy.spatial.distance functions.

Read more in the User Guide.
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ParametersX : {array-like, sparse matrix}, shape (n_samples_1, n_features)

Y : {array-like, sparse matrix}, shape (n_samples_2, n_features)

Y_norm_squared : array-like, shape (n_samples_2, ), optional

Pre-computed dot-products of vectors in Y (e.g., (Y**2).sum(axis=1))

squared : boolean, optional

Return squared Euclidean distances.

X_norm_squared : array-like, shape = [n_samples_1], optional

Pre-computed dot-products of vectors in X (e.g., (X**2).sum(axis=1))

Returnsdistances : {array, sparse matrix}, shape (n_samples_1, n_samples_2)

See also:

paired_distancesdistances betweens pairs of elements of X and Y.

Examples

>>> from sklearn.metrics.pairwise import euclidean_distances
>>> X = [[0, 1], [1, 1]]
>>> # distance between rows of X
>>> euclidean_distances(X, X)
array([[ 0., 1.],

[ 1., 0.]])
>>> # get distance to origin
>>> euclidean_distances(X, [[0, 0]])
array([[ 1. ],

[ 1.41421356]])

sklearn.metrics.pairwise.kernel_metrics

sklearn.metrics.pairwise.kernel_metrics()
Valid metrics for pairwise_kernels

This function simply returns the valid pairwise distance metrics. It exists, however, to allow for a verbose
description of the mapping for each of the valid strings.

The valid distance metrics, and the function they map to, are:

metric Function
‘additive_chi2’ sklearn.pairwise.additive_chi2_kernel
‘chi2’ sklearn.pairwise.chi2_kernel
‘linear’ sklearn.pairwise.linear_kernel
‘poly’ sklearn.pairwise.polynomial_kernel
‘polynomial’ sklearn.pairwise.polynomial_kernel
‘rbf’ sklearn.pairwise.rbf_kernel
‘laplacian’ sklearn.pairwise.laplacian_kernel
‘sigmoid’ sklearn.pairwise.sigmoid_kernel
‘cosine’ sklearn.pairwise.cosine_similarity

Read more in the User Guide.
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sklearn.metrics.pairwise.linear_kernel

sklearn.metrics.pairwise.linear_kernel(X, Y=None)
Compute the linear kernel between X and Y.

Read more in the User Guide.

ParametersX : array of shape (n_samples_1, n_features)

Y : array of shape (n_samples_2, n_features)

ReturnsGram matrix : array of shape (n_samples_1, n_samples_2)

sklearn.metrics.pairwise.manhattan_distances

sklearn.metrics.pairwise.manhattan_distances(X, Y=None, sum_over_features=True,
size_threshold=500000000.0)

Compute the L1 distances between the vectors in X and Y.

With sum_over_features equal to False it returns the componentwise distances.

Read more in the User Guide.

ParametersX : array_like

An array with shape (n_samples_X, n_features).

Y : array_like, optional

An array with shape (n_samples_Y, n_features).

sum_over_features : bool, default=True

If True the function returns the pairwise distance matrix else it returns the component-
wise L1 pairwise-distances. Not supported for sparse matrix inputs.

size_threshold : int, default=5e8

Unused parameter.

ReturnsD : array

If sum_over_features is False shape is (n_samples_X * n_samples_Y, n_features) and D
contains the componentwise L1 pairwise-distances (ie. absolute difference), else shape
is (n_samples_X, n_samples_Y) and D contains the pairwise L1 distances.

Examples

>>> from sklearn.metrics.pairwise import manhattan_distances
>>> manhattan_distances([[3]], [[3]])
array([[ 0.]])
>>> manhattan_distances([[3]], [[2]])
array([[ 1.]])
>>> manhattan_distances([[2]], [[3]])
array([[ 1.]])
>>> manhattan_distances([[1, 2], [3, 4]], [[1, 2], [0, 3]])
array([[ 0., 2.],

[ 4., 4.]])
>>> import numpy as np
>>> X = np.ones((1, 2))
>>> y = 2 * np.ones((2, 2))
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>>> manhattan_distances(X, y, sum_over_features=False)
array([[ 1., 1.],

[ 1., 1.]]...)

sklearn.metrics.pairwise.pairwise_distances

sklearn.metrics.pairwise.pairwise_distances(X, Y=None, metric=’euclidean’, n_jobs=1,
**kwds)

Compute the distance matrix from a vector array X and optional Y.

This method takes either a vector array or a distance matrix, and returns a distance matrix. If the input is a vector
array, the distances are computed. If the input is a distances matrix, it is returned instead.

This method provides a safe way to take a distance matrix as input, while preserving compatibility with many
other algorithms that take a vector array.

If Y is given (default is None), then the returned matrix is the pairwise distance between the arrays from both X
and Y.

Valid values for metric are:

•From scikit-learn: [’cityblock’, ‘cosine’, ‘euclidean’, ‘l1’, ‘l2’, ‘manhattan’]. These metrics support sparse
matrix inputs.

•From scipy.spatial.distance: [’braycurtis’, ‘canberra’, ‘chebyshev’, ‘correlation’, ‘dice’, ‘hamming’, ‘jac-
card’, ‘kulsinski’, ‘mahalanobis’, ‘matching’, ‘minkowski’, ‘rogerstanimoto’, ‘russellrao’, ‘seuclidean’,
‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘yule’] See the documentation for scipy.spatial.distance for
details on these metrics. These metrics do not support sparse matrix inputs.

Note that in the case of ‘cityblock’, ‘cosine’ and ‘euclidean’ (which are valid scipy.spatial.distance met-
rics), the scikit-learn implementation will be used, which is faster and has support for sparse matrices (ex-
cept for ‘cityblock’). For a verbose description of the metrics from scikit-learn, see the __doc__ of the
sklearn.pairwise.distance_metrics function.

Read more in the User Guide.

ParametersX : array [n_samples_a, n_samples_a] if metric == “precomputed”, or, [n_samples_a,
n_features] otherwise

Array of pairwise distances between samples, or a feature array.

Y : array [n_samples_b, n_features], optional

An optional second feature array. Only allowed if metric != “precomputed”.

metric : string, or callable

The metric to use when calculating distance between instances in a feature
array. If metric is a string, it must be one of the options allowed by
scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pair-
wise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is “precomputed”, X is assumed
to be a distance matrix. Alternatively, if metric is a callable function, it is called on each
pair of instances (rows) and the resulting value recorded. The callable should take two
arrays from X as input and return a value indicating the distance between them.

n_jobs : int

The number of jobs to use for the computation. This works by breaking down the
pairwise matrix into n_jobs even slices and computing them in parallel.
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If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which
is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for
n_jobs = -2, all CPUs but one are used.

‘**kwds‘ : optional keyword parameters

Any further parameters are passed directly to the distance function. If using a
scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy
docs for usage examples.

ReturnsD : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b]

A distance matrix D such that D_{i, j} is the distance between the ith and jth vectors of
the given matrix X, if Y is None. If Y is not None, then D_{i, j} is the distance between
the ith array from X and the jth array from Y.

sklearn.metrics.pairwise.pairwise_kernels

sklearn.metrics.pairwise.pairwise_kernels(X, Y=None, metric=’linear’, fil-
ter_params=False, n_jobs=1, **kwds)

Compute the kernel between arrays X and optional array Y.

This method takes either a vector array or a kernel matrix, and returns a kernel matrix. If the input is a vector
array, the kernels are computed. If the input is a kernel matrix, it is returned instead.

This method provides a safe way to take a kernel matrix as input, while preserving compatibility with many
other algorithms that take a vector array.

If Y is given (default is None), then the returned matrix is the pairwise kernel between the arrays from both X
and Y.

Valid values for metric are::[’rbf’, ‘sigmoid’, ‘polynomial’, ‘poly’, ‘linear’, ‘cosine’]

Read more in the User Guide.

ParametersX : array [n_samples_a, n_samples_a] if metric == “precomputed”, or, [n_samples_a,
n_features] otherwise

Array of pairwise kernels between samples, or a feature array.

Y : array [n_samples_b, n_features]

A second feature array only if X has shape [n_samples_a, n_features].

metric : string, or callable

The metric to use when calculating kernel between instances in a feature
array. If metric is a string, it must be one of the metrics in pair-
wise.PAIRWISE_KERNEL_FUNCTIONS. If metric is “precomputed”, X is assumed
to be a kernel matrix. Alternatively, if metric is a callable function, it is called on each
pair of instances (rows) and the resulting value recorded. The callable should take two
arrays from X as input and return a value indicating the distance between them.

n_jobs : int

The number of jobs to use for the computation. This works by breaking down the
pairwise matrix into n_jobs even slices and computing them in parallel.

If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which
is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for
n_jobs = -2, all CPUs but one are used.

filter_params: boolean :
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Whether to filter invalid parameters or not.

‘**kwds‘ : optional keyword parameters

Any further parameters are passed directly to the kernel function.

ReturnsK : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b]

A kernel matrix K such that K_{i, j} is the kernel between the ith and jth vectors of the
given matrix X, if Y is None. If Y is not None, then K_{i, j} is the kernel between the
ith array from X and the jth array from Y.

Notes

If metric is ‘precomputed’, Y is ignored and X is returned.

sklearn.metrics.pairwise.polynomial_kernel

sklearn.metrics.pairwise.polynomial_kernel(X, Y=None, degree=3, gamma=None,
coef0=1)

Compute the polynomial kernel between X and Y:

K(X, Y) = (gamma <X, Y> + coef0)^degree

Read more in the User Guide.

ParametersX : ndarray of shape (n_samples_1, n_features)

Y : ndarray of shape (n_samples_2, n_features)

coef0 : int, default 1

degree : int, default 3

ReturnsGram matrix : array of shape (n_samples_1, n_samples_2)

sklearn.metrics.pairwise.rbf_kernel

sklearn.metrics.pairwise.rbf_kernel(X, Y=None, gamma=None)
Compute the rbf (gaussian) kernel between X and Y:

K(x, y) = exp(-gamma ||x-y||^2)

for each pair of rows x in X and y in Y.

Read more in the User Guide.

ParametersX : array of shape (n_samples_X, n_features)

Y : array of shape (n_samples_Y, n_features)

gamma : float

Returnskernel_matrix : array of shape (n_samples_X, n_samples_Y)
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sklearn.metrics.pairwise.laplacian_kernel

sklearn.metrics.pairwise.laplacian_kernel(X, Y=None, gamma=None)
Compute the laplacian kernel between X and Y.

The laplacian kernel is defined as:

K(x, y) = exp(-gamma ||x-y||_1)

for each pair of rows x in X and y in Y. Read more in the User Guide.

New in version 0.17.

ParametersX : array of shape (n_samples_X, n_features)

Y : array of shape (n_samples_Y, n_features)

gamma : float

Returnskernel_matrix : array of shape (n_samples_X, n_samples_Y)

sklearn.metrics.pairwise_distances

sklearn.metrics.pairwise_distances(X, Y=None, metric=’euclidean’, n_jobs=1, **kwds)
Compute the distance matrix from a vector array X and optional Y.

This method takes either a vector array or a distance matrix, and returns a distance matrix. If the input is a vector
array, the distances are computed. If the input is a distances matrix, it is returned instead.

This method provides a safe way to take a distance matrix as input, while preserving compatibility with many
other algorithms that take a vector array.

If Y is given (default is None), then the returned matrix is the pairwise distance between the arrays from both X
and Y.

Valid values for metric are:

•From scikit-learn: [’cityblock’, ‘cosine’, ‘euclidean’, ‘l1’, ‘l2’, ‘manhattan’]. These metrics support sparse
matrix inputs.

•From scipy.spatial.distance: [’braycurtis’, ‘canberra’, ‘chebyshev’, ‘correlation’, ‘dice’, ‘hamming’, ‘jac-
card’, ‘kulsinski’, ‘mahalanobis’, ‘matching’, ‘minkowski’, ‘rogerstanimoto’, ‘russellrao’, ‘seuclidean’,
‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘yule’] See the documentation for scipy.spatial.distance for
details on these metrics. These metrics do not support sparse matrix inputs.

Note that in the case of ‘cityblock’, ‘cosine’ and ‘euclidean’ (which are valid scipy.spatial.distance met-
rics), the scikit-learn implementation will be used, which is faster and has support for sparse matrices (ex-
cept for ‘cityblock’). For a verbose description of the metrics from scikit-learn, see the __doc__ of the
sklearn.pairwise.distance_metrics function.

Read more in the User Guide.

ParametersX : array [n_samples_a, n_samples_a] if metric == “precomputed”, or, [n_samples_a,
n_features] otherwise

Array of pairwise distances between samples, or a feature array.

Y : array [n_samples_b, n_features], optional

An optional second feature array. Only allowed if metric != “precomputed”.

metric : string, or callable
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The metric to use when calculating distance between instances in a feature
array. If metric is a string, it must be one of the options allowed by
scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pair-
wise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is “precomputed”, X is assumed
to be a distance matrix. Alternatively, if metric is a callable function, it is called on each
pair of instances (rows) and the resulting value recorded. The callable should take two
arrays from X as input and return a value indicating the distance between them.

n_jobs : int

The number of jobs to use for the computation. This works by breaking down the
pairwise matrix into n_jobs even slices and computing them in parallel.

If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which
is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for
n_jobs = -2, all CPUs but one are used.

‘**kwds‘ : optional keyword parameters

Any further parameters are passed directly to the distance function. If using a
scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy
docs for usage examples.

ReturnsD : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b]

A distance matrix D such that D_{i, j} is the distance between the ith and jth vectors of
the given matrix X, if Y is None. If Y is not None, then D_{i, j} is the distance between
the ith array from X and the jth array from Y.

Examples using sklearn.metrics.pairwise_distances

• Agglomerative clustering with different metrics

sklearn.metrics.pairwise_distances_argmin

sklearn.metrics.pairwise_distances_argmin(X, Y, axis=1, metric=’euclidean’,
batch_size=500, metric_kwargs=None)

Compute minimum distances between one point and a set of points.

This function computes for each row in X, the index of the row of Y which is closest (according to the specified
distance).

This is mostly equivalent to calling:

pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis)

but uses much less memory, and is faster for large arrays.

This function works with dense 2D arrays only.

ParametersX : array-like

Arrays containing points. Respective shapes (n_samples1, n_features) and
(n_samples2, n_features)

Y : array-like

Arrays containing points. Respective shapes (n_samples1, n_features) and
(n_samples2, n_features)

batch_size : integer
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To reduce memory consumption over the naive solution, data are processed in batches,
comprising batch_size rows of X and batch_size rows of Y. The default value is quite
conservative, but can be changed for fine-tuning. The larger the number, the larger the
memory usage.

metric : string or callable

metric to use for distance computation. Any metric from scikit-learn or
scipy.spatial.distance can be used.

If metric is a callable function, it is called on each pair of instances (rows) and the
resulting value recorded. The callable should take two arrays as input and return one
value indicating the distance between them. This works for Scipy’s metrics, but is less
efficient than passing the metric name as a string.

Distance matrices are not supported.

Valid values for metric are:

•from scikit-learn: [’cityblock’, ‘cosine’, ‘euclidean’, ‘l1’, ‘l2’, ‘manhattan’]

•from scipy.spatial.distance: [’braycurtis’, ‘canberra’, ‘chebyshev’, ‘correlation’,
‘dice’, ‘hamming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘matching’, ‘minkowski’,
‘rogerstanimoto’, ‘russellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeu-
clidean’, ‘yule’]

See the documentation for scipy.spatial.distance for details on these metrics.

metric_kwargs : dict

keyword arguments to pass to specified metric function.

axis : int, optional, default 1

Axis along which the argmin and distances are to be computed.

Returnsargmin : numpy.ndarray

Y[argmin[i], :] is the row in Y that is closest to X[i, :].

See also:

sklearn.metrics.pairwise_distances, sklearn.metrics.pairwise_distances_argmin_min

Examples using sklearn.metrics.pairwise_distances_argmin

• Color Quantization using K-Means

• Comparison of the K-Means and MiniBatchKMeans clustering algorithms

sklearn.metrics.pairwise_distances_argmin_min

sklearn.metrics.pairwise_distances_argmin_min(X, Y, axis=1, metric=’euclidean’,
batch_size=500, metric_kwargs=None)

Compute minimum distances between one point and a set of points.

This function computes for each row in X, the index of the row of Y which is closest (according to the specified
distance). The minimal distances are also returned.

This is mostly equivalent to calling:

(pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis),pairwise_distances(X, Y=Y,
metric=metric).min(axis=axis))
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but uses much less memory, and is faster for large arrays.

ParametersX, Y : {array-like, sparse matrix}

Arrays containing points. Respective shapes (n_samples1, n_features) and
(n_samples2, n_features)

batch_size : integer

To reduce memory consumption over the naive solution, data are processed in batches,
comprising batch_size rows of X and batch_size rows of Y. The default value is quite
conservative, but can be changed for fine-tuning. The larger the number, the larger the
memory usage.

metric : string or callable, default ‘euclidean’

metric to use for distance computation. Any metric from scikit-learn or
scipy.spatial.distance can be used.

If metric is a callable function, it is called on each pair of instances (rows) and the
resulting value recorded. The callable should take two arrays as input and return one
value indicating the distance between them. This works for Scipy’s metrics, but is less
efficient than passing the metric name as a string.

Distance matrices are not supported.

Valid values for metric are:

•from scikit-learn: [’cityblock’, ‘cosine’, ‘euclidean’, ‘l1’, ‘l2’, ‘manhattan’]

•from scipy.spatial.distance: [’braycurtis’, ‘canberra’, ‘chebyshev’, ‘correlation’,
‘dice’, ‘hamming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘matching’, ‘minkowski’,
‘rogerstanimoto’, ‘russellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeu-
clidean’, ‘yule’]

See the documentation for scipy.spatial.distance for details on these metrics.

metric_kwargs : dict, optional

Keyword arguments to pass to specified metric function.

axis : int, optional, default 1

Axis along which the argmin and distances are to be computed.

Returnsargmin : numpy.ndarray

Y[argmin[i], :] is the row in Y that is closest to X[i, :].

distances : numpy.ndarray

distances[i] is the distance between the i-th row in X and the argmin[i]-th row in Y.

See also:

sklearn.metrics.pairwise_distances, sklearn.metrics.pairwise_distances_argmin

5.22 sklearn.mixture: Gaussian Mixture Models

The sklearn.mixture module implements mixture modeling algorithms.

User guide: See the Gaussian mixture models section for further details.
Continued on next page
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Table 5.163 – continued from previous page

mixture.GMM([n_components, covariance_type, ...]) Gaussian Mixture Model
mixture.DPGMM([n_components, ...]) Variational Inference for the Infinite Gaussian Mixture Model.
mixture.VBGMM([n_components, ...]) Variational Inference for the Gaussian Mixture Model

5.22.1 sklearn.mixture.GMM

class sklearn.mixture.GMM(n_components=1, covariance_type=’diag’, random_state=None,
thresh=None, tol=0.001, min_covar=0.001, n_iter=100, n_init=1,
params=’wmc’, init_params=’wmc’, verbose=0)

Gaussian Mixture Model

Representation of a Gaussian mixture model probability distribution. This class allows for easy evaluation of,
sampling from, and maximum-likelihood estimation of the parameters of a GMM distribution.

Initializes parameters such that every mixture component has zero mean and identity covariance.

Read more in the User Guide.

Parametersn_components : int, optional

Number of mixture components. Defaults to 1.

covariance_type : string, optional

String describing the type of covariance parameters to use. Must be one of ‘spherical’,
‘tied’, ‘diag’, ‘full’. Defaults to ‘diag’.

random_state: RandomState or an int seed (None by default) :

A random number generator instance

min_covar : float, optional

Floor on the diagonal of the covariance matrix to prevent overfitting. Defaults to 1e-3.

tol : float, optional

Convergence threshold. EM iterations will stop when average gain in log-likelihood is
below this threshold. Defaults to 1e-3.

n_iter : int, optional

Number of EM iterations to perform.

n_init : int, optional

Number of initializations to perform. the best results is kept

params : string, optional

Controls which parameters are updated in the training process. Can contain any combi-
nation of ‘w’ for weights, ‘m’ for means, and ‘c’ for covars. Defaults to ‘wmc’.

init_params : string, optional

Controls which parameters are updated in the initialization process. Can contain any
combination of ‘w’ for weights, ‘m’ for means, and ‘c’ for covars. Defaults to ‘wmc’.

verbose : int, default: 0
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Enable verbose output. If 1 then it always prints the current initialization and iteration
step. If greater than 1 then it prints additionally the change and time needed for each
step.

Attributesweights_ : array, shape (n_components,)

This attribute stores the mixing weights for each mixture component.

means_ : array, shape (n_components, n_features)

Mean parameters for each mixture component.

covars_ : array

Covariance parameters for each mixture component. The shape depends on covari-
ance_type:

(n_components, n_features) if 'spherical',
(n_features, n_features) if 'tied',
(n_components, n_features) if 'diag',
(n_components, n_features, n_features) if 'full'

converged_ : bool

True when convergence was reached in fit(), False otherwise.

See also:

DPGMMInfinite gaussian mixture model, using the dirichlet process, fit with a variational algorithm

VBGMMFinite gaussian mixture model fit with a variational algorithm, better for situations where there might be
too little data to get a good estimate of the covariance matrix.

Examples

>>> import numpy as np
>>> from sklearn import mixture
>>> np.random.seed(1)
>>> g = mixture.GMM(n_components=2)
>>> # Generate random observations with two modes centered on 0
>>> # and 10 to use for training.
>>> obs = np.concatenate((np.random.randn(100, 1),
... 10 + np.random.randn(300, 1)))
>>> g.fit(obs)
GMM(covariance_type='diag', init_params='wmc', min_covar=0.001,

n_components=2, n_init=1, n_iter=100, params='wmc',
random_state=None, thresh=None, tol=0.001, verbose=0)

>>> np.round(g.weights_, 2)
array([ 0.75, 0.25])
>>> np.round(g.means_, 2)
array([[ 10.05],

[ 0.06]])
>>> np.round(g.covars_, 2)
array([[[ 1.02]],

[[ 0.96]]])
>>> g.predict([[0], [2], [9], [10]])
array([1, 1, 0, 0]...)
>>> np.round(g.score([[0], [2], [9], [10]]), 2)
array([-2.19, -4.58, -1.75, -1.21])
>>> # Refit the model on new data (initial parameters remain the
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>>> # same), this time with an even split between the two modes.
>>> g.fit(20 * [[0]] + 20 * [[10]])
GMM(covariance_type='diag', init_params='wmc', min_covar=0.001,

n_components=2, n_init=1, n_iter=100, params='wmc',
random_state=None, thresh=None, tol=0.001, verbose=0)

>>> np.round(g.weights_, 2)
array([ 0.5, 0.5])

Methods

aic(X) Akaike information criterion for the current model fit
bic(X) Bayesian information criterion for the current model fit
fit(X[, y]) Estimate model parameters with the EM algorithm.
fit_predict(X[, y]) Fit and then predict labels for data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict label for data.
predict_proba(X) Predict posterior probability of data under each Gaussian in the model.
sample([n_samples, random_state]) Generate random samples from the model.
score(X[, y]) Compute the log probability under the model.
score_samples(X) Return the per-sample likelihood of the data under the model.
set_params(**params) Set the parameters of this estimator.

__init__(n_components=1, covariance_type=’diag’, random_state=None, thresh=None, tol=0.001,
min_covar=0.001, n_iter=100, n_init=1, params=’wmc’, init_params=’wmc’, verbose=0)

aic(X)
Akaike information criterion for the current model fit and the proposed data

ParametersX : array of shape(n_samples, n_dimensions)

Returnsaic: float (the lower the better) :

bic(X)
Bayesian information criterion for the current model fit and the proposed data

ParametersX : array of shape(n_samples, n_dimensions)

Returnsbic: float (the lower the better) :

fit(X, y=None)
Estimate model parameters with the EM algorithm.

A initialization step is performed before entering the expectation-maximization (EM) algorithm. If you
want to avoid this step, set the keyword argument init_params to the empty string ‘’ when creating the
GMM object. Likewise, if you would like just to do an initialization, set n_iter=0.

ParametersX : array_like, shape (n, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returnsself :

fit_predict(X, y=None)
Fit and then predict labels for data.

Warning: due to the final maximization step in the EM algorithm, with low iterations the prediction may
not be 100% accurate

New in version 0.17: fit_predict method in Gaussian Mixture Model.
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ParametersX : array-like, shape = [n_samples, n_features]

ReturnsC : array, shape = (n_samples,) component memberships

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict label for data.

ParametersX : array-like, shape = [n_samples, n_features]

ReturnsC : array, shape = (n_samples,) component memberships

predict_proba(X)
Predict posterior probability of data under each Gaussian in the model.

ParametersX : array-like, shape = [n_samples, n_features]

Returnsresponsibilities : array-like, shape = (n_samples, n_components)

Returns the probability of the sample for each Gaussian (state) in the model.

sample(n_samples=1, random_state=None)
Generate random samples from the model.

Parametersn_samples : int, optional

Number of samples to generate. Defaults to 1.

ReturnsX : array_like, shape (n_samples, n_features)

List of samples

score(X, y=None)
Compute the log probability under the model.

ParametersX : array_like, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returnslogprob : array_like, shape (n_samples,)

Log probabilities of each data point in X

score_samples(X)
Return the per-sample likelihood of the data under the model.

Compute the log probability of X under the model and return the posterior distribution (responsibilities)
of each mixture component for each element of X.

ParametersX: array_like, shape (n_samples, n_features) :

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returnslogprob : array_like, shape (n_samples,)

Log probabilities of each data point in X.

responsibilities : array_like, shape (n_samples, n_components)
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Posterior probabilities of each mixture component for each observation

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.mixture.GMM

• Density Estimation for a mixture of Gaussians

• Gaussian Mixture Model Ellipsoids

• Gaussian Mixture Model Sine Curve

• Gaussian Mixture Model Selection

• GMM classification

5.22.2 sklearn.mixture.DPGMM

class sklearn.mixture.DPGMM(n_components=1, covariance_type=’diag’, alpha=1.0, ran-
dom_state=None, thresh=None, tol=0.001, verbose=0,
min_covar=None, n_iter=10, params=’wmc’, init_params=’wmc’)

Variational Inference for the Infinite Gaussian Mixture Model.

DPGMM stands for Dirichlet Process Gaussian Mixture Model, and it is an infinite mixture model with the
Dirichlet Process as a prior distribution on the number of clusters. In practice the approximate inference algo-
rithm uses a truncated distribution with a fixed maximum number of components, but almost always the number
of components actually used depends on the data.

Stick-breaking Representation of a Gaussian mixture model probability distribution. This class allows for easy
and efficient inference of an approximate posterior distribution over the parameters of a Gaussian mixture model
with a variable number of components (smaller than the truncation parameter n_components).

Initialization is with normally-distributed means and identity covariance, for proper convergence.

Read more in the User Guide.

Parametersn_components: int, default 1 :

Number of mixture components.

covariance_type: string, default ‘diag’ :

String describing the type of covariance parameters to use. Must be one of ‘spherical’,
‘tied’, ‘diag’, ‘full’.

alpha: float, default 1 :

Real number representing the concentration parameter of the dirichlet process. Intu-
itively, the Dirichlet Process is as likely to start a new cluster for a point as it is to add
that point to a cluster with alpha elements. A higher alpha means more clusters, as the
expected number of clusters is alpha*log(N).

tol : float, default 1e-3

Convergence threshold.
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n_iter : int, default 10

Maximum number of iterations to perform before convergence.

params : string, default ‘wmc’

Controls which parameters are updated in the training process. Can contain any combi-
nation of ‘w’ for weights, ‘m’ for means, and ‘c’ for covars.

init_params : string, default ‘wmc’

Controls which parameters are updated in the initialization process. Can contain any
combination of ‘w’ for weights, ‘m’ for means, and ‘c’ for covars. Defaults to ‘wmc’.

verbose : int, default 0

Controls output verbosity.

Attributescovariance_type : string

String describing the type of covariance parameters used by the DP-GMM. Must be one
of ‘spherical’, ‘tied’, ‘diag’, ‘full’.

n_components : int

Number of mixture components.

weights_ : array, shape (n_components,)

Mixing weights for each mixture component.

means_ : array, shape (n_components, n_features)

Mean parameters for each mixture component.

precs_ : array

Precision (inverse covariance) parameters for each mixture component. The shape de-
pends on covariance_type:

(`n_components`, 'n_features') if 'spherical',
(`n_features`, `n_features`) if 'tied',
(`n_components`, `n_features`) if 'diag',
(`n_components`, `n_features`, `n_features`) if 'full'

converged_ : bool

True when convergence was reached in fit(), False otherwise.

See also:

GMMFinite Gaussian mixture model fit with EM

VBGMMFinite Gaussian mixture model fit with a variational algorithm, better for situations where there might be
too little data to get a good estimate of the covariance matrix.

Methods

aic(X) Akaike information criterion for the current model fit
bic(X) Bayesian information criterion for the current model fit
fit(X[, y]) Estimate model parameters with the EM algorithm.
fit_predict(X[, y]) Fit and then predict labels for data.

Continued on next page
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Table 5.165 – continued from previous page
get_params([deep]) Get parameters for this estimator.
lower_bound(X, z) returns a lower bound on model evidence based on X and membership
predict(X) Predict label for data.
predict_proba(X) Predict posterior probability of data under each Gaussian in the model.
sample([n_samples, random_state]) Generate random samples from the model.
score(X[, y]) Compute the log probability under the model.
score_samples(X) Return the likelihood of the data under the model.
set_params(**params) Set the parameters of this estimator.

__init__(n_components=1, covariance_type=’diag’, alpha=1.0, random_state=None, thresh=None,
tol=0.001, verbose=0, min_covar=None, n_iter=10, params=’wmc’, init_params=’wmc’)

aic(X)
Akaike information criterion for the current model fit and the proposed data

ParametersX : array of shape(n_samples, n_dimensions)

Returnsaic: float (the lower the better) :

bic(X)
Bayesian information criterion for the current model fit and the proposed data

ParametersX : array of shape(n_samples, n_dimensions)

Returnsbic: float (the lower the better) :

fit(X, y=None)
Estimate model parameters with the EM algorithm.

A initialization step is performed before entering the expectation-maximization (EM) algorithm. If you
want to avoid this step, set the keyword argument init_params to the empty string ‘’ when creating the
GMM object. Likewise, if you would like just to do an initialization, set n_iter=0.

ParametersX : array_like, shape (n, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returnsself :

fit_predict(X, y=None)
Fit and then predict labels for data.

Warning: due to the final maximization step in the EM algorithm, with low iterations the prediction may
not be 100% accurate

New in version 0.17: fit_predict method in Gaussian Mixture Model.

ParametersX : array-like, shape = [n_samples, n_features]

ReturnsC : array, shape = (n_samples,) component memberships

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.
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lower_bound(X, z)
returns a lower bound on model evidence based on X and membership

predict(X)
Predict label for data.

ParametersX : array-like, shape = [n_samples, n_features]

ReturnsC : array, shape = (n_samples,) component memberships

predict_proba(X)
Predict posterior probability of data under each Gaussian in the model.

ParametersX : array-like, shape = [n_samples, n_features]

Returnsresponsibilities : array-like, shape = (n_samples, n_components)

Returns the probability of the sample for each Gaussian (state) in the model.

sample(n_samples=1, random_state=None)
Generate random samples from the model.

Parametersn_samples : int, optional

Number of samples to generate. Defaults to 1.

ReturnsX : array_like, shape (n_samples, n_features)

List of samples

score(X, y=None)
Compute the log probability under the model.

ParametersX : array_like, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returnslogprob : array_like, shape (n_samples,)

Log probabilities of each data point in X

score_samples(X)
Return the likelihood of the data under the model.

Compute the bound on log probability of X under the model and return the posterior distribution (respon-
sibilities) of each mixture component for each element of X.

This is done by computing the parameters for the mean-field of z for each observation.

ParametersX : array_like, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returnslogprob : array_like, shape (n_samples,)

Log probabilities of each data point in X

responsibilities: array_like, shape (n_samples, n_components) :

Posterior probabilities of each mixture component for each observation

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.
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Returnsself :

Examples using sklearn.mixture.DPGMM

• Gaussian Mixture Model Ellipsoids

• Gaussian Mixture Model Sine Curve

5.22.3 sklearn.mixture.VBGMM

class sklearn.mixture.VBGMM(n_components=1, covariance_type=’diag’, alpha=1.0, ran-
dom_state=None, thresh=None, tol=0.001, verbose=0,
min_covar=None, n_iter=10, params=’wmc’, init_params=’wmc’)

Variational Inference for the Gaussian Mixture Model

Variational inference for a Gaussian mixture model probability distribution. This class allows for easy and
efficient inference of an approximate posterior distribution over the parameters of a Gaussian mixture model
with a fixed number of components.

Initialization is with normally-distributed means and identity covariance, for proper convergence.

Read more in the User Guide.

Parametersn_components: int, default 1 :

Number of mixture components.

covariance_type: string, default ‘diag’ :

String describing the type of covariance parameters to use. Must be one of ‘spherical’,
‘tied’, ‘diag’, ‘full’.

alpha: float, default 1 :

Real number representing the concentration parameter of the dirichlet distribution. Intu-
itively, the higher the value of alpha the more likely the variational mixture of Gaussians
model will use all components it can.

tol : float, default 1e-3

Convergence threshold.

n_iter : int, default 10

Maximum number of iterations to perform before convergence.

params : string, default ‘wmc’

Controls which parameters are updated in the training process. Can contain any combi-
nation of ‘w’ for weights, ‘m’ for means, and ‘c’ for covars.

init_params : string, default ‘wmc’

Controls which parameters are updated in the initialization process. Can contain any
combination of ‘w’ for weights, ‘m’ for means, and ‘c’ for covars. Defaults to ‘wmc’.

verbose : int, default 0

Controls output verbosity.

Attributescovariance_type : string

String describing the type of covariance parameters used by the DP-GMM. Must be one
of ‘spherical’, ‘tied’, ‘diag’, ‘full’.
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n_features : int

Dimensionality of the Gaussians.

n_components : int (read-only)

Number of mixture components.

weights_ : array, shape (n_components,)

Mixing weights for each mixture component.

means_ : array, shape (n_components, n_features)

Mean parameters for each mixture component.

precs_ : array

Precision (inverse covariance) parameters for each mixture component. The shape de-
pends on covariance_type:

(`n_components`, 'n_features') if 'spherical',
(`n_features`, `n_features`) if 'tied',
(`n_components`, `n_features`) if 'diag',
(`n_components`, `n_features`, `n_features`) if 'full'

converged_ : bool

True when convergence was reached in fit(), False otherwise.

See also:

GMMFinite Gaussian mixture model fit with EM

DPGMMInfinite Gaussian mixture model, using the dirichlet process, fit with a variational algorithm

Methods

aic(X) Akaike information criterion for the current model fit
bic(X) Bayesian information criterion for the current model fit
fit(X[, y]) Estimate model parameters with the EM algorithm.
fit_predict(X[, y]) Fit and then predict labels for data.
get_params([deep]) Get parameters for this estimator.
lower_bound(X, z) returns a lower bound on model evidence based on X and membership
predict(X) Predict label for data.
predict_proba(X) Predict posterior probability of data under each Gaussian in the model.
sample([n_samples, random_state]) Generate random samples from the model.
score(X[, y]) Compute the log probability under the model.
score_samples(X) Return the likelihood of the data under the model.
set_params(**params) Set the parameters of this estimator.

__init__(n_components=1, covariance_type=’diag’, alpha=1.0, random_state=None, thresh=None,
tol=0.001, verbose=0, min_covar=None, n_iter=10, params=’wmc’, init_params=’wmc’)

aic(X)
Akaike information criterion for the current model fit and the proposed data

ParametersX : array of shape(n_samples, n_dimensions)

Returnsaic: float (the lower the better) :
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bic(X)
Bayesian information criterion for the current model fit and the proposed data

ParametersX : array of shape(n_samples, n_dimensions)

Returnsbic: float (the lower the better) :

fit(X, y=None)
Estimate model parameters with the EM algorithm.

A initialization step is performed before entering the expectation-maximization (EM) algorithm. If you
want to avoid this step, set the keyword argument init_params to the empty string ‘’ when creating the
GMM object. Likewise, if you would like just to do an initialization, set n_iter=0.

ParametersX : array_like, shape (n, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returnsself :

fit_predict(X, y=None)
Fit and then predict labels for data.

Warning: due to the final maximization step in the EM algorithm, with low iterations the prediction may
not be 100% accurate

New in version 0.17: fit_predict method in Gaussian Mixture Model.

ParametersX : array-like, shape = [n_samples, n_features]

ReturnsC : array, shape = (n_samples,) component memberships

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

lower_bound(X, z)
returns a lower bound on model evidence based on X and membership

predict(X)
Predict label for data.

ParametersX : array-like, shape = [n_samples, n_features]

ReturnsC : array, shape = (n_samples,) component memberships

predict_proba(X)
Predict posterior probability of data under each Gaussian in the model.

ParametersX : array-like, shape = [n_samples, n_features]

Returnsresponsibilities : array-like, shape = (n_samples, n_components)

Returns the probability of the sample for each Gaussian (state) in the model.

sample(n_samples=1, random_state=None)
Generate random samples from the model.

Parametersn_samples : int, optional
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Number of samples to generate. Defaults to 1.

ReturnsX : array_like, shape (n_samples, n_features)

List of samples

score(X, y=None)
Compute the log probability under the model.

ParametersX : array_like, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returnslogprob : array_like, shape (n_samples,)

Log probabilities of each data point in X

score_samples(X)
Return the likelihood of the data under the model.

Compute the bound on log probability of X under the model and return the posterior distribution (respon-
sibilities) of each mixture component for each element of X.

This is done by computing the parameters for the mean-field of z for each observation.

ParametersX : array_like, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returnslogprob : array_like, shape (n_samples,)

Log probabilities of each data point in X

responsibilities: array_like, shape (n_samples, n_components) :

Posterior probabilities of each mixture component for each observation

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

5.23 sklearn.multiclass: Multiclass and multilabel classification

5.23.1 Multiclass and multilabel classification strategies

This module implements multiclass learning algorithms:

• one-vs-the-rest / one-vs-all

• one-vs-one

• error correcting output codes

The estimators provided in this module are meta-estimators: they require a base estimator to be provided in their
constructor. For example, it is possible to use these estimators to turn a binary classifier or a regressor into a multiclass
classifier. It is also possible to use these estimators with multiclass estimators in the hope that their accuracy or runtime
performance improves.
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All classifiers in scikit-learn implement multiclass classification; you only need to use this module if you want to
experiment with custom multiclass strategies.

The one-vs-the-rest meta-classifier also implements a predict_proba method, so long as such a method is implemented
by the base classifier. This method returns probabilities of class membership in both the single label and multilabel
case. Note that in the multilabel case, probabilities are the marginal probability that a given sample falls in the given
class. As such, in the multilabel case the sum of these probabilities over all possible labels for a given sample will not
sum to unity, as they do in the single label case.

User guide: See the Multiclass and multilabel algorithms section for further details.

multiclass.OneVsRestClassifier(estimator[, ...]) One-vs-the-rest (OvR) multiclass/multilabel strategy
multiclass.OneVsOneClassifier(estimator[, ...]) One-vs-one multiclass strategy
multiclass.OutputCodeClassifier(estimator[, ...]) (Error-Correcting) Output-Code multiclass strategy

5.23.2 sklearn.multiclass.OneVsRestClassifier

class sklearn.multiclass.OneVsRestClassifier(estimator, n_jobs=1)
One-vs-the-rest (OvR) multiclass/multilabel strategy

Also known as one-vs-all, this strategy consists in fitting one classifier per class. For each classifier, the class
is fitted against all the other classes. In addition to its computational efficiency (only n_classes classifiers are
needed), one advantage of this approach is its interpretability. Since each class is represented by one and one
classifier only, it is possible to gain knowledge about the class by inspecting its corresponding classifier. This is
the most commonly used strategy for multiclass classification and is a fair default choice.

This strategy can also be used for multilabel learning, where a classifier is used to predict multiple labels for
instance, by fitting on a 2-d matrix in which cell [i, j] is 1 if sample i has label j and 0 otherwise.

In the multilabel learning literature, OvR is also known as the binary relevance method.

Read more in the User Guide.

Parametersestimator : estimator object

An estimator object implementing fit and one of decision_function or predict_proba.

n_jobs : int, optional, default: 1

The number of jobs to use for the computation. If -1 all CPUs are used. If 1 is given, no
parallel computing code is used at all, which is useful for debugging. For n_jobs below
-1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used.

Attributesestimators_ : list of n_classes estimators

Estimators used for predictions.

classes_ : array, shape = [n_classes]

Class labels.

label_binarizer_ : LabelBinarizer object

Object used to transform multiclass labels to binary labels and vice-versa.

multilabel_ : boolean

Whether a OneVsRestClassifier is a multilabel classifier.

Methods
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decision_function(X) Returns the distance of each sample from the decision boundary for each class.
fit(X, y) Fit underlying estimators.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict multi-class targets using underlying estimators.
predict_proba(X) Probability estimates.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.

__init__(estimator, n_jobs=1)

decision_function(X)
Returns the distance of each sample from the decision boundary for each class. This can only be used with
estimators which implement the decision_function method.

ParametersX : array-like, shape = [n_samples, n_features]

ReturnsT : array-like, shape = [n_samples, n_classes]

fit(X, y)
Fit underlying estimators.

ParametersX : (sparse) array-like, shape = [n_samples, n_features]

Data.

y : (sparse) array-like, shape = [n_samples] or [n_samples, n_classes]

Multi-class targets. An indicator matrix turns on multilabel classification.

Returnsself :

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

multilabel_
Whether this is a multilabel classifier

predict(X)
Predict multi-class targets using underlying estimators.

ParametersX : (sparse) array-like, shape = [n_samples, n_features]

Data.

Returnsy : (sparse) array-like, shape = [n_samples] or [n_samples, n_classes].

Predicted multi-class targets.

predict_proba(X)
Probability estimates.

The returned estimates for all classes are ordered by label of classes.
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Note that in the multilabel case, each sample can have any number of labels. This returns the marginal
probability that the given sample has the label in question. For example, it is entirely consistent that two
labels both have a 90% probability of applying to a given sample.

In the single label multiclass case, the rows of the returned matrix sum to 1.

ParametersX : array-like, shape = [n_samples, n_features]

ReturnsT : (sparse) array-like, shape = [n_samples, n_classes]

Returns the probability of the sample for each class in the model, where classes are
ordered as they are in self.classes_.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.multiclass.OneVsRestClassifier

• Multilabel classification

• Precision-Recall

• Receiver Operating Characteristic (ROC)

5.23.3 sklearn.multiclass.OneVsOneClassifier

class sklearn.multiclass.OneVsOneClassifier(estimator, n_jobs=1)
One-vs-one multiclass strategy

This strategy consists in fitting one classifier per class pair. At prediction time, the class which received the
most votes is selected. Since it requires to fit n_classes * (n_classes - 1) / 2 classifiers, this method is usually
slower than one-vs-the-rest, due to its O(n_classes^2) complexity. However, this method may be advantageous
for algorithms such as kernel algorithms which don’t scale well with n_samples. This is because each individual
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learning problem only involves a small subset of the data whereas, with one-vs-the-rest, the complete dataset is
used n_classes times.

Read more in the User Guide.

Parametersestimator : estimator object

An estimator object implementing fit and one of decision_function or predict_proba.

n_jobs : int, optional, default: 1

The number of jobs to use for the computation. If -1 all CPUs are used. If 1 is given, no
parallel computing code is used at all, which is useful for debugging. For n_jobs below
-1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used.

Attributesestimators_ : list of n_classes * (n_classes - 1) / 2 estimators

Estimators used for predictions.

classes_ : numpy array of shape [n_classes]

Array containing labels.

Methods

decision_function(X) Decision function for the OneVsOneClassifier.
fit(X, y) Fit underlying estimators.
get_params([deep]) Get parameters for this estimator.
predict(X) Estimate the best class label for each sample in X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.

__init__(estimator, n_jobs=1)

decision_function(X)
Decision function for the OneVsOneClassifier.

The decision values for the samples are computed by adding the normalized sum of pair-wise classification
confidence levels to the votes in order to disambiguate between the decision values when the votes for all
the classes are equal leading to a tie.

ParametersX : array-like, shape = [n_samples, n_features]

ReturnsY : array-like, shape = [n_samples, n_classes]

fit(X, y)
Fit underlying estimators.

ParametersX : (sparse) array-like, shape = [n_samples, n_features]

Data.

y : array-like, shape = [n_samples]

Multi-class targets.

Returnsself :

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :
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If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Estimate the best class label for each sample in X.

This is implemented as argmax(decision_function(X), axis=1) which will return the label
of the class with most votes by estimators predicting the outcome of a decision for each possible class pair.

ParametersX : (sparse) array-like, shape = [n_samples, n_features]

Data.

Returnsy : numpy array of shape [n_samples]

Predicted multi-class targets.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

5.23.4 sklearn.multiclass.OutputCodeClassifier

class sklearn.multiclass.OutputCodeClassifier(estimator, code_size=1.5, ran-
dom_state=None, n_jobs=1)

(Error-Correcting) Output-Code multiclass strategy

Output-code based strategies consist in representing each class with a binary code (an array of 0s and 1s). At
fitting time, one binary classifier per bit in the code book is fitted. At prediction time, the classifiers are used to
project new points in the class space and the class closest to the points is chosen. The main advantage of these
strategies is that the number of classifiers used can be controlled by the user, either for compressing the model
(0 < code_size < 1) or for making the model more robust to errors (code_size > 1). See the documentation for
more details.
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Read more in the User Guide.

Parametersestimator : estimator object

An estimator object implementing fit and one of decision_function or predict_proba.

code_size : float

Percentage of the number of classes to be used to create the code book. A number
between 0 and 1 will require fewer classifiers than one-vs-the-rest. A number greater
than 1 will require more classifiers than one-vs-the-rest.

random_state : numpy.RandomState, optional

The generator used to initialize the codebook. Defaults to numpy.random.

n_jobs : int, optional, default: 1

The number of jobs to use for the computation. If -1 all CPUs are used. If 1 is given, no
parallel computing code is used at all, which is useful for debugging. For n_jobs below
-1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used.

Attributesestimators_ : list of int(n_classes * code_size) estimators

Estimators used for predictions.

classes_ : numpy array of shape [n_classes]

Array containing labels.

code_book_ : numpy array of shape [n_classes, code_size]

Binary array containing the code of each class.

References

[R186], [R187], [R188]

Methods

fit(X, y) Fit underlying estimators.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict multi-class targets using underlying estimators.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.

__init__(estimator, code_size=1.5, random_state=None, n_jobs=1)

fit(X, y)
Fit underlying estimators.

ParametersX : (sparse) array-like, shape = [n_samples, n_features]

Data.

y : numpy array of shape [n_samples]

Multi-class targets.

Returnsself :
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get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict multi-class targets using underlying estimators.

ParametersX : (sparse) array-like, shape = [n_samples, n_features]

Data.

Returnsy : numpy array of shape [n_samples]

Predicted multi-class targets.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

5.24 sklearn.naive_bayes: Naive Bayes

The sklearn.naive_bayes module implements Naive Bayes algorithms. These are supervised learning methods
based on applying Bayes’ theorem with strong (naive) feature independence assumptions.

User guide: See the Naive Bayes section for further details.

naive_bayes.GaussianNB Gaussian Naive Bayes (GaussianNB)
naive_bayes.MultinomialNB([alpha, ...]) Naive Bayes classifier for multinomial models

Continued on next page
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Table 5.171 – continued from previous page
naive_bayes.BernoulliNB([alpha, binarize, ...]) Naive Bayes classifier for multivariate Bernoulli models.

5.24.1 sklearn.naive_bayes.GaussianNB

class sklearn.naive_bayes.GaussianNB
Gaussian Naive Bayes (GaussianNB)

Can perform online updates to model parameters via partial_fit method. For details on algorithm used to update
feature means and variance online, see Stanford CS tech report STAN-CS-79-773 by Chan, Golub, and LeVeque:

http://i.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf

Read more in the User Guide.

Attributesclass_prior_ : array, shape (n_classes,)

probability of each class.

class_count_ : array, shape (n_classes,)

number of training samples observed in each class.

theta_ : array, shape (n_classes, n_features)

mean of each feature per class

sigma_ : array, shape (n_classes, n_features)

variance of each feature per class

Examples

>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> Y = np.array([1, 1, 1, 2, 2, 2])
>>> from sklearn.naive_bayes import GaussianNB
>>> clf = GaussianNB()
>>> clf.fit(X, Y)
GaussianNB()
>>> print(clf.predict([[-0.8, -1]]))
[1]
>>> clf_pf = GaussianNB()
>>> clf_pf.partial_fit(X, Y, np.unique(Y))
GaussianNB()
>>> print(clf_pf.predict([[-0.8, -1]]))
[1]

Methods

fit(X, y[, sample_weight]) Fit Gaussian Naive Bayes according to X, y
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y[, classes, sample_weight]) Incremental fit on a batch of samples.
predict(X) Perform classification on an array of test vectors X.
predict_log_proba(X) Return log-probability estimates for the test vector X.
predict_proba(X) Return probability estimates for the test vector X.

Continued on next page
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Table 5.172 – continued from previous page
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.

__init__()
Initialize self. See help(type(self)) for accurate signature.

fit(X, y, sample_weight=None)
Fit Gaussian Naive Bayes according to X, y

ParametersX : array-like, shape (n_samples, n_features)

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape (n_samples,)

Target values.

sample_weight : array-like, shape (n_samples,), optional

Weights applied to individual samples (1. for unweighted).

New in version 0.17: Gaussian Naive Bayes supports fitting with sample_weight.

Returnsself : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

partial_fit(X, y, classes=None, sample_weight=None)
Incremental fit on a batch of samples.

This method is expected to be called several times consecutively on different chunks of a dataset so as to
implement out-of-core or online learning.

This is especially useful when the whole dataset is too big to fit in memory at once.

This method has some performance and numerical stability overhead, hence it is better to call partial_fit on
chunks of data that are as large as possible (as long as fitting in the memory budget) to hide the overhead.

ParametersX : array-like, shape (n_samples, n_features)

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape (n_samples,)

Target values.

classes : array-like, shape (n_classes,)

List of all the classes that can possibly appear in the y vector.

Must be provided at the first call to partial_fit, can be omitted in subsequent calls.
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sample_weight : array-like, shape (n_samples,), optional

Weights applied to individual samples (1. for unweighted).

New in version 0.17.

Returnsself : object

Returns self.

predict(X)
Perform classification on an array of test vectors X.

ParametersX : array-like, shape = [n_samples, n_features]

ReturnsC : array, shape = [n_samples]

Predicted target values for X

predict_log_proba(X)
Return log-probability estimates for the test vector X.

ParametersX : array-like, shape = [n_samples, n_features]

ReturnsC : array-like, shape = [n_samples, n_classes]

Returns the log-probability of the samples for each class in the model. The columns
correspond to the classes in sorted order, as they appear in the attribute classes_.

predict_proba(X)
Return probability estimates for the test vector X.

ParametersX : array-like, shape = [n_samples, n_features]

ReturnsC : array-like, shape = [n_samples, n_classes]

Returns the probability of the samples for each class in the model. The columns corre-
spond to the classes in sorted order, as they appear in the attribute classes_.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.
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Returnsself :

Examples using sklearn.naive_bayes.GaussianNB

• Comparison of Calibration of Classifiers

• Probability Calibration curves

• Probability calibration of classifiers

• Classifier comparison

• Plot class probabilities calculated by the VotingClassifier

• Plotting Learning Curves

5.24.2 sklearn.naive_bayes.MultinomialNB

class sklearn.naive_bayes.MultinomialNB(alpha=1.0, fit_prior=True, class_prior=None)
Naive Bayes classifier for multinomial models

The multinomial Naive Bayes classifier is suitable for classification with discrete features (e.g., word counts for
text classification). The multinomial distribution normally requires integer feature counts. However, in practice,
fractional counts such as tf-idf may also work.

Read more in the User Guide.

Parametersalpha : float, optional (default=1.0)

Additive (Laplace/Lidstone) smoothing parameter (0 for no smoothing).

fit_prior : boolean

Whether to learn class prior probabilities or not. If false, a uniform prior will be used.

class_prior : array-like, size (n_classes,)

Prior probabilities of the classes. If specified the priors are not adjusted according to the
data.

Attributesclass_log_prior_ : array, shape (n_classes, )

Smoothed empirical log probability for each class.

intercept_ : property

Mirrors class_log_prior_ for interpreting MultinomialNB as a linear model.

feature_log_prob_ : array, shape (n_classes, n_features)

Empirical log probability of features given a class, P(x_i|y).

coef_ : property

Mirrors feature_log_prob_ for interpreting MultinomialNB as a linear model.

class_count_ : array, shape (n_classes,)

Number of samples encountered for each class during fitting. This value is weighted by
the sample weight when provided.

feature_count_ : array, shape (n_classes, n_features)

Number of samples encountered for each (class, feature) during fitting. This value is
weighted by the sample weight when provided.
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Notes

For the rationale behind the names coef_ and intercept_, i.e. naive Bayes as a linear classifier, see J. Rennie et
al. (2003), Tackling the poor assumptions of naive Bayes text classifiers, ICML.

References

C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to Information Retrieval. Cambridge Univer-
sity Press, pp. 234-265. http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html

Examples

>>> import numpy as np
>>> X = np.random.randint(5, size=(6, 100))
>>> y = np.array([1, 2, 3, 4, 5, 6])
>>> from sklearn.naive_bayes import MultinomialNB
>>> clf = MultinomialNB()
>>> clf.fit(X, y)
MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True)
>>> print(clf.predict(X[2:3]))
[3]

Methods

fit(X, y[, sample_weight]) Fit Naive Bayes classifier according to X, y
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y[, classes, sample_weight]) Incremental fit on a batch of samples.
predict(X) Perform classification on an array of test vectors X.
predict_log_proba(X) Return log-probability estimates for the test vector X.
predict_proba(X) Return probability estimates for the test vector X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.

__init__(alpha=1.0, fit_prior=True, class_prior=None)

fit(X, y, sample_weight=None)
Fit Naive Bayes classifier according to X, y

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target values.

sample_weight : array-like, shape = [n_samples], optional

Weights applied to individual samples (1. for unweighted).

Returnsself : object

Returns self.
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get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

partial_fit(X, y, classes=None, sample_weight=None)
Incremental fit on a batch of samples.

This method is expected to be called several times consecutively on different chunks of a dataset so as to
implement out-of-core or online learning.

This is especially useful when the whole dataset is too big to fit in memory at once.

This method has some performance overhead hence it is better to call partial_fit on chunks of data that are
as large as possible (as long as fitting in the memory budget) to hide the overhead.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target values.

classes : array-like, shape = [n_classes]

List of all the classes that can possibly appear in the y vector.

Must be provided at the first call to partial_fit, can be omitted in subsequent calls.

sample_weight : array-like, shape = [n_samples], optional

Weights applied to individual samples (1. for unweighted).

Returnsself : object

Returns self.

predict(X)
Perform classification on an array of test vectors X.

ParametersX : array-like, shape = [n_samples, n_features]

ReturnsC : array, shape = [n_samples]

Predicted target values for X

predict_log_proba(X)
Return log-probability estimates for the test vector X.

ParametersX : array-like, shape = [n_samples, n_features]

ReturnsC : array-like, shape = [n_samples, n_classes]

Returns the log-probability of the samples for each class in the model. The columns
correspond to the classes in sorted order, as they appear in the attribute classes_.

predict_proba(X)
Return probability estimates for the test vector X.
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ParametersX : array-like, shape = [n_samples, n_features]

ReturnsC : array-like, shape = [n_samples, n_classes]

Returns the probability of the samples for each class in the model. The columns corre-
spond to the classes in sorted order, as they appear in the attribute classes_.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.naive_bayes.MultinomialNB

• Out-of-core classification of text documents

• Classification of text documents: using a MLComp dataset

• Classification of text documents using sparse features

5.24.3 sklearn.naive_bayes.BernoulliNB

class sklearn.naive_bayes.BernoulliNB(alpha=1.0, binarize=0.0, fit_prior=True,
class_prior=None)

Naive Bayes classifier for multivariate Bernoulli models.

Like MultinomialNB, this classifier is suitable for discrete data. The difference is that while MultinomialNB
works with occurrence counts, BernoulliNB is designed for binary/boolean features.

Read more in the User Guide.

Parametersalpha : float, optional (default=1.0)

Additive (Laplace/Lidstone) smoothing parameter (0 for no smoothing).

binarize : float or None, optional
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Threshold for binarizing (mapping to booleans) of sample features. If None, input is
presumed to already consist of binary vectors.

fit_prior : boolean

Whether to learn class prior probabilities or not. If false, a uniform prior will be used.

class_prior : array-like, size=[n_classes,]

Prior probabilities of the classes. If specified the priors are not adjusted according to the
data.

Attributesclass_log_prior_ : array, shape = [n_classes]

Log probability of each class (smoothed).

feature_log_prob_ : array, shape = [n_classes, n_features]

Empirical log probability of features given a class, P(x_i|y).

class_count_ : array, shape = [n_classes]

Number of samples encountered for each class during fitting. This value is weighted by
the sample weight when provided.

feature_count_ : array, shape = [n_classes, n_features]

Number of samples encountered for each (class, feature) during fitting. This value is
weighted by the sample weight when provided.

References

C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to Information Retrieval. Cambridge Univer-
sity Press, pp. 234-265. http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html

A. McCallum and K. Nigam (1998). A comparison of event models for naive Bayes text classification. Proc.
AAAI/ICML-98 Workshop on Learning for Text Categorization, pp. 41-48.

V. Metsis, I. Androutsopoulos and G. Paliouras (2006). Spam filtering with naive Bayes – Which naive Bayes?
3rd Conf. on Email and Anti-Spam (CEAS).

Examples

>>> import numpy as np
>>> X = np.random.randint(2, size=(6, 100))
>>> Y = np.array([1, 2, 3, 4, 4, 5])
>>> from sklearn.naive_bayes import BernoulliNB
>>> clf = BernoulliNB()
>>> clf.fit(X, Y)
BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None, fit_prior=True)
>>> print(clf.predict(X[2:3]))
[3]

Methods

fit(X, y[, sample_weight]) Fit Naive Bayes classifier according to X, y
get_params([deep]) Get parameters for this estimator.

Continued on next page
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Table 5.174 – continued from previous page
partial_fit(X, y[, classes, sample_weight]) Incremental fit on a batch of samples.
predict(X) Perform classification on an array of test vectors X.
predict_log_proba(X) Return log-probability estimates for the test vector X.
predict_proba(X) Return probability estimates for the test vector X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.

__init__(alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None)

fit(X, y, sample_weight=None)
Fit Naive Bayes classifier according to X, y

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target values.

sample_weight : array-like, shape = [n_samples], optional

Weights applied to individual samples (1. for unweighted).

Returnsself : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

partial_fit(X, y, classes=None, sample_weight=None)
Incremental fit on a batch of samples.

This method is expected to be called several times consecutively on different chunks of a dataset so as to
implement out-of-core or online learning.

This is especially useful when the whole dataset is too big to fit in memory at once.

This method has some performance overhead hence it is better to call partial_fit on chunks of data that are
as large as possible (as long as fitting in the memory budget) to hide the overhead.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target values.

classes : array-like, shape = [n_classes]
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List of all the classes that can possibly appear in the y vector.

Must be provided at the first call to partial_fit, can be omitted in subsequent calls.

sample_weight : array-like, shape = [n_samples], optional

Weights applied to individual samples (1. for unweighted).

Returnsself : object

Returns self.

predict(X)
Perform classification on an array of test vectors X.

ParametersX : array-like, shape = [n_samples, n_features]

ReturnsC : array, shape = [n_samples]

Predicted target values for X

predict_log_proba(X)
Return log-probability estimates for the test vector X.

ParametersX : array-like, shape = [n_samples, n_features]

ReturnsC : array-like, shape = [n_samples, n_classes]

Returns the log-probability of the samples for each class in the model. The columns
correspond to the classes in sorted order, as they appear in the attribute classes_.

predict_proba(X)
Return probability estimates for the test vector X.

ParametersX : array-like, shape = [n_samples, n_features]

ReturnsC : array-like, shape = [n_samples, n_classes]

Returns the probability of the samples for each class in the model. The columns corre-
spond to the classes in sorted order, as they appear in the attribute classes_.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.
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The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.naive_bayes.BernoulliNB

• Hashing feature transformation using Totally Random Trees

• Classification of text documents using sparse features

5.25 sklearn.neighbors: Nearest Neighbors

The sklearn.neighbors module implements the k-nearest neighbors algorithm.

User guide: See the Nearest Neighbors section for further details.

neighbors.NearestNeighbors([n_neighbors, ...]) Unsupervised learner for implementing neighbor searches.
neighbors.KNeighborsClassifier([...]) Classifier implementing the k-nearest neighbors vote.
neighbors.RadiusNeighborsClassifier([...]) Classifier implementing a vote among neighbors within a given radius
neighbors.KNeighborsRegressor([n_neighbors, ...]) Regression based on k-nearest neighbors.
neighbors.RadiusNeighborsRegressor([radius, ...]) Regression based on neighbors within a fixed radius.
neighbors.NearestCentroid([metric, ...]) Nearest centroid classifier.
neighbors.BallTree BallTree for fast generalized N-point problems
neighbors.KDTree KDTree for fast generalized N-point problems
neighbors.LSHForest([n_estimators, radius, ...]) Performs approximate nearest neighbor search using LSH forest.
neighbors.DistanceMetric DistanceMetric class
neighbors.KernelDensity([bandwidth, ...]) Kernel Density Estimation

5.25.1 sklearn.neighbors.NearestNeighbors

class sklearn.neighbors.NearestNeighbors(n_neighbors=5, radius=1.0, algorithm=’auto’,
leaf_size=30, metric=’minkowski’, p=2, met-
ric_params=None, n_jobs=1, **kwargs)

Unsupervised learner for implementing neighbor searches.

Read more in the User Guide.

Parametersn_neighbors : int, optional (default = 5)

Number of neighbors to use by default for k_neighbors queries.

radius : float, optional (default = 1.0)

Range of parameter space to use by default for :meth‘radius_neighbors‘ queries.

algorithm : {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional

Algorithm used to compute the nearest neighbors:

•‘ball_tree’ will use BallTree

•‘kd_tree’ will use KDtree

•‘brute’ will use a brute-force search.
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•‘auto’ will attempt to decide the most appropriate algorithm based on the values
passed to fit method.

Note: fitting on sparse input will override the setting of this parameter, using brute force.

leaf_size : int, optional (default = 30)

Leaf size passed to BallTree or KDTree. This can affect the speed of the construction
and query, as well as the memory required to store the tree. The optimal value depends
on the nature of the problem.

p: integer, optional (default = 2) :

Parameter for the Minkowski metric from sklearn.metrics.pairwise.pairwise_distances.
When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

metric : string or callable, default ‘minkowski’

metric to use for distance computation. Any metric from scikit-learn or
scipy.spatial.distance can be used.

If metric is a callable function, it is called on each pair of instances (rows) and the
resulting value recorded. The callable should take two arrays as input and return one
value indicating the distance between them. This works for Scipy’s metrics, but is less
efficient than passing the metric name as a string.

Distance matrices are not supported.

Valid values for metric are:

•from scikit-learn: [’cityblock’, ‘cosine’, ‘euclidean’, ‘l1’, ‘l2’, ‘manhattan’]

•from scipy.spatial.distance: [’braycurtis’, ‘canberra’, ‘chebyshev’, ‘correlation’,
‘dice’, ‘hamming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘matching’, ‘minkowski’,
‘rogerstanimoto’, ‘russellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeu-
clidean’, ‘yule’]

See the documentation for scipy.spatial.distance for details on these metrics.

metric_params : dict, optional (default = None)

Additional keyword arguments for the metric function.

n_jobs : int, optional (default = 1)

The number of parallel jobs to run for neighbors search. If -1, then the num-
ber of jobs is set to the number of CPU cores. Affects only k_neighbors and
kneighbors_graph methods.

See also:

KNeighborsClassifier, RadiusNeighborsClassifier, KNeighborsRegressor,
RadiusNeighborsRegressor, BallTree

Notes

See Nearest Neighbors in the online documentation for a discussion of the choice of algorithm and
leaf_size.

http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
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Examples

>>> import numpy as np
>>> from sklearn.neighbors import NearestNeighbors
>>> samples = [[0, 0, 2], [1, 0, 0], [0, 0, 1]]

>>> neigh = NearestNeighbors(2, 0.4)
>>> neigh.fit(samples)
NearestNeighbors(...)

>>> neigh.kneighbors([[0, 0, 1.3]], 2, return_distance=False)
...
array([[2, 0]]...)

>>> nbrs = neigh.radius_neighbors([[0, 0, 1.3]], 0.4, return_distance=False)
>>> np.asarray(nbrs[0][0])
array(2)

Methods

fit(X[, y]) Fit the model using X as training data
get_params([deep]) Get parameters for this estimator.
kneighbors([X, n_neighbors, return_distance]) Finds the K-neighbors of a point.
kneighbors_graph([X, n_neighbors, mode]) Computes the (weighted) graph of k-Neighbors for points in X
radius_neighbors([X, radius, return_distance]) Finds the neighbors within a given radius of a point or points.
radius_neighbors_graph([X, radius, mode]) Computes the (weighted) graph of Neighbors for points in X
set_params(**params) Set the parameters of this estimator.

__init__(n_neighbors=5, radius=1.0, algorithm=’auto’, leaf_size=30, metric=’minkowski’, p=2,
metric_params=None, n_jobs=1, **kwargs)

fit(X, y=None)
Fit the model using X as training data

ParametersX : {array-like, sparse matrix, BallTree, KDTree}

Training data. If array or matrix, shape [n_samples, n_features], or [n_samples,
n_samples] if metric=’precomputed’.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

kneighbors(X=None, n_neighbors=None, return_distance=True)
Finds the K-neighbors of a point.

Returns indices of and distances to the neighbors of each point.

ParametersX : array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric ==
‘precomputed’
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The query point or points. If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

n_neighbors : int

Number of neighbors to get (default is the value passed to the constructor).

return_distance : boolean, optional. Defaults to True.

If False, distances will not be returned

Returnsdist : array

Array representing the lengths to points, only present if return_distance=True

ind : array

Indices of the nearest points in the population matrix.

Examples

In the following example, we construct a NeighborsClassifier class from an array representing our data set
and ask who’s the closest point to [1,1,1]

>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=1)
>>> neigh.fit(samples)
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> print(neigh.kneighbors([[1., 1., 1.]]))
(array([[ 0.5]]), array([[2]]...))

As you can see, it returns [[0.5]], and [[2]], which means that the element is at distance 0.5 and is the third
element of samples (indexes start at 0). You can also query for multiple points:

>>> X = [[0., 1., 0.], [1., 0., 1.]]
>>> neigh.kneighbors(X, return_distance=False)
array([[1],

[2]]...)

kneighbors_graph(X=None, n_neighbors=None, mode=’connectivity’)
Computes the (weighted) graph of k-Neighbors for points in X

ParametersX : array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric ==
‘precomputed’

The query point or points. If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

n_neighbors : int

Number of neighbors for each sample. (default is value passed to the constructor).

mode : {‘connectivity’, ‘distance’}, optional

Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones
and zeros, in ‘distance’ the edges are Euclidean distance between points.

ReturnsA : sparse matrix in CSR format, shape = [n_samples, n_samples_fit]

n_samples_fit is the number of samples in the fitted data A[i, j] is assigned the weight
of edge that connects i to j.
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See also:

NearestNeighbors.radius_neighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=2)
>>> neigh.fit(X)
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> A = neigh.kneighbors_graph(X)
>>> A.toarray()
array([[ 1., 0., 1.],

[ 0., 1., 1.],
[ 1., 0., 1.]])

radius_neighbors(X=None, radius=None, return_distance=True)
Finds the neighbors within a given radius of a point or points.

Return the indices and distances of each point from the dataset lying in a ball with size radius around
the points of the query array. Points lying on the boundary are included in the results.

The result points are not necessarily sorted by distance to their query point.

ParametersX : array-like, (n_samples, n_features), optional

The query point or points. If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

radius : float

Limiting distance of neighbors to return. (default is the value passed to the constructor).

return_distance : boolean, optional. Defaults to True.

If False, distances will not be returned

Returnsdist : array, shape (n_samples,) of arrays

Array representing the distances to each point, only present if return_distance=True.
The distance values are computed according to the metric constructor parameter.

ind : array, shape (n_samples,) of arrays

An array of arrays of indices of the approximate nearest points from the population
matrix that lie within a ball of size radius around the query points.

Notes

Because the number of neighbors of each point is not necessarily equal, the results for multiple query
points cannot be fit in a standard data array. For efficiency, radius_neighbors returns arrays of objects,
where each object is a 1D array of indices or distances.

Examples

In the following example, we construct a NeighborsClassifier class from an array representing our data set
and ask who’s the closest point to [1, 1, 1]:
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>>> import numpy as np
>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.6)
>>> neigh.fit(samples)
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> rng = neigh.radius_neighbors([[1., 1., 1.]])
>>> print(np.asarray(rng[0][0]))
[ 1.5 0.5]
>>> print(np.asarray(rng[1][0]))
[1 2]

The first array returned contains the distances to all points which are closer than 1.6, while the second
array returned contains their indices. In general, multiple points can be queried at the same time.

radius_neighbors_graph(X=None, radius=None, mode=’connectivity’)
Computes the (weighted) graph of Neighbors for points in X

Neighborhoods are restricted the points at a distance lower than radius.

ParametersX : array-like, shape = [n_samples, n_features], optional

The query point or points. If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

radius : float

Radius of neighborhoods. (default is the value passed to the constructor).

mode : {‘connectivity’, ‘distance’}, optional

Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones
and zeros, in ‘distance’ the edges are Euclidean distance between points.

ReturnsA : sparse matrix in CSR format, shape = [n_samples, n_samples]

A[i, j] is assigned the weight of edge that connects i to j.

See also:

kneighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.5)
>>> neigh.fit(X)
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> A = neigh.radius_neighbors_graph(X)
>>> A.toarray()
array([[ 1., 0., 1.],

[ 0., 1., 0.],
[ 1., 0., 1.]])

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.
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Returnsself :

Examples using sklearn.neighbors.NearestNeighbors

• Hyper-parameters of Approximate Nearest Neighbors

• Scalability of Approximate Nearest Neighbors

5.25.2 sklearn.neighbors.KNeighborsClassifier

class sklearn.neighbors.KNeighborsClassifier(n_neighbors=5, weights=’uniform’, al-
gorithm=’auto’, leaf_size=30, p=2, met-
ric=’minkowski’, metric_params=None,
n_jobs=1, **kwargs)

Classifier implementing the k-nearest neighbors vote.

Read more in the User Guide.

Parametersn_neighbors : int, optional (default = 5)

Number of neighbors to use by default for k_neighbors queries.

weights : str or callable

weight function used in prediction. Possible values:

•‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

•‘distance’ : weight points by the inverse of their distance. in this case, closer neigh-
bors of a query point will have a greater influence than neighbors which are further
away.

•[callable] : a user-defined function which accepts an array of distances, and returns
an array of the same shape containing the weights.

Uniform weights are used by default.

algorithm : {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional

Algorithm used to compute the nearest neighbors:

•‘ball_tree’ will use BallTree

•‘kd_tree’ will use KDTree

•‘brute’ will use a brute-force search.

•‘auto’ will attempt to decide the most appropriate algorithm based on the values
passed to fit method.

Note: fitting on sparse input will override the setting of this parameter, using brute force.

leaf_size : int, optional (default = 30)

Leaf size passed to BallTree or KDTree. This can affect the speed of the construction
and query, as well as the memory required to store the tree. The optimal value depends
on the nature of the problem.

metric : string or DistanceMetric object (default = ‘minkowski’)

the distance metric to use for the tree. The default metric is minkowski, and with p=2
is equivalent to the standard Euclidean metric. See the documentation of the Distance-
Metric class for a list of available metrics.
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p : integer, optional (default = 2)

Power parameter for the Minkowski metric. When p = 1, this is equivalent to us-
ing manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used.

metric_params : dict, optional (default = None)

Additional keyword arguments for the metric function.

n_jobs : int, optional (default = 1)

The number of parallel jobs to run for neighbors search. If -1, then the number of jobs
is set to the number of CPU cores. Doesn’t affect fit method.

See also:

RadiusNeighborsClassifier, KNeighborsRegressor, RadiusNeighborsRegressor,
NearestNeighbors

Notes

See Nearest Neighbors in the online documentation for a discussion of the choice of algorithm and
leaf_size.

Warning: Regarding the Nearest Neighbors algorithms, if it is found that two neighbors, neighbor k+1
and k, have identical distances but but different labels, the results will depend on the ordering of the training
data.

http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

Examples

>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from sklearn.neighbors import KNeighborsClassifier
>>> neigh = KNeighborsClassifier(n_neighbors=3)
>>> neigh.fit(X, y)
KNeighborsClassifier(...)
>>> print(neigh.predict([[1.1]]))
[0]
>>> print(neigh.predict_proba([[0.9]]))
[[ 0.66666667 0.33333333]]

Methods

fit(X, y) Fit the model using X as training data and y as target values
get_params([deep]) Get parameters for this estimator.
kneighbors([X, n_neighbors, return_distance]) Finds the K-neighbors of a point.
kneighbors_graph([X, n_neighbors, mode]) Computes the (weighted) graph of k-Neighbors for points in X
predict(X) Predict the class labels for the provided data
predict_proba(X) Return probability estimates for the test data X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.
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__init__(n_neighbors=5, weights=’uniform’, algorithm=’auto’, leaf_size=30, p=2, met-
ric=’minkowski’, metric_params=None, n_jobs=1, **kwargs)

fit(X, y)
Fit the model using X as training data and y as target values

ParametersX : {array-like, sparse matrix, BallTree, KDTree}

Training data. If array or matrix, shape [n_samples, n_features], or [n_samples,
n_samples] if metric=’precomputed’.

y : {array-like, sparse matrix}

Target values of shape = [n_samples] or [n_samples, n_outputs]

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

kneighbors(X=None, n_neighbors=None, return_distance=True)
Finds the K-neighbors of a point.

Returns indices of and distances to the neighbors of each point.

ParametersX : array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric ==
‘precomputed’

The query point or points. If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

n_neighbors : int

Number of neighbors to get (default is the value passed to the constructor).

return_distance : boolean, optional. Defaults to True.

If False, distances will not be returned

Returnsdist : array

Array representing the lengths to points, only present if return_distance=True

ind : array

Indices of the nearest points in the population matrix.

Examples

In the following example, we construct a NeighborsClassifier class from an array representing our data set
and ask who’s the closest point to [1,1,1]

>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=1)
>>> neigh.fit(samples)
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
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>>> print(neigh.kneighbors([[1., 1., 1.]]))
(array([[ 0.5]]), array([[2]]...))

As you can see, it returns [[0.5]], and [[2]], which means that the element is at distance 0.5 and is the third
element of samples (indexes start at 0). You can also query for multiple points:

>>> X = [[0., 1., 0.], [1., 0., 1.]]
>>> neigh.kneighbors(X, return_distance=False)
array([[1],

[2]]...)

kneighbors_graph(X=None, n_neighbors=None, mode=’connectivity’)
Computes the (weighted) graph of k-Neighbors for points in X

ParametersX : array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric ==
‘precomputed’

The query point or points. If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

n_neighbors : int

Number of neighbors for each sample. (default is value passed to the constructor).

mode : {‘connectivity’, ‘distance’}, optional

Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones
and zeros, in ‘distance’ the edges are Euclidean distance between points.

ReturnsA : sparse matrix in CSR format, shape = [n_samples, n_samples_fit]

n_samples_fit is the number of samples in the fitted data A[i, j] is assigned the weight
of edge that connects i to j.

See also:

NearestNeighbors.radius_neighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=2)
>>> neigh.fit(X)
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> A = neigh.kneighbors_graph(X)
>>> A.toarray()
array([[ 1., 0., 1.],

[ 0., 1., 1.],
[ 1., 0., 1.]])

predict(X)
Predict the class labels for the provided data

ParametersX : array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric ==
‘precomputed’

Test samples.

Returnsy : array of shape [n_samples] or [n_samples, n_outputs]

Class labels for each data sample.
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predict_proba(X)
Return probability estimates for the test data X.

ParametersX : array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric ==
‘precomputed’

Test samples.

Returnsp : array of shape = [n_samples, n_classes], or a list of n_outputs

of such arrays if n_outputs > 1. The class probabilities of the input samples. Classes are
ordered by lexicographic order.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.neighbors.KNeighborsClassifier

• Classifier comparison

• Plot the decision boundaries of a VotingClassifier

• Digits Classification Exercise

• Nearest Neighbors Classification

• Robust Scaling on Toy Data

• Classification of text documents using sparse features
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5.25.3 sklearn.neighbors.RadiusNeighborsClassifier

class sklearn.neighbors.RadiusNeighborsClassifier(radius=1.0, weights=’uniform’, algo-
rithm=’auto’, leaf_size=30, p=2, met-
ric=’minkowski’, outlier_label=None,
metric_params=None, **kwargs)

Classifier implementing a vote among neighbors within a given radius

Read more in the User Guide.

Parametersradius : float, optional (default = 1.0)

Range of parameter space to use by default for :meth‘radius_neighbors‘ queries.

weights : str or callable

weight function used in prediction. Possible values:

•‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

•‘distance’ : weight points by the inverse of their distance. in this case, closer neigh-
bors of a query point will have a greater influence than neighbors which are further
away.

•[callable] : a user-defined function which accepts an array of distances, and returns
an array of the same shape containing the weights.

Uniform weights are used by default.

algorithm : {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional

Algorithm used to compute the nearest neighbors:

•‘ball_tree’ will use BallTree

•‘kd_tree’ will use KDtree

•‘brute’ will use a brute-force search.

•‘auto’ will attempt to decide the most appropriate algorithm based on the values
passed to fit method.

Note: fitting on sparse input will override the setting of this parameter, using brute force.

leaf_size : int, optional (default = 30)

Leaf size passed to BallTree or KDTree. This can affect the speed of the construction
and query, as well as the memory required to store the tree. The optimal value depends
on the nature of the problem.

metric : string or DistanceMetric object (default=’minkowski’)

the distance metric to use for the tree. The default metric is minkowski, and with p=2
is equivalent to the standard Euclidean metric. See the documentation of the Distance-
Metric class for a list of available metrics.

p : integer, optional (default = 2)

Power parameter for the Minkowski metric. When p = 1, this is equivalent to us-
ing manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used.

outlier_label : int, optional (default = None)

Label, which is given for outlier samples (samples with no neighbors on given radius).
If set to None, ValueError is raised, when outlier is detected.
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metric_params : dict, optional (default = None)

Additional keyword arguments for the metric function.

See also:

KNeighborsClassifier, RadiusNeighborsRegressor, KNeighborsRegressor,
NearestNeighbors

Notes

See Nearest Neighbors in the online documentation for a discussion of the choice of algorithm and
leaf_size.

http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

Examples

>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from sklearn.neighbors import RadiusNeighborsClassifier
>>> neigh = RadiusNeighborsClassifier(radius=1.0)
>>> neigh.fit(X, y)
RadiusNeighborsClassifier(...)
>>> print(neigh.predict([[1.5]]))
[0]

Methods

fit(X, y) Fit the model using X as training data and y as target values
get_params([deep]) Get parameters for this estimator.
predict(X) Predict the class labels for the provided data
radius_neighbors([X, radius, return_distance]) Finds the neighbors within a given radius of a point or points.
radius_neighbors_graph([X, radius, mode]) Computes the (weighted) graph of Neighbors for points in X
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.

__init__(radius=1.0, weights=’uniform’, algorithm=’auto’, leaf_size=30, p=2, metric=’minkowski’,
outlier_label=None, metric_params=None, **kwargs)

fit(X, y)
Fit the model using X as training data and y as target values

ParametersX : {array-like, sparse matrix, BallTree, KDTree}

Training data. If array or matrix, shape [n_samples, n_features], or [n_samples,
n_samples] if metric=’precomputed’.

y : {array-like, sparse matrix}

Target values of shape = [n_samples] or [n_samples, n_outputs]

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :
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If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict the class labels for the provided data

ParametersX : array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric ==
‘precomputed’

Test samples.

Returnsy : array of shape [n_samples] or [n_samples, n_outputs]

Class labels for each data sample.

radius_neighbors(X=None, radius=None, return_distance=True)
Finds the neighbors within a given radius of a point or points.

Return the indices and distances of each point from the dataset lying in a ball with size radius around
the points of the query array. Points lying on the boundary are included in the results.

The result points are not necessarily sorted by distance to their query point.

ParametersX : array-like, (n_samples, n_features), optional

The query point or points. If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

radius : float

Limiting distance of neighbors to return. (default is the value passed to the constructor).

return_distance : boolean, optional. Defaults to True.

If False, distances will not be returned

Returnsdist : array, shape (n_samples,) of arrays

Array representing the distances to each point, only present if return_distance=True.
The distance values are computed according to the metric constructor parameter.

ind : array, shape (n_samples,) of arrays

An array of arrays of indices of the approximate nearest points from the population
matrix that lie within a ball of size radius around the query points.

Notes

Because the number of neighbors of each point is not necessarily equal, the results for multiple query
points cannot be fit in a standard data array. For efficiency, radius_neighbors returns arrays of objects,
where each object is a 1D array of indices or distances.

Examples

In the following example, we construct a NeighborsClassifier class from an array representing our data set
and ask who’s the closest point to [1, 1, 1]:
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>>> import numpy as np
>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.6)
>>> neigh.fit(samples)
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> rng = neigh.radius_neighbors([[1., 1., 1.]])
>>> print(np.asarray(rng[0][0]))
[ 1.5 0.5]
>>> print(np.asarray(rng[1][0]))
[1 2]

The first array returned contains the distances to all points which are closer than 1.6, while the second
array returned contains their indices. In general, multiple points can be queried at the same time.

radius_neighbors_graph(X=None, radius=None, mode=’connectivity’)
Computes the (weighted) graph of Neighbors for points in X

Neighborhoods are restricted the points at a distance lower than radius.

ParametersX : array-like, shape = [n_samples, n_features], optional

The query point or points. If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

radius : float

Radius of neighborhoods. (default is the value passed to the constructor).

mode : {‘connectivity’, ‘distance’}, optional

Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones
and zeros, in ‘distance’ the edges are Euclidean distance between points.

ReturnsA : sparse matrix in CSR format, shape = [n_samples, n_samples]

A[i, j] is assigned the weight of edge that connects i to j.

See also:

kneighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.5)
>>> neigh.fit(X)
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> A = neigh.radius_neighbors_graph(X)
>>> A.toarray()
array([[ 1., 0., 1.],

[ 0., 1., 0.],
[ 1., 0., 1.]])

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)
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Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

5.25.4 sklearn.neighbors.KNeighborsRegressor

class sklearn.neighbors.KNeighborsRegressor(n_neighbors=5, weights=’uniform’, algo-
rithm=’auto’, leaf_size=30, p=2, met-
ric=’minkowski’, metric_params=None,
n_jobs=1, **kwargs)

Regression based on k-nearest neighbors.

The target is predicted by local interpolation of the targets associated of the nearest neighbors in the training set.

Read more in the User Guide.

Parametersn_neighbors : int, optional (default = 5)

Number of neighbors to use by default for k_neighbors queries.

weights : str or callable

weight function used in prediction. Possible values:

•‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

•‘distance’ : weight points by the inverse of their distance. in this case, closer neigh-
bors of a query point will have a greater influence than neighbors which are further
away.

•[callable] : a user-defined function which accepts an array of distances, and returns
an array of the same shape containing the weights.

Uniform weights are used by default.

algorithm : {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional

Algorithm used to compute the nearest neighbors:

•‘ball_tree’ will use BallTree

•‘kd_tree’ will use KDtree

•‘brute’ will use a brute-force search.

•‘auto’ will attempt to decide the most appropriate algorithm based on the values
passed to fit method.
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Note: fitting on sparse input will override the setting of this parameter, using brute force.

leaf_size : int, optional (default = 30)

Leaf size passed to BallTree or KDTree. This can affect the speed of the construction
and query, as well as the memory required to store the tree. The optimal value depends
on the nature of the problem.

metric : string or DistanceMetric object (default=’minkowski’)

the distance metric to use for the tree. The default metric is minkowski, and with p=2
is equivalent to the standard Euclidean metric. See the documentation of the Distance-
Metric class for a list of available metrics.

p : integer, optional (default = 2)

Power parameter for the Minkowski metric. When p = 1, this is equivalent to us-
ing manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used.

metric_params : dict, optional (default = None)

Additional keyword arguments for the metric function.

n_jobs : int, optional (default = 1)

The number of parallel jobs to run for neighbors search. If -1, then the number of jobs
is set to the number of CPU cores. Doesn’t affect fit method.

See also:

NearestNeighbors, RadiusNeighborsRegressor, KNeighborsClassifier,
RadiusNeighborsClassifier

Notes

See Nearest Neighbors in the online documentation for a discussion of the choice of algorithm and
leaf_size.

Warning: Regarding the Nearest Neighbors algorithms, if it is found that two neighbors, neighbor k+1
and k, have identical distances but but different labels, the results will depend on the ordering of the training
data.

http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

Examples

>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from sklearn.neighbors import KNeighborsRegressor
>>> neigh = KNeighborsRegressor(n_neighbors=2)
>>> neigh.fit(X, y)
KNeighborsRegressor(...)
>>> print(neigh.predict([[1.5]]))
[ 0.5]
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Methods
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fit(X, y) Fit the model using X as training data and y as target values
get_params([deep]) Get parameters for this estimator.
kneighbors([X, n_neighbors, return_distance]) Finds the K-neighbors of a point.
kneighbors_graph([X, n_neighbors, mode]) Computes the (weighted) graph of k-Neighbors for points in X
predict(X) Predict the target for the provided data
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(n_neighbors=5, weights=’uniform’, algorithm=’auto’, leaf_size=30, p=2, met-
ric=’minkowski’, metric_params=None, n_jobs=1, **kwargs)

fit(X, y)
Fit the model using X as training data and y as target values

ParametersX : {array-like, sparse matrix, BallTree, KDTree}

Training data. If array or matrix, shape [n_samples, n_features], or [n_samples,
n_samples] if metric=’precomputed’.

y : {array-like, sparse matrix}

Target values, array of float values, shape = [n_samples]or [n_samples, n_outputs]

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

kneighbors(X=None, n_neighbors=None, return_distance=True)
Finds the K-neighbors of a point.

Returns indices of and distances to the neighbors of each point.

ParametersX : array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric ==
‘precomputed’

The query point or points. If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

n_neighbors : int

Number of neighbors to get (default is the value passed to the constructor).

return_distance : boolean, optional. Defaults to True.

If False, distances will not be returned

Returnsdist : array

Array representing the lengths to points, only present if return_distance=True

ind : array

Indices of the nearest points in the population matrix.
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Examples

In the following example, we construct a NeighborsClassifier class from an array representing our data set
and ask who’s the closest point to [1,1,1]

>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=1)
>>> neigh.fit(samples)
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> print(neigh.kneighbors([[1., 1., 1.]]))
(array([[ 0.5]]), array([[2]]...))

As you can see, it returns [[0.5]], and [[2]], which means that the element is at distance 0.5 and is the third
element of samples (indexes start at 0). You can also query for multiple points:

>>> X = [[0., 1., 0.], [1., 0., 1.]]
>>> neigh.kneighbors(X, return_distance=False)
array([[1],

[2]]...)

kneighbors_graph(X=None, n_neighbors=None, mode=’connectivity’)
Computes the (weighted) graph of k-Neighbors for points in X

ParametersX : array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric ==
‘precomputed’

The query point or points. If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

n_neighbors : int

Number of neighbors for each sample. (default is value passed to the constructor).

mode : {‘connectivity’, ‘distance’}, optional

Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones
and zeros, in ‘distance’ the edges are Euclidean distance between points.

ReturnsA : sparse matrix in CSR format, shape = [n_samples, n_samples_fit]

n_samples_fit is the number of samples in the fitted data A[i, j] is assigned the weight
of edge that connects i to j.

See also:

NearestNeighbors.radius_neighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=2)
>>> neigh.fit(X)
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> A = neigh.kneighbors_graph(X)
>>> A.toarray()
array([[ 1., 0., 1.],

[ 0., 1., 1.],
[ 1., 0., 1.]])
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predict(X)
Predict the target for the provided data

ParametersX : array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric ==
‘precomputed’

Test samples.

Returnsy : array of int, shape = [n_samples] or [n_samples, n_outputs]

Target values

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.neighbors.KNeighborsRegressor

• Face completion with a multi-output estimators

• Nearest Neighbors regression

5.25.5 sklearn.neighbors.RadiusNeighborsRegressor

class sklearn.neighbors.RadiusNeighborsRegressor(radius=1.0, weights=’uniform’, algo-
rithm=’auto’, leaf_size=30, p=2, met-
ric=’minkowski’, metric_params=None,
**kwargs)

Regression based on neighbors within a fixed radius.

The target is predicted by local interpolation of the targets associated of the nearest neighbors in the training set.

Read more in the User Guide.
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Parametersradius : float, optional (default = 1.0)

Range of parameter space to use by default for :meth‘radius_neighbors‘ queries.

weights : str or callable

weight function used in prediction. Possible values:

•‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

•‘distance’ : weight points by the inverse of their distance. in this case, closer neigh-
bors of a query point will have a greater influence than neighbors which are further
away.

•[callable] : a user-defined function which accepts an array of distances, and returns
an array of the same shape containing the weights.

Uniform weights are used by default.

algorithm : {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional

Algorithm used to compute the nearest neighbors:

•‘ball_tree’ will use BallTree

•‘kd_tree’ will use KDtree

•‘brute’ will use a brute-force search.

•‘auto’ will attempt to decide the most appropriate algorithm based on the values
passed to fit method.

Note: fitting on sparse input will override the setting of this parameter, using brute force.

leaf_size : int, optional (default = 30)

Leaf size passed to BallTree or KDTree. This can affect the speed of the construction
and query, as well as the memory required to store the tree. The optimal value depends
on the nature of the problem.

metric : string or DistanceMetric object (default=’minkowski’)

the distance metric to use for the tree. The default metric is minkowski, and with p=2
is equivalent to the standard Euclidean metric. See the documentation of the Distance-
Metric class for a list of available metrics.

p : integer, optional (default = 2)

Power parameter for the Minkowski metric. When p = 1, this is equivalent to us-
ing manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used.

metric_params : dict, optional (default = None)

Additional keyword arguments for the metric function.

See also:

NearestNeighbors, KNeighborsRegressor, KNeighborsClassifier,
RadiusNeighborsClassifier

Notes

See Nearest Neighbors in the online documentation for a discussion of the choice of algorithm and
leaf_size.
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http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

Examples

>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from sklearn.neighbors import RadiusNeighborsRegressor
>>> neigh = RadiusNeighborsRegressor(radius=1.0)
>>> neigh.fit(X, y)
RadiusNeighborsRegressor(...)
>>> print(neigh.predict([[1.5]]))
[ 0.5]

Methods

fit(X, y) Fit the model using X as training data and y as target values
get_params([deep]) Get parameters for this estimator.
predict(X) Predict the target for the provided data
radius_neighbors([X, radius, return_distance]) Finds the neighbors within a given radius of a point or points.
radius_neighbors_graph([X, radius, mode]) Computes the (weighted) graph of Neighbors for points in X
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(radius=1.0, weights=’uniform’, algorithm=’auto’, leaf_size=30, p=2, metric=’minkowski’,
metric_params=None, **kwargs)

fit(X, y)
Fit the model using X as training data and y as target values

ParametersX : {array-like, sparse matrix, BallTree, KDTree}

Training data. If array or matrix, shape [n_samples, n_features], or [n_samples,
n_samples] if metric=’precomputed’.

y : {array-like, sparse matrix}

Target values, array of float values, shape = [n_samples]or [n_samples, n_outputs]

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict the target for the provided data

ParametersX : array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric ==
‘precomputed’

Test samples.
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Returnsy : array of int, shape = [n_samples] or [n_samples, n_outputs]

Target values

radius_neighbors(X=None, radius=None, return_distance=True)
Finds the neighbors within a given radius of a point or points.

Return the indices and distances of each point from the dataset lying in a ball with size radius around
the points of the query array. Points lying on the boundary are included in the results.

The result points are not necessarily sorted by distance to their query point.

ParametersX : array-like, (n_samples, n_features), optional

The query point or points. If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

radius : float

Limiting distance of neighbors to return. (default is the value passed to the constructor).

return_distance : boolean, optional. Defaults to True.

If False, distances will not be returned

Returnsdist : array, shape (n_samples,) of arrays

Array representing the distances to each point, only present if return_distance=True.
The distance values are computed according to the metric constructor parameter.

ind : array, shape (n_samples,) of arrays

An array of arrays of indices of the approximate nearest points from the population
matrix that lie within a ball of size radius around the query points.

Notes

Because the number of neighbors of each point is not necessarily equal, the results for multiple query
points cannot be fit in a standard data array. For efficiency, radius_neighbors returns arrays of objects,
where each object is a 1D array of indices or distances.

Examples

In the following example, we construct a NeighborsClassifier class from an array representing our data set
and ask who’s the closest point to [1, 1, 1]:

>>> import numpy as np
>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.6)
>>> neigh.fit(samples)
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> rng = neigh.radius_neighbors([[1., 1., 1.]])
>>> print(np.asarray(rng[0][0]))
[ 1.5 0.5]
>>> print(np.asarray(rng[1][0]))
[1 2]

The first array returned contains the distances to all points which are closer than 1.6, while the second
array returned contains their indices. In general, multiple points can be queried at the same time.
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radius_neighbors_graph(X=None, radius=None, mode=’connectivity’)
Computes the (weighted) graph of Neighbors for points in X

Neighborhoods are restricted the points at a distance lower than radius.

ParametersX : array-like, shape = [n_samples, n_features], optional

The query point or points. If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

radius : float

Radius of neighborhoods. (default is the value passed to the constructor).

mode : {‘connectivity’, ‘distance’}, optional

Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones
and zeros, in ‘distance’ the edges are Euclidean distance between points.

ReturnsA : sparse matrix in CSR format, shape = [n_samples, n_samples]

A[i, j] is assigned the weight of edge that connects i to j.

See also:

kneighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.5)
>>> neigh.fit(X)
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> A = neigh.radius_neighbors_graph(X)
>>> A.toarray()
array([[ 1., 0., 1.],

[ 0., 1., 0.],
[ 1., 0., 1.]])

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.
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set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

5.25.6 sklearn.neighbors.NearestCentroid

class sklearn.neighbors.NearestCentroid(metric=’euclidean’, shrink_threshold=None)
Nearest centroid classifier.

Each class is represented by its centroid, with test samples classified to the class with the nearest centroid.

Read more in the User Guide.

Parametersmetric: string, or callable :

The metric to use when calculating distance between instances in a feature array.
If metric is a string or callable, it must be one of the options allowed by met-
rics.pairwise.pairwise_distances for its metric parameter. The centroids for the samples
corresponding to each class is the point from which the sum of the distances (according
to the metric) of all samples that belong to that particular class are minimized. If the
“manhattan” metric is provided, this centroid is the median and for all other metrics, the
centroid is now set to be the mean.

shrink_threshold : float, optional (default = None)

Threshold for shrinking centroids to remove features.

Attributescentroids_ : array-like, shape = [n_classes, n_features]

Centroid of each class

See also:

sklearn.neighbors.KNeighborsClassifiernearest neighbors classifier

Notes

When used for text classification with tf-idf vectors, this classifier is also known as the Rocchio classifier.

References

Tibshirani, R., Hastie, T., Narasimhan, B., & Chu, G. (2002). Diagnosis of multiple cancer types by shrunken
centroids of gene expression. Proceedings of the National Academy of Sciences of the United States of America,
99(10), 6567-6572. The National Academy of Sciences.

Examples

>>> from sklearn.neighbors.nearest_centroid import NearestCentroid
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
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>>> clf = NearestCentroid()
>>> clf.fit(X, y)
NearestCentroid(metric='euclidean', shrink_threshold=None)
>>> print(clf.predict([[-0.8, -1]]))
[1]

Methods

fit(X, y) Fit the NearestCentroid model according to the given training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Perform classification on an array of test vectors X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.

__init__(metric=’euclidean’, shrink_threshold=None)

fit(X, y)
Fit the NearestCentroid model according to the given training data.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features. Note that centroid shrinking cannot be used with sparse matrices.

y : array, shape = [n_samples]

Target values (integers)

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Perform classification on an array of test vectors X.

The predicted class C for each sample in X is returned.

ParametersX : array-like, shape = [n_samples, n_features]

ReturnsC : array, shape = [n_samples]

Notes

If the metric constructor parameter is “precomputed”, X is assumed to be the distance matrix between the
data to be predicted and self.centroids_.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.
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ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.neighbors.NearestCentroid

• Nearest Centroid Classification

• Classification of text documents using sparse features

5.25.7 sklearn.neighbors.BallTree

class sklearn.neighbors.BallTree
BallTree for fast generalized N-point problems

BallTree(X, leaf_size=40, metric=’minkowski’, **kwargs)

ParametersX : array-like, shape = [n_samples, n_features]

n_samples is the number of points in the data set, and n_features is the dimension of
the parameter space. Note: if X is a C-contiguous array of doubles then data will not be
copied. Otherwise, an internal copy will be made.

leaf_size : positive integer (default = 20)

Number of points at which to switch to brute-force. Changing leaf_size will not affect
the results of a query, but can significantly impact the speed of a query and the memory
required to store the constructed tree. The amount of memory needed to store the tree
scales as approximately n_samples / leaf_size. For a specified leaf_size, a leaf
node is guaranteed to satisfy leaf_size <= n_points <= 2 * leaf_size,
except in the case that n_samples < leaf_size.

metric : string or DistanceMetric object

the distance metric to use for the tree. Default=’minkowski’ with p=2 (that is, a eu-
clidean metric). See the documentation of the DistanceMetric class for a list of available
metrics. ball_tree.valid_metrics gives a list of the metrics which are valid for BallTree.

Additional keywords are passed to the distance metric class. :

Attributesdata : np.ndarray
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The training data

Examples

Query for k-nearest neighbors

>>> import numpy as np

>>> np.random.seed(0)
>>> X = np.random.random((10, 3)) # 10 points in 3 dimensions
>>> tree = BallTree(X, leaf_size=2)
>>> dist, ind = tree.query(X[0], k=3)
>>> print ind # indices of 3 closest neighbors
[0 3 1]
>>> print dist # distances to 3 closest neighbors
[ 0. 0.19662693 0.29473397]

Pickle and Unpickle a tree. Note that the state of the tree is saved in the pickle operation: the tree needs not be
rebuilt upon unpickling.

>>> import numpy as np
>>> import pickle
>>> np.random.seed(0)
>>> X = np.random.random((10, 3)) # 10 points in 3 dimensions
>>> tree = BallTree(X, leaf_size=2)
>>> s = pickle.dumps(tree)
>>> tree_copy = pickle.loads(s)
>>> dist, ind = tree_copy.query(X[0], k=3)
>>> print ind # indices of 3 closest neighbors
[0 3 1]
>>> print dist # distances to 3 closest neighbors
[ 0. 0.19662693 0.29473397]

Query for neighbors within a given radius

>>> import numpy as np
>>> np.random.seed(0)
>>> X = np.random.random((10, 3)) # 10 points in 3 dimensions
>>> tree = BallTree(X, leaf_size=2)
>>> print tree.query_radius(X[0], r=0.3, count_only=True)
3
>>> ind = tree.query_radius(X[0], r=0.3)
>>> print ind # indices of neighbors within distance 0.3
[3 0 1]

Compute a gaussian kernel density estimate:

>>> import numpy as np
>>> np.random.seed(1)
>>> X = np.random.random((100, 3))
>>> tree = BallTree(X)
>>> tree.kernel_density(X[:3], h=0.1, kernel='gaussian')
array([ 6.94114649, 7.83281226, 7.2071716 ])

Compute a two-point auto-correlation function

>>> import numpy as np
>>> np.random.seed(0)
>>> X = np.random.random((30, 3))
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>>> r = np.linspace(0, 1, 5)
>>> tree = BallTree(X)
>>> tree.two_point_correlation(X, r)
array([ 30, 62, 278, 580, 820])

Methods

get_arrays
get_n_calls
get_tree_stats
kernel_density(self, X, h[, kernel, atol, ...]) Compute the kernel density estimate at points X with the given kernel, using the distance metric specified at tree creation.
query(X[, k, return_distance, dualtree, ...]) query the tree for the k nearest neighbors
query_radius query_radius(self, X, r, count_only = False):
reset_n_calls
two_point_correlation Compute the two-point correlation function

__init__()
Initialize self. See help(type(self)) for accurate signature.

kernel_density(self, X, h, kernel=’gaussian’, atol=0, rtol=1E-8, breadth_first=True, re-
turn_log=False)

Compute the kernel density estimate at points X with the given kernel, using the distance metric specified
at tree creation.

ParametersX : array_like

An array of points to query. Last dimension should match dimension of training data.

h : float

the bandwidth of the kernel

kernel : string

specify the kernel to use. Options are - ‘gaussian’ - ‘tophat’ - ‘epanechnikov’ - ‘expo-
nential’ - ‘linear’ - ‘cosine’ Default is kernel = ‘gaussian’

atol, rtol : float (default = 0)

Specify the desired relative and absolute tolerance of the result. If the true result is
K_true, then the returned result K_ret satisfies abs(K_true - K_ret) < atol
+ rtol * K_ret The default is zero (i.e. machine precision) for both.

breadth_first : boolean (default = False)

if True, use a breadth-first search. If False (default) use a depth-first search. Breadth-
first is generally faster for compact kernels and/or high tolerances.

return_log : boolean (default = False)

return the logarithm of the result. This can be more accurate than returning the result
itself for narrow kernels.

Returnsdensity : ndarray

The array of (log)-density evaluations, shape = X.shape[:-1]

1588 Chapter 5. API Reference



scikit-learn user guide, Release 0.17

Examples

Compute a gaussian kernel density estimate:

>>> import numpy as np
>>> np.random.seed(1)
>>> X = np.random.random((100, 3))
>>> tree = BinaryTree(X)
>>> tree.kernel_density(X[:3], h=0.1, kernel='gaussian')
array([ 6.94114649, 7.83281226, 7.2071716 ])

query(X, k=1, return_distance=True, dualtree=False, breadth_first=False)
query the tree for the k nearest neighbors

ParametersX : array-like, last dimension self.dim

An array of points to query

k : integer (default = 1)

The number of nearest neighbors to return

return_distance : boolean (default = True)

if True, return a tuple (d, i) of distances and indices if False, return array i

dualtree : boolean (default = False)

if True, use the dual tree formalism for the query: a tree is built for the query points,
and the pair of trees is used to efficiently search this space. This can lead to better
performance as the number of points grows large.

breadth_first : boolean (default = False)

if True, then query the nodes in a breadth-first manner. Otherwise, query the nodes in a
depth-first manner.

sort_results : boolean (default = True)

if True, then distances and indices of each point are sorted on return, so that the first
column contains the closest points. Otherwise, neighbors are returned in an arbitrary
order.

Returnsi : if return_distance == False

(d,i) : if return_distance == True

d : array of doubles - shape: x.shape[:-1] + (k,)

each entry gives the list of distances to the neighbors of the corresponding point

i : array of integers - shape: x.shape[:-1] + (k,)

each entry gives the list of indices of neighbors of the corresponding point

Examples

Query for k-nearest neighbors

>>> import numpy as np
>>> np.random.seed(0)
>>> X = np.random.random((10, 3)) # 10 points in 3 dimensions
>>> tree = BinaryTree(X, leaf_size=2)
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>>> dist, ind = tree.query(X[0], k=3)
>>> print ind # indices of 3 closest neighbors
[0 3 1]
>>> print dist # distances to 3 closest neighbors
[ 0. 0.19662693 0.29473397]

query_radius()
query_radius(self, X, r, count_only = False):

query the tree for neighbors within a radius r

ParametersX : array-like, last dimension self.dim

An array of points to query

r : distance within which neighbors are returned

r can be a single value, or an array of values of shape x.shape[:-1] if different radii are
desired for each point.

return_distance : boolean (default = False)

if True, return distances to neighbors of each point if False, return only neighbors Note
that unlike the query() method, setting return_distance=True here adds to the computa-
tion time. Not all distances need to be calculated explicitly for return_distance=False.
Results are not sorted by default: see sort_results keyword.

count_only : boolean (default = False)

if True, return only the count of points within distance r if False, return the indices of all
points within distance r If return_distance==True, setting count_only=True will result
in an error.

sort_results : boolean (default = False)

if True, the distances and indices will be sorted before being returned. If False, the
results will not be sorted. If return_distance == False, setting sort_results = True will
result in an error.

Returnscount : if count_only == True

ind : if count_only == False and return_distance == False

(ind, dist) : if count_only == False and return_distance == True

count : array of integers, shape = X.shape[:-1]

each entry gives the number of neighbors within a distance r of the corresponding point.

ind : array of objects, shape = X.shape[:-1]

each element is a numpy integer array listing the indices of neighbors of the correspond-
ing point. Note that unlike the results of a k-neighbors query, the returned neighbors are
not sorted by distance by default.

dist : array of objects, shape = X.shape[:-1]

each element is a numpy double array listing the distances corresponding to indices in
i.

Examples

Query for neighbors in a given radius
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>>> import numpy as np
>>> np.random.seed(0)
>>> X = np.random.random((10, 3)) # 10 points in 3 dimensions
>>> tree = BinaryTree(X, leaf_size=2)
>>> print tree.query_radius(X[0], r=0.3, count_only=True)
3
>>> ind = tree.query_radius(X[0], r=0.3)
>>> print ind # indices of neighbors within distance 0.3
[3 0 1]

two_point_correlation()
Compute the two-point correlation function

ParametersX : array_like

An array of points to query. Last dimension should match dimension of training data.

r : array_like

A one-dimensional array of distances

dualtree : boolean (default = False)

If true, use a dualtree algorithm. Otherwise, use a single-tree algorithm. Dual tree
algorithms can have better scaling for large N.

Returnscounts : ndarray

counts[i] contains the number of pairs of points with distance less than or equal to r[i]

Examples

Compute the two-point autocorrelation function of X:

>>> import numpy as np
>>> np.random.seed(0)
>>> X = np.random.random((30, 3))
>>> r = np.linspace(0, 1, 5)
>>> tree = BinaryTree(X)
>>> tree.two_point_correlation(X, r)
array([ 30, 62, 278, 580, 820])

5.25.8 sklearn.neighbors.KDTree

class sklearn.neighbors.KDTree
KDTree for fast generalized N-point problems

KDTree(X, leaf_size=40, metric=’minkowski’, **kwargs)

ParametersX : array-like, shape = [n_samples, n_features]

n_samples is the number of points in the data set, and n_features is the dimension of
the parameter space. Note: if X is a C-contiguous array of doubles then data will not be
copied. Otherwise, an internal copy will be made.

leaf_size : positive integer (default = 20)

Number of points at which to switch to brute-force. Changing leaf_size will not affect
the results of a query, but can significantly impact the speed of a query and the memory
required to store the constructed tree. The amount of memory needed to store the tree
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scales as approximately n_samples / leaf_size. For a specified leaf_size, a leaf
node is guaranteed to satisfy leaf_size <= n_points <= 2 * leaf_size,
except in the case that n_samples < leaf_size.

metric : string or DistanceMetric object

the distance metric to use for the tree. Default=’minkowski’ with p=2 (that is, a eu-
clidean metric). See the documentation of the DistanceMetric class for a list of available
metrics. kd_tree.valid_metrics gives a list of the metrics which are valid for KDTree.

Additional keywords are passed to the distance metric class. :

Attributesdata : np.ndarray

The training data

Examples

Query for k-nearest neighbors

>>> import numpy as np

>>> np.random.seed(0)
>>> X = np.random.random((10, 3)) # 10 points in 3 dimensions
>>> tree = KDTree(X, leaf_size=2)
>>> dist, ind = tree.query(X[0], k=3)
>>> print ind # indices of 3 closest neighbors
[0 3 1]
>>> print dist # distances to 3 closest neighbors
[ 0. 0.19662693 0.29473397]

Pickle and Unpickle a tree. Note that the state of the tree is saved in the pickle operation: the tree needs not be
rebuilt upon unpickling.

>>> import numpy as np
>>> import pickle
>>> np.random.seed(0)
>>> X = np.random.random((10, 3)) # 10 points in 3 dimensions
>>> tree = KDTree(X, leaf_size=2)
>>> s = pickle.dumps(tree)
>>> tree_copy = pickle.loads(s)
>>> dist, ind = tree_copy.query(X[0], k=3)
>>> print ind # indices of 3 closest neighbors
[0 3 1]
>>> print dist # distances to 3 closest neighbors
[ 0. 0.19662693 0.29473397]

Query for neighbors within a given radius

>>> import numpy as np
>>> np.random.seed(0)
>>> X = np.random.random((10, 3)) # 10 points in 3 dimensions
>>> tree = KDTree(X, leaf_size=2)
>>> print tree.query_radius(X[0], r=0.3, count_only=True)
3
>>> ind = tree.query_radius(X[0], r=0.3)
>>> print ind # indices of neighbors within distance 0.3
[3 0 1]
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Compute a gaussian kernel density estimate:

>>> import numpy as np
>>> np.random.seed(1)
>>> X = np.random.random((100, 3))
>>> tree = KDTree(X)
>>> tree.kernel_density(X[:3], h=0.1, kernel='gaussian')
array([ 6.94114649, 7.83281226, 7.2071716 ])

Compute a two-point auto-correlation function

>>> import numpy as np
>>> np.random.seed(0)
>>> X = np.random.random((30, 3))
>>> r = np.linspace(0, 1, 5)
>>> tree = KDTree(X)
>>> tree.two_point_correlation(X, r)
array([ 30, 62, 278, 580, 820])

Methods

get_arrays
get_n_calls
get_tree_stats
kernel_density(self, X, h[, kernel, atol, ...]) Compute the kernel density estimate at points X with the given kernel, using the distance metric specified at tree creation.
query(X[, k, return_distance, dualtree, ...]) query the tree for the k nearest neighbors
query_radius query_radius(self, X, r, count_only = False):
reset_n_calls
two_point_correlation Compute the two-point correlation function

__init__()
Initialize self. See help(type(self)) for accurate signature.

kernel_density(self, X, h, kernel=’gaussian’, atol=0, rtol=1E-8, breadth_first=True, re-
turn_log=False)

Compute the kernel density estimate at points X with the given kernel, using the distance metric specified
at tree creation.

ParametersX : array_like

An array of points to query. Last dimension should match dimension of training data.

h : float

the bandwidth of the kernel

kernel : string

specify the kernel to use. Options are - ‘gaussian’ - ‘tophat’ - ‘epanechnikov’ - ‘expo-
nential’ - ‘linear’ - ‘cosine’ Default is kernel = ‘gaussian’

atol, rtol : float (default = 0)

Specify the desired relative and absolute tolerance of the result. If the true result is
K_true, then the returned result K_ret satisfies abs(K_true - K_ret) < atol
+ rtol * K_ret The default is zero (i.e. machine precision) for both.

breadth_first : boolean (default = False)
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if True, use a breadth-first search. If False (default) use a depth-first search. Breadth-
first is generally faster for compact kernels and/or high tolerances.

return_log : boolean (default = False)

return the logarithm of the result. This can be more accurate than returning the result
itself for narrow kernels.

Returnsdensity : ndarray

The array of (log)-density evaluations, shape = X.shape[:-1]

Examples

Compute a gaussian kernel density estimate:

>>> import numpy as np
>>> np.random.seed(1)
>>> X = np.random.random((100, 3))
>>> tree = BinaryTree(X)
>>> tree.kernel_density(X[:3], h=0.1, kernel='gaussian')
array([ 6.94114649, 7.83281226, 7.2071716 ])

query(X, k=1, return_distance=True, dualtree=False, breadth_first=False)
query the tree for the k nearest neighbors

ParametersX : array-like, last dimension self.dim

An array of points to query

k : integer (default = 1)

The number of nearest neighbors to return

return_distance : boolean (default = True)

if True, return a tuple (d, i) of distances and indices if False, return array i

dualtree : boolean (default = False)

if True, use the dual tree formalism for the query: a tree is built for the query points,
and the pair of trees is used to efficiently search this space. This can lead to better
performance as the number of points grows large.

breadth_first : boolean (default = False)

if True, then query the nodes in a breadth-first manner. Otherwise, query the nodes in a
depth-first manner.

sort_results : boolean (default = True)

if True, then distances and indices of each point are sorted on return, so that the first
column contains the closest points. Otherwise, neighbors are returned in an arbitrary
order.

Returnsi : if return_distance == False

(d,i) : if return_distance == True

d : array of doubles - shape: x.shape[:-1] + (k,)

each entry gives the list of distances to the neighbors of the corresponding point

i : array of integers - shape: x.shape[:-1] + (k,)
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each entry gives the list of indices of neighbors of the corresponding point

Examples

Query for k-nearest neighbors

>>> import numpy as np
>>> np.random.seed(0)
>>> X = np.random.random((10, 3)) # 10 points in 3 dimensions
>>> tree = BinaryTree(X, leaf_size=2)
>>> dist, ind = tree.query(X[0], k=3)
>>> print ind # indices of 3 closest neighbors
[0 3 1]
>>> print dist # distances to 3 closest neighbors
[ 0. 0.19662693 0.29473397]

query_radius()
query_radius(self, X, r, count_only = False):

query the tree for neighbors within a radius r

ParametersX : array-like, last dimension self.dim

An array of points to query

r : distance within which neighbors are returned

r can be a single value, or an array of values of shape x.shape[:-1] if different radii are
desired for each point.

return_distance : boolean (default = False)

if True, return distances to neighbors of each point if False, return only neighbors Note
that unlike the query() method, setting return_distance=True here adds to the computa-
tion time. Not all distances need to be calculated explicitly for return_distance=False.
Results are not sorted by default: see sort_results keyword.

count_only : boolean (default = False)

if True, return only the count of points within distance r if False, return the indices of all
points within distance r If return_distance==True, setting count_only=True will result
in an error.

sort_results : boolean (default = False)

if True, the distances and indices will be sorted before being returned. If False, the
results will not be sorted. If return_distance == False, setting sort_results = True will
result in an error.

Returnscount : if count_only == True

ind : if count_only == False and return_distance == False

(ind, dist) : if count_only == False and return_distance == True

count : array of integers, shape = X.shape[:-1]

each entry gives the number of neighbors within a distance r of the corresponding point.

ind : array of objects, shape = X.shape[:-1]
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each element is a numpy integer array listing the indices of neighbors of the correspond-
ing point. Note that unlike the results of a k-neighbors query, the returned neighbors are
not sorted by distance by default.

dist : array of objects, shape = X.shape[:-1]

each element is a numpy double array listing the distances corresponding to indices in
i.

Examples

Query for neighbors in a given radius

>>> import numpy as np
>>> np.random.seed(0)
>>> X = np.random.random((10, 3)) # 10 points in 3 dimensions
>>> tree = BinaryTree(X, leaf_size=2)
>>> print tree.query_radius(X[0], r=0.3, count_only=True)
3
>>> ind = tree.query_radius(X[0], r=0.3)
>>> print ind # indices of neighbors within distance 0.3
[3 0 1]

two_point_correlation()
Compute the two-point correlation function

ParametersX : array_like

An array of points to query. Last dimension should match dimension of training data.

r : array_like

A one-dimensional array of distances

dualtree : boolean (default = False)

If true, use a dualtree algorithm. Otherwise, use a single-tree algorithm. Dual tree
algorithms can have better scaling for large N.

Returnscounts : ndarray

counts[i] contains the number of pairs of points with distance less than or equal to r[i]

Examples

Compute the two-point autocorrelation function of X:

>>> import numpy as np
>>> np.random.seed(0)
>>> X = np.random.random((30, 3))
>>> r = np.linspace(0, 1, 5)
>>> tree = BinaryTree(X)
>>> tree.two_point_correlation(X, r)
array([ 30, 62, 278, 580, 820])
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5.25.9 sklearn.neighbors.LSHForest

class sklearn.neighbors.LSHForest(n_estimators=10, radius=1.0, n_candidates=50,
n_neighbors=5, min_hash_match=4, radius_cutoff_ratio=0.9,
random_state=None)

Performs approximate nearest neighbor search using LSH forest.

LSH Forest: Locality Sensitive Hashing forest [1] is an alternative method for vanilla approximate nearest
neighbor search methods. LSH forest data structure has been implemented using sorted arrays and binary
search and 32 bit fixed-length hashes. Random projection is used as the hash family which approximates cosine
distance.

The cosine distance is defined as 1 - cosine_similarity: the lowest value is 0 (identical point) but it is
bounded above by 2 for the farthest points. Its value does not depend on the norm of the vector points but only
on their relative angles.

Read more in the User Guide.

Parametersn_estimators : int (default = 10)

Number of trees in the LSH Forest.

min_hash_match : int (default = 4)

lowest hash length to be searched when candidate selection is performed for nearest
neighbors.

n_candidates : int (default = 10)

Minimum number of candidates evaluated per estimator, assuming enough items meet
the min_hash_match constraint.

n_neighbors : int (default = 5)

Number of neighbors to be returned from query function when it is not provided to the
kneighbors method.

radius : float, optinal (default = 1.0)

Radius from the data point to its neighbors. This is the parameter space to use by default
for the :meth‘radius_neighbors‘ queries.

radius_cutoff_ratio : float, optional (default = 0.9)

A value ranges from 0 to 1. Radius neighbors will be searched until the ratio between
total neighbors within the radius and the total candidates becomes less than this value
unless it is terminated by hash length reaching min_hash_match.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Attributeshash_functions_ : list of GaussianRandomProjectionHash objects

Hash function g(p,x) for a tree is an array of 32 randomly generated float arrays with the
same dimenstion as the data set. This array is stored in GaussianRandomProjectionHash
object and can be obtained from components_ attribute.

trees_ : array, shape (n_estimators, n_samples)

Each tree (corresponding to a hash function) contains an array of sorted hashed values.
The array representation may change in future versions.
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original_indices_ : array, shape (n_estimators, n_samples)

Original indices of sorted hashed values in the fitted index.

References

[R58]

Examples

>>> from sklearn.neighbors import LSHForest

>>> X_train = [[5, 5, 2], [21, 5, 5], [1, 1, 1], [8, 9, 1], [6, 10, 2]]
>>> X_test = [[9, 1, 6], [3, 1, 10], [7, 10, 3]]
>>> lshf = LSHForest(random_state=42)
>>> lshf.fit(X_train)
LSHForest(min_hash_match=4, n_candidates=50, n_estimators=10,

n_neighbors=5, radius=1.0, radius_cutoff_ratio=0.9,
random_state=42)

>>> distances, indices = lshf.kneighbors(X_test, n_neighbors=2)
>>> distances
array([[ 0.069..., 0.149...],

[ 0.229..., 0.481...],
[ 0.004..., 0.014...]])

>>> indices
array([[1, 2],

[2, 0],
[4, 0]])

Methods

fit(X[, y]) Fit the LSH forest on the data.
get_params([deep]) Get parameters for this estimator.
kneighbors(X[, n_neighbors, return_distance]) Returns n_neighbors of approximate nearest neighbors.
kneighbors_graph([X, n_neighbors, mode]) Computes the (weighted) graph of k-Neighbors for points in X
partial_fit(X[, y]) Inserts new data into the already fitted LSH Forest.
radius_neighbors(X[, radius, return_distance]) Finds the neighbors within a given radius of a point or points.
radius_neighbors_graph([X, radius, mode]) Computes the (weighted) graph of Neighbors for points in X
set_params(**params) Set the parameters of this estimator.

__init__(n_estimators=10, radius=1.0, n_candidates=50, n_neighbors=5, min_hash_match=4, ra-
dius_cutoff_ratio=0.9, random_state=None)

fit(X, y=None)
Fit the LSH forest on the data.

This creates binary hashes of input data points by getting the dot product of input points and hash_function
then transforming the projection into a binary string array based on the sign (positive/negative) of the
projection. A sorted array of binary hashes is created.

ParametersX : array_like or sparse (CSR) matrix, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.
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Returnsself : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

kneighbors(X, n_neighbors=None, return_distance=True)
Returns n_neighbors of approximate nearest neighbors.

ParametersX : array_like or sparse (CSR) matrix, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single query.

n_neighbors : int, opitonal (default = None)

Number of neighbors required. If not provided, this will return the number specified at
the initialization.

return_distance : boolean, optional (default = False)

Returns the distances of neighbors if set to True.

Returnsdist : array, shape (n_samples, n_neighbors)

Array representing the cosine distances to each point, only present if re-
turn_distance=True.

ind : array, shape (n_samples, n_neighbors)

Indices of the approximate nearest points in the population matrix.

kneighbors_graph(X=None, n_neighbors=None, mode=’connectivity’)
Computes the (weighted) graph of k-Neighbors for points in X

ParametersX : array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric ==
‘precomputed’

The query point or points. If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

n_neighbors : int

Number of neighbors for each sample. (default is value passed to the constructor).

mode : {‘connectivity’, ‘distance’}, optional

Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones
and zeros, in ‘distance’ the edges are Euclidean distance between points.

ReturnsA : sparse matrix in CSR format, shape = [n_samples, n_samples_fit]

n_samples_fit is the number of samples in the fitted data A[i, j] is assigned the weight
of edge that connects i to j.

See also:

NearestNeighbors.radius_neighbors_graph
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Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=2)
>>> neigh.fit(X)
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> A = neigh.kneighbors_graph(X)
>>> A.toarray()
array([[ 1., 0., 1.],

[ 0., 1., 1.],
[ 1., 0., 1.]])

partial_fit(X, y=None)
Inserts new data into the already fitted LSH Forest. Cost is proportional to new total size, so additions
should be batched.

ParametersX : array_like or sparse (CSR) matrix, shape (n_samples, n_features)

New data point to be inserted into the LSH Forest.

radius_neighbors(X, radius=None, return_distance=True)
Finds the neighbors within a given radius of a point or points.

Return the indices and distances of some points from the dataset lying in a ball with size radius around
the points of the query array. Points lying on the boundary are included in the results.

The result points are not necessarily sorted by distance to their query point.

LSH Forest being an approximate method, some true neighbors from the indexed dataset might be missing
from the results.

ParametersX : array_like or sparse (CSR) matrix, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single query.

radius : float

Limiting distance of neighbors to return. (default is the value passed to the constructor).

return_distance : boolean, optional (default = False)

Returns the distances of neighbors if set to True.

Returnsdist : array, shape (n_samples,) of arrays

Each element is an array representing the cosine distances to some points found within
radius of the respective query. Only present if return_distance=True.

ind : array, shape (n_samples,) of arrays

Each element is an array of indices for neighbors within radius of the respective
query.

radius_neighbors_graph(X=None, radius=None, mode=’connectivity’)
Computes the (weighted) graph of Neighbors for points in X

Neighborhoods are restricted the points at a distance lower than radius.

ParametersX : array-like, shape = [n_samples, n_features], optional

The query point or points. If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

radius : float
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Radius of neighborhoods. (default is the value passed to the constructor).

mode : {‘connectivity’, ‘distance’}, optional

Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones
and zeros, in ‘distance’ the edges are Euclidean distance between points.

ReturnsA : sparse matrix in CSR format, shape = [n_samples, n_samples]

A[i, j] is assigned the weight of edge that connects i to j.

See also:

kneighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.5)
>>> neigh.fit(X)
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> A = neigh.radius_neighbors_graph(X)
>>> A.toarray()
array([[ 1., 0., 1.],

[ 0., 1., 0.],
[ 1., 0., 1.]])

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.neighbors.LSHForest

• Hyper-parameters of Approximate Nearest Neighbors

• Scalability of Approximate Nearest Neighbors

5.25.10 sklearn.neighbors.DistanceMetric

class sklearn.neighbors.DistanceMetric
DistanceMetric class

This class provides a uniform interface to fast distance metric functions. The various metrics can be accessed
via the get_metric class method and the metric string identifier (see below). For example, to use the Euclidean
distance:

>>> dist = DistanceMetric.get_metric('euclidean')
>>> X = [[0, 1, 2],

[3, 4, 5]])
>>> dist.pairwise(X)
array([[ 0. , 5.19615242],

[ 5.19615242, 0. ]])
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Available Metrics The following lists the string metric identifiers and the associated distance metric classes:

Metrics intended for real-valued vector spaces:

identifier class name args distance function
“euclidean” EuclideanDistance

•
sqrt(sum((x -
y)^2))

“manhattan” ManhattanDistance
•

sum(|x - y|)

“chebyshev” ChebyshevDistance
•

sum(max(|x - y|))

“minkowski” MinkowskiDistance p sum(|x -
y|^p)^(1/p)

“wminkowski” WMinkowskiDistance p, w sum(w * |x -
y|^p)^(1/p)

“seuclidean” SEuclideanDistance V sqrt(sum((x -
y)^2 / V))

“mahalanobis” MahalanobisDistance V or VI sqrt((x - y)’
V^-1 (x - y))

Metrics intended for two-dimensional vector spaces:

identifier class name distance function
“haversine” HaversineDistance

2 arcsin(sqrt(sin^2(0.5*dx)
•
cos(x1)cos(x2)sin^2(0.5*dy)))

Metrics intended for integer-valued vector spaces: Though intended for integer-valued vectors, these are also
valid metrics in the case of real-valued vectors.

identifier class name distance function
“hamming” HammingDistance N_unequal(x, y) / N_tot
“canberra” CanberraDistance sum(|x - y| / (|x| + |y|))
“braycurtis” BrayCurtisDistance sum(|x - y|) / (sum(|x|) + sum(|y|))

Metrics intended for boolean-valued vector spaces: Any nonzero entry is evaluated to “True”. In the listings
below, the following abbreviations are used:

•N : number of dimensions

•NTT : number of dims in which both values are True

•NTF : number of dims in which the first value is True, second is False

•NFT : number of dims in which the first value is False, second is True

•NFF : number of dims in which both values are False

•NNEQ : number of non-equal dimensions, NNEQ = NTF + NFT

•NNZ : number of nonzero dimensions, NNZ = NTF + NFT + NTT
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identifier class name distance function
“jaccard” JaccardDistance NNEQ / NNZ
“maching” MatchingDistance NNEQ / N
“dice” DiceDistance NNEQ / (NTT + NNZ)
“kulsinski” KulsinskiDistance (NNEQ + N - NTT) / (NNEQ + N)
“rogerstanimoto” RogersTanimotoDistance 2 * NNEQ / (N + NNEQ)
“russellrao” RussellRaoDistance NNZ / N
“sokalmichener” SokalMichenerDistance 2 * NNEQ / (N + NNEQ)
“sokalsneath” SokalSneathDistance NNEQ / (NNEQ + 0.5 * NTT)

User-defined distance:
identifier class name args
“pyfunc” PyFuncDistance func

Here func is a function which takes two one-dimensional numpy arrays, and returns a distance. Note that
in order to be used within the BallTree, the distance must be a true metric: i.e. it must satisfy the following
properties

1.Non-negativity: d(x, y) >= 0

2.Identity: d(x, y) = 0 if and only if x == y

3.Symmetry: d(x, y) = d(y, x)

4.Triangle Inequality: d(x, y) + d(y, z) >= d(x, z)

Because of the Python object overhead involved in calling the python function, this will be fairly slow, but it
will have the same scaling as other distances.

Methods

dist_to_rdist Convert the true distance to the reduced distance.
get_metric Get the given distance metric from the string identifier.
pairwise Compute the pairwise distances between X and Y
rdist_to_dist Convert the Reduced distance to the true distance.

__init__()
Initialize self. See help(type(self)) for accurate signature.

dist_to_rdist()
Convert the true distance to the reduced distance.

The reduced distance, defined for some metrics, is a computationally more efficent measure which pre-
serves the rank of the true distance. For example, in the Euclidean distance metric, the reduced distance is
the squared-euclidean distance.

get_metric()
Get the given distance metric from the string identifier.

See the docstring of DistanceMetric for a list of available metrics.

Parametersmetric : string or class name

The distance metric to use

**kwargs :

additional arguments will be passed to the requested metric
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pairwise()
Compute the pairwise distances between X and Y

This is a convenience routine for the sake of testing. For many metrics, the utilities in
scipy.spatial.distance.cdist and scipy.spatial.distance.pdist will be faster.

ParametersX : array_like

Array of shape (Nx, D), representing Nx points in D dimensions.

Y : array_like (optional)

Array of shape (Ny, D), representing Ny points in D dimensions. If not specified, then
Y=X.

Returns :

——- :

dist : ndarray

The shape (Nx, Ny) array of pairwise distances between points in X and Y.

rdist_to_dist()
Convert the Reduced distance to the true distance.

The reduced distance, defined for some metrics, is a computationally more efficent measure which pre-
serves the rank of the true distance. For example, in the Euclidean distance metric, the reduced distance is
the squared-euclidean distance.

5.25.11 sklearn.neighbors.KernelDensity

class sklearn.neighbors.KernelDensity(bandwidth=1.0, algorithm=’auto’, kernel=’gaussian’,
metric=’euclidean’, atol=0, rtol=0, breadth_first=True,
leaf_size=40, metric_params=None)

Kernel Density Estimation

Read more in the User Guide.

Parametersbandwidth : float

The bandwidth of the kernel.

algorithm : string

The tree algorithm to use. Valid options are [’kd_tree’|’ball_tree’|’auto’]. Default is
‘auto’.

kernel : string

The kernel to use. Valid kernels are [’gaus-
sian’|’tophat’|’epanechnikov’|’exponential’|’linear’|’cosine’] Default is ‘gaussian’.

metric : string

The distance metric to use. Note that not all metrics are valid with all algorithms.
Refer to the documentation of BallTree and KDTree for a description of available
algorithms. Note that the normalization of the density output is correct only for the
Euclidean distance metric. Default is ‘euclidean’.

atol : float

The desired absolute tolerance of the result. A larger tolerance will generally lead to
faster execution. Default is 0.
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rtol : float

The desired relative tolerance of the result. A larger tolerance will generally lead to
faster execution. Default is 1E-8.

breadth_first : boolean

If true (default), use a breadth-first approach to the problem. Otherwise use a depth-first
approach.

leaf_size : int

Specify the leaf size of the underlying tree. See BallTree or KDTree for details.
Default is 40.

metric_params : dict

Additional parameters to be passed to the tree for use with the metric. For more infor-
mation, see the documentation of BallTree or KDTree.

Methods

fit(X[, y]) Fit the Kernel Density model on the data.
get_params([deep]) Get parameters for this estimator.
sample([n_samples, random_state]) Generate random samples from the model.
score(X[, y]) Compute the total log probability under the model.
score_samples(X) Evaluate the density model on the data.
set_params(**params) Set the parameters of this estimator.

__init__(bandwidth=1.0, algorithm=’auto’, kernel=’gaussian’, metric=’euclidean’, atol=0, rtol=0,
breadth_first=True, leaf_size=40, metric_params=None)

fit(X, y=None)
Fit the Kernel Density model on the data.

ParametersX : array_like, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

sample(n_samples=1, random_state=None)
Generate random samples from the model.

Currently, this is implemented only for gaussian and tophat kernels.

Parametersn_samples : int, optional

Number of samples to generate. Defaults to 1.

random_state : RandomState or an int seed (0 by default)
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A random number generator instance.

ReturnsX : array_like, shape (n_samples, n_features)

List of samples.

score(X, y=None)
Compute the total log probability under the model.

ParametersX : array_like, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returnslogprob : float

Total log-likelihood of the data in X.

score_samples(X)
Evaluate the density model on the data.

ParametersX : array_like, shape (n_samples, n_features)

An array of points to query. Last dimension should match dimension of training data
(n_features).

Returnsdensity : ndarray, shape (n_samples,)

The array of log(density) evaluations.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.neighbors.KernelDensity

• Kernel Density Estimation

• Kernel Density Estimate of Species Distributions

• Simple 1D Kernel Density Estimation

neighbors.kneighbors_graph(X, n_neighbors[, ...]) Computes the (weighted) graph of k-Neighbors for points in X
neighbors.radius_neighbors_graph(X, radius) Computes the (weighted) graph of Neighbors for points in X

5.25.12 sklearn.neighbors.kneighbors_graph

sklearn.neighbors.kneighbors_graph(X, n_neighbors, mode=’connectivity’, met-
ric=’minkowski’, p=2, metric_params=None, in-
clude_self=None)

Computes the (weighted) graph of k-Neighbors for points in X

Read more in the User Guide.

ParametersX : array-like or BallTree, shape = [n_samples, n_features]

Sample data, in the form of a numpy array or a precomputed BallTree.

n_neighbors : int
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Number of neighbors for each sample.

mode : {‘connectivity’, ‘distance’}, optional

Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones
and zeros, in ‘distance’ the edges are Euclidean distance between points.

metric : string, default ‘minkowski’

The distance metric used to calculate the k-Neighbors for each sample point. The Dis-
tanceMetric class gives a list of available metrics. The default distance is ‘euclidean’
(‘minkowski’ metric with the p param equal to 2.)

include_self: bool, default backward-compatible. :

Whether or not to mark each sample as the first nearest neighbor to itself. If None,
then True is used for mode=’connectivity’ and False for mode=’distance’ as this will
preserve backwards compatibilty. From version 0.18, the default value will be False,
irrespective of the value of mode.

p : int, default 2

Power parameter for the Minkowski metric. When p = 1, this is equivalent to us-
ing manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used.

metric_params: dict, optional :

additional keyword arguments for the metric function.

ReturnsA : sparse matrix in CSR format, shape = [n_samples, n_samples]

A[i, j] is assigned the weight of edge that connects i to j.

See also:

radius_neighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import kneighbors_graph
>>> A = kneighbors_graph(X, 2)
>>> A.toarray()
array([[ 1., 0., 1.],

[ 0., 1., 1.],
[ 1., 0., 1.]])

Examples using sklearn.neighbors.kneighbors_graph

• Agglomerative clustering with and without structure

• Hierarchical clustering: structured vs unstructured ward

• Comparing different clustering algorithms on toy datasets
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5.25.13 sklearn.neighbors.radius_neighbors_graph

sklearn.neighbors.radius_neighbors_graph(X, radius, mode=’connectivity’, met-
ric=’minkowski’, p=2, metric_params=None,
include_self=None)

Computes the (weighted) graph of Neighbors for points in X

Neighborhoods are restricted the points at a distance lower than radius.

Read more in the User Guide.

ParametersX : array-like or BallTree, shape = [n_samples, n_features]

Sample data, in the form of a numpy array or a precomputed BallTree.

radius : float

Radius of neighborhoods.

mode : {‘connectivity’, ‘distance’}, optional

Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones
and zeros, in ‘distance’ the edges are Euclidean distance between points.

metric : string, default ‘minkowski’

The distance metric used to calculate the neighbors within a given radius for each sam-
ple point. The DistanceMetric class gives a list of available metrics. The default distance
is ‘euclidean’ (‘minkowski’ metric with the param equal to 2.)

include_self: bool, default None :

Whether or not to mark each sample as the first nearest neighbor to itself. If None,
then True is used for mode=’connectivity’ and False for mode=’distance’ as this will
preserve backwards compatibilty. From version 0.18, the default value will be False,
irrespective of the value of mode.

p : int, default 2

Power parameter for the Minkowski metric. When p = 1, this is equivalent to us-
ing manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used.

metric_params: dict, optional :

additional keyword arguments for the metric function.

ReturnsA : sparse matrix in CSR format, shape = [n_samples, n_samples]

A[i, j] is assigned the weight of edge that connects i to j.

See also:

kneighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import radius_neighbors_graph
>>> A = radius_neighbors_graph(X, 1.5)
>>> A.toarray()
array([[ 1., 0., 1.],
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[ 0., 1., 0.],
[ 1., 0., 1.]])

5.26 sklearn.neural_network: Neural network models

The sklearn.neural_network module includes models based on neural networks.

User guide: See the Neural network models (unsupervised) section for further details.

neural_network.BernoulliRBM([n_components, ...]) Bernoulli Restricted Boltzmann Machine (RBM).

5.26.1 sklearn.neural_network.BernoulliRBM

class sklearn.neural_network.BernoulliRBM(n_components=256, learning_rate=0.1,
batch_size=10, n_iter=10, verbose=0, ran-
dom_state=None)

Bernoulli Restricted Boltzmann Machine (RBM).

A Restricted Boltzmann Machine with binary visible units and binary hiddens. Parameters are estimated using
Stochastic Maximum Likelihood (SML), also known as Persistent Contrastive Divergence (PCD) [2].

The time complexity of this implementation is O(d ** 2) assuming d ~ n_features ~ n_components.

Read more in the User Guide.

Parametersn_components : int, optional

Number of binary hidden units.

learning_rate : float, optional

The learning rate for weight updates. It is highly recommended to tune this hyper-
parameter. Reasonable values are in the 10**[0., -3.] range.

batch_size : int, optional

Number of examples per minibatch.

n_iter : int, optional

Number of iterations/sweeps over the training dataset to perform during training.

verbose : int, optional

The verbosity level. The default, zero, means silent mode.

random_state : integer or numpy.RandomState, optional

A random number generator instance to define the state of the random permutations
generator. If an integer is given, it fixes the seed. Defaults to the global numpy random
number generator.

Attributesintercept_hidden_ : array-like, shape (n_components,)

Biases of the hidden units.

intercept_visible_ : array-like, shape (n_features,)

Biases of the visible units.

components_ : array-like, shape (n_components, n_features)
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Weight matrix, where n_features in the number of visible units and n_components is
the number of hidden units.

References

[1] Hinton, G. E., Osindero, S. and Teh, Y. A fast learning algorithm fordeep belief nets. Neural Computa-
tion 18, pp 1527-1554. http://www.cs.toronto.edu/~hinton/absps/fastnc.pdf

[2] Tieleman, T. Training Restricted Boltzmann Machines usingApproximations to the Likelihood Gradi-
ent. International Conference on Machine Learning (ICML) 2008

Examples

>>> import numpy as np
>>> from sklearn.neural_network import BernoulliRBM
>>> X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]])
>>> model = BernoulliRBM(n_components=2)
>>> model.fit(X)
BernoulliRBM(batch_size=10, learning_rate=0.1, n_components=2, n_iter=10,

random_state=None, verbose=0)

Methods

fit(X[, y]) Fit the model to the data X.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
gibbs(v) Perform one Gibbs sampling step.
partial_fit(X[, y]) Fit the model to the data X which should contain a partial segment of the data.
score_samples(X) Compute the pseudo-likelihood of X.
set_params(**params) Set the parameters of this estimator.
transform(X) Compute the hidden layer activation probabilities, P(h=1|v=X).

__init__(n_components=256, learning_rate=0.1, batch_size=10, n_iter=10, verbose=0, ran-
dom_state=None)

fit(X, y=None)
Fit the model to the data X.

ParametersX : {array-like, sparse matrix} shape (n_samples, n_features)

Training data.

Returnsself : BernoulliRBM

The fitted model.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]
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Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

gibbs(v)
Perform one Gibbs sampling step.

Parametersv : array-like, shape (n_samples, n_features)

Values of the visible layer to start from.

Returnsv_new : array-like, shape (n_samples, n_features)

Values of the visible layer after one Gibbs step.

partial_fit(X, y=None)
Fit the model to the data X which should contain a partial segment of the data.

ParametersX : array-like, shape (n_samples, n_features)

Training data.

Returnsself : BernoulliRBM

The fitted model.

score_samples(X)
Compute the pseudo-likelihood of X.

ParametersX : {array-like, sparse matrix} shape (n_samples, n_features)

Values of the visible layer. Must be all-boolean (not checked).

Returnspseudo_likelihood : array-like, shape (n_samples,)

Value of the pseudo-likelihood (proxy for likelihood).

Notes

This method is not deterministic: it computes a quantity called the free energy on X, then on a randomly
corrupted version of X, and returns the log of the logistic function of the difference.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :
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transform(X)
Compute the hidden layer activation probabilities, P(h=1|v=X).

ParametersX : {array-like, sparse matrix} shape (n_samples, n_features)

The data to be transformed.

Returnsh : array, shape (n_samples, n_components)

Latent representations of the data.

Examples using sklearn.neural_network.BernoulliRBM

• Restricted Boltzmann Machine features for digit classification

5.27 sklearn.calibration: Probability Calibration

Calibration of predicted probabilities.

User guide: See the Probability calibration section for further details.

calibration.CalibratedClassifierCV([...]) Probability calibration with isotonic regression or sigmoid.

5.27.1 sklearn.calibration.CalibratedClassifierCV

class sklearn.calibration.CalibratedClassifierCV(base_estimator=None,
method=’sigmoid’, cv=3)

Probability calibration with isotonic regression or sigmoid.

With this class, the base_estimator is fit on the train set of the cross-validation generator and the test set is used
for calibration. The probabilities for each of the folds are then averaged for prediction. In case that cv=”prefit”
is passed to __init__, it is it is assumed that base_estimator has been fitted already and all data is used for
calibration. Note that data for fitting the classifier and for calibrating it must be disjoint.

Read more in the User Guide.

Parametersbase_estimator : instance BaseEstimator

The classifier whose output decision function needs to be calibrated to offer more ac-
curate predict_proba outputs. If cv=prefit, the classifier must have been fit already on
data.

method : ‘sigmoid’ or ‘isotonic’

The method to use for calibration. Can be ‘sigmoid’ which corresponds to Platt’s
method or ‘isotonic’ which is a non-parameteric approach. It is not advised to use iso-
tonic calibration with too few calibration samples (<<1000) since it tends to overfit.
Use sigmoids (Platt’s calibration) in this case.

cv : integer, cross-validation generator, iterable or “prefit”, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

•None, to use the default 3-fold cross-validation,

•integer, to specify the number of folds.

•An object to be used as a cross-validation generator.
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•An iterable yielding train/test splits.

For integer/None inputs, if y is binary or multiclass, StratifiedKFold used. If y
is neither binary nor multiclass, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

If “prefit” is passed, it is assumed that base_estimator has been fitted already and all
data is used for calibration.

Attributesclasses_ : array, shape (n_classes)

The class labels.

calibrated_classifiers_: list (len() equal to cv or 1 if cv == “prefit”) :

The list of calibrated classifiers, one for each crossvalidation fold, which has been fitted
on all but the validation fold and calibrated on the validation fold.

References

[R1], [R2], [R3], [R4]

Methods

fit(X, y[, sample_weight]) Fit the calibrated model
get_params([deep]) Get parameters for this estimator.
predict(X) Predict the target of new samples.
predict_proba(X) Posterior probabilities of classification
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.

__init__(base_estimator=None, method=’sigmoid’, cv=3)

fit(X, y, sample_weight=None)
Fit the calibrated model

ParametersX : array-like, shape (n_samples, n_features)

Training data.

y : array-like, shape (n_samples,)

Target values.

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted.

Returnsself : object

Returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.
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Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict the target of new samples. Can be different from the prediction of the uncalibrated classifier.

ParametersX : array-like, shape (n_samples, n_features)

The samples.

ReturnsC : array, shape (n_samples,)

The predicted class.

predict_proba(X)
Posterior probabilities of classification

This function returns posterior probabilities of classification according to each class on an array of test
vectors X.

ParametersX : array-like, shape (n_samples, n_features)

The samples.

ReturnsC : array, shape (n_samples, n_classes)

The predicted probas.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.calibration.CalibratedClassifierCV

• Probability Calibration curves

• Probability calibration of classifiers

• Probability Calibration for 3-class classification
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calibration.calibration_curve(y_true, y_prob) Compute true and predicted probabilities for a calibration curve.

5.27.2 sklearn.calibration.calibration_curve

sklearn.calibration.calibration_curve(y_true, y_prob, normalize=False, n_bins=5)
Compute true and predicted probabilities for a calibration curve.

Read more in the User Guide.

Parametersy_true : array, shape (n_samples,)

True targets.

y_prob : array, shape (n_samples,)

Probabilities of the positive class.

normalize : bool, optional, default=False

Whether y_prob needs to be normalized into the bin [0, 1], i.e. is not a proper proba-
bility. If True, the smallest value in y_prob is mapped onto 0 and the largest one onto
1.

n_bins : int

Number of bins. A bigger number requires more data.

Returnsprob_true : array, shape (n_bins,)

The true probability in each bin (fraction of positives).

prob_pred : array, shape (n_bins,)

The mean predicted probability in each bin.

References

Alexandru Niculescu-Mizil and Rich Caruana (2005) Predicting Good Probabilities With Supervised Learning,
in Proceedings of the 22nd International Conference on Machine Learning (ICML). See section 4 (Qualitative
Analysis of Predictions).

Examples using sklearn.calibration.calibration_curve

• Comparison of Calibration of Classifiers

• Probability Calibration curves

5.28 sklearn.cross_decomposition: Cross decomposition

User guide: See the Cross decomposition section for further details.

cross_decomposition.PLSRegression([...]) PLS regression
cross_decomposition.PLSCanonical([...]) PLSCanonical implements the 2 blocks canonical PLS of the original Wold algorithm [Tenenhaus 1998] p.204, referred as PLS-C2A in [Wegelin 2000].
cross_decomposition.CCA([n_components, ...]) CCA Canonical Correlation Analysis.
cross_decomposition.PLSSVD([n_components, ...]) Partial Least Square SVD
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5.28.1 sklearn.cross_decomposition.PLSRegression

class sklearn.cross_decomposition.PLSRegression(n_components=2, scale=True,
max_iter=500, tol=1e-06, copy=True)

PLS regression

PLSRegression implements the PLS 2 blocks regression known as PLS2 or PLS1 in case of one dimensional
response. This class inherits from _PLS with mode=”A”, deflation_mode=”regression”, norm_y_weights=False
and algorithm=”nipals”.

Read more in the User Guide.

Parametersn_components : int, (default 2)

Number of components to keep.

scale : boolean, (default True)

whether to scale the data

max_iter : an integer, (default 500)

the maximum number of iterations of the NIPALS inner loop (used only if algo-
rithm=”nipals”)

tol : non-negative real

Tolerance used in the iterative algorithm default 1e-06.

copy : boolean, default True

Whether the deflation should be done on a copy. Let the default value to True unless
you don’t care about side effect

Attributesx_weights_ : array, [p, n_components]

X block weights vectors.

y_weights_ : array, [q, n_components]

Y block weights vectors.

x_loadings_ : array, [p, n_components]

X block loadings vectors.

y_loadings_ : array, [q, n_components]

Y block loadings vectors.

x_scores_ : array, [n_samples, n_components]

X scores.

y_scores_ : array, [n_samples, n_components]

Y scores.

x_rotations_ : array, [p, n_components]

X block to latents rotations.

y_rotations_ : array, [q, n_components]

Y block to latents rotations.

coef_: array, [p, q] :

The coefficients of the linear model: Y = X coef_ + Err
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n_iter_ : array-like

Number of iterations of the NIPALS inner loop for each component.

Notes

Matrices:

T: x_scores_
U: y_scores_
W: x_weights_
C: y_weights_
P: x_loadings_
Q: y_loadings__

Are computed such that:

X = T P.T + Err and Y = U Q.T + Err
T[:, k] = Xk W[:, k] for k in range(n_components)
U[:, k] = Yk C[:, k] for k in range(n_components)
x_rotations_ = W (P.T W)^(-1)
y_rotations_ = C (Q.T C)^(-1)

where Xk and Yk are residual matrices at iteration k.

Slides explaining PLS <http://www.eigenvector.com/Docs/Wise_pls_properties.pdf>

For each component k, find weights u, v that optimizes: max corr(Xk u, Yk v) * std(Xk u)
std(Yk u), such that |u| = 1

Note that it maximizes both the correlations between the scores and the intra-block variances.

The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score.

The residual matrix of Y (Yk+1) block is obtained by deflation on the current X score. This performs the PLS
regression known as PLS2. This mode is prediction oriented.

This implementation provides the same results that 3 PLS packages provided in the R language (R-project):

•“mixOmics” with function pls(X, Y, mode = “regression”)

•“plspm ” with function plsreg2(X, Y)

•“pls” with function oscorespls.fit(X, Y)

References

Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case.
Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000.

In french but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions
Technic.

Examples

>>> from sklearn.cross_decomposition import PLSRegression
>>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]]
>>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]]
>>> pls2 = PLSRegression(n_components=2)
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>>> pls2.fit(X, Y)
...
PLSRegression(copy=True, max_iter=500, n_components=2, scale=True,

tol=1e-06)
>>> Y_pred = pls2.predict(X)

Methods

fit(X, Y) Fit model to data.
fit_transform(X[, y]) Learn and apply the dimension reduction on the train data.
get_params([deep]) Get parameters for this estimator.
predict(X[, copy]) Apply the dimension reduction learned on the train data.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.
transform(X[, Y, copy]) Apply the dimension reduction learned on the train data.

__init__(n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True)

fit(X, Y)
Fit model to data.

ParametersX : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples in the number of samples and n_features is the num-
ber of predictors.

Y : array-like of response, shape = [n_samples, n_targets]

Target vectors, where n_samples in the number of samples and n_targets is the number
of response variables.

fit_transform(X, y=None, **fit_params)
Learn and apply the dimension reduction on the train data.

ParametersX : array-like of predictors, shape = [n_samples, p]

Training vectors, where n_samples in the number of samples and p is the number of
predictors.

Y : array-like of response, shape = [n_samples, q], optional

Training vectors, where n_samples in the number of samples and q is the number of
response variables.

copy : boolean, default True

Whether to copy X and Y, or perform in-place normalization.

Returnsx_scores if Y is not given, (x_scores, y_scores) otherwise. :

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any
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Parameter names mapped to their values.

predict(X, copy=True)
Apply the dimension reduction learned on the train data.

ParametersX : array-like of predictors, shape = [n_samples, p]

Training vectors, where n_samples in the number of samples and p is the number of
predictors.

copy : boolean, default True

Whether to copy X and Y, or perform in-place normalization.

Notes

This call requires the estimation of a p x q matrix, which may be an issue in high dimensional space.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X, Y=None, copy=True)
Apply the dimension reduction learned on the train data.

ParametersX : array-like of predictors, shape = [n_samples, p]

Training vectors, where n_samples in the number of samples and p is the number of
predictors.

Y : array-like of response, shape = [n_samples, q], optional

Training vectors, where n_samples in the number of samples and q is the number of
response variables.

copy : boolean, default True
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Whether to copy X and Y, or perform in-place normalization.

Returnsx_scores if Y is not given, (x_scores, y_scores) otherwise. :

Examples using sklearn.cross_decomposition.PLSRegression

• Compare cross decomposition methods

5.28.2 sklearn.cross_decomposition.PLSCanonical

class sklearn.cross_decomposition.PLSCanonical(n_components=2, scale=True, algo-
rithm=’nipals’, max_iter=500, tol=1e-06,
copy=True)

PLSCanonical implements the 2 blocks canonical PLS of the original Wold algorithm [Tenenhaus 1998] p.204,
referred as PLS-C2A in [Wegelin 2000].

This class inherits from PLS with mode=”A” and deflation_mode=”canonical”, norm_y_weights=True and al-
gorithm=”nipals”, but svd should provide similar results up to numerical errors.

Read more in the User Guide.

Parametersscale : boolean, scale data? (default True)

algorithm : string, “nipals” or “svd”

The algorithm used to estimate the weights. It will be called n_components times, i.e.
once for each iteration of the outer loop.

max_iter : an integer, (default 500)

the maximum number of iterations of the NIPALS inner loop (used only if algo-
rithm=”nipals”)

tol : non-negative real, default 1e-06

the tolerance used in the iterative algorithm

copy : boolean, default True

Whether the deflation should be done on a copy. Let the default value to True unless
you don’t care about side effect

n_components : int, number of components to keep. (default 2).

Attributesx_weights_ : array, shape = [p, n_components]

X block weights vectors.

y_weights_ : array, shape = [q, n_components]

Y block weights vectors.

x_loadings_ : array, shape = [p, n_components]

X block loadings vectors.

y_loadings_ : array, shape = [q, n_components]

Y block loadings vectors.

x_scores_ : array, shape = [n_samples, n_components]

X scores.

y_scores_ : array, shape = [n_samples, n_components]
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Y scores.

x_rotations_ : array, shape = [p, n_components]

X block to latents rotations.

y_rotations_ : array, shape = [q, n_components]

Y block to latents rotations.

n_iter_ : array-like

Number of iterations of the NIPALS inner loop for each component. Not useful if the
algorithm provided is “svd”.

See also:

CCA, PLSSVD

Notes

Matrices:

T: x_scores_
U: y_scores_
W: x_weights_
C: y_weights_
P: x_loadings_
Q: y_loadings__

Are computed such that:

X = T P.T + Err and Y = U Q.T + Err
T[:, k] = Xk W[:, k] for k in range(n_components)
U[:, k] = Yk C[:, k] for k in range(n_components)
x_rotations_ = W (P.T W)^(-1)
y_rotations_ = C (Q.T C)^(-1)

where Xk and Yk are residual matrices at iteration k.

Slides explaining PLS <http://www.eigenvector.com/Docs/Wise_pls_properties.pdf>

For each component k, find weights u, v that optimize:

max corr(Xk u, Yk v) * std(Xk u) std(Yk u), such that ``|u| = |v| = 1``

Note that it maximizes both the correlations between the scores and the intra-block variances.

The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score.

The residual matrix of Y (Yk+1) block is obtained by deflation on the current Y score. This performs a canonical
symmetric version of the PLS regression. But slightly different than the CCA. This is mostly used for modeling.

This implementation provides the same results that the “plspm” package provided in the R language (R-
project), using the function plsca(X, Y). Results are equal or collinear with the function pls(..., mode
= "canonical") of the “mixOmics” package. The difference relies in the fact that mixOmics implementa-
tion does not exactly implement the Wold algorithm since it does not normalize y_weights to one.
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References

Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case.
Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000.

Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic.

Examples

>>> from sklearn.cross_decomposition import PLSCanonical
>>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]]
>>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]]
>>> plsca = PLSCanonical(n_components=2)
>>> plsca.fit(X, Y)
...
PLSCanonical(algorithm='nipals', copy=True, max_iter=500, n_components=2,

scale=True, tol=1e-06)
>>> X_c, Y_c = plsca.transform(X, Y)

Methods

fit(X, Y) Fit model to data.
fit_transform(X[, y]) Learn and apply the dimension reduction on the train data.
get_params([deep]) Get parameters for this estimator.
predict(X[, copy]) Apply the dimension reduction learned on the train data.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.
transform(X[, Y, copy]) Apply the dimension reduction learned on the train data.

__init__(n_components=2, scale=True, algorithm=’nipals’, max_iter=500, tol=1e-06, copy=True)

fit(X, Y)
Fit model to data.

ParametersX : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples in the number of samples and n_features is the num-
ber of predictors.

Y : array-like of response, shape = [n_samples, n_targets]

Target vectors, where n_samples in the number of samples and n_targets is the number
of response variables.

fit_transform(X, y=None, **fit_params)
Learn and apply the dimension reduction on the train data.

ParametersX : array-like of predictors, shape = [n_samples, p]

Training vectors, where n_samples in the number of samples and p is the number of
predictors.

Y : array-like of response, shape = [n_samples, q], optional

Training vectors, where n_samples in the number of samples and q is the number of
response variables.
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copy : boolean, default True

Whether to copy X and Y, or perform in-place normalization.

Returnsx_scores if Y is not given, (x_scores, y_scores) otherwise. :

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X, copy=True)
Apply the dimension reduction learned on the train data.

ParametersX : array-like of predictors, shape = [n_samples, p]

Training vectors, where n_samples in the number of samples and p is the number of
predictors.

copy : boolean, default True

Whether to copy X and Y, or perform in-place normalization.

Notes

This call requires the estimation of a p x q matrix, which may be an issue in high dimensional space.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.
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Returnsself :

transform(X, Y=None, copy=True)
Apply the dimension reduction learned on the train data.

ParametersX : array-like of predictors, shape = [n_samples, p]

Training vectors, where n_samples in the number of samples and p is the number of
predictors.

Y : array-like of response, shape = [n_samples, q], optional

Training vectors, where n_samples in the number of samples and q is the number of
response variables.

copy : boolean, default True

Whether to copy X and Y, or perform in-place normalization.

Returnsx_scores if Y is not given, (x_scores, y_scores) otherwise. :

Examples using sklearn.cross_decomposition.PLSCanonical

• Compare cross decomposition methods

5.28.3 sklearn.cross_decomposition.CCA

class sklearn.cross_decomposition.CCA(n_components=2, scale=True, max_iter=500, tol=1e-06,
copy=True)

CCA Canonical Correlation Analysis.

CCA inherits from PLS with mode=”B” and deflation_mode=”canonical”.

Read more in the User Guide.

Parametersn_components : int, (default 2).

number of components to keep.

scale : boolean, (default True)

whether to scale the data?

max_iter : an integer, (default 500)

the maximum number of iterations of the NIPALS inner loop

tol : non-negative real, default 1e-06.

the tolerance used in the iterative algorithm

copy : boolean

Whether the deflation be done on a copy. Let the default value to True unless you don’t
care about side effects

Attributesx_weights_ : array, [p, n_components]

X block weights vectors.

y_weights_ : array, [q, n_components]

Y block weights vectors.

x_loadings_ : array, [p, n_components]
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X block loadings vectors.

y_loadings_ : array, [q, n_components]

Y block loadings vectors.

x_scores_ : array, [n_samples, n_components]

X scores.

y_scores_ : array, [n_samples, n_components]

Y scores.

x_rotations_ : array, [p, n_components]

X block to latents rotations.

y_rotations_ : array, [q, n_components]

Y block to latents rotations.

n_iter_ : array-like

Number of iterations of the NIPALS inner loop for each component.

See also:

PLSCanonical, PLSSVD

Notes

For each component k, find the weights u, v that maximizes max corr(Xk u, Yk v), such that |u| = |v| =
1

Note that it maximizes only the correlations between the scores.

The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score.

The residual matrix of Y (Yk+1) block is obtained by deflation on the current Y score.

References

Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case.
Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000.

In french but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions
Technic.

Examples

>>> from sklearn.cross_decomposition import CCA
>>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [3.,5.,4.]]
>>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]]
>>> cca = CCA(n_components=1)
>>> cca.fit(X, Y)
...
CCA(copy=True, max_iter=500, n_components=1, scale=True, tol=1e-06)
>>> X_c, Y_c = cca.transform(X, Y)
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Methods

fit(X, Y) Fit model to data.
fit_transform(X[, y]) Learn and apply the dimension reduction on the train data.
get_params([deep]) Get parameters for this estimator.
predict(X[, copy]) Apply the dimension reduction learned on the train data.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.
transform(X[, Y, copy]) Apply the dimension reduction learned on the train data.

__init__(n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True)

fit(X, Y)
Fit model to data.

ParametersX : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples in the number of samples and n_features is the num-
ber of predictors.

Y : array-like of response, shape = [n_samples, n_targets]

Target vectors, where n_samples in the number of samples and n_targets is the number
of response variables.

fit_transform(X, y=None, **fit_params)
Learn and apply the dimension reduction on the train data.

ParametersX : array-like of predictors, shape = [n_samples, p]

Training vectors, where n_samples in the number of samples and p is the number of
predictors.

Y : array-like of response, shape = [n_samples, q], optional

Training vectors, where n_samples in the number of samples and q is the number of
response variables.

copy : boolean, default True

Whether to copy X and Y, or perform in-place normalization.

Returnsx_scores if Y is not given, (x_scores, y_scores) otherwise. :

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X, copy=True)
Apply the dimension reduction learned on the train data.

ParametersX : array-like of predictors, shape = [n_samples, p]

Training vectors, where n_samples in the number of samples and p is the number of
predictors.

1626 Chapter 5. API Reference



scikit-learn user guide, Release 0.17

copy : boolean, default True

Whether to copy X and Y, or perform in-place normalization.

Notes

This call requires the estimation of a p x q matrix, which may be an issue in high dimensional space.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X, Y=None, copy=True)
Apply the dimension reduction learned on the train data.

ParametersX : array-like of predictors, shape = [n_samples, p]

Training vectors, where n_samples in the number of samples and p is the number of
predictors.

Y : array-like of response, shape = [n_samples, q], optional

Training vectors, where n_samples in the number of samples and q is the number of
response variables.

copy : boolean, default True

Whether to copy X and Y, or perform in-place normalization.

Returnsx_scores if Y is not given, (x_scores, y_scores) otherwise. :
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Examples using sklearn.cross_decomposition.CCA

• Multilabel classification

• Compare cross decomposition methods

5.28.4 sklearn.cross_decomposition.PLSSVD

class sklearn.cross_decomposition.PLSSVD(n_components=2, scale=True, copy=True)
Partial Least Square SVD

Simply perform a svd on the crosscovariance matrix: X’Y There are no iterative deflation here.

Read more in the User Guide.

Parametersn_components : int, default 2

Number of components to keep.

scale : boolean, default True

Whether to scale X and Y.

copy : boolean, default True

Whether to copy X and Y, or perform in-place computations.

Attributesx_weights_ : array, [p, n_components]

X block weights vectors.

y_weights_ : array, [q, n_components]

Y block weights vectors.

x_scores_ : array, [n_samples, n_components]

X scores.

y_scores_ : array, [n_samples, n_components]

Y scores.

See also:

PLSCanonical, CCA

Methods

fit(X, Y)
fit_transform(X[, y]) Learn and apply the dimension reduction on the train data.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X[, Y]) Apply the dimension reduction learned on the train data.

__init__(n_components=2, scale=True, copy=True)

fit_transform(X, y=None, **fit_params)
Learn and apply the dimension reduction on the train data.

ParametersX : array-like of predictors, shape = [n_samples, p]
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Training vectors, where n_samples in the number of samples and p is the number of
predictors.

Y : array-like of response, shape = [n_samples, q], optional

Training vectors, where n_samples in the number of samples and q is the number of
response variables.

Returnsx_scores if Y is not given, (x_scores, y_scores) otherwise. :

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X, Y=None)
Apply the dimension reduction learned on the train data.

5.29 sklearn.pipeline: Pipeline

The sklearn.pipeline module implements utilities to build a composite estimator, as a chain of transforms and
estimators.

pipeline.Pipeline(steps) Pipeline of transforms with a final estimator.
pipeline.FeatureUnion(transformer_list[, ...]) Concatenates results of multiple transformer objects.

5.29.1 sklearn.pipeline.Pipeline

class sklearn.pipeline.Pipeline(steps)
Pipeline of transforms with a final estimator.

Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be ‘trans-
forms’, that is, they must implement fit and transform methods. The final estimator only needs to implement
fit.

The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting differ-
ent parameters. For this, it enables setting parameters of the various steps using their names and the parameter
name separated by a ‘__’, as in the example below.

Read more in the User Guide.

Parameterssteps : list
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List of (name, transform) tuples (implementing fit/transform) that are chained, in the
order in which they are chained, with the last object an estimator.

Attributesnamed_steps : dict

Read-only attribute to access any step parameter by user given name. Keys are step
names and values are steps parameters.

Examples

>>> from sklearn import svm
>>> from sklearn.datasets import samples_generator
>>> from sklearn.feature_selection import SelectKBest
>>> from sklearn.feature_selection import f_regression
>>> from sklearn.pipeline import Pipeline
>>> # generate some data to play with
>>> X, y = samples_generator.make_classification(
... n_informative=5, n_redundant=0, random_state=42)
>>> # ANOVA SVM-C
>>> anova_filter = SelectKBest(f_regression, k=5)
>>> clf = svm.SVC(kernel='linear')
>>> anova_svm = Pipeline([('anova', anova_filter), ('svc', clf)])
>>> # You can set the parameters using the names issued
>>> # For instance, fit using a k of 10 in the SelectKBest
>>> # and a parameter 'C' of the svm
>>> anova_svm.set_params(anova__k=10, svc__C=.1).fit(X, y)
...
Pipeline(steps=[...])
>>> prediction = anova_svm.predict(X)
>>> anova_svm.score(X, y)
0.77...
>>> # getting the selected features chosen by anova_filter
>>> anova_svm.named_steps['anova'].get_support()
...
array([ True, True, True, False, False, True, False, True, True, True,

False, False, True, False, True, False, False, False, False,
True], dtype=bool)

Methods

decision_function(X) Applies transforms to the data, and the decision_function method of the final estimator.
fit(X[, y]) Fit all the transforms one after the other and transform the data, then fit the transformed data using the final estimator.
fit_predict(X[, y]) Applies fit_predict of last step in pipeline after transforms.
fit_transform(X[, y]) Fit all the transforms one after the other and transform the data, then use fit_transform on transformed data using the final estimator.
get_params([deep])
inverse_transform(X) Applies inverse transform to the data.
predict(X) Applies transforms to the data, and the predict method of the final estimator.
predict_log_proba(X) Applies transforms to the data, and the predict_log_proba method of the final estimator.
predict_proba(X) Applies transforms to the data, and the predict_proba method of the final estimator.
score(X[, y]) Applies transforms to the data, and the score method of the final estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Applies transforms to the data, and the transform method of the final estimator.

__init__(steps)

1630 Chapter 5. API Reference



scikit-learn user guide, Release 0.17

decision_function(X)
Applies transforms to the data, and the decision_function method of the final estimator. Valid only if the
final estimator implements decision_function.

ParametersX : iterable

Data to predict on. Must fulfill input requirements of first step of the pipeline.

fit(X, y=None, **fit_params)
Fit all the transforms one after the other and transform the data, then fit the transformed data using the final
estimator.

ParametersX : iterable

Training data. Must fulfill input requirements of first step of the pipeline.

y : iterable, default=None

Training targets. Must fulfill label requirements for all steps of the pipeline.

fit_predict(X, y=None, **fit_params)
Applies fit_predict of last step in pipeline after transforms.

Applies fit_transforms of a pipeline to the data, followed by the fit_predict method of the final estimator in
the pipeline. Valid only if the final estimator implements fit_predict.

ParametersX : iterable

Training data. Must fulfill input requirements of first step of the pipeline.

y : iterable, default=None

Training targets. Must fulfill label requirements for all steps of the pipeline.

fit_transform(X, y=None, **fit_params)
Fit all the transforms one after the other and transform the data, then use fit_transform on transformed data
using the final estimator.

ParametersX : iterable

Training data. Must fulfill input requirements of first step of the pipeline.

y : iterable, default=None

Training targets. Must fulfill label requirements for all steps of the pipeline.

inverse_transform(X)
Applies inverse transform to the data. Starts with the last step of the pipeline and applies
inverse_transform in inverse order of the pipeline steps. Valid only if all steps of the pipeline
implement inverse_transform.

ParametersX : iterable

Data to inverse transform. Must fulfill output requirements of the last step of the
pipeline.

predict(X)
Applies transforms to the data, and the predict method of the final estimator. Valid only if the final estimator
implements predict.

ParametersX : iterable

Data to predict on. Must fulfill input requirements of first step of the pipeline.
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predict_log_proba(X)
Applies transforms to the data, and the predict_log_proba method of the final estimator. Valid only if the
final estimator implements predict_log_proba.

ParametersX : iterable

Data to predict on. Must fulfill input requirements of first step of the pipeline.

predict_proba(X)
Applies transforms to the data, and the predict_proba method of the final estimator. Valid only if the final
estimator implements predict_proba.

ParametersX : iterable

Data to predict on. Must fulfill input requirements of first step of the pipeline.

score(X, y=None)
Applies transforms to the data, and the score method of the final estimator. Valid only if the final estimator
implements score.

ParametersX : iterable

Data to score. Must fulfill input requirements of first step of the pipeline.

y : iterable, default=None

Targets used for scoring. Must fulfill label requirements for all steps of the pipeline.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X)
Applies transforms to the data, and the transform method of the final estimator. Valid only if the final
estimator implements transform.

ParametersX : iterable

Data to predict on. Must fulfill input requirements of first step of the pipeline.

Examples using sklearn.pipeline.Pipeline

• Concatenating multiple feature extraction methods

• Imputing missing values before building an estimator

• Pipelining: chaining a PCA and a logistic regression

• Feature Union with Heterogeneous Data Sources

• Explicit feature map approximation for RBF kernels

• Feature agglomeration vs. univariate selection

• Underfitting vs. Overfitting

• Sample pipeline for text feature extraction and evaluation

• Restricted Boltzmann Machine features for digit classification

• SVM-Anova: SVM with univariate feature selection
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• Classification of text documents using sparse features

5.29.2 sklearn.pipeline.FeatureUnion

class sklearn.pipeline.FeatureUnion(transformer_list, n_jobs=1, transformer_weights=None)
Concatenates results of multiple transformer objects.

This estimator applies a list of transformer objects in parallel to the input data, then concatenates the results.
This is useful to combine several feature extraction mechanisms into a single transformer.

Read more in the User Guide.

Parameterstransformer_list: list of (string, transformer) tuples :

List of transformer objects to be applied to the data. The first half of each tuple is the
name of the transformer.

n_jobs: int, optional :

Number of jobs to run in parallel (default 1).

transformer_weights: dict, optional :

Multiplicative weights for features per transformer. Keys are transformer names, values
the weights.

Methods

fit(X[, y]) Fit all transformers using X.
fit_transform(X[, y]) Fit all transformers using X, transform the data and concatenate results.
get_feature_names() Get feature names from all transformers.
get_params([deep])
set_params(**params) Set the parameters of this estimator.
transform(X) Transform X separately by each transformer, concatenate results.

__init__(transformer_list, n_jobs=1, transformer_weights=None)

fit(X, y=None)
Fit all transformers using X.

ParametersX : array-like or sparse matrix, shape (n_samples, n_features)

Input data, used to fit transformers.

fit_transform(X, y=None, **fit_params)
Fit all transformers using X, transform the data and concatenate results.

ParametersX : array-like or sparse matrix, shape (n_samples, n_features)

Input data to be transformed.

ReturnsX_t : array-like or sparse matrix, shape (n_samples, sum_n_components)

hstack of results of transformers. sum_n_components is the sum of n_components (out-
put dimension) over transformers.

get_feature_names()
Get feature names from all transformers.

Returnsfeature_names : list of strings
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Names of the features produced by transform.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X)
Transform X separately by each transformer, concatenate results.

ParametersX : array-like or sparse matrix, shape (n_samples, n_features)

Input data to be transformed.

ReturnsX_t : array-like or sparse matrix, shape (n_samples, sum_n_components)

hstack of results of transformers. sum_n_components is the sum of n_components (out-
put dimension) over transformers.

Examples using sklearn.pipeline.FeatureUnion

• Concatenating multiple feature extraction methods

• Feature Union with Heterogeneous Data Sources

pipeline.make_pipeline(*steps) Construct a Pipeline from the given estimators.
pipeline.make_union(*transformers) Construct a FeatureUnion from the given transformers.

5.29.3 sklearn.pipeline.make_pipeline

sklearn.pipeline.make_pipeline(*steps)
Construct a Pipeline from the given estimators.

This is a shorthand for the Pipeline constructor; it does not require, and does not permit, naming the estimators.
Instead, they will be given names automatically based on their types.

Returnsp : Pipeline

Examples

>>> from sklearn.naive_bayes import GaussianNB
>>> from sklearn.preprocessing import StandardScaler
>>> make_pipeline(StandardScaler(), GaussianNB())
Pipeline(steps=[('standardscaler',

StandardScaler(copy=True, with_mean=True, with_std=True)),
('gaussiannb', GaussianNB())])

Examples using sklearn.pipeline.make_pipeline

• Feature transformations with ensembles of trees

• Pipeline Anova SVM
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• Polynomial interpolation

• Robust linear estimator fitting

• Using FunctionTransformer to select columns

• Clustering text documents using k-means

5.29.4 sklearn.pipeline.make_union

sklearn.pipeline.make_union(*transformers)
Construct a FeatureUnion from the given transformers.

This is a shorthand for the FeatureUnion constructor; it does not require, and does not permit, naming the
transformers. Instead, they will be given names automatically based on their types. It also does not allow
weighting.

Returnsf : FeatureUnion

Examples

>>> from sklearn.decomposition import PCA, TruncatedSVD
>>> make_union(PCA(), TruncatedSVD())
FeatureUnion(n_jobs=1,

transformer_list=[('pca', PCA(copy=True, n_components=None,
whiten=False)),

('truncatedsvd',
TruncatedSVD(algorithm='randomized',

n_components=2, n_iter=5,
random_state=None, tol=0.0))],

transformer_weights=None)

5.30 sklearn.preprocessing: Preprocessing and Normalization

The sklearn.preprocessing module includes scaling, centering, normalization, binarization and imputation
methods.

User guide: See the Preprocessing data section for further details.

preprocessing.Binarizer([threshold, copy]) Binarize data (set feature values to 0 or 1) according to a threshold
preprocessing.FunctionTransformer([func, ...]) Constructs a transformer from an arbitrary callable.
preprocessing.Imputer([missing_values, ...]) Imputation transformer for completing missing values.
preprocessing.KernelCenterer Center a kernel matrix
preprocessing.LabelBinarizer([neg_label, ...]) Binarize labels in a one-vs-all fashion
preprocessing.LabelEncoder Encode labels with value between 0 and n_classes-1.
preprocessing.MultiLabelBinarizer([classes, ...]) Transform between iterable of iterables and a multilabel format
preprocessing.MaxAbsScaler([copy]) Scale each feature by its maximum absolute value.
preprocessing.MinMaxScaler([feature_range, copy]) Transforms features by scaling each feature to a given range.
preprocessing.Normalizer([norm, copy]) Normalize samples individually to unit norm.
preprocessing.OneHotEncoder([n_values, ...]) Encode categorical integer features using a one-hot aka one-of-K scheme.
preprocessing.PolynomialFeatures([degree, ...]) Generate polynomial and interaction features.
preprocessing.RobustScaler([with_centering, ...]) Scale features using statistics that are robust to outliers.
preprocessing.StandardScaler([copy, ...]) Standardize features by removing the mean and scaling to unit variance
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5.30.1 sklearn.preprocessing.Binarizer

class sklearn.preprocessing.Binarizer(threshold=0.0, copy=True)
Binarize data (set feature values to 0 or 1) according to a threshold

Values greater than the threshold map to 1, while values less than or equal to the threshold map to 0. With the
default threshold of 0, only positive values map to 1.

Binarization is a common operation on text count data where the analyst can decide to only consider the presence
or absence of a feature rather than a quantified number of occurrences for instance.

It can also be used as a pre-processing step for estimators that consider boolean random variables (e.g. modelled
using the Bernoulli distribution in a Bayesian setting).

Read more in the User Guide.

Parametersthreshold : float, optional (0.0 by default)

Feature values below or equal to this are replaced by 0, above it by 1. Threshold may
not be less than 0 for operations on sparse matrices.

copy : boolean, optional, default True

set to False to perform inplace binarization and avoid a copy (if the input is already a
numpy array or a scipy.sparse CSR matrix).

Notes

If the input is a sparse matrix, only the non-zero values are subject to update by the Binarizer class.

This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used
in a pipeline.

Methods

fit(X[, y]) Do nothing and return the estimator unchanged
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X[, y, copy]) Binarize each element of X

__init__(threshold=0.0, copy=True)

fit(X, y=None)
Do nothing and return the estimator unchanged

This method is just there to implement the usual API and hence work in pipelines.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]
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Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X, y=None, copy=None)
Binarize each element of X

ParametersX : {array-like, sparse matrix}, shape [n_samples, n_features]

The data to binarize, element by element. scipy.sparse matrices should be in CSR format
to avoid an un-necessary copy.

5.30.2 sklearn.preprocessing.FunctionTransformer

class sklearn.preprocessing.FunctionTransformer(func=None, validate=True, ac-
cept_sparse=False, pass_y=False)

Constructs a transformer from an arbitrary callable.

A FunctionTransformer forwards its X (and optionally y) arguments to a user-defined function or function
object and returns the result of this function. This is useful for stateless transformations such as taking the log
of frequencies, doing custom scaling, etc.

A FunctionTransformer will not do any checks on its function’s output.

Note: If a lambda is used as the function, then the resulting transformer will not be pickleable.

New in version 0.17.

Parametersfunc : callable, optional default=None

The callable to use for the transformation. This will be passed the same arguments
as transform, with args and kwargs forwarded. If func is None, then func will be the
identity function.

validate : bool, optional default=True

Indicate that the input X array should be checked before calling func. If validate is false,
there will be no input validation. If it is true, then X will be converted to a 2-dimensional
NumPy array or sparse matrix. If this conversion is not possible or X contains NaN or
infinity, an exception is raised.

5.30. sklearn.preprocessing: Preprocessing and Normalization 1637



scikit-learn user guide, Release 0.17

accept_sparse : boolean, optional

Indicate that func accepts a sparse matrix as input. If validate is False, this has no effect.
Otherwise, if accept_sparse is false, sparse matrix inputs will cause an exception to be
raised.

pass_y: bool, optional default=False :

Indicate that transform should forward the y argument to the inner callable.

Methods

fit(X[, y])
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X[, y])

__init__(func=None, validate=True, accept_sparse=False, pass_y=False)

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.preprocessing.FunctionTransformer

• Using FunctionTransformer to select columns
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5.30.3 sklearn.preprocessing.Imputer

class sklearn.preprocessing.Imputer(missing_values=’NaN’, strategy=’mean’, axis=0, ver-
bose=0, copy=True)

Imputation transformer for completing missing values.

Read more in the User Guide.

Parametersmissing_values : integer or “NaN”, optional (default=”NaN”)

The placeholder for the missing values. All occurrences of missing_values will be im-
puted. For missing values encoded as np.nan, use the string value “NaN”.

strategy : string, optional (default=”mean”)

The imputation strategy.

•If “mean”, then replace missing values using the mean along the axis.

•If “median”, then replace missing values using the median along the axis.

•If “most_frequent”, then replace missing using the most frequent value along the axis.

axis : integer, optional (default=0)

The axis along which to impute.

•If axis=0, then impute along columns.

•If axis=1, then impute along rows.

verbose : integer, optional (default=0)

Controls the verbosity of the imputer.

copy : boolean, optional (default=True)

If True, a copy of X will be created. If False, imputation will be done in-place whenever
possible. Note that, in the following cases, a new copy will always be made, even if
copy=False:

•If X is not an array of floating values;

•If X is sparse and missing_values=0;

•If axis=0 and X is encoded as a CSR matrix;

•If axis=1 and X is encoded as a CSC matrix.

Attributesstatistics_ : array of shape (n_features,)

The imputation fill value for each feature if axis == 0.

Notes

•When axis=0, columns which only contained missing values at fit are discarded upon transform.

•When axis=1, an exception is raised if there are rows for which it is not possible to fill in the missing
values (e.g., because they only contain missing values).

Continued on next page
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Table 5.205 – continued from previous page

Methods

fit(X[, y]) Fit the imputer on X.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Impute all missing values in X.

__init__(missing_values=’NaN’, strategy=’mean’, axis=0, verbose=0, copy=True)

fit(X, y=None)
Fit the imputer on X.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Input data, where n_samples is the number of samples and n_features is the
number of features.

Returnsself : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :
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transform(X)
Impute all missing values in X.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

The input data to complete.

Examples using sklearn.preprocessing.Imputer

• Imputing missing values before building an estimator

5.30.4 sklearn.preprocessing.KernelCenterer

class sklearn.preprocessing.KernelCenterer
Center a kernel matrix

Let K(x, z) be a kernel defined by phi(x)^T phi(z), where phi is a function mapping x to a Hilbert space.
KernelCenterer centers (i.e., normalize to have zero mean) the data without explicitly computing phi(x). It is
equivalent to centering phi(x) with sklearn.preprocessing.StandardScaler(with_std=False).

Read more in the User Guide.

Methods

fit(K[, y]) Fit KernelCenterer
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(K[, y, copy]) Center kernel matrix.

__init__()
Initialize self. See help(type(self)) for accurate signature.

fit(K, y=None)
Fit KernelCenterer

ParametersK : numpy array of shape [n_samples, n_samples]

Kernel matrix.

Returnsself : returns an instance of self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.
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get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(K, y=None, copy=True)
Center kernel matrix.

ParametersK : numpy array of shape [n_samples1, n_samples2]

Kernel matrix.

copy : boolean, optional, default True

Set to False to perform inplace computation.

ReturnsK_new : numpy array of shape [n_samples1, n_samples2]

5.30.5 sklearn.preprocessing.LabelBinarizer

class sklearn.preprocessing.LabelBinarizer(neg_label=0, pos_label=1,
sparse_output=False)

Binarize labels in a one-vs-all fashion

Several regression and binary classification algorithms are available in the scikit. A simple way to extend these
algorithms to the multi-class classification case is to use the so-called one-vs-all scheme.

At learning time, this simply consists in learning one regressor or binary classifier per class. In doing so, one
needs to convert multi-class labels to binary labels (belong or does not belong to the class). LabelBinarizer
makes this process easy with the transform method.

At prediction time, one assigns the class for which the corresponding model gave the greatest confidence. La-
belBinarizer makes this easy with the inverse_transform method.

Read more in the User Guide.

Parametersneg_label : int (default: 0)

Value with which negative labels must be encoded.

pos_label : int (default: 1)

Value with which positive labels must be encoded.

sparse_output : boolean (default: False)

True if the returned array from transform is desired to be in sparse CSR format.

Attributesclasses_ : array of shape [n_class]
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Holds the label for each class.

y_type_ : str,

Represents the type of the target data as evaluated by utils.multiclass.type_of_target.
Possible type are ‘continuous’, ‘continuous-multioutput’, ‘binary’, ‘multiclass’,
‘mutliclass-multioutput’, ‘multilabel-indicator’, and ‘unknown’.

multilabel_ : boolean

True if the transformer was fitted on a multilabel rather than a multiclass set of labels.
The multilabel_ attribute is deprecated and will be removed in 0.18

sparse_input_ : boolean,

True if the input data to transform is given as a sparse matrix, False otherwise.

indicator_matrix_ : str

‘sparse’ when the input data to tansform is a multilable-indicator and is sparse, None
otherwise. The indicator_matrix_ attribute is deprecated as of version 0.16 and
will be removed in 0.18

See also:

label_binarizefunction to perform the transform operation of LabelBinarizer with fixed classes.

Examples

>>> from sklearn import preprocessing
>>> lb = preprocessing.LabelBinarizer()
>>> lb.fit([1, 2, 6, 4, 2])
LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False)
>>> lb.classes_
array([1, 2, 4, 6])
>>> lb.transform([1, 6])
array([[1, 0, 0, 0],

[0, 0, 0, 1]])

Binary targets transform to a column vector

>>> lb = preprocessing.LabelBinarizer()
>>> lb.fit_transform(['yes', 'no', 'no', 'yes'])
array([[1],

[0],
[0],
[1]])

Passing a 2D matrix for multilabel classification

>>> import numpy as np
>>> lb.fit(np.array([[0, 1, 1], [1, 0, 0]]))
LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False)
>>> lb.classes_
array([0, 1, 2])
>>> lb.transform([0, 1, 2, 1])
array([[1, 0, 0],

[0, 1, 0],
[0, 0, 1],
[0, 1, 0]])
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Methods

fit(y) Fit label binarizer
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
inverse_transform(Y[, threshold]) Transform binary labels back to multi-class labels
set_params(**params) Set the parameters of this estimator.
transform(y) Transform multi-class labels to binary labels

__init__(neg_label=0, pos_label=1, sparse_output=False)

fit(y)
Fit label binarizer

Parametersy : numpy array of shape (n_samples,) or (n_samples, n_classes)

Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classi-
fication.

Returnsself : returns an instance of self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

inverse_transform(Y, threshold=None)
Transform binary labels back to multi-class labels

ParametersY : numpy array or sparse matrix with shape [n_samples, n_classes]

Target values. All sparse matrices are converted to CSR before inverse transformation.

threshold : float or None

Threshold used in the binary and multi-label cases.

Use 0 when:

•Y contains the output of decision_function (classifier)
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Use 0.5 when:

•Y contains the output of predict_proba

If None, the threshold is assumed to be half way between neg_label and pos_label.

Returnsy : numpy array or CSR matrix of shape [n_samples] Target values.

Notes

In the case when the binary labels are fractional (probabilistic), inverse_transform chooses the class with
the greatest value. Typically, this allows to use the output of a linear model’s decision_function method
directly as the input of inverse_transform.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(y)
Transform multi-class labels to binary labels

The output of transform is sometimes referred to by some authors as the 1-of-K coding scheme.

Parametersy : numpy array or sparse matrix of shape (n_samples,) or

(n_samples, n_classes) Target values. The 2-d matrix should only contain 0 and 1,
represents multilabel classification. Sparse matrix can be CSR, CSC, COO, DOK, or
LIL.

ReturnsY : numpy array or CSR matrix of shape [n_samples, n_classes]

Shape will be [n_samples, 1] for binary problems.

5.30.6 sklearn.preprocessing.LabelEncoder

class sklearn.preprocessing.LabelEncoder
Encode labels with value between 0 and n_classes-1.

Read more in the User Guide.

Attributesclasses_ : array of shape (n_class,)

Holds the label for each class.

Examples

LabelEncoder can be used to normalize labels.

>>> from sklearn import preprocessing
>>> le = preprocessing.LabelEncoder()
>>> le.fit([1, 2, 2, 6])
LabelEncoder()
>>> le.classes_
array([1, 2, 6])
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>>> le.transform([1, 1, 2, 6])
array([0, 0, 1, 2]...)
>>> le.inverse_transform([0, 0, 1, 2])
array([1, 1, 2, 6])

It can also be used to transform non-numerical labels (as long as they are hashable and comparable) to numerical
labels.

>>> le = preprocessing.LabelEncoder()
>>> le.fit(["paris", "paris", "tokyo", "amsterdam"])
LabelEncoder()
>>> list(le.classes_)
['amsterdam', 'paris', 'tokyo']
>>> le.transform(["tokyo", "tokyo", "paris"])
array([2, 2, 1]...)
>>> list(le.inverse_transform([2, 2, 1]))
['tokyo', 'tokyo', 'paris']

Methods

fit(y) Fit label encoder
fit_transform(y) Fit label encoder and return encoded labels
get_params([deep]) Get parameters for this estimator.
inverse_transform(y) Transform labels back to original encoding.
set_params(**params) Set the parameters of this estimator.
transform(y) Transform labels to normalized encoding.

__init__()
Initialize self. See help(type(self)) for accurate signature.

fit(y)
Fit label encoder

Parametersy : array-like of shape (n_samples,)

Target values.

Returnsself : returns an instance of self.

fit_transform(y)
Fit label encoder and return encoded labels

Parametersy : array-like of shape [n_samples]

Target values.

Returnsy : array-like of shape [n_samples]

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.
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inverse_transform(y)
Transform labels back to original encoding.

Parametersy : numpy array of shape [n_samples]

Target values.

Returnsy : numpy array of shape [n_samples]

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(y)
Transform labels to normalized encoding.

Parametersy : array-like of shape [n_samples]

Target values.

Returnsy : array-like of shape [n_samples]

5.30.7 sklearn.preprocessing.MultiLabelBinarizer

class sklearn.preprocessing.MultiLabelBinarizer(classes=None, sparse_output=False)
Transform between iterable of iterables and a multilabel format

Although a list of sets or tuples is a very intuitive format for multilabel data, it is unwieldy to process. This
transformer converts between this intuitive format and the supported multilabel format: a (samples x classes)
binary matrix indicating the presence of a class label.

Parametersclasses : array-like of shape [n_classes] (optional)

Indicates an ordering for the class labels

sparse_output : boolean (default: False),

Set to true if output binary array is desired in CSR sparse format

Attributesclasses_ : array of labels

A copy of the classes parameter where provided, or otherwise, the sorted set of classes
found when fitting.

Examples

>>> mlb = MultiLabelBinarizer()
>>> mlb.fit_transform([(1, 2), (3,)])
array([[1, 1, 0],

[0, 0, 1]])
>>> mlb.classes_
array([1, 2, 3])
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>>> mlb.fit_transform([set(['sci-fi', 'thriller']), set(['comedy'])])
array([[0, 1, 1],

[1, 0, 0]])
>>> list(mlb.classes_)
['comedy', 'sci-fi', 'thriller']

Methods

fit(y) Fit the label sets binarizer, storing classes_
fit_transform(y) Fit the label sets binarizer and transform the given label sets
get_params([deep]) Get parameters for this estimator.
inverse_transform(yt) Transform the given indicator matrix into label sets
set_params(**params) Set the parameters of this estimator.
transform(y) Transform the given label sets

__init__(classes=None, sparse_output=False)

fit(y)
Fit the label sets binarizer, storing classes_

Parametersy : iterable of iterables

A set of labels (any orderable and hashable object) for each sample. If the classes
parameter is set, y will not be iterated.

Returnsself : returns this MultiLabelBinarizer instance

fit_transform(y)
Fit the label sets binarizer and transform the given label sets

Parametersy : iterable of iterables

A set of labels (any orderable and hashable object) for each sample. If the classes
parameter is set, y will not be iterated.

Returnsy_indicator : array or CSR matrix, shape (n_samples, n_classes)

A matrix such that y_indicator[i, j] = 1 iff classes_[j] is in y[i], and 0 otherwise.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

inverse_transform(yt)
Transform the given indicator matrix into label sets

Parametersyt : array or sparse matrix of shape (n_samples, n_classes)

A matrix containing only 1s ands 0s.

Returnsy : list of tuples
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The set of labels for each sample such that y[i] consists of classes_[j] for each yt[i, j]
== 1.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(y)
Transform the given label sets

Parametersy : iterable of iterables

A set of labels (any orderable and hashable object) for each sample. If the classes
parameter is set, y will not be iterated.

Returnsy_indicator : array or CSR matrix, shape (n_samples, n_classes)

A matrix such that y_indicator[i, j] = 1 iff classes_[j] is in y[i], and 0 otherwise.

5.30.8 sklearn.preprocessing.MaxAbsScaler

class sklearn.preprocessing.MaxAbsScaler(copy=True)
Scale each feature by its maximum absolute value.

This estimator scales and translates each feature individually such that the maximal absolute value of each
feature in the training set will be 1.0. It does not shift/center the data, and thus does not destroy any sparsity.

This scaler can also be applied to sparse CSR or CSC matrices.

New in version 0.17.

Parameterscopy : boolean, optional, default is True

Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy
array).

Attributesscale_ : ndarray, shape (n_features,)

Per feature relative scaling of the data.

New in version 0.17: scale_ attribute.

max_abs_ : ndarray, shape (n_features,)

Per feature maximum absolute value.

n_samples_seen_ : int

The number of samples processed by the estimator. Will be reset on new calls to fit, but
increments across partial_fit calls.

Methods

fit(X[, y]) Compute the maximum absolute value to be used for later scaling.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.

Continued on next page
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Table 5.210 – continued from previous page
inverse_transform(X) Scale back the data to the original representation
partial_fit(X[, y]) Online computation of max absolute value of X for later scaling.
set_params(**params) Set the parameters of this estimator.
transform(X[, y]) Scale the data

__init__(copy=True)

fit(X, y=None)
Compute the maximum absolute value to be used for later scaling.

ParametersX : {array-like, sparse matrix}, shape [n_samples, n_features]

The data used to compute the per-feature minimum and maximum used for later scaling
along the features axis.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

inverse_transform(X)
Scale back the data to the original representation

ParametersX : {array-like, sparse matrix}

The data that should be transformed back.

partial_fit(X, y=None)
Online computation of max absolute value of X for later scaling. All of X is processed as a single batch.
This is intended for cases when fit is not feasible due to very large number of n_samples or because X is
read from a continuous stream.

ParametersX : {array-like, sparse matrix}, shape [n_samples, n_features]

The data used to compute the mean and standard deviation used for later scaling along
the features axis.

y: Passthrough for ‘‘Pipeline‘‘ compatibility. :
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set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X, y=None)
Scale the data

ParametersX : {array-like, sparse matrix}

The data that should be scaled.

5.30.9 sklearn.preprocessing.MinMaxScaler

class sklearn.preprocessing.MinMaxScaler(feature_range=(0, 1), copy=True)
Transforms features by scaling each feature to a given range.

This estimator scales and translates each feature individually such that it is in the given range on the training set,
i.e. between zero and one.

The transformation is given by:

X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
X_scaled = X_std * (max - min) + min

where min, max = feature_range.

This transformation is often used as an alternative to zero mean, unit variance scaling.

Read more in the User Guide.

Parametersfeature_range: tuple (min, max), default=(0, 1) :

Desired range of transformed data.

copy : boolean, optional, default True

Set to False to perform inplace row normalization and avoid a copy (if the input is
already a numpy array).

Attributesmin_ : ndarray, shape (n_features,)

Per feature adjustment for minimum.

scale_ : ndarray, shape (n_features,)

Per feature relative scaling of the data.

New in version 0.17: scale_ attribute.

data_min_ : ndarray, shape (n_features,)

Per feature minimum seen in the data

New in version 0.17: data_min_ instead of deprecated data_min.

data_max_ : ndarray, shape (n_features,)

Per feature maximum seen in the data

New in version 0.17: data_max_ instead of deprecated data_max.
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data_range_ : ndarray, shape (n_features,)

Per feature range (data_max_ - data_min_) seen in the data

New in version 0.17: data_range_ instead of deprecated data_range.

Methods

fit(X[, y]) Compute the minimum and maximum to be used for later scaling.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X) Undo the scaling of X according to feature_range.
partial_fit(X[, y]) Online computation of min and max on X for later scaling.
set_params(**params) Set the parameters of this estimator.
transform(X) Scaling features of X according to feature_range.

__init__(feature_range=(0, 1), copy=True)

data_min
DEPRECATED: Attribute data_min will be removed in 0.19. Use data_min_ instead

data_range
DEPRECATED: Attribute data_range will be removed in 0.19. Use data_range_ instead

fit(X, y=None)
Compute the minimum and maximum to be used for later scaling.

ParametersX : array-like, shape [n_samples, n_features]

The data used to compute the per-feature minimum and maximum used for later scaling
along the features axis.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.
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inverse_transform(X)
Undo the scaling of X according to feature_range.

ParametersX : array-like, shape [n_samples, n_features]

Input data that will be transformed. It cannot be sparse.

partial_fit(X, y=None)
Online computation of min and max on X for later scaling. All of X is processed as a single batch. This
is intended for cases when fit is not feasible due to very large number of n_samples or because X is read
from a continuous stream.

ParametersX : array-like, shape [n_samples, n_features]

The data used to compute the mean and standard deviation used for later scaling along
the features axis.

y : Passthrough for Pipeline compatibility.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X)
Scaling features of X according to feature_range.

ParametersX : array-like, shape [n_samples, n_features]

Input data that will be transformed.

5.30.10 sklearn.preprocessing.Normalizer

class sklearn.preprocessing.Normalizer(norm=’l2’, copy=True)
Normalize samples individually to unit norm.

Each sample (i.e. each row of the data matrix) with at least one non zero component is rescaled independently
of other samples so that its norm (l1 or l2) equals one.

This transformer is able to work both with dense numpy arrays and scipy.sparse matrix (use CSR format if you
want to avoid the burden of a copy / conversion).

Scaling inputs to unit norms is a common operation for text classification or clustering for instance. For instance
the dot product of two l2-normalized TF-IDF vectors is the cosine similarity of the vectors and is the base
similarity metric for the Vector Space Model commonly used by the Information Retrieval community.

Read more in the User Guide.

Parametersnorm : ‘l1’, ‘l2’, or ‘max’, optional (‘l2’ by default)

The norm to use to normalize each non zero sample.

copy : boolean, optional, default True

set to False to perform inplace row normalization and avoid a copy (if the input is
already a numpy array or a scipy.sparse CSR matrix).

See also:

sklearn.preprocessing.normalize, without
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Notes

This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used
in a pipeline.

Methods

fit(X[, y]) Do nothing and return the estimator unchanged
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X[, y, copy]) Scale each non zero row of X to unit norm

__init__(norm=’l2’, copy=True)

fit(X, y=None)
Do nothing and return the estimator unchanged

This method is just there to implement the usual API and hence work in pipelines.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X, y=None, copy=None)
Scale each non zero row of X to unit norm
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ParametersX : {array-like, sparse matrix}, shape [n_samples, n_features]

The data to normalize, row by row. scipy.sparse matrices should be in CSR format to
avoid an un-necessary copy.

Examples using sklearn.preprocessing.Normalizer

• Clustering text documents using k-means

5.30.11 sklearn.preprocessing.OneHotEncoder

class sklearn.preprocessing.OneHotEncoder(n_values=’auto’, categorical_features=’all’,
dtype=<class ‘float’>, sparse=True, han-
dle_unknown=’error’)

Encode categorical integer features using a one-hot aka one-of-K scheme.

The input to this transformer should be a matrix of integers, denoting the values taken on by categorical (discrete)
features. The output will be a sparse matrix where each column corresponds to one possible value of one feature.
It is assumed that input features take on values in the range [0, n_values).

This encoding is needed for feeding categorical data to many scikit-learn estimators, notably linear models and
SVMs with the standard kernels.

Read more in the User Guide.

Parametersn_values : ‘auto’, int or array of ints

Number of values per feature.

•‘auto’ : determine value range from training data.

•int : maximum value for all features.

•array : maximum value per feature.

categorical_features: “all” or array of indices or mask :

Specify what features are treated as categorical.

•‘all’ (default): All features are treated as categorical.

•array of indices: Array of categorical feature indices.

•mask: Array of length n_features and with dtype=bool.

Non-categorical features are always stacked to the right of the matrix.

dtype : number type, default=np.float

Desired dtype of output.

sparse : boolean, default=True

Will return sparse matrix if set True else will return an array.

handle_unknown : str, ‘error’ or ‘ignore’

Whether to raise an error or ignore if a unknown categorical feature is present during
transform.

Attributesactive_features_ : array

Indices for active features, meaning values that actually occur in the training set. Only
available when n_values is ’auto’.
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feature_indices_ : array of shape (n_features,)

Indices to feature ranges. Feature i in the original data is mapped to features from
feature_indices_[i] to feature_indices_[i+1] (and then potentially
masked by active_features_ afterwards)

n_values_ : array of shape (n_features,)

Maximum number of values per feature.

See also:

sklearn.feature_extraction.DictVectorizerperforms a one-hot encoding of dictionary items
(also handles string-valued features).

sklearn.feature_extraction.FeatureHasherperforms an approximate one-hot encoding of dic-
tionary items or strings.

Examples

Given a dataset with three features and two samples, we let the encoder find the maximum value per feature and
transform the data to a binary one-hot encoding.

>>> from sklearn.preprocessing import OneHotEncoder
>>> enc = OneHotEncoder()
>>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])
OneHotEncoder(categorical_features='all', dtype=<... 'float'>,

handle_unknown='error', n_values='auto', sparse=True)
>>> enc.n_values_
array([2, 3, 4])
>>> enc.feature_indices_
array([0, 2, 5, 9])
>>> enc.transform([[0, 1, 1]]).toarray()
array([[ 1., 0., 0., 1., 0., 0., 1., 0., 0.]])

Methods

fit(X[, y]) Fit OneHotEncoder to X.
fit_transform(X[, y]) Fit OneHotEncoder to X, then transform X.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform X using one-hot encoding.

__init__(n_values=’auto’, categorical_features=’all’, dtype=<class ‘float’>, sparse=True, han-
dle_unknown=’error’)

fit(X, y=None)
Fit OneHotEncoder to X.

ParametersX : array-like, shape [n_samples, n_feature]

Input array of type int.

Returnsself :

fit_transform(X, y=None)
Fit OneHotEncoder to X, then transform X.
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Equivalent to self.fit(X).transform(X), but more convenient and more efficient. See fit for the parameters,
transform for the return value.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X)
Transform X using one-hot encoding.

ParametersX : array-like, shape [n_samples, n_features]

Input array of type int.

ReturnsX_out : sparse matrix if sparse=True else a 2-d array, dtype=int

Transformed input.

Examples using sklearn.preprocessing.OneHotEncoder

• Feature transformations with ensembles of trees

5.30.12 sklearn.preprocessing.PolynomialFeatures

class sklearn.preprocessing.PolynomialFeatures(degree=2, interaction_only=False, in-
clude_bias=True)

Generate polynomial and interaction features.

Generate a new feature matrix consisting of all polynomial combinations of the features with degree less than
or equal to the specified degree. For example, if an input sample is two dimensional and of the form [a, b], the
degree-2 polynomial features are [1, a, b, a^2, ab, b^2].

Parametersdegree : integer

The degree of the polynomial features. Default = 2.

interaction_only : boolean, default = False

If true, only interaction features are produced: features that are products of at most
degree distinct input features (so not x[1] ** 2, x[0] * x[2] ** 3, etc.).

include_bias : boolean

If True (default), then include a bias column, the feature in which all polynomial powers
are zero (i.e. a column of ones - acts as an intercept term in a linear model).
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Attributespowers_ : array, shape (n_input_features, n_output_features)

powers_[i, j] is the exponent of the jth input in the ith output.

n_input_features_ : int

The total number of input features.

n_output_features_ : int

The total number of polynomial output features. The number of output features is com-
puted by iterating over all suitably sized combinations of input features.

Notes

Be aware that the number of features in the output array scales polynomially in the number of features of the
input array, and exponentially in the degree. High degrees can cause overfitting.

See examples/linear_model/plot_polynomial_interpolation.py

Examples

>>> X = np.arange(6).reshape(3, 2)
>>> X
array([[0, 1],

[2, 3],
[4, 5]])

>>> poly = PolynomialFeatures(2)
>>> poly.fit_transform(X)
array([[ 1., 0., 1., 0., 0., 1.],

[ 1., 2., 3., 4., 6., 9.],
[ 1., 4., 5., 16., 20., 25.]])

>>> poly = PolynomialFeatures(interaction_only=True)
>>> poly.fit_transform(X)
array([[ 1., 0., 1., 0.],

[ 1., 2., 3., 6.],
[ 1., 4., 5., 20.]])

Methods

fit(X[, y]) Compute number of output features.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X[, y]) Transform data to polynomial features

__init__(degree=2, interaction_only=False, include_bias=True)

fit(X, y=None)
Compute number of output features.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
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ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X, y=None)
Transform data to polynomial features

ParametersX : array-like, shape [n_samples, n_features]

The data to transform, row by row.

ReturnsXP : np.ndarray shape [n_samples, NP]

The matrix of features, where NP is the number of polynomial features generated from
the combination of inputs.

Examples using sklearn.preprocessing.PolynomialFeatures

• Polynomial interpolation

• Robust linear estimator fitting

• Underfitting vs. Overfitting

5.30.13 sklearn.preprocessing.RobustScaler

class sklearn.preprocessing.RobustScaler(with_centering=True, with_scaling=True,
copy=True)

Scale features using statistics that are robust to outliers.

This Scaler removes the median and scales the data according to the Interquartile Range (IQR). The IQR is the
range between the 1st quartile (25th quantile) and the 3rd quartile (75th quantile).
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Centering and scaling happen independently on each feature (or each sample, depending on the axis argument)
by computing the relevant statistics on the samples in the training set. Median and interquartile range are then
stored to be used on later data using the transform method.

Standardization of a dataset is a common requirement for many machine learning estimators. Typically this is
done by removing the mean and scaling to unit variance. However, outliers can often influence the sample mean
/ variance in a negative way. In such cases, the median and the interquartile range often give better results.

New in version 0.17.

Read more in the User Guide.

Parameterswith_centering : boolean, True by default

If True, center the data before scaling. This does not work (and will raise an exception)
when attempted on sparse matrices, because centering them entails building a dense
matrix which in common use cases is likely to be too large to fit in memory.

with_scaling : boolean, True by default

If True, scale the data to interquartile range.

copy : boolean, optional, default is True

If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to
always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix,
a copy may still be returned.

Attributescenter_ : array of floats

The median value for each feature in the training set.

scale_ : array of floats

The (scaled) interquartile range for each feature in the training set.

New in version 0.17: scale_ attribute.

See also:

sklearn.preprocessing.StandardScaler, and, sklearn.decomposition.RandomizedPCA,
to

Notes

See examples/preprocessing/plot_robust_scaling.py for an example.

http://en.wikipedia.org/wiki/Median_(statistics) http://en.wikipedia.org/wiki/Interquartile_range

Methods

fit(X[, y]) Compute the median and quantiles to be used for scaling.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X) Scale back the data to the original representation
set_params(**params) Set the parameters of this estimator.
transform(X[, y]) Center and scale the data

__init__(with_centering=True, with_scaling=True, copy=True)
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fit(X, y=None)
Compute the median and quantiles to be used for scaling.

ParametersX : array-like, shape [n_samples, n_features]

The data used to compute the median and quantiles used for later scaling along the
features axis.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

inverse_transform(X)
Scale back the data to the original representation

ParametersX : array-like

The data used to scale along the specified axis.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X, y=None)
Center and scale the data

ParametersX : array-like

The data used to scale along the specified axis.

Examples using sklearn.preprocessing.RobustScaler

• Robust Scaling on Toy Data
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5.30.14 sklearn.preprocessing.StandardScaler

class sklearn.preprocessing.StandardScaler(copy=True, with_mean=True, with_std=True)
Standardize features by removing the mean and scaling to unit variance

Centering and scaling happen independently on each feature by computing the relevant statistics on the samples
in the training set. Mean and standard deviation are then stored to be used on later data using the transform
method.

Standardization of a dataset is a common requirement for many machine learning estimators: they might behave
badly if the individual feature do not more or less look like standard normally distributed data (e.g. Gaussian
with 0 mean and unit variance).

For instance many elements used in the objective function of a learning algorithm (such as the RBF kernel of
Support Vector Machines or the L1 and L2 regularizers of linear models) assume that all features are centered
around 0 and have variance in the same order. If a feature has a variance that is orders of magnitude larger
that others, it might dominate the objective function and make the estimator unable to learn from other features
correctly as expected.

This scaler can also be applied to sparse CSR or CSC matrices by passing with_mean=False to avoid breaking
the sparsity structure of the data.

Read more in the User Guide.

Parameterswith_mean : boolean, True by default

If True, center the data before scaling. This does not work (and will raise an exception)
when attempted on sparse matrices, because centering them entails building a dense
matrix which in common use cases is likely to be too large to fit in memory.

with_std : boolean, True by default

If True, scale the data to unit variance (or equivalently, unit standard deviation).

copy : boolean, optional, default True

If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to
always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix,
a copy may still be returned.

Attributesscale_ : ndarray, shape (n_features,)

Per feature relative scaling of the data.

New in version 0.17: scale_ is recommended instead of deprecated std_.

mean_ : array of floats with shape [n_features]

The mean value for each feature in the training set.

var_ : array of floats with shape [n_features]

The variance for each feature in the training set. Used to compute scale_

n_samples_seen_ : int

The number of samples processed by the estimator. Will be reset on new calls to fit, but
increments across partial_fit calls.

See also:

sklearn.preprocessing.scale, scaling, sklearn.decomposition.RandomizedPCA, to
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Methods

fit(X[, y]) Compute the mean and std to be used for later scaling.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X[, copy]) Scale back the data to the original representation
partial_fit(X[, y]) Online computation of mean and std on X for later scaling.
set_params(**params) Set the parameters of this estimator.
transform(X[, y, copy]) Perform standardization by centering and scaling

__init__(copy=True, with_mean=True, with_std=True)

fit(X, y=None)
Compute the mean and std to be used for later scaling.

ParametersX : {array-like, sparse matrix}, shape [n_samples, n_features]

The data used to compute the mean and standard deviation used for later scaling along
the features axis.

y: Passthrough for ‘‘Pipeline‘‘ compatibility. :

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

inverse_transform(X, copy=None)
Scale back the data to the original representation

ParametersX : array-like, shape [n_samples, n_features]

The data used to scale along the features axis.

partial_fit(X, y=None)
Online computation of mean and std on X for later scaling. All of X is processed as a single batch. This
is intended for cases when fit is not feasible due to very large number of n_samples or because X is read
from a continuous stream.
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The algorithm for incremental mean and std is given in Equation 1.5a,b in Chan, Tony F., Gene H. Golub,
and Randall J. LeVeque. “Algorithms for computing the sample variance: Analysis and recommendations.”
The American Statistician 37.3 (1983): 242-247:

ParametersX : {array-like, sparse matrix}, shape [n_samples, n_features]

The data used to compute the mean and standard deviation used for later scaling along
the features axis.

y: Passthrough for ‘‘Pipeline‘‘ compatibility. :

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

std_
DEPRECATED: Attribute std_ will be removed in 0.19. Use scale_ instead

transform(X, y=None, copy=None)
Perform standardization by centering and scaling

ParametersX : array-like, shape [n_samples, n_features]

The data used to scale along the features axis.

Examples using sklearn.preprocessing.StandardScaler

• Classifier comparison

• Demo of DBSCAN clustering algorithm

• Comparing different clustering algorithms on toy datasets

• L1 Penalty and Sparsity in Logistic Regression

• Sparse recovery: feature selection for sparse linear models

• Robust Scaling on Toy Data

• RBF SVM parameters

preprocessing.add_dummy_feature(X[, value]) Augment dataset with an additional dummy feature.
preprocessing.binarize(X[, threshold, copy]) Boolean thresholding of array-like or scipy.sparse matrix
preprocessing.label_binarize(y, classes[, ...]) Binarize labels in a one-vs-all fashion
preprocessing.maxabs_scale(X[, axis, copy]) Scale each feature to the [-1, 1] range without breaking the sparsity.
preprocessing.minmax_scale(X[, ...]) Transforms features by scaling each feature to a given range.
preprocessing.normalize(X[, norm, axis, copy]) Scale input vectors individually to unit norm (vector length).
preprocessing.robust_scale(X[, axis, ...]) Standardize a dataset along any axis
preprocessing.scale(X[, axis, with_mean, ...]) Standardize a dataset along any axis

5.30.15 sklearn.preprocessing.add_dummy_feature

sklearn.preprocessing.add_dummy_feature(X, value=1.0)
Augment dataset with an additional dummy feature.
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This is useful for fitting an intercept term with implementations which cannot otherwise fit it directly.

ParametersX : {array-like, sparse matrix}, shape [n_samples, n_features]

Data.

value : float

Value to use for the dummy feature.

ReturnsX : {array, sparse matrix}, shape [n_samples, n_features + 1]

Same data with dummy feature added as first column.

Examples

>>> from sklearn.preprocessing import add_dummy_feature
>>> add_dummy_feature([[0, 1], [1, 0]])
array([[ 1., 0., 1.],

[ 1., 1., 0.]])

5.30.16 sklearn.preprocessing.binarize

sklearn.preprocessing.binarize(X, threshold=0.0, copy=True)
Boolean thresholding of array-like or scipy.sparse matrix

Read more in the User Guide.

ParametersX : {array-like, sparse matrix}, shape [n_samples, n_features]

The data to binarize, element by element. scipy.sparse matrices should be in CSR or
CSC format to avoid an un-necessary copy.

threshold : float, optional (0.0 by default)

Feature values below or equal to this are replaced by 0, above it by 1. Threshold may
not be less than 0 for operations on sparse matrices.

copy : boolean, optional, default True

set to False to perform inplace binarization and avoid a copy (if the input is already a
numpy array or a scipy.sparse CSR / CSC matrix and if axis is 1).

See also:

sklearn.preprocessing.Binarizer, using, sklearn.pipeline.Pipeline

5.30.17 sklearn.preprocessing.label_binarize

sklearn.preprocessing.label_binarize(y, classes, neg_label=0, pos_label=1,
sparse_output=False)

Binarize labels in a one-vs-all fashion

Several regression and binary classification algorithms are available in the scikit. A simple way to extend these
algorithms to the multi-class classification case is to use the so-called one-vs-all scheme.

This function makes it possible to compute this transformation for a fixed set of class labels known ahead of
time.

Parametersy : array-like
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Sequence of integer labels or multilabel data to encode.

classes : array-like of shape [n_classes]

Uniquely holds the label for each class.

neg_label : int (default: 0)

Value with which negative labels must be encoded.

pos_label : int (default: 1)

Value with which positive labels must be encoded.

sparse_output : boolean (default: False),

Set to true if output binary array is desired in CSR sparse format

ReturnsY : numpy array or CSR matrix of shape [n_samples, n_classes]

Shape will be [n_samples, 1] for binary problems.

See also:

LabelBinarizerclass used to wrap the functionality of label_binarize and allow for fitting to classes inde-
pendently of the transform operation

Examples

>>> from sklearn.preprocessing import label_binarize
>>> label_binarize([1, 6], classes=[1, 2, 4, 6])
array([[1, 0, 0, 0],

[0, 0, 0, 1]])

The class ordering is preserved:

>>> label_binarize([1, 6], classes=[1, 6, 4, 2])
array([[1, 0, 0, 0],

[0, 1, 0, 0]])

Binary targets transform to a column vector

>>> label_binarize(['yes', 'no', 'no', 'yes'], classes=['no', 'yes'])
array([[1],

[0],
[0],
[1]])

Examples using sklearn.preprocessing.label_binarize

• Precision-Recall

• Receiver Operating Characteristic (ROC)

5.30.18 sklearn.preprocessing.maxabs_scale

sklearn.preprocessing.maxabs_scale(X, axis=0, copy=True)
Scale each feature to the [-1, 1] range without breaking the sparsity.

1666 Chapter 5. API Reference



scikit-learn user guide, Release 0.17

This estimator scales each feature individually such that the maximal absolute value of each feature in the
training set will be 1.0.

This scaler can also be applied to sparse CSR or CSC matrices.

Parametersaxis : int (0 by default)

axis used to scale along. If 0, independently scale each feature, otherwise (if 1) scale
each sample.

copy : boolean, optional, default is True

Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy
array).

5.30.19 sklearn.preprocessing.minmax_scale

sklearn.preprocessing.minmax_scale(X, feature_range=(0, 1), axis=0, copy=True)
Transforms features by scaling each feature to a given range.

This estimator scales and translates each feature individually such that it is in the given range on the training set,
i.e. between zero and one.

The transformation is given by:

X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
X_scaled = X_std * (max - min) + min

where min, max = feature_range.

This transformation is often used as an alternative to zero mean, unit variance scaling.

Read more in the User Guide.

New in version 0.17: minmax_scale function interface to sklearn.preprocessing.MinMaxScaler.

Parametersfeature_range: tuple (min, max), default=(0, 1) :

Desired range of transformed data.

axis : int (0 by default)

axis used to scale along. If 0, independently scale each feature, otherwise (if 1) scale
each sample.

copy : boolean, optional, default is True

Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy
array).

5.30.20 sklearn.preprocessing.normalize

sklearn.preprocessing.normalize(X, norm=’l2’, axis=1, copy=True)
Scale input vectors individually to unit norm (vector length).

Read more in the User Guide.

ParametersX : {array-like, sparse matrix}, shape [n_samples, n_features]

The data to normalize, element by element. scipy.sparse matrices should be in CSR
format to avoid an un-necessary copy.

norm : ‘l1’, ‘l2’, or ‘max’, optional (‘l2’ by default)

5.30. sklearn.preprocessing: Preprocessing and Normalization 1667



scikit-learn user guide, Release 0.17

The norm to use to normalize each non zero sample (or each non-zero feature if axis is
0).

axis : 0 or 1, optional (1 by default)

axis used to normalize the data along. If 1, independently normalize each sample, oth-
erwise (if 0) normalize each feature.

copy : boolean, optional, default True

set to False to perform inplace row normalization and avoid a copy (if the input is
already a numpy array or a scipy.sparse CSR matrix and if axis is 1).

See also:

sklearn.preprocessing.Normalizer, using, sklearn.pipeline.Pipeline

5.30.21 sklearn.preprocessing.robust_scale

sklearn.preprocessing.robust_scale(X, axis=0, with_centering=True, with_scaling=True,
copy=True)

Standardize a dataset along any axis

Center to the median and component wise scale according to the interquartile range.

Read more in the User Guide.

ParametersX : array-like

The data to center and scale.

axis : int (0 by default)

axis used to compute the medians and IQR along. If 0, independently scale each feature,
otherwise (if 1) scale each sample.

with_centering : boolean, True by default

If True, center the data before scaling.

with_scaling : boolean, True by default

If True, scale the data to unit variance (or equivalently, unit standard deviation).

copy : boolean, optional, default is True

set to False to perform inplace row normalization and avoid a copy (if the input is
already a numpy array or a scipy.sparse CSR matrix and if axis is 1).

See also:

sklearn.preprocessing.RobustScaler, scaling, sklearn.pipeline.Pipeline

Notes

This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would
potentially crash the program with memory exhaustion problems.

Instead the caller is expected to either set explicitly with_centering=False (in that case, only variance scaling
will be performed on the features of the CSR matrix) or to call X.toarray() if he/she expects the materialized
dense array to fit in memory.

To avoid memory copy the caller should pass a CSR matrix.
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5.30.22 sklearn.preprocessing.scale

sklearn.preprocessing.scale(X, axis=0, with_mean=True, with_std=True, copy=True)
Standardize a dataset along any axis

Center to the mean and component wise scale to unit variance.

Read more in the User Guide.

ParametersX : {array-like, sparse matrix}

The data to center and scale.

axis : int (0 by default)

axis used to compute the means and standard deviations along. If 0, independently
standardize each feature, otherwise (if 1) standardize each sample.

with_mean : boolean, True by default

If True, center the data before scaling.

with_std : boolean, True by default

If True, scale the data to unit variance (or equivalently, unit standard deviation).

copy : boolean, optional, default True

set to False to perform inplace row normalization and avoid a copy (if the input is
already a numpy array or a scipy.sparse CSR matrix and if axis is 1).

See also:

sklearn.preprocessing.StandardScaler, scaling, sklearn.pipeline.Pipeline

Notes

This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would
potentially crash the program with memory exhaustion problems.

Instead the caller is expected to either set explicitly with_mean=False (in that case, only variance scaling will
be performed on the features of the CSR matrix) or to call X.toarray() if he/she expects the materialized dense
array to fit in memory.

To avoid memory copy the caller should pass a CSR matrix.

Examples using sklearn.preprocessing.scale

• A demo of K-Means clustering on the handwritten digits data

5.31 sklearn.random_projection: Random projection

Random Projection transformers

Random Projections are a simple and computationally efficient way to reduce the dimensionality of the data by trading
a controlled amount of accuracy (as additional variance) for faster processing times and smaller model sizes.

The dimensions and distribution of Random Projections matrices are controlled so as to preserve the pairwise distances
between any two samples of the dataset.
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The main theoretical result behind the efficiency of random projection is the Johnson-Lindenstrauss lemma (quoting
Wikipedia):

In mathematics, the Johnson-Lindenstrauss lemma is a result concerning low-distortion embeddings of
points from high-dimensional into low-dimensional Euclidean space. The lemma states that a small set
of points in a high-dimensional space can be embedded into a space of much lower dimension in such a
way that distances between the points are nearly preserved. The map used for the embedding is at least
Lipschitz, and can even be taken to be an orthogonal projection.

User guide: See the Random Projection section for further details.

random_projection.GaussianRandomProjection([...]) Reduce dimensionality through Gaussian random projection
random_projection.SparseRandomProjection([...]) Reduce dimensionality through sparse random projection

5.31.1 sklearn.random_projection.GaussianRandomProjection

class sklearn.random_projection.GaussianRandomProjection(n_components=’auto’,
eps=0.1, ran-
dom_state=None)

Reduce dimensionality through Gaussian random projection

The components of the random matrix are drawn from N(0, 1 / n_components).

Read more in the User Guide.

Parametersn_components : int or ‘auto’, optional (default = ‘auto’)

Dimensionality of the target projection space.

n_components can be automatically adjusted according to the number of samples in
the dataset and the bound given by the Johnson-Lindenstrauss lemma. In that case the
quality of the embedding is controlled by the eps parameter.

It should be noted that Johnson-Lindenstrauss lemma can yield very conservative esti-
mated of the required number of components as it makes no assumption on the structure
of the dataset.

eps : strictly positive float, optional (default=0.1)

Parameter to control the quality of the embedding according to the Johnson-
Lindenstrauss lemma when n_components is set to ‘auto’.

Smaller values lead to better embedding and higher number of dimensions
(n_components) in the target projection space.

random_state : integer, RandomState instance or None (default=None)

Control the pseudo random number generator used to generate the matrix at fit time.

Attributesn_component_ : int

Concrete number of components computed when n_components=”auto”.

components_ : numpy array of shape [n_components, n_features]

Random matrix used for the projection.

See also:

SparseRandomProjection
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Methods

fit(X[, y]) Generate a sparse random projection matrix
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X[, y]) Project the data by using matrix product with the random matrix

__init__(n_components=’auto’, eps=0.1, random_state=None)

fit(X, y=None)
Generate a sparse random projection matrix

ParametersX : numpy array or scipy.sparse of shape [n_samples, n_features]

Training set: only the shape is used to find optimal random matrix dimensions based on
the theory referenced in the afore mentioned papers.

y : is not used: placeholder to allow for usage in a Pipeline.

Returnsself :

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X, y=None)
Project the data by using matrix product with the random matrix

ParametersX : numpy array or scipy.sparse of shape [n_samples, n_features]
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The input data to project into a smaller dimensional space.

y : is not used: placeholder to allow for usage in a Pipeline.

ReturnsX_new : numpy array or scipy sparse of shape [n_samples, n_components]

Projected array.

5.31.2 sklearn.random_projection.SparseRandomProjection

class sklearn.random_projection.SparseRandomProjection(n_components=’auto’,
density=’auto’, eps=0.1,
dense_output=False, ran-
dom_state=None)

Reduce dimensionality through sparse random projection

Sparse random matrix is an alternative to dense random projection matrix that guarantees similar embedding
quality while being much more memory efficient and allowing faster computation of the projected data.

If we note s = 1 / density the components of the random matrix are drawn from:

•-sqrt(s) / sqrt(n_components) with probability 1 / 2s

•0 with probability 1 - 1 / s

•+sqrt(s) / sqrt(n_components) with probability 1 / 2s

Read more in the User Guide.

Parametersn_components : int or ‘auto’, optional (default = ‘auto’)

Dimensionality of the target projection space.

n_components can be automatically adjusted according to the number of samples in
the dataset and the bound given by the Johnson-Lindenstrauss lemma. In that case the
quality of the embedding is controlled by the eps parameter.

It should be noted that Johnson-Lindenstrauss lemma can yield very conservative esti-
mated of the required number of components as it makes no assumption on the structure
of the dataset.

density : float in range ]0, 1], optional (default=’auto’)

Ratio of non-zero component in the random projection matrix.

If density = ‘auto’, the value is set to the minimum density as recommended by Ping Li
et al.: 1 / sqrt(n_features).

Use density = 1 / 3.0 if you want to reproduce the results from Achlioptas, 2001.

eps : strictly positive float, optional, (default=0.1)

Parameter to control the quality of the embedding according to the Johnson-
Lindenstrauss lemma when n_components is set to ‘auto’.

Smaller values lead to better embedding and higher number of dimensions
(n_components) in the target projection space.

dense_output : boolean, optional (default=False)

If True, ensure that the output of the random projection is a dense numpy array even if
the input and random projection matrix are both sparse. In practice, if the number of
components is small the number of zero components in the projected data will be very
small and it will be more CPU and memory efficient to use a dense representation.
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If False, the projected data uses a sparse representation if the input is sparse.

random_state : integer, RandomState instance or None (default=None)

Control the pseudo random number generator used to generate the matrix at fit time.

Attributesn_component_ : int

Concrete number of components computed when n_components=”auto”.

components_ : CSR matrix with shape [n_components, n_features]

Random matrix used for the projection.

density_ : float in range 0.0 - 1.0

Concrete density computed from when density = “auto”.

See also:

GaussianRandomProjection

References

[R59], [R60]

Methods

fit(X[, y]) Generate a sparse random projection matrix
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X[, y]) Project the data by using matrix product with the random matrix

__init__(n_components=’auto’, density=’auto’, eps=0.1, dense_output=False, ran-
dom_state=None)

fit(X, y=None)
Generate a sparse random projection matrix

ParametersX : numpy array or scipy.sparse of shape [n_samples, n_features]

Training set: only the shape is used to find optimal random matrix dimensions based on
the theory referenced in the afore mentioned papers.

y : is not used: placeholder to allow for usage in a Pipeline.

Returnsself :

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.
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ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(X, y=None)
Project the data by using matrix product with the random matrix

ParametersX : numpy array or scipy.sparse of shape [n_samples, n_features]

The input data to project into a smaller dimensional space.

y : is not used: placeholder to allow for usage in a Pipeline.

ReturnsX_new : numpy array or scipy sparse of shape [n_samples, n_components]

Projected array.

Examples using sklearn.random_projection.SparseRandomProjection

• The Johnson-Lindenstrauss bound for embedding with random projections

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap...

random_projection.johnson_lindenstrauss_min_dim(...) Find a ‘safe’ number of components to randomly project to

5.31.3 sklearn.random_projection.johnson_lindenstrauss_min_dim

sklearn.random_projection.johnson_lindenstrauss_min_dim(n_samples, eps=0.1)
Find a ‘safe’ number of components to randomly project to

The distortion introduced by a random projection p only changes the distance between two points by a factor (1
+- eps) in an euclidean space with good probability. The projection p is an eps-embedding as defined by:

(1 - eps) ||u - v||^2 < ||p(u) - p(v)||^2 < (1 + eps) ||u - v||^2

Where u and v are any rows taken from a dataset of shape [n_samples, n_features], eps is in ]0, 1[ and p is a
projection by a random Gaussian N(0, 1) matrix with shape [n_components, n_features] (or a sparse Achlioptas
matrix).

The minimum number of components to guarantee the eps-embedding is given by:
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n_components >= 4 log(n_samples) / (eps^2 / 2 - eps^3 / 3)

Note that the number of dimensions is independent of the original number of features but instead depends on
the size of the dataset: the larger the dataset, the higher is the minimal dimensionality of an eps-embedding.

Read more in the User Guide.

Parametersn_samples : int or numpy array of int greater than 0,

Number of samples. If an array is given, it will compute a safe number of components
array-wise.

eps : float or numpy array of float in ]0,1[, optional (default=0.1)

Maximum distortion rate as defined by the Johnson-Lindenstrauss lemma. If an array is
given, it will compute a safe number of components array-wise.

Returnsn_components : int or numpy array of int,

The minimal number of components to guarantee with good probability an eps-
embedding with n_samples.

References

[R61], [R62]

Examples

>>> johnson_lindenstrauss_min_dim(1e6, eps=0.5)
663

>>> johnson_lindenstrauss_min_dim(1e6, eps=[0.5, 0.1, 0.01])
array([ 663, 11841, 1112658])

>>> johnson_lindenstrauss_min_dim([1e4, 1e5, 1e6], eps=0.1)
array([ 7894, 9868, 11841])

Examples using sklearn.random_projection.johnson_lindenstrauss_min_dim

• The Johnson-Lindenstrauss bound for embedding with random projections

5.32 sklearn.semi_supervised Semi-Supervised Learning

The sklearn.semi_supervised module implements semi-supervised learning algorithms. These algorithms
utilized small amounts of labeled data and large amounts of unlabeled data for classification tasks. This module
includes Label Propagation.

User guide: See the Semi-Supervised section for further details.

semi_supervised.LabelPropagation([kernel, ...]) Label Propagation classifier
semi_supervised.LabelSpreading([kernel, ...]) LabelSpreading model for semi-supervised learning
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5.32.1 sklearn.semi_supervised.LabelPropagation

class sklearn.semi_supervised.LabelPropagation(kernel=’rbf’, gamma=20, n_neighbors=7,
alpha=1, max_iter=30, tol=0.001)

Label Propagation classifier

Read more in the User Guide.

Parameterskernel : {‘knn’, ‘rbf’}

String identifier for kernel function to use. Only ‘rbf’ and ‘knn’ kernels are currently
supported..

gamma : float

Parameter for rbf kernel

n_neighbors : integer > 0

Parameter for knn kernel

alpha : float

Clamping factor

max_iter : float

Change maximum number of iterations allowed

tol : float

Convergence tolerance: threshold to consider the system at steady state

AttributesX_ : array, shape = [n_samples, n_features]

Input array.

classes_ : array, shape = [n_classes]

The distinct labels used in classifying instances.

label_distributions_ : array, shape = [n_samples, n_classes]

Categorical distribution for each item.

transduction_ : array, shape = [n_samples]

Label assigned to each item via the transduction.

n_iter_ : int

Number of iterations run.

See also:

LabelSpreadingAlternate label propagation strategy more robust to noise

References

Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with la-
bel propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002
http://pages.cs.wisc.edu/~jerryzhu/pub/CMU-CALD-02-107.pdf
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Examples

>>> from sklearn import datasets
>>> from sklearn.semi_supervised import LabelPropagation
>>> label_prop_model = LabelPropagation()
>>> iris = datasets.load_iris()
>>> random_unlabeled_points = np.where(np.random.random_integers(0, 1,
... size=len(iris.target)))
>>> labels = np.copy(iris.target)
>>> labels[random_unlabeled_points] = -1
>>> label_prop_model.fit(iris.data, labels)
...
LabelPropagation(...)

Methods

fit(X, y) Fit a semi-supervised label propagation model based
get_params([deep]) Get parameters for this estimator.
predict(X) Performs inductive inference across the model.
predict_proba(X) Predict probability for each possible outcome.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.

__init__(kernel=’rbf’, gamma=20, n_neighbors=7, alpha=1, max_iter=30, tol=0.001)

fit(X, y)
Fit a semi-supervised label propagation model based

All the input data is provided matrix X (labeled and unlabeled) and corresponding label matrix y with a
dedicated marker value for unlabeled samples.

ParametersX : array-like, shape = [n_samples, n_features]

A {n_samples by n_samples} size matrix will be created from this

y : array_like, shape = [n_samples]

n_labeled_samples (unlabeled points are marked as -1) All unlabeled samples will be
transductively assigned labels

Returnsself : returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Performs inductive inference across the model.

ParametersX : array_like, shape = [n_samples, n_features]
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Returnsy : array_like, shape = [n_samples]

Predictions for input data

predict_proba(X)
Predict probability for each possible outcome.

Compute the probability estimates for each single sample in X and each possible outcome seen during
training (categorical distribution).

ParametersX : array_like, shape = [n_samples, n_features]

Returnsprobabilities : array, shape = [n_samples, n_classes]

Normalized probability distributions across class labels

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

5.32.2 sklearn.semi_supervised.LabelSpreading

class sklearn.semi_supervised.LabelSpreading(kernel=’rbf’, gamma=20, n_neighbors=7, al-
pha=0.2, max_iter=30, tol=0.001)

LabelSpreading model for semi-supervised learning

This model is similar to the basic Label Propgation algorithm, but uses affinity matrix based on the normalized
graph Laplacian and soft clamping across the labels.

Read more in the User Guide.

Parameterskernel : {‘knn’, ‘rbf’}

String identifier for kernel function to use. Only ‘rbf’ and ‘knn’ kernels are currently
supported.

gamma : float

parameter for rbf kernel
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n_neighbors : integer > 0

parameter for knn kernel

alpha : float

clamping factor

max_iter : float

maximum number of iterations allowed

tol : float

Convergence tolerance: threshold to consider the system at steady state

AttributesX_ : array, shape = [n_samples, n_features]

Input array.

classes_ : array, shape = [n_classes]

The distinct labels used in classifying instances.

label_distributions_ : array, shape = [n_samples, n_classes]

Categorical distribution for each item.

transduction_ : array, shape = [n_samples]

Label assigned to each item via the transduction.

n_iter_ : int

Number of iterations run.

See also:

LabelPropagationUnregularized graph based semi-supervised learning

References

Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, Bernhard Schoelkopf. Learning with
local and global consistency (2004) http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.3219

Examples

>>> from sklearn import datasets
>>> from sklearn.semi_supervised import LabelSpreading
>>> label_prop_model = LabelSpreading()
>>> iris = datasets.load_iris()
>>> random_unlabeled_points = np.where(np.random.random_integers(0, 1,
... size=len(iris.target)))
>>> labels = np.copy(iris.target)
>>> labels[random_unlabeled_points] = -1
>>> label_prop_model.fit(iris.data, labels)
...
LabelSpreading(...)
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fit(X, y) Fit a semi-supervised label propagation model based
get_params([deep]) Get parameters for this estimator.
predict(X) Performs inductive inference across the model.
predict_proba(X) Predict probability for each possible outcome.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.

__init__(kernel=’rbf’, gamma=20, n_neighbors=7, alpha=0.2, max_iter=30, tol=0.001)

fit(X, y)
Fit a semi-supervised label propagation model based

All the input data is provided matrix X (labeled and unlabeled) and corresponding label matrix y with a
dedicated marker value for unlabeled samples.

ParametersX : array-like, shape = [n_samples, n_features]

A {n_samples by n_samples} size matrix will be created from this

y : array_like, shape = [n_samples]

n_labeled_samples (unlabeled points are marked as -1) All unlabeled samples will be
transductively assigned labels

Returnsself : returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Performs inductive inference across the model.

ParametersX : array_like, shape = [n_samples, n_features]

Returnsy : array_like, shape = [n_samples]

Predictions for input data

predict_proba(X)
Predict probability for each possible outcome.

Compute the probability estimates for each single sample in X and each possible outcome seen during
training (categorical distribution).

ParametersX : array_like, shape = [n_samples, n_features]

Returnsprobabilities : array, shape = [n_samples, n_classes]

Normalized probability distributions across class labels

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.
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ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.semi_supervised.LabelSpreading

• Label Propagation learning a complex structure

• Decision boundary of label propagation versus SVM on the Iris dataset

• Label Propagation digits: Demonstrating performance

• Label Propagation digits active learning

5.33 sklearn.svm: Support Vector Machines

The sklearn.svm module includes Support Vector Machine algorithms.

User guide: See the Support Vector Machines section for further details.

5.33.1 Estimators

svm.SVC([C, kernel, degree, gamma, coef0, ...]) C-Support Vector Classification.
svm.LinearSVC([penalty, loss, dual, tol, C, ...]) Linear Support Vector Classification.
svm.NuSVC([nu, kernel, degree, gamma, ...]) Nu-Support Vector Classification.
svm.SVR([kernel, degree, gamma, coef0, tol, ...]) Epsilon-Support Vector Regression.
svm.LinearSVR([epsilon, tol, C, loss, ...]) Linear Support Vector Regression.
svm.NuSVR([nu, C, kernel, degree, gamma, ...]) Nu Support Vector Regression.
svm.OneClassSVM([kernel, degree, gamma, ...]) Unsupervised Outlier Detection.
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sklearn.svm.SVC

class sklearn.svm.SVC(C=1.0, kernel=’rbf’, degree=3, gamma=’auto’, coef0=0.0, shrinking=True,
probability=False, tol=0.001, cache_size=200, class_weight=None,
verbose=False, max_iter=-1, decision_function_shape=None, ran-
dom_state=None)

C-Support Vector Classification.

The implementation is based on libsvm. The fit time complexity is more than quadratic with the number of
samples which makes it hard to scale to dataset with more than a couple of 10000 samples.

The multiclass support is handled according to a one-vs-one scheme.

For details on the precise mathematical formulation of the provided kernel functions and how gamma, coef0 and
degree affect each other, see the corresponding section in the narrative documentation: Kernel functions.

Read more in the User Guide.

ParametersC : float, optional (default=1.0)

Penalty parameter C of the error term.

kernel : string, optional (default=’rbf’)

Specifies the kernel type to be used in the algorithm. It must be one of ‘linear’, ‘poly’,
‘rbf’, ‘sigmoid’, ‘precomputed’ or a callable. If none is given, ‘rbf’ will be used. If
a callable is given it is used to pre-compute the kernel matrix from data matrices; that
matrix should be an array of shape (n_samples, n_samples).

degree : int, optional (default=3)

Degree of the polynomial kernel function (‘poly’). Ignored by all other kernels.

gamma : float, optional (default=’auto’)

Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’. If gamma is ‘auto’ then 1/n_features
will be used instead.

coef0 : float, optional (default=0.0)

Independent term in kernel function. It is only significant in ‘poly’ and ‘sigmoid’.

probability : boolean, optional (default=False)

Whether to enable probability estimates. This must be enabled prior to calling fit, and
will slow down that method.

shrinking : boolean, optional (default=True)

Whether to use the shrinking heuristic.

tol : float, optional (default=1e-3)

Tolerance for stopping criterion.

cache_size : float, optional

Specify the size of the kernel cache (in MB).

class_weight : {dict, ‘balanced’}, optional

Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes
are supposed to have weight one. The “balanced” mode uses the values of y to auto-
matically adjust weights inversely proportional to class frequencies in the input data as
n_samples / (n_classes * np.bincount(y))

verbose : bool, default: False

5.33. sklearn.svm: Support Vector Machines 1683



scikit-learn user guide, Release 0.17

Enable verbose output. Note that this setting takes advantage of a per-process runtime
setting in libsvm that, if enabled, may not work properly in a multithreaded context.

max_iter : int, optional (default=-1)

Hard limit on iterations within solver, or -1 for no limit.

decision_function_shape : ‘ovo’, ‘ovr’ or None, default=None

Whether to return a one-vs-rest (‘ovr’) ecision function of shape (n_samples, n_classes)
as all other classifiers, or the original one-vs-one (‘ovo’) decision function of libsvm
which has shape (n_samples, n_classes * (n_classes - 1) / 2). The default of None will
currently behave as ‘ovo’ for backward compatibility and raise a deprecation warning,
but will change ‘ovr’ in 0.18.

New in version 0.17: decision_function_shape=’ovr’ is recommended.

Changed in version 0.17: Deprecated decision_function_shape=’ovo’ and None.

random_state : int seed, RandomState instance, or None (default)

The seed of the pseudo random number generator to use when shuffling the data for
probability estimation.

Attributessupport_ : array-like, shape = [n_SV]

Indices of support vectors.

support_vectors_ : array-like, shape = [n_SV, n_features]

Support vectors.

n_support_ : array-like, dtype=int32, shape = [n_class]

Number of support vectors for each class.

dual_coef_ : array, shape = [n_class-1, n_SV]

Coefficients of the support vector in the decision function. For multiclass, coefficient for
all 1-vs-1 classifiers. The layout of the coefficients in the multiclass case is somewhat
non-trivial. See the section about multi-class classification in the SVM section of the
User Guide for details.

coef_ : array, shape = [n_class-1, n_features]

Weights assigned to the features (coefficients in the primal problem). This is only avail-
able in the case of a linear kernel.

coef_ is a readonly property derived from dual_coef_ and support_vectors_.

intercept_ : array, shape = [n_class * (n_class-1) / 2]

Constants in decision function.

See also:

SVRSupport Vector Machine for Regression implemented using libsvm.

LinearSVCScalable Linear Support Vector Machine for classification implemented using liblinear. Check the
See also section of LinearSVC for more comparison element.
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Examples

>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
>>> y = np.array([1, 1, 2, 2])
>>> from sklearn.svm import SVC
>>> clf = SVC()
>>> clf.fit(X, y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

>>> print(clf.predict([[-0.8, -1]]))
[1]

Methods

decision_function(X) Distance of the samples X to the separating hyperplane.
fit(X, y[, sample_weight]) Fit the SVM model according to the given training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Perform classification on samples in X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.

__init__(C=1.0, kernel=’rbf’, degree=3, gamma=’auto’, coef0=0.0, shrinking=True, probabil-
ity=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1,
decision_function_shape=None, random_state=None)

decision_function(X)
Distance of the samples X to the separating hyperplane.

ParametersX : array-like, shape (n_samples, n_features)

ReturnsX : array-like, shape (n_samples, n_classes * (n_classes-1) / 2)

Returns the decision function of the sample for each class in the model. If deci-
sion_function_shape=’ovr’, the shape is (n_samples, n_classes)

fit(X, y, sample_weight=None)
Fit the SVM model according to the given training data.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features. For kernel=”precomputed”, the expected shape of X is (n_samples,
n_samples).

y : array-like, shape (n_samples,)

Target values (class labels in classification, real numbers in regression)

sample_weight : array-like, shape (n_samples,)

Per-sample weights. Rescale C per sample. Higher weights force the classifier to put
more emphasis on these points.

Returnsself : object

Returns self.
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Notes

If X and y are not C-ordered and contiguous arrays of np.float64 and X is not a scipy.sparse.csr_matrix, X
and/or y may be copied.

If X is a dense array, then the other methods will not support sparse matrices as input.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Perform classification on samples in X.

For an one-class model, +1 or -1 is returned.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

For kernel=”precomputed”, the expected shape of X is [n_samples_test,
n_samples_train]

Returnsy_pred : array, shape (n_samples,)

Class labels for samples in X.

predict_log_proba
Compute log probabilities of possible outcomes for samples in X.

The model need to have probability information computed at training time: fit with attribute probability
set to True.

ParametersX : array-like, shape (n_samples, n_features)

For kernel=”precomputed”, the expected shape of X is [n_samples_test,
n_samples_train]

ReturnsT : array-like, shape (n_samples, n_classes)

Returns the log-probabilities of the sample for each class in the model. The columns
correspond to the classes in sorted order, as they appear in the attribute classes_.

Notes

The probability model is created using cross validation, so the results can be slightly different than those
obtained by predict. Also, it will produce meaningless results on very small datasets.

predict_proba
Compute probabilities of possible outcomes for samples in X.

The model need to have probability information computed at training time: fit with attribute probability
set to True.

ParametersX : array-like, shape (n_samples, n_features)

For kernel=”precomputed”, the expected shape of X is [n_samples_test,
n_samples_train]
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ReturnsT : array-like, shape (n_samples, n_classes)

Returns the probability of the sample for each class in the model. The columns corre-
spond to the classes in sorted order, as they appear in the attribute classes_.

Notes

The probability model is created using cross validation, so the results can be slightly different than those
obtained by predict. Also, it will produce meaningless results on very small datasets.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.svm.SVC

• Concatenating multiple feature extraction methods

• Multilabel classification

• Feature Union with Heterogeneous Data Sources

• Explicit feature map approximation for RBF kernels

• Faces recognition example using eigenfaces and SVMs

• Libsvm GUI

• Recognizing hand-written digits

• Plot classification probability

• Classifier comparison

• Plot the decision boundaries of a VotingClassifier

• Cross-validation on Digits Dataset Exercise
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• SVM Exercise

• Pipeline Anova SVM

• Recursive feature elimination

• Recursive feature elimination with cross-validation

• Test with permutations the significance of a classification score

• Univariate Feature Selection

• Plotting Validation Curves

• Confusion matrix

• Receiver Operating Characteristic (ROC) with cross validation

• Parameter estimation using grid search with cross-validation

• Precision-Recall

• Plotting Learning Curves

• Receiver Operating Characteristic (ROC)

• Decision boundary of label propagation versus SVM on the Iris dataset

• SVM: Maximum margin separating hyperplane

• SVM: Separating hyperplane for unbalanced classes

• SVM with custom kernel

• SVM-Anova: SVM with univariate feature selection

• SVM: Weighted samples

• Plot different SVM classifiers in the iris dataset

• SVM-Kernels

• SVM Margins Example

• RBF SVM parameters

sklearn.svm.LinearSVC

class sklearn.svm.LinearSVC(penalty=’l2’, loss=’squared_hinge’, dual=True, tol=0.0001,
C=1.0, multi_class=’ovr’, fit_intercept=True, intercept_scaling=1,
class_weight=None, verbose=0, random_state=None, max_iter=1000)

Linear Support Vector Classification.

Similar to SVC with parameter kernel=’linear’, but implemented in terms of liblinear rather than libsvm, so it
has more flexibility in the choice of penalties and loss functions and should scale better to large numbers of
samples.

This class supports both dense and sparse input and the multiclass support is handled according to a one-vs-the-
rest scheme.

Read more in the User Guide.

ParametersC : float, optional (default=1.0)

Penalty parameter C of the error term.

loss : string, ‘hinge’ or ‘squared_hinge’ (default=’squared_hinge’)
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Specifies the loss function. ‘hinge’ is the standard SVM loss (used e.g. by the SVC
class) while ‘squared_hinge’ is the square of the hinge loss.

penalty : string, ‘l1’ or ‘l2’ (default=’l2’)

Specifies the norm used in the penalization. The ‘l2’ penalty is the standard used in
SVC. The ‘l1’ leads to coef_ vectors that are sparse.

dual : bool, (default=True)

Select the algorithm to either solve the dual or primal optimization problem. Prefer
dual=False when n_samples > n_features.

tol : float, optional (default=1e-4)

Tolerance for stopping criteria.

multi_class: string, ‘ovr’ or ‘crammer_singer’ (default=’ovr’) :

Determines the multi-class strategy if y contains more than two classes. "ovr" trains
n_classes one-vs-rest classifiers, while "crammer_singer" optimizes a joint objec-
tive over all classes. While crammer_singer is interesting from a theoretical perspective
as it is consistent, it is seldom used in practice as it rarely leads to better accuracy and
is more expensive to compute. If "crammer_singer" is chosen, the options loss,
penalty and dual will be ignored.

fit_intercept : boolean, optional (default=True)

Whether to calculate the intercept for this model. If set to false, no intercept will be
used in calculations (i.e. data is expected to be already centered).

intercept_scaling : float, optional (default=1)

When self.fit_intercept is True, instance vector x becomes [x,
self.intercept_scaling], i.e. a “synthetic” feature with constant value
equals to intercept_scaling is appended to the instance vector. The intercept becomes
intercept_scaling * synthetic feature weight Note! the synthetic feature weight is
subject to l1/l2 regularization as all other features. To lessen the effect of regularization
on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be
increased.

class_weight : {dict, ‘balanced’}, optional

Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all
classes are supposed to have weight one. The “balanced” mode uses the values of y
to automatically adjust weights inversely proportional to class frequencies in the input
data as n_samples / (n_classes * np.bincount(y))

verbose : int, (default=0)

Enable verbose output. Note that this setting takes advantage of a per-process runtime
setting in liblinear that, if enabled, may not work properly in a multithreaded context.

random_state : int seed, RandomState instance, or None (default=None)

The seed of the pseudo random number generator to use when shuffling the data.

max_iter : int, (default=1000)

The maximum number of iterations to be run.

Attributescoef_ : array, shape = [n_features] if n_classes == 2 else [n_classes, n_features]

Weights assigned to the features (coefficients in the primal problem). This is only avail-
able in the case of a linear kernel.
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coef_ is a readonly property derived from raw_coef_ that follows the internal mem-
ory layout of liblinear.

intercept_ : array, shape = [1] if n_classes == 2 else [n_classes]

Constants in decision function.

See also:

SVCImplementation of Support Vector Machine classifier using libsvm: the kernel can be non-linear but its
SMO algorithm does not scale to large number of samples as LinearSVC does. Furthermore SVC multi-
class mode is implemented using one vs one scheme while LinearSVC uses one vs the rest. It is possible to
implement one vs the rest with SVC by using the sklearn.multiclass.OneVsRestClassifier
wrapper. Finally SVC can fit dense data without memory copy if the input is C-contiguous. Sparse data
will still incur memory copy though.

sklearn.linear_model.SGDClassifierSGDClassifier can optimize the same cost function as Lin-
earSVC by adjusting the penalty and loss parameters. In addition it requires less memory, allows incre-
mental (online) learning, and implements various loss functions and regularization regimes.

Notes

The underlying C implementation uses a random number generator to select features when fitting the model.
It is thus not uncommon to have slightly different results for the same input data. If that happens, try with a
smaller tol parameter.

The underlying implementation, liblinear, uses a sparse internal representation for the data that will incur a
memory copy.

Predict output may not match that of standalone liblinear in certain cases. See differences from liblinear in the
narrative documentation.

References

LIBLINEAR: A Library for Large Linear Classification

Methods

decision_function(X) Predict confidence scores for samples.
densify() Convert coefficient matrix to dense array format.
fit(X, y) Fit the model according to the given training data.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class labels for samples in X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.
sparsify() Convert coefficient matrix to sparse format.
transform(*args, **kwargs) DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19.

__init__(penalty=’l2’, loss=’squared_hinge’, dual=True, tol=0.0001, C=1.0, multi_class=’ovr’,
fit_intercept=True, intercept_scaling=1, class_weight=None, verbose=0, ran-
dom_state=None, max_iter=1000)

decision_function(X)
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Predict confidence scores for samples.

The confidence score for a sample is the signed distance of that sample to the hyperplane.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returnsarray, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) :

Confidence scores per (sample, class) combination. In the binary case, confidence score
for self.classes_[1] where >0 means this class would be predicted.

densify()
Convert coefficient matrix to dense array format.

Converts the coef_ member (back) to a numpy.ndarray. This is the default format of coef_ and is
required for fitting, so calling this method is only required on models that have previously been sparsified;
otherwise, it is a no-op.

Returnsself: estimator :

fit(X, y)
Fit the model according to the given training data.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target vector relative to X

Returnsself : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.
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predict(X)
Predict class labels for samples in X.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Samples.

ReturnsC : array, shape = [n_samples]

Predicted class label per sample.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

sparsify()
Convert coefficient matrix to sparse format.

Converts the coef_ member to a scipy.sparse matrix, which for L1-regularized models can be much more
memory- and storage-efficient than the usual numpy.ndarray representation.

The intercept_ member is not converted.

Returnsself: estimator :

Notes

For non-sparse models, i.e. when there are not many zeros in coef_, this may actually increase memory
usage, so use this method with care. A rule of thumb is that the number of zero elements, which can be
computed with (coef_ == 0).sum(), must be more than 50% for this to provide significant benefits.

After calling this method, further fitting with the partial_fit method (if any) will not work until you call
densify.

transform(*args, **kwargs)
DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19. Use
SelectFromModel instead.
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Reduce X to its most important features.

Uses coef_ or feature_importances_ to determine the most important features. For
models with a coef_ for each class, the absolute sum over the classes is used.

ParametersX : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold[string, float or None, optional (default=None)] The threshold value to use for
feature selection. Features whose importance is greater or equal are kept while the
others are discarded. If “median” (resp. “mean”), then the threshold value is the me-
dian (resp. the mean) of the feature importances. A scaling factor (e.g., “1.25*mean”)
may also be used. If None and if available, the object attribute threshold is used.
Otherwise, “mean” is used by default.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

Examples using sklearn.svm.LinearSVC

• Explicit feature map approximation for RBF kernels

• Comparison of Calibration of Classifiers

• Probability Calibration curves

• Plot different SVM classifiers in the iris dataset

• Scaling the regularization parameter for SVCs

• Classification of text documents using sparse features

sklearn.svm.NuSVC

class sklearn.svm.NuSVC(nu=0.5, kernel=’rbf’, degree=3, gamma=’auto’, coef0=0.0, shrinking=True,
probability=False, tol=0.001, cache_size=200, class_weight=None,
verbose=False, max_iter=-1, decision_function_shape=None, ran-
dom_state=None)

Nu-Support Vector Classification.

Similar to SVC but uses a parameter to control the number of support vectors.

The implementation is based on libsvm.

Read more in the User Guide.

Parametersnu : float, optional (default=0.5)

An upper bound on the fraction of training errors and a lower bound of the fraction of
support vectors. Should be in the interval (0, 1].

kernel : string, optional (default=’rbf’)

Specifies the kernel type to be used in the algorithm. It must be one of ‘linear’, ‘poly’,
‘rbf’, ‘sigmoid’, ‘precomputed’ or a callable. If none is given, ‘rbf’ will be used. If a
callable is given it is used to precompute the kernel matrix.

degree : int, optional (default=3)
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Degree of the polynomial kernel function (‘poly’). Ignored by all other kernels.

gamma : float, optional (default=’auto’)

Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’. If gamma is ‘auto’ then 1/n_features
will be used instead.

coef0 : float, optional (default=0.0)

Independent term in kernel function. It is only significant in ‘poly’ and ‘sigmoid’.

probability : boolean, optional (default=False)

Whether to enable probability estimates. This must be enabled prior to calling fit, and
will slow down that method.

shrinking : boolean, optional (default=True)

Whether to use the shrinking heuristic.

tol : float, optional (default=1e-3)

Tolerance for stopping criterion.

cache_size : float, optional

Specify the size of the kernel cache (in MB).

class_weight : {dict, ‘auto’}, optional

Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are
supposed to have weight one. The ‘auto’ mode uses the values of y to automatically
adjust weights inversely proportional to class frequencies.

verbose : bool, default: False

Enable verbose output. Note that this setting takes advantage of a per-process runtime
setting in libsvm that, if enabled, may not work properly in a multithreaded context.

max_iter : int, optional (default=-1)

Hard limit on iterations within solver, or -1 for no limit.

decision_function_shape : ‘ovo’, ‘ovr’ or None, default=None

Whether to return a one-vs-rest (‘ovr’) ecision function of shape (n_samples, n_classes)
as all other classifiers, or the original one-vs-one (‘ovo’) decision function of libsvm
which has shape (n_samples, n_classes * (n_classes - 1) / 2). The default of None will
currently behave as ‘ovo’ for backward compatibility and raise a deprecation warning,
but will change ‘ovr’ in 0.18.

New in version 0.17: decision_function_shape=’ovr’ is recommended.

Changed in version 0.17: Deprecated decision_function_shape=’ovo’ and None.

random_state : int seed, RandomState instance, or None (default)

The seed of the pseudo random number generator to use when shuffling the data for
probability estimation.

Attributessupport_ : array-like, shape = [n_SV]

Indices of support vectors.

support_vectors_ : array-like, shape = [n_SV, n_features]

Support vectors.
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n_support_ : array-like, dtype=int32, shape = [n_class]

Number of support vectors for each class.

dual_coef_ : array, shape = [n_class-1, n_SV]

Coefficients of the support vector in the decision function. For multiclass, coefficient for
all 1-vs-1 classifiers. The layout of the coefficients in the multiclass case is somewhat
non-trivial. See the section about multi-class classification in the SVM section of the
User Guide for details.

coef_ : array, shape = [n_class-1, n_features]

Weights assigned to the features (coefficients in the primal problem). This is only avail-
able in the case of a linear kernel.

coef_ is readonly property derived from dual_coef_ and support_vectors_.

intercept_ : array, shape = [n_class * (n_class-1) / 2]

Constants in decision function.

See also:

SVCSupport Vector Machine for classification using libsvm.

LinearSVCScalable linear Support Vector Machine for classification using liblinear.

Examples

>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
>>> y = np.array([1, 1, 2, 2])
>>> from sklearn.svm import NuSVC
>>> clf = NuSVC()
>>> clf.fit(X, y)
NuSVC(cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
max_iter=-1, nu=0.5, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False)

>>> print(clf.predict([[-0.8, -1]]))
[1]

Methods

decision_function(X) Distance of the samples X to the separating hyperplane.
fit(X, y[, sample_weight]) Fit the SVM model according to the given training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Perform classification on samples in X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.

__init__(nu=0.5, kernel=’rbf’, degree=3, gamma=’auto’, coef0=0.0, shrinking=True, probabil-
ity=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1,
decision_function_shape=None, random_state=None)

decision_function(X)
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Distance of the samples X to the separating hyperplane.

ParametersX : array-like, shape (n_samples, n_features)

ReturnsX : array-like, shape (n_samples, n_classes * (n_classes-1) / 2)

Returns the decision function of the sample for each class in the model. If deci-
sion_function_shape=’ovr’, the shape is (n_samples, n_classes)

fit(X, y, sample_weight=None)
Fit the SVM model according to the given training data.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features. For kernel=”precomputed”, the expected shape of X is (n_samples,
n_samples).

y : array-like, shape (n_samples,)

Target values (class labels in classification, real numbers in regression)

sample_weight : array-like, shape (n_samples,)

Per-sample weights. Rescale C per sample. Higher weights force the classifier to put
more emphasis on these points.

Returnsself : object

Returns self.

Notes

If X and y are not C-ordered and contiguous arrays of np.float64 and X is not a scipy.sparse.csr_matrix, X
and/or y may be copied.

If X is a dense array, then the other methods will not support sparse matrices as input.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Perform classification on samples in X.

For an one-class model, +1 or -1 is returned.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

For kernel=”precomputed”, the expected shape of X is [n_samples_test,
n_samples_train]

Returnsy_pred : array, shape (n_samples,)

Class labels for samples in X.
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predict_log_proba
Compute log probabilities of possible outcomes for samples in X.

The model need to have probability information computed at training time: fit with attribute probability
set to True.

ParametersX : array-like, shape (n_samples, n_features)

For kernel=”precomputed”, the expected shape of X is [n_samples_test,
n_samples_train]

ReturnsT : array-like, shape (n_samples, n_classes)

Returns the log-probabilities of the sample for each class in the model. The columns
correspond to the classes in sorted order, as they appear in the attribute classes_.

Notes

The probability model is created using cross validation, so the results can be slightly different than those
obtained by predict. Also, it will produce meaningless results on very small datasets.

predict_proba
Compute probabilities of possible outcomes for samples in X.

The model need to have probability information computed at training time: fit with attribute probability
set to True.

ParametersX : array-like, shape (n_samples, n_features)

For kernel=”precomputed”, the expected shape of X is [n_samples_test,
n_samples_train]

ReturnsT : array-like, shape (n_samples, n_classes)

Returns the probability of the sample for each class in the model. The columns corre-
spond to the classes in sorted order, as they appear in the attribute classes_.

Notes

The probability model is created using cross validation, so the results can be slightly different than those
obtained by predict. Also, it will produce meaningless results on very small datasets.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.
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set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.svm.NuSVC

• Non-linear SVM

sklearn.svm.SVR

class sklearn.svm.SVR(kernel=’rbf’, degree=3, gamma=’auto’, coef0=0.0, tol=0.001, C=1.0, ep-
silon=0.1, shrinking=True, cache_size=200, verbose=False, max_iter=-1)

Epsilon-Support Vector Regression.

The free parameters in the model are C and epsilon.

The implementation is based on libsvm.

Read more in the User Guide.

ParametersC : float, optional (default=1.0)

Penalty parameter C of the error term.

epsilon : float, optional (default=0.1)

Epsilon in the epsilon-SVR model. It specifies the epsilon-tube within which no penalty
is associated in the training loss function with points predicted within a distance epsilon
from the actual value.

kernel : string, optional (default=’rbf’)

Specifies the kernel type to be used in the algorithm. It must be one of ‘linear’, ‘poly’,
‘rbf’, ‘sigmoid’, ‘precomputed’ or a callable. If none is given, ‘rbf’ will be used. If a
callable is given it is used to precompute the kernel matrix.

degree : int, optional (default=3)

Degree of the polynomial kernel function (‘poly’). Ignored by all other kernels.

gamma : float, optional (default=’auto’)

Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’. If gamma is ‘auto’ then 1/n_features
will be used instead.

coef0 : float, optional (default=0.0)

Independent term in kernel function. It is only significant in ‘poly’ and ‘sigmoid’.

shrinking : boolean, optional (default=True)

Whether to use the shrinking heuristic.

tol : float, optional (default=1e-3)

Tolerance for stopping criterion.

cache_size : float, optional
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Specify the size of the kernel cache (in MB).

verbose : bool, default: False

Enable verbose output. Note that this setting takes advantage of a per-process runtime
setting in libsvm that, if enabled, may not work properly in a multithreaded context.

max_iter : int, optional (default=-1)

Hard limit on iterations within solver, or -1 for no limit.

Attributessupport_ : array-like, shape = [n_SV]

Indices of support vectors.

support_vectors_ : array-like, shape = [nSV, n_features]

Support vectors.

dual_coef_ : array, shape = [1, n_SV]

Coefficients of the support vector in the decision function.

coef_ : array, shape = [1, n_features]

Weights assigned to the features (coefficients in the primal problem). This is only avail-
able in the case of a linear kernel.

coef_ is readonly property derived from dual_coef_ and support_vectors_.

intercept_ : array, shape = [1]

Constants in decision function.

See also:

NuSVRSupport Vector Machine for regression implemented using libsvm using a parameter to control the num-
ber of support vectors.

LinearSVRScalable Linear Support Vector Machine for regression implemented using liblinear.

Examples

>>> from sklearn.svm import SVR
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> np.random.seed(0)
>>> y = np.random.randn(n_samples)
>>> X = np.random.randn(n_samples, n_features)
>>> clf = SVR(C=1.0, epsilon=0.2)
>>> clf.fit(X, y)
SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.2, gamma='auto',

kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19
fit(X, y[, sample_weight]) Fit the SVM model according to the given training data.
get_params([deep]) Get parameters for this estimator.

Continued on next page
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Table 5.229 – continued from previous page
predict(X) Perform regression on samples in X.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(kernel=’rbf’, degree=3, gamma=’auto’, coef0=0.0, tol=0.001, C=1.0, epsilon=0.1, shrink-
ing=True, cache_size=200, verbose=False, max_iter=-1)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19

Distance of the samples X to the separating hyperplane.

ParametersX : array-like, shape (n_samples, n_features)

For kernel=”precomputed”, the expected shape of X is [n_samples_test,
n_samples_train].

ReturnsX : array-like, shape (n_samples, n_class * (n_class-1) / 2)

Returns the decision function of the sample for each class in the model.

fit(X, y, sample_weight=None)
Fit the SVM model according to the given training data.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features. For kernel=”precomputed”, the expected shape of X is (n_samples,
n_samples).

y : array-like, shape (n_samples,)

Target values (class labels in classification, real numbers in regression)

sample_weight : array-like, shape (n_samples,)

Per-sample weights. Rescale C per sample. Higher weights force the classifier to put
more emphasis on these points.

Returnsself : object

Returns self.

Notes

If X and y are not C-ordered and contiguous arrays of np.float64 and X is not a scipy.sparse.csr_matrix, X
and/or y may be copied.

If X is a dense array, then the other methods will not support sparse matrices as input.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.
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predict(X)
Perform regression on samples in X.

For an one-class model, +1 or -1 is returned.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

For kernel=”precomputed”, the expected shape of X is (n_samples_test,
n_samples_train).

Returnsy_pred : array, shape (n_samples,)

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.svm.SVR

• Comparison of kernel ridge regression and SVR

• Prediction Latency

• Support Vector Regression (SVR) using linear and non-linear kernels

sklearn.svm.LinearSVR

class sklearn.svm.LinearSVR(epsilon=0.0, tol=0.0001, C=1.0, loss=’epsilon_insensitive’,
fit_intercept=True, intercept_scaling=1.0, dual=True, verbose=0,
random_state=None, max_iter=1000)

Linear Support Vector Regression.

Similar to SVR with parameter kernel=’linear’, but implemented in terms of liblinear rather than libsvm, so it
has more flexibility in the choice of penalties and loss functions and should scale better to large numbers of
samples.
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This class supports both dense and sparse input.

Read more in the User Guide.

ParametersC : float, optional (default=1.0)

Penalty parameter C of the error term. The penalty is a squared l2 penalty. The bigger
this parameter, the less regularization is used.

loss : string, ‘epsilon_insensitive’ or ‘squared_epsilon_insensitive’ (de-
fault=’epsilon_insensitive’)

Specifies the loss function. ‘l1’ is the epsilon-insensitive loss (standard SVR) while ‘l2’
is the squared epsilon-insensitive loss.

epsilon : float, optional (default=0.1)

Epsilon parameter in the epsilon-insensitive loss function. Note that the value of this
parameter depends on the scale of the target variable y. If unsure, set epsilon=0.

dual : bool, (default=True)

Select the algorithm to either solve the dual or primal optimization problem. Prefer
dual=False when n_samples > n_features.

tol : float, optional (default=1e-4)

Tolerance for stopping criteria.

fit_intercept : boolean, optional (default=True)

Whether to calculate the intercept for this model. If set to false, no intercept will be
used in calculations (i.e. data is expected to be already centered).

intercept_scaling : float, optional (default=1)

When self.fit_intercept is True, instance vector x becomes [x, self.intercept_scaling],
i.e. a “synthetic” feature with constant value equals to intercept_scaling is appended to
the instance vector. The intercept becomes intercept_scaling * synthetic feature weight
Note! the synthetic feature weight is subject to l1/l2 regularization as all other features.
To lessen the effect of regularization on synthetic feature weight (and therefore on the
intercept) intercept_scaling has to be increased.

verbose : int, (default=0)

Enable verbose output. Note that this setting takes advantage of a per-process runtime
setting in liblinear that, if enabled, may not work properly in a multithreaded context.

random_state : int seed, RandomState instance, or None (default=None)

The seed of the pseudo random number generator to use when shuffling the data.

max_iter : int, (default=1000)

The maximum number of iterations to be run.

Attributescoef_ : array, shape = [n_features] if n_classes == 2 else [n_classes, n_features]

Weights assigned to the features (coefficients in the primal problem). This is only avail-
able in the case of a linear kernel.

coef_ is a readonly property derived from raw_coef_ that follows the internal memory
layout of liblinear.

intercept_ : array, shape = [1] if n_classes == 2 else [n_classes]

Constants in decision function.

1702 Chapter 5. API Reference



scikit-learn user guide, Release 0.17

See also:

LinearSVCImplementation of Support Vector Machine classifier using the same library as this class (liblinear).

SVRImplementation of Support Vector Machine regression using libsvm: the kernel can be non-linear but its
SMO algorithm does not scale to large number of samples as LinearSVC does.

sklearn.linear_model.SGDRegressorSGDRegressor can optimize the same cost function as Lin-
earSVR by adjusting the penalty and loss parameters. In addition it requires less memory, allows incre-
mental (online) learning, and implements various loss functions and regularization regimes.

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
fit(X, y) Fit the model according to the given training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(epsilon=0.0, tol=0.0001, C=1.0, loss=’epsilon_insensitive’, fit_intercept=True, inter-
cept_scaling=1.0, dual=True, verbose=0, random_state=None, max_iter=1000)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19.

Decision function of the linear model.

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

fit(X, y)
Fit the model according to the given training data.

ParametersX : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target vector relative to X

Returnsself : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any
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Parameter names mapped to their values.

predict(X)
Predict using the linear model

ParametersX : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

ReturnsC : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

sklearn.svm.NuSVR

class sklearn.svm.NuSVR(nu=0.5, C=1.0, kernel=’rbf’, degree=3, gamma=’auto’, coef0=0.0, shrink-
ing=True, tol=0.001, cache_size=200, verbose=False, max_iter=-1)

Nu Support Vector Regression.

Similar to NuSVC, for regression, uses a parameter nu to control the number of support vectors. However,
unlike NuSVC, where nu replaces C, here nu replaces the parameter epsilon of epsilon-SVR.

The implementation is based on libsvm.

Read more in the User Guide.

ParametersC : float, optional (default=1.0)

Penalty parameter C of the error term.

nu : float, optional
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An upper bound on the fraction of training errors and a lower bound of the fraction of
support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken.

kernel : string, optional (default=’rbf’)

Specifies the kernel type to be used in the algorithm. It must be one of ‘linear’, ‘poly’,
‘rbf’, ‘sigmoid’, ‘precomputed’ or a callable. If none is given, ‘rbf’ will be used. If a
callable is given it is used to precompute the kernel matrix.

degree : int, optional (default=3)

Degree of the polynomial kernel function (‘poly’). Ignored by all other kernels.

gamma : float, optional (default=’auto’)

Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’. If gamma is ‘auto’ then 1/n_features
will be used instead.

coef0 : float, optional (default=0.0)

Independent term in kernel function. It is only significant in ‘poly’ and ‘sigmoid’.

shrinking : boolean, optional (default=True)

Whether to use the shrinking heuristic.

tol : float, optional (default=1e-3)

Tolerance for stopping criterion.

cache_size : float, optional

Specify the size of the kernel cache (in MB).

verbose : bool, default: False

Enable verbose output. Note that this setting takes advantage of a per-process runtime
setting in libsvm that, if enabled, may not work properly in a multithreaded context.

max_iter : int, optional (default=-1)

Hard limit on iterations within solver, or -1 for no limit.

Attributessupport_ : array-like, shape = [n_SV]

Indices of support vectors.

support_vectors_ : array-like, shape = [nSV, n_features]

Support vectors.

dual_coef_ : array, shape = [1, n_SV]

Coefficients of the support vector in the decision function.

coef_ : array, shape = [1, n_features]

Weights assigned to the features (coefficients in the primal problem). This is only avail-
able in the case of a linear kernel.

coef_ is readonly property derived from dual_coef_ and support_vectors_.

intercept_ : array, shape = [1]

Constants in decision function.

See also:
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NuSVCSupport Vector Machine for classification implemented with libsvm with a parameter to control the
number of support vectors.

SVRepsilon Support Vector Machine for regression implemented with libsvm.

Examples

>>> from sklearn.svm import NuSVR
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> np.random.seed(0)
>>> y = np.random.randn(n_samples)
>>> X = np.random.randn(n_samples, n_features)
>>> clf = NuSVR(C=1.0, nu=0.1)
>>> clf.fit(X, y)
NuSVR(C=1.0, cache_size=200, coef0=0.0, degree=3, gamma='auto',

kernel='rbf', max_iter=-1, nu=0.1, shrinking=True, tol=0.001,
verbose=False)

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19
fit(X, y[, sample_weight]) Fit the SVM model according to the given training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Perform regression on samples in X.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(nu=0.5, C=1.0, kernel=’rbf’, degree=3, gamma=’auto’, coef0=0.0, shrinking=True,
tol=0.001, cache_size=200, verbose=False, max_iter=-1)

decision_function(*args, **kwargs)
DEPRECATED: and will be removed in 0.19

Distance of the samples X to the separating hyperplane.

ParametersX : array-like, shape (n_samples, n_features)

For kernel=”precomputed”, the expected shape of X is [n_samples_test,
n_samples_train].

ReturnsX : array-like, shape (n_samples, n_class * (n_class-1) / 2)

Returns the decision function of the sample for each class in the model.

fit(X, y, sample_weight=None)
Fit the SVM model according to the given training data.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features. For kernel=”precomputed”, the expected shape of X is (n_samples,
n_samples).

y : array-like, shape (n_samples,)

Target values (class labels in classification, real numbers in regression)
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sample_weight : array-like, shape (n_samples,)

Per-sample weights. Rescale C per sample. Higher weights force the classifier to put
more emphasis on these points.

Returnsself : object

Returns self.

Notes

If X and y are not C-ordered and contiguous arrays of np.float64 and X is not a scipy.sparse.csr_matrix, X
and/or y may be copied.

If X is a dense array, then the other methods will not support sparse matrices as input.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Perform regression on samples in X.

For an one-class model, +1 or -1 is returned.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

For kernel=”precomputed”, the expected shape of X is (n_samples_test,
n_samples_train).

Returnsy_pred : array, shape (n_samples,)

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.
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set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.svm.NuSVR

• Model Complexity Influence

sklearn.svm.OneClassSVM

class sklearn.svm.OneClassSVM(kernel=’rbf’, degree=3, gamma=’auto’, coef0=0.0, tol=0.001,
nu=0.5, shrinking=True, cache_size=200, verbose=False,
max_iter=-1, random_state=None)

Unsupervised Outlier Detection.

Estimate the support of a high-dimensional distribution.

The implementation is based on libsvm.

Read more in the User Guide.

Parameterskernel : string, optional (default=’rbf’)

Specifies the kernel type to be used in the algorithm. It must be one of ‘linear’, ‘poly’,
‘rbf’, ‘sigmoid’, ‘precomputed’ or a callable. If none is given, ‘rbf’ will be used. If a
callable is given it is used to precompute the kernel matrix.

nu : float, optional

An upper bound on the fraction of training errors and a lower bound of the fraction of
support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken.

degree : int, optional (default=3)

Degree of the polynomial kernel function (‘poly’). Ignored by all other kernels.

gamma : float, optional (default=’auto’)

Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’. If gamma is ‘auto’ then 1/n_features
will be used instead.

coef0 : float, optional (default=0.0)

Independent term in kernel function. It is only significant in ‘poly’ and ‘sigmoid’.

tol : float, optional

Tolerance for stopping criterion.

shrinking : boolean, optional

Whether to use the shrinking heuristic.

cache_size : float, optional

Specify the size of the kernel cache (in MB).

verbose : bool, default: False
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Enable verbose output. Note that this setting takes advantage of a per-process runtime
setting in libsvm that, if enabled, may not work properly in a multithreaded context.

max_iter : int, optional (default=-1)

Hard limit on iterations within solver, or -1 for no limit.

random_state : int seed, RandomState instance, or None (default)

The seed of the pseudo random number generator to use when shuffling the data for
probability estimation.

Attributessupport_ : array-like, shape = [n_SV]

Indices of support vectors.

support_vectors_ : array-like, shape = [nSV, n_features]

Support vectors.

dual_coef_ : array, shape = [n_classes-1, n_SV]

Coefficients of the support vectors in the decision function.

coef_ : array, shape = [n_classes-1, n_features]

Weights assigned to the features (coefficients in the primal problem). This is only avail-
able in the case of a linear kernel.

coef_ is readonly property derived from dual_coef_ and support_vectors_

intercept_ : array, shape = [n_classes-1]

Constants in decision function.

Methods

decision_function(X) Distance of the samples X to the separating hyperplane.
fit(X[, y, sample_weight]) Detects the soft boundary of the set of samples X.
get_params([deep]) Get parameters for this estimator.
predict(X) Perform regression on samples in X.
set_params(**params) Set the parameters of this estimator.

__init__(kernel=’rbf’, degree=3, gamma=’auto’, coef0=0.0, tol=0.001, nu=0.5, shrinking=True,
cache_size=200, verbose=False, max_iter=-1, random_state=None)

decision_function(X)
Distance of the samples X to the separating hyperplane.

ParametersX : array-like, shape (n_samples, n_features)

ReturnsX : array-like, shape (n_samples,)

Returns the decision function of the samples.

fit(X, y=None, sample_weight=None, **params)
Detects the soft boundary of the set of samples X.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

Set of samples, where n_samples is the number of samples and n_features is the number
of features.
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sample_weight : array-like, shape (n_samples,)

Per-sample weights. Rescale C per sample. Higher weights force the classifier to put
more emphasis on these points.

Returnsself : object

Returns self.

Notes

If X is not a C-ordered contiguous array it is copied.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X)
Perform regression on samples in X.

For an one-class model, +1 or -1 is returned.

ParametersX : {array-like, sparse matrix}, shape (n_samples, n_features)

For kernel=”precomputed”, the expected shape of X is (n_samples_test,
n_samples_train).

Returnsy_pred : array, shape (n_samples,)

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

Examples using sklearn.svm.OneClassSVM

• Outlier detection on a real data set

• Species distribution modeling

• Libsvm GUI

• Outlier detection with several methods.

• One-class SVM with non-linear kernel (RBF)

svm.l1_min_c(X, y[, loss, fit_intercept, ...]) Return the lowest bound for C such that for C in (l1_min_C, infinity) the model is guaranteed not to be empty.
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sklearn.svm.l1_min_c

sklearn.svm.l1_min_c(X, y, loss=’squared_hinge’, fit_intercept=True, intercept_scaling=1.0)
Return the lowest bound for C such that for C in (l1_min_C, infinity) the model is guaranteed not
to be empty. This applies to l1 penalized classifiers, such as LinearSVC with penalty=’l1’ and lin-
ear_model.LogisticRegression with penalty=’l1’.

This value is valid if class_weight parameter in fit() is not set.

ParametersX : array-like or sparse matrix, shape = [n_samples, n_features]

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

y : array, shape = [n_samples]

Target vector relative to X

loss : {‘squared_hinge’, ‘log’}, default ‘squared_hinge’

Specifies the loss function. With ‘squared_hinge’ it is the squared hinge loss (a.k.a. L2
loss). With ‘log’ it is the loss of logistic regression models. ‘l2’ is accepted as an alias
for ‘squared_hinge’, for backward compatibility reasons, but should not be used in new
code.

fit_intercept : bool, default: True

Specifies if the intercept should be fitted by the model. It must match the fit() method
parameter.

intercept_scaling : float, default: 1

when fit_intercept is True, instance vector x becomes [x, intercept_scaling], i.e. a “syn-
thetic” feature with constant value equals to intercept_scaling is appended to the in-
stance vector. It must match the fit() method parameter.

Returnsl1_min_c: float :

minimum value for C

Examples using sklearn.svm.l1_min_c

• Path with L1- Logistic Regression

5.33.2 Low-level methods

svm.libsvm.fit Train the model using libsvm (low-level method)
svm.libsvm.decision_function Predict margin (libsvm name for this is predict_values)
svm.libsvm.predict Predict target values of X given a model (low-level method)
svm.libsvm.predict_proba Predict probabilities
svm.libsvm.cross_validation Binding of the cross-validation routine (low-level routine)

sklearn.svm.libsvm.fit

sklearn.svm.libsvm.fit()
Train the model using libsvm (low-level method)

ParametersX : array-like, dtype=float64, size=[n_samples, n_features]
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Y : array, dtype=float64, size=[n_samples]

target vector

svm_type : {0, 1, 2, 3, 4}, optional

Type of SVM: C_SVC, NuSVC, OneClassSVM, EpsilonSVR or NuSVR respectively.
0 by default.

kernel : {‘linear’, ‘rbf’, ‘poly’, ‘sigmoid’, ‘precomputed’}, optional

Kernel to use in the model: linear, polynomial, RBF, sigmoid or precomputed. ‘rbf’ by
default.

degree : int32, optional

Degree of the polynomial kernel (only relevant if kernel is set to polynomial), 3 by
default.

gamma : float64, optional

Gamma parameter in RBF kernel (only relevant if kernel is set to RBF). 0.1 by default.

coef0 : float64, optional

Independent parameter in poly/sigmoid kernel. 0 by default.

tol : float64, optional

Numeric stopping criterion (WRITEME). 1e-3 by default.

C : float64, optional

C parameter in C-Support Vector Classification. 1 by default.

nu : float64, optional

0.5 by default.

epsilon : double, optional

0.1 by default.

class_weight : array, dtype float64, shape (n_classes,), optional

np.empty(0) by default.

sample_weight : array, dtype float64, shape (n_samples,), optional

np.empty(0) by default.

shrinking : int, optional

1 by default.

probability : int, optional

0 by default.

cache_size : float64, optional

Cache size for gram matrix columns (in megabytes). 100 by default.

max_iter : int (-1 for no limit), optional.

Stop solver after this many iterations regardless of accuracy (XXX Currently there is no
API to know whether this kicked in.) -1 by default.

random_seed : int, optional
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Seed for the random number generator used for probability estimates. 0 by default.

Returnssupport : array, shape=[n_support]

index of support vectors

support_vectors : array, shape=[n_support, n_features]

support vectors (equivalent to X[support]). Will return an empty array in the case of
precomputed kernel.

n_class_SV : array

number of support vectors in each class.

sv_coef : array

coefficients of support vectors in decision function.

intercept : array

intercept in decision function

probA, probB : array

probability estimates, empty array for probability=False

sklearn.svm.libsvm.decision_function

sklearn.svm.libsvm.decision_function()
Predict margin (libsvm name for this is predict_values)

We have to reconstruct model and parameters to make sure we stay in sync with the python object.

sklearn.svm.libsvm.predict

sklearn.svm.libsvm.predict()
Predict target values of X given a model (low-level method)

ParametersX: array-like, dtype=float, size=[n_samples, n_features] :

svm_type : {0, 1, 2, 3, 4}

Type of SVM: C SVC, nu SVC, one class, epsilon SVR, nu SVR

kernel : {‘linear’, ‘rbf’, ‘poly’, ‘sigmoid’, ‘precomputed’}

Type of kernel.

degree : int

Degree of the polynomial kernel.

gamma : float

Gamma parameter in RBF kernel.

coef0 : float

Independent parameter in poly/sigmoid kernel.

Returnsdec_values : array

predicted values.
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sklearn.svm.libsvm.predict_proba

sklearn.svm.libsvm.predict_proba()
Predict probabilities

svm_model stores all parameters needed to predict a given value.

For speed, all real work is done at the C level in function copy_predict (libsvm_helper.c).

We have to reconstruct model and parameters to make sure we stay in sync with the python object.

See sklearn.svm.predict for a complete list of parameters.

ParametersX: array-like, dtype=float :

kernel : {‘linear’, ‘rbf’, ‘poly’, ‘sigmoid’, ‘precomputed’}

Returnsdec_values : array

predicted values.

sklearn.svm.libsvm.cross_validation

sklearn.svm.libsvm.cross_validation()
Binding of the cross-validation routine (low-level routine)

ParametersX: array-like, dtype=float, size=[n_samples, n_features] :

Y: array, dtype=float, size=[n_samples] :

target vector

svm_type : {0, 1, 2, 3, 4}

Type of SVM: C SVC, nu SVC, one class, epsilon SVR, nu SVR

kernel : {‘linear’, ‘rbf’, ‘poly’, ‘sigmoid’, ‘precomputed’}

Kernel to use in the model: linear, polynomial, RBF, sigmoid or precomputed.

degree : int

Degree of the polynomial kernel (only relevant if kernel is set to polynomial)

gamma : float

Gamma parameter in RBF kernel (only relevant if kernel is set to RBF)

coef0 : float

Independent parameter in poly/sigmoid kernel.

tol : float

Stopping criteria.

C : float

C parameter in C-Support Vector Classification

nu : float

cache_size : float

random_seed : int, optional

Seed for the random number generator used for probability estimates. 0 by default.
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Returnstarget : array, float

5.34 sklearn.tree: Decision Trees

The sklearn.tree module includes decision tree-based models for classification and regression.

User guide: See the Decision Trees section for further details.

tree.DecisionTreeClassifier([criterion, ...]) A decision tree classifier.
tree.DecisionTreeRegressor([criterion, ...]) A decision tree regressor.
tree.ExtraTreeClassifier([criterion, ...]) An extremely randomized tree classifier.
tree.ExtraTreeRegressor([criterion, ...]) An extremely randomized tree regressor.

5.34.1 sklearn.tree.DecisionTreeClassifier

class sklearn.tree.DecisionTreeClassifier(criterion=’gini’, splitter=’best’, max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=None, random_state=None,
max_leaf_nodes=None, class_weight=None,
presort=False)

A decision tree classifier.

Read more in the User Guide.

Parameterscriterion : string, optional (default=”gini”)

The function to measure the quality of a split. Supported criteria are “gini” for the Gini
impurity and “entropy” for the information gain.

splitter : string, optional (default=”best”)

The strategy used to choose the split at each node. Supported strategies are “best” to
choose the best split and “random” to choose the best random split.

max_features : int, float, string or None, optional (default=None)

The number of features to consider when looking for the best split:

•If int, then consider max_features features at each split.

•If float, then max_features is a percentage and int(max_features * n_features) fea-
tures are considered at each split.

•If “auto”, then max_features=sqrt(n_features).

•If “sqrt”, then max_features=sqrt(n_features).

•If “log2”, then max_features=log2(n_features).

•If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node
samples is found, even if it requires to effectively inspect more than max_features
features.

max_depth : int or None, optional (default=None)
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The maximum depth of the tree. If None, then nodes are expanded until all leaves
are pure or until all leaves contain less than min_samples_split samples. Ignored if
max_leaf_nodes is not None.

min_samples_split : int, optional (default=2)

The minimum number of samples required to split an internal node.

min_samples_leaf : int, optional (default=1)

The minimum number of samples required to be at a leaf node.

min_weight_fraction_leaf : float, optional (default=0.)

The minimum weighted fraction of the input samples required to be at a leaf node.

max_leaf_nodes : int or None, optional (default=None)

Grow a tree with max_leaf_nodes in best-first fashion. Best nodes are defined as
relative reduction in impurity. If None then unlimited number of leaf nodes. If not None
then max_depth will be ignored.

class_weight : dict, list of dicts, “balanced” or None, optional (default=None)

Weights associated with classes in the form {class_label: weight}. If not
given, all classes are supposed to have weight one. For multi-output problems, a list of
dicts can be provided in the same order as the columns of y.

The “balanced” mode uses the values of y to automatically adjust weights inversely
proportional to class frequencies in the input data as n_samples / (n_classes

* np.bincount(y))

For multi-output, the weights of each column of y will be multiplied.

Note that these weights will be multiplied with sample_weight (passed through the fit
method) if sample_weight is specified.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

presort : bool, optional (default=False)

Whether to presort the data to speed up the finding of best splits in fitting. For the
default settings of a decision tree on large datasets, setting this to true may slow down
the training process. When using either a smaller dataset or a restricted depth, this may
speed up the training.

Attributesclasses_ : array of shape = [n_classes] or a list of such arrays

The classes labels (single output problem), or a list of arrays of class labels (multi-output
problem).

feature_importances_ : array of shape = [n_features]

The feature importances. The higher, the more important the feature. The importance
of a feature is computed as the (normalized) total reduction of the criterion brought by
that feature. It is also known as the Gini importance [R66].

max_features_ : int,

The inferred value of max_features.

n_classes_ : int or list
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The number of classes (for single output problems), or a list containing the number of
classes for each output (for multi-output problems).

n_features_ : int

The number of features when fit is performed.

n_outputs_ : int

The number of outputs when fit is performed.

tree_ : Tree object

The underlying Tree object.

See also:

DecisionTreeRegressor

References

[R63], [R64], [R65], [R66]

Examples

>>> from sklearn.datasets import load_iris
>>> from sklearn.cross_validation import cross_val_score
>>> from sklearn.tree import DecisionTreeClassifier
>>> clf = DecisionTreeClassifier(random_state=0)
>>> iris = load_iris()
>>> cross_val_score(clf, iris.data, iris.target, cv=10)
...
...
array([ 1. , 0.93..., 0.86..., 0.93..., 0.93...,

0.93..., 0.93..., 1. , 0.93..., 1. ])

Methods

apply(X[, check_input]) Returns the index of the leaf that each sample is predicted as.
fit(X, y[, sample_weight, check_input, ...]) Build a decision tree from the training set (X, y).
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
predict(X[, check_input]) Predict class or regression value for X.
predict_log_proba(X) Predict class log-probabilities of the input samples X.
predict_proba(X[, check_input]) Predict class probabilities of the input samples X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.
transform(*args, **kwargs) DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19.

__init__(criterion=’gini’, splitter=’best’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, ran-
dom_state=None, max_leaf_nodes=None, class_weight=None, presort=False)

apply(X, check_input=True)
Returns the index of the leaf that each sample is predicted as.

5.34. sklearn.tree: Decision Trees 1717



scikit-learn user guide, Release 0.17

New in version 0.17.

ParametersX : array_like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

check_input : boolean, (default=True)

Allow to bypass several input checking. Don’t use this parameter unless you know what
you do.

ReturnsX_leaves : array_like, shape = [n_samples,]

For each datapoint x in X, return the index of the leaf x ends up in. Leaves are numbered
within [0; self.tree_.node_count), possibly with gaps in the numbering.

feature_importances_
Return the feature importances.

The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that
feature. It is also known as the Gini importance.

Returnsfeature_importances_ : array, shape = [n_features]

fit(X, y, sample_weight=None, check_input=True, X_idx_sorted=None)
Build a decision tree from the training set (X, y).

ParametersX : array-like or sparse matrix, shape = [n_samples, n_features]

The training input samples. Internally, it will be converted to dtype=np.float32
and if a sparse matrix is provided to a sparse csc_matrix.

y : array-like, shape = [n_samples] or [n_samples, n_outputs]

The target values (class labels in classification, real numbers in regression). In the
regression case, use dtype=np.float64 and order=’C’ for maximum efficiency.

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Splits that would create
child nodes with net zero or negative weight are ignored while searching for a split in
each node. In the case of classification, splits are also ignored if they would result in
any single class carrying a negative weight in either child node.

check_input : boolean, (default=True)

Allow to bypass several input checking. Don’t use this parameter unless you know what
you do.

X_idx_sorted : array-like, shape = [n_samples, n_features], optional

The indexes of the sorted training input samples. If many tree are grown on the same
dataset, this allows the ordering to be cached between trees. If None, the data will be
sorted here. Don’t use this parameter unless you know what to do.

Returnsself : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]
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Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X, check_input=True)
Predict class or regression value for X.

For a classification model, the predicted class for each sample in X is returned. For a regression model,
the predicted value based on X is returned.

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

check_input : boolean, (default=True)

Allow to bypass several input checking. Don’t use this parameter unless you know what
you do.

Returnsy : array of shape = [n_samples] or [n_samples, n_outputs]

The predicted classes, or the predict values.

predict_log_proba(X)
Predict class log-probabilities of the input samples X.

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returnsp : array of shape = [n_samples, n_classes], or a list of n_outputs

such arrays if n_outputs > 1. The class log-probabilities of the input samples. The order
of the classes corresponds to that in the attribute classes_.

predict_proba(X, check_input=True)
Predict class probabilities of the input samples X.

The predicted class probability is the fraction of samples of the same class in a leaf.

check_input[boolean, (default=True)] Allow to bypass several input checking. Don’t use this parameter
unless you know what you do.

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.
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Returnsp : array of shape = [n_samples, n_classes], or a list of n_outputs

such arrays if n_outputs > 1. The class probabilities of the input samples. The order of
the classes corresponds to that in the attribute classes_.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(*args, **kwargs)
DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19. Use
SelectFromModel instead.

Reduce X to its most important features.

Uses coef_ or feature_importances_ to determine the most important features. For
models with a coef_ for each class, the absolute sum over the classes is used.

ParametersX : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold[string, float or None, optional (default=None)] The threshold value to use for
feature selection. Features whose importance is greater or equal are kept while the
others are discarded. If “median” (resp. “mean”), then the threshold value is the me-
dian (resp. the mean) of the feature importances. A scaling factor (e.g., “1.25*mean”)
may also be used. If None and if available, the object attribute threshold is used.
Otherwise, “mean” is used by default.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.
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Examples using sklearn.tree.DecisionTreeClassifier

• Classifier comparison

• Plot the decision boundaries of a VotingClassifier

• Two-class AdaBoost

• Discrete versus Real AdaBoost

• Multi-class AdaBoosted Decision Trees

• Plot the decision surfaces of ensembles of trees on the iris dataset

• Plot the decision surface of a decision tree on the iris dataset

5.34.2 sklearn.tree.DecisionTreeRegressor

class sklearn.tree.DecisionTreeRegressor(criterion=’mse’, splitter=’best’, max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_features=None,
random_state=None, max_leaf_nodes=None,
presort=False)

A decision tree regressor.

Read more in the User Guide.

Parameterscriterion : string, optional (default=”mse”)

The function to measure the quality of a split. The only supported criterion is “mse”
for the mean squared error, which is equal to variance reduction as feature selection
criterion.

splitter : string, optional (default=”best”)

The strategy used to choose the split at each node. Supported strategies are “best” to
choose the best split and “random” to choose the best random split.

max_features : int, float, string or None, optional (default=None)

The number of features to consider when looking for the best split:

•If int, then consider max_features features at each split.

•If float, then max_features is a percentage and int(max_features * n_features) fea-
tures are considered at each split.

•If “auto”, then max_features=n_features.

•If “sqrt”, then max_features=sqrt(n_features).

•If “log2”, then max_features=log2(n_features).

•If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node
samples is found, even if it requires to effectively inspect more than max_features
features.

max_depth : int or None, optional (default=None)

The maximum depth of the tree. If None, then nodes are expanded until all leaves
are pure or until all leaves contain less than min_samples_split samples. Ignored if
max_leaf_nodes is not None.
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min_samples_split : int, optional (default=2)

The minimum number of samples required to split an internal node.

min_samples_leaf : int, optional (default=1)

The minimum number of samples required to be at a leaf node.

min_weight_fraction_leaf : float, optional (default=0.)

The minimum weighted fraction of the input samples required to be at a leaf node.

max_leaf_nodes : int or None, optional (default=None)

Grow a tree with max_leaf_nodes in best-first fashion. Best nodes are defined as
relative reduction in impurity. If None then unlimited number of leaf nodes. If not None
then max_depth will be ignored.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

presort : bool, optional (default=False)

Whether to presort the data to speed up the finding of best splits in fitting. For the
default settings of a decision tree on large datasets, setting this to true may slow down
the training process. When using either a smaller dataset or a restricted depth, this may
speed up the training.

Attributesfeature_importances_ : array of shape = [n_features]

The feature importances. The higher, the more important the feature. The importance
of a feature is computed as the (normalized) total reduction of the criterion brought by
that feature. It is also known as the Gini importance [R70].

max_features_ : int,

The inferred value of max_features.

n_features_ : int

The number of features when fit is performed.

n_outputs_ : int

The number of outputs when fit is performed.

tree_ : Tree object

The underlying Tree object.

See also:

DecisionTreeClassifier

References

[R67], [R68], [R69], [R70]
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Examples

>>> from sklearn.datasets import load_boston
>>> from sklearn.cross_validation import cross_val_score
>>> from sklearn.tree import DecisionTreeRegressor
>>> boston = load_boston()
>>> regressor = DecisionTreeRegressor(random_state=0)
>>> cross_val_score(regressor, boston.data, boston.target, cv=10)
...
...
array([ 0.61..., 0.57..., -0.34..., 0.41..., 0.75...,

0.07..., 0.29..., 0.33..., -1.42..., -1.77...])

Methods

apply(X[, check_input]) Returns the index of the leaf that each sample is predicted as.
fit(X, y[, sample_weight, check_input, ...]) Build a decision tree from the training set (X, y).
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
predict(X[, check_input]) Predict class or regression value for X.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.
transform(*args, **kwargs) DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19.

__init__(criterion=’mse’, splitter=’best’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, ran-
dom_state=None, max_leaf_nodes=None, presort=False)

apply(X, check_input=True)
Returns the index of the leaf that each sample is predicted as.

New in version 0.17.

ParametersX : array_like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

check_input : boolean, (default=True)

Allow to bypass several input checking. Don’t use this parameter unless you know what
you do.

ReturnsX_leaves : array_like, shape = [n_samples,]

For each datapoint x in X, return the index of the leaf x ends up in. Leaves are numbered
within [0; self.tree_.node_count), possibly with gaps in the numbering.

feature_importances_
Return the feature importances.

The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that
feature. It is also known as the Gini importance.

Returnsfeature_importances_ : array, shape = [n_features]

fit(X, y, sample_weight=None, check_input=True, X_idx_sorted=None)
Build a decision tree from the training set (X, y).

5.34. sklearn.tree: Decision Trees 1723



scikit-learn user guide, Release 0.17

ParametersX : array-like or sparse matrix, shape = [n_samples, n_features]

The training input samples. Internally, it will be converted to dtype=np.float32
and if a sparse matrix is provided to a sparse csc_matrix.

y : array-like, shape = [n_samples] or [n_samples, n_outputs]

The target values (class labels in classification, real numbers in regression). In the
regression case, use dtype=np.float64 and order=’C’ for maximum efficiency.

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Splits that would create
child nodes with net zero or negative weight are ignored while searching for a split in
each node. In the case of classification, splits are also ignored if they would result in
any single class carrying a negative weight in either child node.

check_input : boolean, (default=True)

Allow to bypass several input checking. Don’t use this parameter unless you know what
you do.

X_idx_sorted : array-like, shape = [n_samples, n_features], optional

The indexes of the sorted training input samples. If many tree are grown on the same
dataset, this allows the ordering to be cached between trees. If None, the data will be
sorted here. Don’t use this parameter unless you know what to do.

Returnsself : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X, check_input=True)
Predict class or regression value for X.

For a classification model, the predicted class for each sample in X is returned. For a regression model,
the predicted value based on X is returned.
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ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

check_input : boolean, (default=True)

Allow to bypass several input checking. Don’t use this parameter unless you know what
you do.

Returnsy : array of shape = [n_samples] or [n_samples, n_outputs]

The predicted classes, or the predict values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(*args, **kwargs)
DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19. Use
SelectFromModel instead.

Reduce X to its most important features.

Uses coef_ or feature_importances_ to determine the most important features. For
models with a coef_ for each class, the absolute sum over the classes is used.

ParametersX : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold[string, float or None, optional (default=None)] The threshold value to use for
feature selection. Features whose importance is greater or equal are kept while the
others are discarded. If “median” (resp. “mean”), then the threshold value is the me-
dian (resp. the mean) of the feature importances. A scaling factor (e.g., “1.25*mean”)
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may also be used. If None and if available, the object attribute threshold is used.
Otherwise, “mean” is used by default.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

Examples using sklearn.tree.DecisionTreeRegressor

• Decision Tree Regression with AdaBoost

• Single estimator versus bagging: bias-variance decomposition

• Decision Tree Regression

• Multi-output Decision Tree Regression

5.34.3 sklearn.tree.ExtraTreeClassifier

class sklearn.tree.ExtraTreeClassifier(criterion=’gini’, splitter=’random’, max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_features=’auto’,
random_state=None, max_leaf_nodes=None,
class_weight=None)

An extremely randomized tree classifier.

Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate
the samples of a node into two groups, random splits are drawn for each of the max_features randomly selected
features and the best split among those is chosen. When max_features is set 1, this amounts to building a totally
random decision tree.

Warning: Extra-trees should only be used within ensemble methods.

Read more in the User Guide.

See also:

ExtraTreeRegressor, ExtraTreesClassifier, ExtraTreesRegressor

References

[R202]

Methods

apply(X[, check_input]) Returns the index of the leaf that each sample is predicted as.
fit(X, y[, sample_weight, check_input, ...]) Build a decision tree from the training set (X, y).
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
predict(X[, check_input]) Predict class or regression value for X.
predict_log_proba(X) Predict class log-probabilities of the input samples X.
predict_proba(X[, check_input]) Predict class probabilities of the input samples X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.

Continued on next page
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Table 5.238 – continued from previous page
transform(*args, **kwargs) DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19.

__init__(criterion=’gini’, splitter=’random’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’, ran-
dom_state=None, max_leaf_nodes=None, class_weight=None)

apply(X, check_input=True)
Returns the index of the leaf that each sample is predicted as.

New in version 0.17.

ParametersX : array_like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

check_input : boolean, (default=True)

Allow to bypass several input checking. Don’t use this parameter unless you know what
you do.

ReturnsX_leaves : array_like, shape = [n_samples,]

For each datapoint x in X, return the index of the leaf x ends up in. Leaves are numbered
within [0; self.tree_.node_count), possibly with gaps in the numbering.

feature_importances_
Return the feature importances.

The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that
feature. It is also known as the Gini importance.

Returnsfeature_importances_ : array, shape = [n_features]

fit(X, y, sample_weight=None, check_input=True, X_idx_sorted=None)
Build a decision tree from the training set (X, y).

ParametersX : array-like or sparse matrix, shape = [n_samples, n_features]

The training input samples. Internally, it will be converted to dtype=np.float32
and if a sparse matrix is provided to a sparse csc_matrix.

y : array-like, shape = [n_samples] or [n_samples, n_outputs]

The target values (class labels in classification, real numbers in regression). In the
regression case, use dtype=np.float64 and order=’C’ for maximum efficiency.

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Splits that would create
child nodes with net zero or negative weight are ignored while searching for a split in
each node. In the case of classification, splits are also ignored if they would result in
any single class carrying a negative weight in either child node.

check_input : boolean, (default=True)

Allow to bypass several input checking. Don’t use this parameter unless you know what
you do.

X_idx_sorted : array-like, shape = [n_samples, n_features], optional

The indexes of the sorted training input samples. If many tree are grown on the same
dataset, this allows the ordering to be cached between trees. If None, the data will be
sorted here. Don’t use this parameter unless you know what to do.
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Returnsself : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X, check_input=True)
Predict class or regression value for X.

For a classification model, the predicted class for each sample in X is returned. For a regression model,
the predicted value based on X is returned.

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

check_input : boolean, (default=True)

Allow to bypass several input checking. Don’t use this parameter unless you know what
you do.

Returnsy : array of shape = [n_samples] or [n_samples, n_outputs]

The predicted classes, or the predict values.

predict_log_proba(X)
Predict class log-probabilities of the input samples X.

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returnsp : array of shape = [n_samples, n_classes], or a list of n_outputs

such arrays if n_outputs > 1. The class log-probabilities of the input samples. The order
of the classes corresponds to that in the attribute classes_.
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predict_proba(X, check_input=True)
Predict class probabilities of the input samples X.

The predicted class probability is the fraction of samples of the same class in a leaf.

check_input[boolean, (default=True)] Allow to bypass several input checking. Don’t use this parameter
unless you know what you do.

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returnsp : array of shape = [n_samples, n_classes], or a list of n_outputs

such arrays if n_outputs > 1. The class probabilities of the input samples. The order of
the classes corresponds to that in the attribute classes_.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(*args, **kwargs)
DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19. Use
SelectFromModel instead.

Reduce X to its most important features.

Uses coef_ or feature_importances_ to determine the most important features. For
models with a coef_ for each class, the absolute sum over the classes is used.

ParametersX : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold[string, float or None, optional (default=None)] The threshold value to use for
feature selection. Features whose importance is greater or equal are kept while the
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others are discarded. If “median” (resp. “mean”), then the threshold value is the me-
dian (resp. the mean) of the feature importances. A scaling factor (e.g., “1.25*mean”)
may also be used. If None and if available, the object attribute threshold is used.
Otherwise, “mean” is used by default.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

5.34.4 sklearn.tree.ExtraTreeRegressor

class sklearn.tree.ExtraTreeRegressor(criterion=’mse’, splitter=’random’, max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_features=’auto’,
random_state=None, max_leaf_nodes=None)

An extremely randomized tree regressor.

Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate
the samples of a node into two groups, random splits are drawn for each of the max_features randomly selected
features and the best split among those is chosen. When max_features is set 1, this amounts to building a totally
random decision tree.

Warning: Extra-trees should only be used within ensemble methods.

Read more in the User Guide.

See also:

ExtraTreeClassifier, ExtraTreesClassifier, ExtraTreesRegressor

References

[R203]

Methods

apply(X[, check_input]) Returns the index of the leaf that each sample is predicted as.
fit(X, y[, sample_weight, check_input, ...]) Build a decision tree from the training set (X, y).
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
predict(X[, check_input]) Predict class or regression value for X.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.
transform(*args, **kwargs) DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19.

__init__(criterion=’mse’, splitter=’random’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’, ran-
dom_state=None, max_leaf_nodes=None)

apply(X, check_input=True)
Returns the index of the leaf that each sample is predicted as.

New in version 0.17.

ParametersX : array_like or sparse matrix, shape = [n_samples, n_features]
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The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

check_input : boolean, (default=True)

Allow to bypass several input checking. Don’t use this parameter unless you know what
you do.

ReturnsX_leaves : array_like, shape = [n_samples,]

For each datapoint x in X, return the index of the leaf x ends up in. Leaves are numbered
within [0; self.tree_.node_count), possibly with gaps in the numbering.

feature_importances_
Return the feature importances.

The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that
feature. It is also known as the Gini importance.

Returnsfeature_importances_ : array, shape = [n_features]

fit(X, y, sample_weight=None, check_input=True, X_idx_sorted=None)
Build a decision tree from the training set (X, y).

ParametersX : array-like or sparse matrix, shape = [n_samples, n_features]

The training input samples. Internally, it will be converted to dtype=np.float32
and if a sparse matrix is provided to a sparse csc_matrix.

y : array-like, shape = [n_samples] or [n_samples, n_outputs]

The target values (class labels in classification, real numbers in regression). In the
regression case, use dtype=np.float64 and order=’C’ for maximum efficiency.

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Splits that would create
child nodes with net zero or negative weight are ignored while searching for a split in
each node. In the case of classification, splits are also ignored if they would result in
any single class carrying a negative weight in either child node.

check_input : boolean, (default=True)

Allow to bypass several input checking. Don’t use this parameter unless you know what
you do.

X_idx_sorted : array-like, shape = [n_samples, n_features], optional

The indexes of the sorted training input samples. If many tree are grown on the same
dataset, this allows the ordering to be cached between trees. If None, the data will be
sorted here. Don’t use this parameter unless you know what to do.

Returnsself : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

ParametersX : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]
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Target values.

ReturnsX_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parametersdeep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returnsparams : mapping of string to any

Parameter names mapped to their values.

predict(X, check_input=True)
Predict class or regression value for X.

For a classification model, the predicted class for each sample in X is returned. For a regression model,
the predicted value based on X is returned.

ParametersX : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

check_input : boolean, (default=True)

Allow to bypass several input checking. Don’t use this parameter unless you know what
you do.

Returnsy : array of shape = [n_samples] or [n_samples, n_outputs]

The predicted classes, or the predict values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) **
2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

ParametersX : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returnsscore : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

1732 Chapter 5. API Reference



scikit-learn user guide, Release 0.17

The method works on simple estimators as well as on nested objects (such as pipelines). The former have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returnsself :

transform(*args, **kwargs)
DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19. Use
SelectFromModel instead.

Reduce X to its most important features.

Uses coef_ or feature_importances_ to determine the most important features. For
models with a coef_ for each class, the absolute sum over the classes is used.

ParametersX : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold[string, float or None, optional (default=None)] The threshold value to use for
feature selection. Features whose importance is greater or equal are kept while the
others are discarded. If “median” (resp. “mean”), then the threshold value is the me-
dian (resp. the mean) of the feature importances. A scaling factor (e.g., “1.25*mean”)
may also be used. If None and if available, the object attribute threshold is used.
Otherwise, “mean” is used by default.

ReturnsX_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

tree.export_graphviz(decision_tree[, ...]) Export a decision tree in DOT format.

5.34.5 sklearn.tree.export_graphviz

sklearn.tree.export_graphviz(decision_tree, out_file=’tree.dot’, max_depth=None, fea-
ture_names=None, class_names=None, label=’all’, filled=False,
leaves_parallel=False, impurity=True, node_ids=False,
proportion=False, rotate=False, rounded=False, spe-
cial_characters=False)

Export a decision tree in DOT format.

This function generates a GraphViz representation of the decision tree, which is then written into out_file. Once
exported, graphical renderings can be generated using, for example:

$ dot -Tps tree.dot -o tree.ps (PostScript format)
$ dot -Tpng tree.dot -o tree.png (PNG format)

The sample counts that are shown are weighted with any sample_weights that might be present.

Read more in the User Guide.

Parametersdecision_tree : decision tree classifier

The decision tree to be exported to GraphViz.

out_file : file object or string, optional (default=”tree.dot”)

Handle or name of the output file.

max_depth : int, optional (default=None)
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The maximum depth of the representation. If None, the tree is fully generated.

feature_names : list of strings, optional (default=None)

Names of each of the features.

class_names : list of strings, bool or None, optional (default=None)

Names of each of the target classes in ascending numerical order. Only relevant for clas-
sification and not supported for multi-output. If True, shows a symbolic representation
of the class name.

label : {‘all’, ‘root’, ‘none’}, optional (default=’all’)

Whether to show informative labels for impurity, etc. Options include ‘all’ to show at
every node, ‘root’ to show only at the top root node, or ‘none’ to not show at any node.

filled : bool, optional (default=False)

When set to True, paint nodes to indicate majority class for classification, extremity of
values for regression, or purity of node for multi-output.

leaves_parallel : bool, optional (default=False)

When set to True, draw all leaf nodes at the bottom of the tree.

impurity : bool, optional (default=True)

When set to True, show the impurity at each node.

node_ids : bool, optional (default=False)

When set to True, show the ID number on each node.

proportion : bool, optional (default=False)

When set to True, change the display of ‘values’ and/or ‘samples’ to be proportions
and percentages respectively.

rotate : bool, optional (default=False)

When set to True, orient tree left to right rather than top-down.

rounded : bool, optional (default=False)

When set to True, draw node boxes with rounded corners and use Helvetica fonts
instead of Times-Roman.

special_characters : bool, optional (default=False)

When set to False, ignore special characters for PostScript compatibility.

Examples

>>> from sklearn.datasets import load_iris
>>> from sklearn import tree

>>> clf = tree.DecisionTreeClassifier()
>>> iris = load_iris()

>>> clf = clf.fit(iris.data, iris.target)
>>> tree.export_graphviz(clf,
... out_file='tree.dot')
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5.35 sklearn.utils: Utilities

The sklearn.utils module includes various utilities.

Developer guide: See the Utilities for Developers page for further details.

utils.check_random_state(seed) Turn seed into a np.random.RandomState instance
utils.estimator_checks.check_estimator(Estimator) Check if estimator adheres to sklearn conventions.
utils.resample(*arrays, **options) Resample arrays or sparse matrices in a consistent way
utils.shuffle(*arrays, **options) Shuffle arrays or sparse matrices in a consistent way

5.35.1 sklearn.utils.check_random_state

sklearn.utils.check_random_state(seed)
Turn seed into a np.random.RandomState instance

If seed is None, return the RandomState singleton used by np.random. If seed is an int, return a new Ran-
domState instance seeded with seed. If seed is already a RandomState instance, return it. Otherwise raise
ValueError.

Examples using sklearn.utils.check_random_state

• Isotonic Regression

• Face completion with a multi-output estimators

• Empirical evaluation of the impact of k-means initialization

• Manifold Learning methods on a severed sphere

• Scaling the regularization parameter for SVCs

5.35.2 sklearn.utils.estimator_checks.check_estimator

sklearn.utils.estimator_checks.check_estimator(Estimator)
Check if estimator adheres to sklearn conventions.

This estimator will run an extensive test-suite for input validation, shapes, etc. Additional tests for classifiers,
regressors, clustering or transformers will be run if the Estimator class inherits from the corresponding mixin
from sklearn.base.

ParametersEstimator : class

Class to check.

5.35.3 sklearn.utils.resample

sklearn.utils.resample(*arrays, **options)
Resample arrays or sparse matrices in a consistent way

The default strategy implements one step of the bootstrapping procedure.

Parameters*arrays : sequence of indexable data-structures

Indexable data-structures can be arrays, lists, dataframes or scipy sparse matrices with
consistent first dimension.
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replace : boolean, True by default

Implements resampling with replacement. If False, this will implement (sliced) random
permutations.

n_samples : int, None by default

Number of samples to generate. If left to None this is automatically set to the first
dimension of the arrays.

random_state : int or RandomState instance

Control the shuffling for reproducible behavior.

Returnsresampled_arrays : sequence of indexable data-structures

Sequence of resampled views of the collections. The original arrays are not impacted.

See also:

sklearn.utils.shuffle

Examples

It is possible to mix sparse and dense arrays in the same run:

>>> X = np.array([[1., 0.], [2., 1.], [0., 0.]])
>>> y = np.array([0, 1, 2])

>>> from scipy.sparse import coo_matrix
>>> X_sparse = coo_matrix(X)

>>> from sklearn.utils import resample
>>> X, X_sparse, y = resample(X, X_sparse, y, random_state=0)
>>> X
array([[ 1., 0.],

[ 2., 1.],
[ 1., 0.]])

>>> X_sparse
<3x2 sparse matrix of type '<... 'numpy.float64'>'

with 4 stored elements in Compressed Sparse Row format>

>>> X_sparse.toarray()
array([[ 1., 0.],

[ 2., 1.],
[ 1., 0.]])

>>> y
array([0, 1, 0])

>>> resample(y, n_samples=2, random_state=0)
array([0, 1])

5.35.4 sklearn.utils.shuffle

sklearn.utils.shuffle(*arrays, **options)
Shuffle arrays or sparse matrices in a consistent way
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This is a convenience alias to resample(*arrays, replace=False) to do random permutations of the
collections.

Parameters*arrays : sequence of indexable data-structures

Indexable data-structures can be arrays, lists, dataframes or scipy sparse matrices with
consistent first dimension.

random_state : int or RandomState instance

Control the shuffling for reproducible behavior.

n_samples : int, None by default

Number of samples to generate. If left to None this is automatically set to the first
dimension of the arrays.

Returnsshuffled_arrays : sequence of indexable data-structures

Sequence of shuffled views of the collections. The original arrays are not impacted.

See also:

sklearn.utils.resample

Examples

It is possible to mix sparse and dense arrays in the same run:

>>> X = np.array([[1., 0.], [2., 1.], [0., 0.]])
>>> y = np.array([0, 1, 2])

>>> from scipy.sparse import coo_matrix
>>> X_sparse = coo_matrix(X)

>>> from sklearn.utils import shuffle
>>> X, X_sparse, y = shuffle(X, X_sparse, y, random_state=0)
>>> X
array([[ 0., 0.],

[ 2., 1.],
[ 1., 0.]])

>>> X_sparse
<3x2 sparse matrix of type '<... 'numpy.float64'>'

with 3 stored elements in Compressed Sparse Row format>

>>> X_sparse.toarray()
array([[ 0., 0.],

[ 2., 1.],
[ 1., 0.]])

>>> y
array([2, 1, 0])

>>> shuffle(y, n_samples=2, random_state=0)
array([0, 1])

Examples using sklearn.utils.shuffle

• Model Complexity Influence
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• Color Quantization using K-Means

• Empirical evaluation of the impact of k-means initialization

• Gradient Boosting regression
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CHAPTER

SIX

DEVELOPER’S GUIDE

6.1 Contributing

This project is a community effort, and everyone is welcome to contribute.

The project is hosted on http://github.com/scikit-learn/scikit-learn

Scikit-learn is somewhat selective when it comes to adding new algorithms, and the best way to contribute and to help
the project is to start working on known issues. See Easy Issues to get started.

6.1.1 Submitting a bug report

In case you experience issues using this package, do not hesitate to submit a ticket to the Bug Tracker. You are also
welcome to post feature requests or pull requests.

6.1.2 Retrieving the latest code

We use Git for version control and GitHub for hosting our main repository.

You can check out the latest sources with the command:

git clone git://github.com/scikit-learn/scikit-learn.git

or if you have write privileges:

git clone git@github.com:scikit-learn/scikit-learn.git

If you run the development version, it is cumbersome to reinstall the package each time you update the sources. It is
thus preferred that you add the scikit-learn directory to your PYTHONPATH and build the extension in place:

python setup.py build_ext --inplace

Another option is to use the develop option if you change your code a lot and do not want to have to reinstall every
time. This basically builds the extension in place and creates a link to the development directory (see the setuptool
docs):

python setup.py develop

Note: if you decide to do that you have to rerun:

python setup.py build_ext --inplace
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every time the source code of a compiled extension is changed (for instance when switching branches or pulling
changes from upstream).

On Unix-like systems, you can simply type make in the top-level folder to build in-place and launch all the tests. Have
a look at the Makefile for additional utilities.

6.1.3 Contributing code

Note: To avoid duplicating work, it is highly advised that you contact the developers on the mailing list before starting
work on a non-trivial feature.

https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

How to contribute

The preferred way to contribute to scikit-learn is to fork the main repository on GitHub, then submit a “pull request”
(PR):

1. Create an account on GitHub if you do not already have one.

2. Fork the project repository: click on the ‘Fork’ button near the top of the page. This creates a copy of the code
under your account on the GitHub server.

3. Clone this copy to your local disk:

$ git clone git@github.com:YourLogin/scikit-learn.git

4. Create a branch to hold your changes:

$ git checkout -b my-feature

and start making changes. Never work in the master branch!

5. Work on this copy, on your computer, using Git to do the version control. When you’re done editing, do:

$ git add modified_files
$ git commit

to record your changes in Git, then push them to GitHub with:

$ git push -u origin my-feature

Finally, go to the web page of the your fork of the scikit-learn repo, and click ‘Pull request’ to send your changes to
the maintainers for review. You may want to consider sending an email to the mailing list for more visibility.

Note: In the above setup, your origin remote repository points to YourLogin/scikit-learn.git. If you wish to
fetch/merge from the main repository instead of your forked one, you will need to add another remote to use instead
of origin. If we choose the name upstream for it, the command will be:

$ git remote add upstream https://github.com/scikit-learn/scikit-learn.git

(If any of the above seems like magic to you, then look up the Git documentation on the web.)

It is recommended to check that your contribution complies with the following rules before submitting a pull request:

• Follow the coding-guidelines (see below).
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• When applicable, use the Validation tools and other code in the sklearn.utils submodule. A list of utility
routines available for developers can be found in the Utilities for Developers page.

• All public methods should have informative docstrings with sample usage presented as doctests when appropri-
ate.

• All other tests pass when everything is rebuilt from scratch. On Unix-like systems, check with (from the toplevel
source folder):

$ make

• When adding additional functionality, provide at least one example script in the examples/ folder. Have
a look at other examples for reference. Examples should demonstrate why the new functionality is useful in
practice and, if possible, compare it to other methods available in scikit-learn.

• At least one paragraph of narrative documentation with links to references in the literature (with PDF links when
possible) and the example. For more details on writing and building the documentation, see the Documentation
section.

You can also check for common programming errors with the following tools:

• Code with a good unittest coverage (at least 90%, better 100%), check with:

$ pip install nose coverage
$ nosetests --with-coverage path/to/tests_for_package

see also Testing and improving test coverage

• No pyflakes warnings, check with:

$ pip install pyflakes
$ pyflakes path/to/module.py

• No PEP8 warnings, check with:

$ pip install pep8
$ pep8 path/to/module.py

• AutoPEP8 can help you fix some of the easy redundant errors:

$ pip install autopep8
$ autopep8 path/to/pep8.py

Bonus points for contributions that include a performance analysis with a benchmark script and profiling output (please
report on the mailing list or on the GitHub wiki).

Also check out the How to optimize for speed guide for more details on profiling and Cython optimizations.

Note: The current state of the scikit-learn code base is not compliant with all of those guidelines, but we expect that
enforcing those constraints on all new contributions will get the overall code base quality in the right direction.

Note: For two very well documented and more detailed guides on development workflow, please pay a visit to the
Scipy Development Workflow - and the Astropy Workflow for Developers sections.

Easy Issues

A great way to start contributing to scikit-learn is to pick an item from the list of Easy issues in the issue tracker.
Resolving these issues allow you to start contributing to the project without much prior knowledge. Your assistance in
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this area will be greatly appreciated by the more experienced developers as it helps free up their time to concentrate
on other issues.

Documentation

We are glad to accept any sort of documentation: function docstrings, reStructuredText documents (like this one),
tutorials, etc. reStructuredText documents live in the source code repository under the doc/ directory.

You can edit the documentation using any text editor, and then generate the HTML output by typing make html from
the doc/ directory. Alternatively, make html-noplot can be used to quickly generate the documentation without
the example gallery. The resulting HTML files will be placed in _build/html/ and are viewable in a web browser. See
the README file in the doc/ directory for more information.

For building the documentation, you will need sphinx, matplotlib and pillow.

When you are writing documentation, it is important to keep a good compromise between mathematical and algo-
rithmic details, and give intuition to the reader on what the algorithm does.

Basically, to elaborate on the above, it is best to always start with a small paragraph with a hand-waving explanation of
what the method does to the data. Then, it is very helpful to point out why the feature is useful and when it should be
used - the latter also including “big O” (𝑂 (𝑔 (𝑛))) complexities of the algorithm, as opposed to just rules of thumb, as
the latter can be very machine-dependent. If those complexities are not available, then rules of thumb may be provided
instead.

Secondly, a generated figure from an example (as mentioned in the previous paragraph) should then be included to
further provide some intuition.

Next, one or two small code examples to show its use can be added.

Next, any math and equations, followed by references, can be added to further the documentation. Not starting the
documentation with the maths makes it more friendly towards users that are just interested in what the feature will do,
as opposed to how it works “under the hood”.

Finally, follow the formatting rules below to make it consistently good:

• Add “See also” in docstrings for related classes/functions.

• “See also” in docstrings should be one line per reference, with a colon and an explanation, for example:

See also
--------
SelectKBest: Select features based on the k highest scores.
SelectFpr: Select features based on a false positive rate test.

• For unwritten formatting rules, try to follow existing good works:

– For “References” in docstrings, see the Silhouette Coefficient
(sklearn.metrics.silhouette_score).

Warning: Sphinx version
While we do our best to have the documentation build under as many version of Sphinx as possible, the different
versions tend to behave slightly differently. To get the best results, you should use version 1.0.

Testing and improving test coverage

High-quality unit testing is a corner-stone of the scikit-learn development process. For this purpose, we use the nose
package. The tests are functions appropriately named, located in tests subdirectories, that check the validity of the
algorithms and the different options of the code.
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The full scikit-learn tests can be run using ‘make’ in the root folder. Alternatively, running ‘nosetests’ in a folder will
run all the tests of the corresponding subpackages.

We expect code coverage of new features to be at least around 90%.

Note: Workflow to improve test coverage
To test code coverage, you need to install the coverage package in addition to nose.

1. Run ‘make test-coverage’. The output lists for each file the line numbers that are not tested.

2. Find a low hanging fruit, looking at which lines are not tested, write or adapt a test specifically for these lines.

3. Loop.

Developers web site

More information can be found on the developer’s wiki.

Issue Tracker Tags

All issues and pull requests on the Github issue tracker should have (at least) one of the following tags:

Bug / Crash Something is happening that clearly shouldn’t happen. Wrong results as well as unexpected
errors from estimators go here.

Cleanup / Enhancement Improving performance, usability, consistency.

Documentation Missing, incorrect or sub-standard documentations and examples.

New Feature Feature requests and pull requests implementing a new feature.

There are two other tags to help new contributors:

Easy This issue can be tackled by anyone, no experience needed. Ask for help if the formulation is
unclear.

Moderate Might need some knowledge of machine learning or the package, but is still approachable for
someone new to the project.

6.1.4 Other ways to contribute

Code is not the only way to contribute to scikit-learn. For instance, documentation is also a very important part of the
project and often doesn’t get as much attention as it deserves. If you find a typo in the documentation, or have made
improvements, do not hesitate to send an email to the mailing list or submit a GitHub pull request. Full documentation
can be found under the doc/ directory.

It also helps us if you spread the word: reference the project from your blog and articles, link to it from your website,
or simply say “I use it”:

6.1.5 Coding guidelines

The following are some guidelines on how new code should be written. Of course, there are special cases and there
will be exceptions to these rules. However, following these rules when submitting new code makes the review easier
so new code can be integrated in less time.

6.1. Contributing 1743

http://pypi.python.org/pypi/coverage
https://github.com/scikit-learn/scikit-learn/wiki
https://github.com/scikit-learn/scikit-learn/issues


scikit-learn user guide, Release 0.17

Uniformly formatted code makes it easier to share code ownership. The scikit-learn project tries to closely follow the
official Python guidelines detailed in PEP8 that detail how code should be formatted and indented. Please read it and
follow it.

In addition, we add the following guidelines:

• Use underscores to separate words in non class names: n_samples rather than nsamples.

• Avoid multiple statements on one line. Prefer a line return after a control flow statement (if/for).

• Use relative imports for references inside scikit-learn.

• Unit tests are an exception to the previous rule; they should use absolute imports, exactly as client
code would. A corollary is that, if sklearn.foo exports a class or function that is implemented in
sklearn.foo.bar.baz, the test should import it from sklearn.foo.

• Please don’t use import * in any case. It is considered harmful by the official Python recommendations. It
makes the code harder to read as the origin of symbols is no longer explicitly referenced, but most important, it
prevents using a static analysis tool like pyflakes to automatically find bugs in scikit-learn.

• Use the numpy docstring standard in all your docstrings.

A good example of code that we like can be found here.

Input validation

The module sklearn.utils contains various functions for doing input validation and conversion. Sometimes,
np.asarray suffices for validation; do not use np.asanyarray or np.atleast_2d, since those let NumPy’s
np.matrix through, which has a different API (e.g., * means dot product on np.matrix, but Hadamard product
on np.ndarray).

In other cases, be sure to call check_array on any array-like argument passed to a scikit-learn API function. The
exact parameters to use depends mainly on whether and which scipy.sparse matrices must be accepted.

For more information, refer to the Utilities for Developers page.

Random Numbers

If your code depends on a random number generator, do not use numpy.random.random() or similar routines.
To ensure repeatability in error checking, the routine should accept a keyword random_state and use this to con-
struct a numpy.random.RandomState object. See sklearn.utils.check_random_state in Utilities
for Developers.

Here’s a simple example of code using some of the above guidelines:

from sklearn.utils import check_array, check_random_state

def choose_random_sample(X, random_state=0):
"""
Choose a random point from X

Parameters
----------
X : array-like, shape = (n_samples, n_features)

array representing the data
random_state : RandomState or an int seed (0 by default)

A random number generator instance to define the state of the
random permutations generator.
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Returns
-------
x : numpy array, shape = (n_features,)

A random point selected from X
"""
X = check_array(X)
random_state = check_random_state(random_state)
i = random_state.randint(X.shape[0])
return X[i]

If you use randomness in an estimator instead of a freestanding function, some additional guidelines apply.

First off, the estimator should take a random_state argument to its __init__ with a default value of
None. It should store that argument’s value, unmodified, in an attribute random_state. fit can call
check_random_state on that attribute to get an actual random number generator. If, for some reason, ran-
domness is needed after fit, the RNG should be stored in an attribute random_state_. The following example
should make this clear:

class GaussianNoise(BaseEstimator, TransformerMixin):
"""This estimator ignores its input and returns random Gaussian noise.

It also does not adhere to all scikit-learn conventions,
but showcases how to handle randomness.
"""

def __init__(self, n_components=100, random_state=None):
self.random_state = random_state

# the arguments are ignored anyway, so we make them optional
def fit(self, X=None, y=None):

self.random_state_ = check_random_state(self.random_state)

def transform(self, X):
n_samples = X.shape[0]
return self.random_state_.randn(n_samples, n_components)

The reason for this setup is reproducibility: when an estimator is fit twice to the same data, it should produce an
identical model both times, hence the validation in fit, not __init__.

Deprecation

If any publicly accessible method, function, attribute or parameter is renamed, we still support the old one for two
releases and issue a deprecation warning when it is called/passed/accessed. E.g., if the function zero_one is re-
named to zero_one_loss, we add the decorator deprecated (from sklearn.utils) to zero_one and call
zero_one_loss from that function:

from ..utils import deprecated

def zero_one_loss(y_true, y_pred, normalize=True):
# actual implementation
pass

@deprecated("Function 'zero_one' has been renamed to "
"'zero_one_loss' and will be removed in release 0.15."
"Default behavior is changed from 'normalize=False' to "
"'normalize=True'")
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def zero_one(y_true, y_pred, normalize=False):
return zero_one_loss(y_true, y_pred, normalize)

If an attribute is to be deprecated, use the decorator deprecated on a property. E.g., renaming an attribute labels_
to classes_ can be done as:

@property
@deprecated("Attribute labels_ is deprecated and "

"will be removed in 0.15. Use 'classes_' instead")
def labels_(self):

return self.classes_

If a parameter has to be deprecated, use DeprecationWarning appropriately. In following example, k is depre-
cated and renamed to n_clusters:

import warnings

def example_function(n_clusters=8, k=None):
if k is not None:

warnings.warn("'k' was renamed to n_clusters and will "
"be removed in 0.15.",
DeprecationWarning)

n_clusters = k

Python 3.x support

All scikit-learn code should work unchanged in both Python 2.[67] and 3.2 or newer. Since Python 3.x is not backwards
compatible, that may require changes to code and it certainly requires testing on both 2.6 or 2.7, and 3.2 or newer.

For most numerical algorithms, Python 3.x support is easy: just remember that print is a function and integer
division is written //. String handling has been overhauled, though, as have parts of the Python standard library. The
six package helps with cross-compatibility and is included in scikit-learn as sklearn.externals.six.

6.1.6 APIs of scikit-learn objects

To have a uniform API, we try to have a common basic API for all the objects. In addition, to avoid the proliferation
of framework code, we try to adopt simple conventions and limit to a minimum the number of methods an object must
implement.

Different objects

The main objects in scikit-learn are (one class can implement multiple interfaces):

Estimator The base object, implements a fit method to learn from data, either:

estimator = obj.fit(data, targets)

or:

estimator = obj.fit(data)

Predictor For supervised learning, or some unsupervised problems, implements:

prediction = obj.predict(data)
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Classification algorithms usually also offer a way to quantify certainty of a prediction, either using
decision_function or predict_proba:

probability = obj.predict_proba(data)

Transformer For filtering or modifying the data, in a supervised or unsupervised way, implements:

new_data = obj.transform(data)

When fitting and transforming can be performed much more efficiently together than separately,
implements:

new_data = obj.fit_transform(data)

Model A model that can give a goodness of fit measure or a likelihood of unseen data, implements (higher
is better):

score = obj.score(data)

Estimators

The API has one predominant object: the estimator. A estimator is an object that fits a model based on some training
data and is capable of inferring some properties on new data. It can be, for instance, a classifier or a regressor. All
estimators implement the fit method:

estimator.fit(X, y)

All built-in estimators also have a set_params method, which sets data-independent parameters (overriding previ-
ous parameter values passed to __init__).

All estimators in the main scikit-learn codebase should inherit from sklearn.base.BaseEstimator.

Instantiation

This concerns the creation of an object. The object’s __init__ method might accept constants as arguments that
determine the estimator’s behavior (like the C constant in SVMs). It should not, however, take the actual training data
as an argument, as this is left to the fit() method:

clf2 = SVC(C=2.3)
clf3 = SVC([[1, 2], [2, 3]], [-1, 1]) # WRONG!

The arguments accepted by __init__ should all be keyword arguments with a default value. In other words, a user
should be able to instantiate an estimator without passing any arguments to it. The arguments should all correspond to
hyperparameters describing the model or the optimisation problem the estimator tries to solve. These initial arguments
(or parameters) are always remembered by the estimator. Also note that they should not be documented under the
“Attributes” section, but rather under the “Parameters” section for that estimator.

In addition, every keyword argument accepted by __init__ should correspond to an attribute on the instance.
Scikit-learn relies on this to find the relevant attributes to set on an estimator when doing model selection.

To summarize, an __init__ should look like:

def __init__(self, param1=1, param2=2):
self.param1 = param1
self.param2 = param2

There should be no logic, not even input validation, and the parameters should not be changed. The corresponding
logic should be put where the parameters are used, typically in fit. The following is wrong:
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def __init__(self, param1=1, param2=2, param3=3):
# WRONG: parameters should not be modified
if param1 > 1:

param2 += 1
self.param1 = param1
# WRONG: the object's attributes should have exactly the name of
# the argument in the constructor
self.param3 = param2

The reason for postponing the validation is that the same validation would have to be performed in set_params,
which is used in algorithms like GridSearchCV.

Fitting

The next thing you will probably want to do is to estimate some parameters in the model. This is implemented in the
fit() method.

The fit() method takes the training data as arguments, which can be one array in the case of unsupervised learning,
or two arrays in the case of supervised learning.

Note that the model is fitted using X and y, but the object holds no reference to X and y. There are, however, some
exceptions to this, as in the case of precomputed kernels where this data must be stored for use by the predict method.

Parameters
X array-like, with shape = [N, D], where N is the number of samples and D is the number of

features.
y array, with shape = [N], where N is the number of samples.
kwargs optional data-dependent parameters.

X.shape[0] should be the same as y.shape[0]. If this requisite is not met, an exception of type ValueError
should be raised.

y might be ignored in the case of unsupervised learning. However, to make it possible to use the estimator as part of
a pipeline that can mix both supervised and unsupervised transformers, even unsupervised estimators need to accept
a y=None keyword argument in the second position that is just ignored by the estimator. For the same reason,
fit_predict, fit_transform, score and partial_fitmethods need to accept a y argument in the second
place if they are implemented.

The method should return the object (self). This pattern is useful to be able to implement quick one liners in an
IPython session such as:

y_predicted = SVC(C=100).fit(X_train, y_train).predict(X_test)

Depending on the nature of the algorithm, fit can sometimes also accept additional keywords arguments. However,
any parameter that can have a value assigned prior to having access to the data should be an __init__ keyword
argument. fit parameters should be restricted to directly data dependent variables. For instance a Gram matrix
or an affinity matrix which are precomputed from the data matrix X are data dependent. A tolerance stopping criterion
tol is not directly data dependent (although the optimal value according to some scoring function probably is).

Estimated Attributes

Attributes that have been estimated from the data must always have a name ending with trailing underscore, for
example the coefficients of some regression estimator would be stored in a coef_ attribute after fit has been called.

The last-mentioned attributes are expected to be overridden when you call fit a second time without taking any
previous value into account: fit should be idempotent.
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Optional Arguments

In iterative algorithms, the number of iterations should be specified by an integer called n_iter.

6.1.7 Rolling your own estimator

If you want to implement a new estimator that is scikit-learn-compatible, whether it is just for you or for contributing
it to sklearn, there are several internals of scikit-learn that you should be aware of in addition to the sklearn API
outlined above. You can check whether your estimator adheres to the scikit-learn interface and standards by running
utils.estimator_checks.check_estimator on the class:

>>> from sklearn.utils.estimator_checks import check_estimator
>>> from sklearn.svm import LinearSVC
>>> check_estimator(LinearSVC) # passes

The main motivation to make a class compatible to the scikit-learn estimator interface might be that you want to use it
together with model assessment and selection tools such as grid_search.GridSearchCV.

For this to work, you need to implement the following interface. If a dependency on scikit-learn is okay for your code,
you can prevent a lot of boilerplate code by deriving a class from BaseEstimator and optionally the mixin classes
in sklearn.base. E.g., here’s a custom classifier:

>>> import numpy as np
>>> from sklearn.base import BaseEstimator, ClassifierMixin
>>> class MajorityClassifier(BaseEstimator, ClassifierMixin):
... """Predicts the majority class of its training data."""
... def __init__(self):
... pass
...
... def fit(self, X, y):
... self.classes_, indices = np.unique(["foo", "bar", "foo"],
... return_inverse=True)
... self.majority_ = np.argmax(np.bincount(indices))
... return self
...
... def predict(self, X):
... return np.repeat(self.classes_[self.majority_], len(X))

get_params and set_params

All sklearn estimator have get_params and set_params functions. The get_params function takes no ar-
guments and returns a dict of the __init__ parameters of the estimator, together with their values. It must take
one keyword argument, deep, which receives a boolean value that determines whether the method should return the
parameters of sub-estimators (for most estimators, this can be ignored). The default value for deep should be true.

The set_params on the other hand takes as input a dict of the form ’parameter’: value and sets the
parameter of the estimator using this dict. Return value must be estimator itself.

While the get_params mechanism is not essential (see Cloning below), the set_params function is necessary as
it is used to set parameters during grid searches.

The easiest way to implement these functions, and to get a sensible __repr__ method, is to inherit from
sklearn.base.BaseEstimator. If you do not want to make your code dependent on scikit-learn, the easi-
est way to implement the interface is:
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def get_params(self, deep=True):
# suppose this estimator has parameters "alpha" and "recursive"
return {"alpha": self.alpha, "recursive": self.recursive}

def set_params(self, **parameters):
for parameter, value in parameters.items():

self.setattr(parameter, value)
return self

Parameters and init

As grid_search.GridSearchCV uses set_params to apply parameter setting to estimators, it is essential
that calling set_params has the same effect as setting parameters using the __init__ method. The easiest
and recommended way to accomplish this is to not do any parameter validation in __init__. All logic behind
estimator parameters, like translating string arguments into functions, should be done in fit.

Also it is expected that parameters with trailing _ are not to be set inside the __init__ method. All and only the
public attributes set by fit have a trailing _. As a result the existence of parameters with trailing _ is used to check if
the estimator has been fitted.

Cloning

For using grid_search.GridSearch or any functionality of the cross_validation module, an estimator
must support the base.clone function to replicate an estimator. This can be done by providing a get_params
method. If get_params is present, then clone(estimator) will be an instance of type(estimator) on
which set_params has been called with clones of the result of estimator.get_params().

Objects that do not provide this method will be deep-copied (using the Python standard function copy.deepcopy)
if safe=False is passed to clone.

Pipeline compatibility

For an estimator to be usable together with pipeline.Pipeline in any but the last step, it needs to provide a fit
or fit_transform function. To be able to evaluate the pipeline on any data but the training set, it also needs to
provide a transform function. There are no special requirements for the last step in a pipeline, except that it has a
fit function. All fit and fit_transform functions must take arguments X, y, even if y is not used. Similarly,
for score to be usable, the last step of the pipeline needs to have a score function that accepts an optional y.

Estimator types

Some common functionality depends on the kind of estimator passed. For example, cross-validation in
grid_search.GridSearchCV and cross_validation.cross_val_score defaults to being stratified
when used on a classifier, but not otherwise. Similarly, scorers for average precision that take a continuous prediction
need to call decision_function for classifiers, but predict for regressors. This distinction between classi-
fiers and regressors is implemented using the _estimator_type attribute, which takes a string value. It should
be "classifier" for classifiers and "regressor" for regressors and "clusterer" for clustering methods,
to work as expected. Inheriting from ClassifierMixin, RegressorMixin or ClusterMixin will set the
attribute automatically.
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Working notes

For unresolved issues, TODOs, and remarks on ongoing work, developers are advised to maintain notes on the GitHub
wiki.

Specific models

Classifiers should accept y (target) arguments to fit that are sequences (lists, arrays) of either strings or integers.
They should not assume that the class labels are a contiguous range of integers; instead, they should store a list of
classes in a classes_ attribute or property. The order of class labels in this attribute should match the order in which
predict_proba, predict_log_proba and decision_function return their values. The easiest way to
achieve this is to put:

self.classes_, y = np.unique(y, return_inverse=True)

in fit. This returns a new y that contains class indexes, rather than labels, in the range [0, n_classes).

A classifier’s predict method should return arrays containing class labels from classes_. In a classifier that
implements decision_function, this can be achieved with:

def predict(self, X):
D = self.decision_function(X)
return self.classes_[np.argmax(D, axis=1)]

In linear models, coefficients are stored in an array called coef_, and the independent term is stored in intercept_.
sklearn.linear_model.base contains a few base classes and mixins that implement common linear model
patterns.

The sklearn.utils.multiclass module contains useful functions for working with multiclass and multilabel
problems.

6.2 Developers’ Tips for Debugging

6.2.1 Memory errors: debugging Cython with valgrind

While python/numpy’s built-in memory management is relatively robust, it can lead to performance penalties for some
routines. For this reason, much of the high-performance code in scikit-learn in written in cython. This performance
gain comes with a tradeoff, however: it is very easy for memory bugs to crop up in cython code, especially in situations
where that code relies heavily on pointer arithmetic.

Memory errors can manifest themselves a number of ways. The easiest ones to debug are often segmentation faults
and related glibc errors. Uninitialized variables can lead to unexpected behavior that is difficult to track down. A very
useful tool when debugging these sorts of errors is valgrind.

Valgrind is a command-line tool that can trace memory errors in a variety of code. Follow these steps:

1. Install valgrind on your system.

2. Download the python valgrind suppression file: valgrind-python.supp.

3. Follow the directions in the README.valgrind file to customize your python suppressions. If you don’t, you
will have spurious output coming related to the python interpreter instead of your own code.

4. Run valgrind as follows:

$> valgrind -v --suppressions=valgrind-python.supp python my_test_script.py
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The result will be a list of all the memory-related errors, which reference lines in the C-code generated by cython
from your .pyx file. If you examine the referenced lines in the .c file, you will see comments which indicate the
corresponding location in your .pyx source file. Hopefully the output will give you clues as to the source of your
memory error.

For more information on valgrind and the array of options it has, see the tutorials and documentation on the valgrind
web site.

6.3 Utilities for Developers

Scikit-learn contains a number of utilities to help with development. These are located in sklearn.utils, and
include tools in a number of categories. All the following functions and classes are in the module sklearn.utils.

Warning: These utilities are meant to be used internally within the scikit-learn package. They are not guaran-
teed to be stable between versions of scikit-learn. Backports, in particular, will be removed as the scikit-learn
dependencies evolve.

6.3.1 Validation Tools

These are tools used to check and validate input. When you write a function which accepts arrays, matrices, or sparse
matrices as arguments, the following should be used when applicable.

• assert_all_finite: Throw an error if array contains NaNs or Infs.

• as_float_array: convert input to an array of floats. If a sparse matrix is passed, a sparse matrix will be
returned.

• check_array: convert input to 2d array, raise error on sparse matrices. Allowed sparse matrix formats can
be given optionally, as well as allowing 1d or nd arrays. Calls assert_all_finite by default.

• check_X_y: check that X and y have consistent length, calls check_array on X, and column_or_1d on y. For
multilabel classification or multitarget regression, specify multi_output=True, in which case check_array will
be called on y.

• indexable: check that all input arrays have consistent length and can be sliced or indexed using safe_index.
This is used to validate input for cross-validation.

If your code relies on a random number generator, it should never use functions like numpy.random.random
or numpy.random.normal. This approach can lead to repeatability issues in unit tests. Instead, a
numpy.random.RandomState object should be used, which is built from a random_state argument passed
to the class or function. The function check_random_state, below, can then be used to create a random number
generator object.

• check_random_state: create a np.random.RandomState object from a parameter random_state.

– If random_state is None or np.random, then a randomly-initialized RandomState object is re-
turned.

– If random_state is an integer, then it is used to seed a new RandomState object.

– If random_state is a RandomState object, then it is passed through.

For example:

>>> from sklearn.utils import check_random_state
>>> random_state = 0
>>> random_state = check_random_state(random_state)
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>>> random_state.rand(4)
array([ 0.5488135 , 0.71518937, 0.60276338, 0.54488318])

6.3.2 Efficient Linear Algebra & Array Operations

• extmath.randomized_range_finder: construct an orthonormal matrix whose range approximates the
range of the input. This is used in extmath.randomized_svd, below.

• extmath.randomized_svd: compute the k-truncated randomized SVD. This algorithm finds the exact
truncated singular values decomposition using randomization to speed up the computations. It is particularly
fast on large matrices on which you wish to extract only a small number of components.

• arrayfuncs.cholesky_delete: (used in sklearn.linear_model.least_angle.lars_path)
Remove an item from a cholesky factorization.

• arrayfuncs.min_pos: (used in sklearn.linear_model.least_angle) Find the minimum of the
positive values within an array.

• extmath.norm: computes Euclidean (L2) vector norm by directly calling the BLAS nrm2 function. This is
more stable than scipy.linalg.norm. See Fabian’s blog post for a discussion.

• extmath.fast_logdet: efficiently compute the log of the determinant of a matrix.

• extmath.density: efficiently compute the density of a sparse vector

• extmath.safe_sparse_dot: dot product which will correctly handle scipy.sparse inputs. If the
inputs are dense, it is equivalent to numpy.dot.

• extmath.logsumexp: compute the sum of X assuming X is in the log domain. This is equivalent to calling
np.log(np.sum(np.exp(X))), but is robust to overflow/underflow errors. Note that there is similar
functionality in np.logaddexp.reduce, but because of the pairwise nature of this routine, it is slower
for large arrays. Scipy has a similar routine in scipy.misc.logsumexp (In scipy versions < 0.10, this is
found in scipy.maxentropy.logsumexp), but the scipy version does not accept an axis keyword.

• extmath.weighted_mode: an extension of scipy.stats.mode which allows each item to have a real-
valued weight.

• resample: Resample arrays or sparse matrices in a consistent way. used in shuffle, below.

• shuffle: Shuffle arrays or sparse matrices in a consistent way. Used in sklearn.cluster.k_means.

6.3.3 Efficient Random Sampling

• random.sample_without_replacement: implements efficient algorithms for sampling n_samples
integers from a population of size n_population without replacement.

6.3.4 Efficient Routines for Sparse Matrices

The sklearn.utils.sparsefuncs cython module hosts compiled extensions to efficiently process
scipy.sparse data.

• sparsefuncs.mean_variance_axis: compute the means and variances along a specified axis of a CSR
matrix. Used for normalizing the tolerance stopping criterion in sklearn.cluster.k_means_.KMeans.

• sparsefuncs.inplace_csr_row_normalize_l1 and sparsefuncs.inplace_csr_row_normalize_l2:
can be used to normalize individual sparse samples to unit L1 or L2 norm as done in
sklearn.preprocessing.Normalizer.
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• sparsefuncs.inplace_csr_column_scale: can be used to multiply the columns of a CSR ma-
trix by a constant scale (one scale per column). Used for scaling features to unit standard deviation in
sklearn.preprocessing.StandardScaler.

6.3.5 Graph Routines

• graph.single_source_shortest_path_length: (not currently used in scikit-learn) Return the
shortest path from a single source to all connected nodes on a graph. Code is adapted from networkx.
If this is ever needed again, it would be far faster to use a single iteration of Dijkstra’s algorithm from
graph_shortest_path.

• graph.graph_laplacian: (used in sklearn.cluster.spectral.spectral_embedding) Re-
turn the Laplacian of a given graph. There is specialized code for both dense and sparse connectivity matrices.

• graph_shortest_path.graph_shortest_path: (used in sklearn.manifold.Isomap) Return
the shortest path between all pairs of connected points on a directed or undirected graph. Both the Floyd-
Warshall algorithm and Dijkstra’s algorithm are available. The algorithm is most efficient when the connectivity
matrix is a scipy.sparse.csr_matrix.

6.3.6 Backports

• fixes.expit: Logistic sigmoid function. Replacement for SciPy 0.10’s scipy.special.expit.

• sparsetools.connected_components (backported from scipy.sparse.connected_components
in scipy 0.12). Used in sklearn.cluster.hierarchical, as well as in tests for
sklearn.feature_extraction.

• fixes.isclose (backported from numpy.isclose in numpy 1.8.1). In versions before 1.7, this function
was not available in numpy. Used in sklearn.metrics.

ARPACK

• arpack.eigs (backported from scipy.sparse.linalg.eigs in scipy 0.10) Sparse non-symmetric
eigenvalue decomposition using the Arnoldi method. A limited version of eigs is available in earlier scipy
versions.

• arpack.eigsh (backported from scipy.sparse.linalg.eigsh in scipy 0.10) Sparse non-symmetric
eigenvalue decomposition using the Arnoldi method. A limited version of eigsh is available in earlier scipy
versions.

• arpack.svds (backported from scipy.sparse.linalg.svds in scipy 0.10) Sparse non-symmetric
eigenvalue decomposition using the Arnoldi method. A limited version of svds is available in earlier scipy
versions.

Benchmarking

• bench.total_seconds (back-ported from timedelta.total_seconds in Python 2.7). Used in
benchmarks/bench_glm.py.

6.3.7 Testing Functions

• testing.assert_in, testing.assert_not_in: Assertions for container membership. Designed for
forward compatibility with Nose 1.0.
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• testing.assert_raise_message: Assertions for checking the error raise message.

• testing.mock_mldata_urlopen: Mocks the urlopen function to fake requests to mldata.org. Used in
tests of sklearn.datasets.

• testing.all_estimators : returns a list of all estimators in scikit-learn to test for consistent behavior
and interfaces.

6.3.8 Multiclass and multilabel utility function

• multiclass.is_multilabel: Helper function to check if the task is a multi-label classification one.

• multiclass.is_label_indicator_matrix: Helper function to check if a classification output is in
label indicator matrix format.

• multiclass.unique_labels: Helper function to extract an ordered array of unique labels from different
formats of target.

6.3.9 Helper Functions

• gen_even_slices: generator to create n-packs of slices going up to n. Used in
sklearn.decomposition.dict_learning and sklearn.cluster.k_means.

• safe_mask: Helper function to convert a mask to the format expected by the numpy array or scipy sparse
matrix on which to use it (sparse matrices support integer indices only while numpy arrays support both boolean
masks and integer indices).

• safe_sqr: Helper function for unified squaring (**2) of array-likes, matrices and sparse matrices.

6.3.10 Hash Functions

• murmurhash3_32 provides a python wrapper for the MurmurHash3_x86_32 C++ non cryptographic hash
function. This hash function is suitable for implementing lookup tables, Bloom filters, Count Min Sketch, feature
hashing and implicitly defined sparse random projections:

>>> from sklearn.utils import murmurhash3_32
>>> murmurhash3_32("some feature", seed=0) == -384616559
True

>>> murmurhash3_32("some feature", seed=0, positive=True) == 3910350737
True

The sklearn.utils.murmurhash module can also be “cimported” from other cython modules so as to
benefit from the high performance of MurmurHash while skipping the overhead of the Python interpreter.

6.3.11 Warnings and Exceptions

• deprecated: Decorator to mark a function or class as deprecated.

• ConvergenceWarning: Custom warning to catch convergence problems. Used in
sklearn.covariance.graph_lasso.
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6.4 How to optimize for speed

The following gives some practical guidelines to help you write efficient code for the scikit-learn project.

Note: While it is always useful to profile your code so as to check performance assumptions, it is also highly
recommended to review the literature to ensure that the implemented algorithm is the state of the art for the task
before investing into costly implementation optimization.

Times and times, hours of efforts invested in optimizing complicated implementation details have been rendered
irrelevant by the subsequent discovery of simple algorithmic tricks, or by using another algorithm altogether that is
better suited to the problem.

The section A sample algorithmic trick: warm restarts for cross validation gives an example of such a trick.

6.4.1 Python, Cython or C/C++?

In general, the scikit-learn project emphasizes the readability of the source code to make it easy for the project
users to dive into the source code so as to understand how the algorithm behaves on their data but also for ease of
maintainability (by the developers).

When implementing a new algorithm is thus recommended to start implementing it in Python using Numpy and
Scipy by taking care of avoiding looping code using the vectorized idioms of those libraries. In practice this means
trying to replace any nested for loops by calls to equivalent Numpy array methods. The goal is to avoid the CPU
wasting time in the Python interpreter rather than crunching numbers to fit your statistical model. It’s generally a good
idea to consider NumPy and SciPy performance tips: http://wiki.scipy.org/PerformanceTips

Sometimes however an algorithm cannot be expressed efficiently in simple vectorized Numpy code. In this case, the
recommended strategy is the following:

1. Profile the Python implementation to find the main bottleneck and isolate it in a dedicated module level func-
tion. This function will be reimplemented as a compiled extension module.

2. If there exists a well maintained BSD or MIT C/C++ implementation of the same algorithm that is not
too big, you can write a Cython wrapper for it and include a copy of the source code of the library
in the scikit-learn source tree: this strategy is used for the classes svm.LinearSVC, svm.SVC and
linear_model.LogisticRegression (wrappers for liblinear and libsvm).

3. Otherwise, write an optimized version of your Python function using Cython directly. This strategy is used for
the linear_model.ElasticNet and linear_model.SGDClassifier classes for instance.

4. Move the Python version of the function in the tests and use it to check that the results of the compiled
extension are consistent with the gold standard, easy to debug Python version.

5. Once the code is optimized (not simple bottleneck spottable by profiling), check whether it is possible to have
coarse grained parallelism that is amenable to multi-processing by using the joblib.Parallel class.

When using Cython, include the generated C source code alongside with the Cython source code. The goal is to make
it possible to install the scikit on any machine with Python, Numpy, Scipy and C/C++ compiler.

6.4.2 Fast matrix multiplications

Matrix multiplications (matrix-matrix and matrix-vector) are usually handled using the NumPy function np.dot,
but in versions of NumPy before 1.7.2 this function is suboptimal when the inputs are not both in the C (row-major)
layout; in that case, the inputs may be implicitly copied to obtain the right layout. This obviously consumes memory
and takes time.
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The function fast_dot in sklearn.utils.extmath offers a fast replacement for np.dot that prevents copies
from being made in some cases. In all other cases, it dispatches to np.dot and when the NumPy version is new
enough, it is in fact an alias for that function, making it a drop-in replacement. Example usage of fast_dot:

>>> import numpy as np
>>> from sklearn.utils.extmath import fast_dot
>>> X = np.random.random_sample([2, 10])
>>> np.allclose(np.dot(X, X.T), fast_dot(X, X.T))
True

This function operates optimally on 2-dimensional arrays, both of the same dtype, which should be either single or
double precision float. If these requirements aren’t met or the BLAS package is not available, the call is silently
dispatched to numpy.dot. If you want to be sure when the original numpy.dot has been invoked in a situation
where it is suboptimal, you can activate the related warning:

>>> import warnings
>>> from sklearn.utils.validation import NonBLASDotWarning
>>> warnings.simplefilter('always', NonBLASDotWarning)

6.4.3 Profiling Python code

In order to profile Python code we recommend to write a script that loads and prepare you data and then use the
IPython integrated profiler for interactively exploring the relevant part for the code.

Suppose we want to profile the Non Negative Matrix Factorization module of the scikit. Let us setup a new IPython
session and load the digits dataset and as in the Recognizing hand-written digits example:

In [1]: from sklearn.decomposition import NMF

In [2]: from sklearn.datasets import load_digits

In [3]: X = load_digits().data

Before starting the profiling session and engaging in tentative optimization iterations, it is important to measure the
total execution time of the function we want to optimize without any kind of profiler overhead and save it somewhere
for later reference:

In [4]: %timeit NMF(n_components=16, tol=1e-2).fit(X)
1 loops, best of 3: 1.7 s per loop

To have have a look at the overall performance profile using the %prun magic command:

In [5]: %prun -l nmf.py NMF(n_components=16, tol=1e-2).fit(X)
14496 function calls in 1.682 CPU seconds

Ordered by: internal time
List reduced from 90 to 9 due to restriction <'nmf.py'>

ncalls tottime percall cumtime percall filename:lineno(function)
36 0.609 0.017 1.499 0.042 nmf.py:151(_nls_subproblem)

1263 0.157 0.000 0.157 0.000 nmf.py:18(_pos)
1 0.053 0.053 1.681 1.681 nmf.py:352(fit_transform)

673 0.008 0.000 0.057 0.000 nmf.py:28(norm)
1 0.006 0.006 0.047 0.047 nmf.py:42(_initialize_nmf)

36 0.001 0.000 0.010 0.000 nmf.py:36(_sparseness)
30 0.001 0.000 0.001 0.000 nmf.py:23(_neg)
1 0.000 0.000 0.000 0.000 nmf.py:337(__init__)
1 0.000 0.000 1.681 1.681 nmf.py:461(fit)
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The tottime column is the most interesting: it gives to total time spent executing the code of a given function
ignoring the time spent in executing the sub-functions. The real total time (local code + sub-function calls) is given by
the cumtime column.

Note the use of the -l nmf.py that restricts the output to lines that contains the “nmf.py” string. This is useful to
have a quick look at the hotspot of the nmf Python module it-self ignoring anything else.

Here is the beginning of the output of the same command without the -l nmf.py filter:

In [5] %prun NMF(n_components=16, tol=1e-2).fit(X)
16159 function calls in 1.840 CPU seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)
2833 0.653 0.000 0.653 0.000 {numpy.core._dotblas.dot}

46 0.651 0.014 1.636 0.036 nmf.py:151(_nls_subproblem)
1397 0.171 0.000 0.171 0.000 nmf.py:18(_pos)
2780 0.167 0.000 0.167 0.000 {method 'sum' of 'numpy.ndarray' objects}

1 0.064 0.064 1.840 1.840 nmf.py:352(fit_transform)
1542 0.043 0.000 0.043 0.000 {method 'flatten' of 'numpy.ndarray' objects}
337 0.019 0.000 0.019 0.000 {method 'all' of 'numpy.ndarray' objects}

2734 0.011 0.000 0.181 0.000 fromnumeric.py:1185(sum)
2 0.010 0.005 0.010 0.005 {numpy.linalg.lapack_lite.dgesdd}

748 0.009 0.000 0.065 0.000 nmf.py:28(norm)
...

The above results show that the execution is largely dominated by dot products operations (delegated to blas). Hence
there is probably no huge gain to expect by rewriting this code in Cython or C/C++: in this case out of the 1.7s total
execution time, almost 0.7s are spent in compiled code we can consider optimal. By rewriting the rest of the Python
code and assuming we could achieve a 1000% boost on this portion (which is highly unlikely given the shallowness
of the Python loops), we would not gain more than a 2.4x speed-up globally.

Hence major improvements can only be achieved by algorithmic improvements in this particular example (e.g.
trying to find operation that are both costly and useless to avoid computing then rather than trying to optimize their
implementation).

It is however still interesting to check what’s happening inside the _nls_subproblem function which is the hotspot
if we only consider Python code: it takes around 100% of the cumulated time of the module. In order to better
understand the profile of this specific function, let us install line-prof and wire it to IPython:

$ pip install line-profiler

• Under IPython <= 0.10, edit ~/.ipython/ipy_user_conf.py and ensure the following lines are
present:

import IPython.ipapi
ip = IPython.ipapi.get()

Towards the end of the file, define the %lprun magic:

import line_profiler
ip.expose_magic('lprun', line_profiler.magic_lprun)

• Under IPython 0.11+, first create a configuration profile:

$ ipython profile create

Then create a file named ~/.ipython/extensions/line_profiler_ext.pywith the following con-
tent:
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import line_profiler

def load_ipython_extension(ip):
ip.define_magic('lprun', line_profiler.magic_lprun)

Then register it in ~/.ipython/profile_default/ipython_config.py:

c.TerminalIPythonApp.extensions = [
'line_profiler_ext',

]
c.InteractiveShellApp.extensions = [

'line_profiler_ext',
]

This will register the %lprun magic command in the IPython terminal application and the other frontends such
as qtconsole and notebook.

Now restart IPython and let us use this new toy:

In [1]: from sklearn.datasets import load_digits

In [2]: from sklearn.decomposition.nmf import _nls_subproblem, NMF

In [3]: X = load_digits().data

In [4]: %lprun -f _nls_subproblem NMF(n_components=16, tol=1e-2).fit(X)
Timer unit: 1e-06 s

File: sklearn/decomposition/nmf.py
Function: _nls_subproblem at line 137
Total time: 1.73153 s

Line # Hits Time Per Hit % Time Line Contents
==============================================================

137 def _nls_subproblem(V, W, H_init, tol, max_iter):
138 """Non-negative least square solver
...
170 """
171 48 5863 122.1 0.3 if (H_init < 0).any():
172 raise ValueError("Negative values in H_init passed to NLS solver.")
173
174 48 139 2.9 0.0 H = H_init
175 48 112141 2336.3 5.8 WtV = np.dot(W.T, V)
176 48 16144 336.3 0.8 WtW = np.dot(W.T, W)
177
178 # values justified in the paper
179 48 144 3.0 0.0 alpha = 1
180 48 113 2.4 0.0 beta = 0.1
181 638 1880 2.9 0.1 for n_iter in xrange(1, max_iter + 1):
182 638 195133 305.9 10.2 grad = np.dot(WtW, H) - WtV
183 638 495761 777.1 25.9 proj_gradient = norm(grad[np.logical_or(grad < 0, H > 0)])
184 638 2449 3.8 0.1 if proj_gradient < tol:
185 48 130 2.7 0.0 break
186
187 1474 4474 3.0 0.2 for inner_iter in xrange(1, 20):
188 1474 83833 56.9 4.4 Hn = H - alpha * grad
189 # Hn = np.where(Hn > 0, Hn, 0)
190 1474 194239 131.8 10.1 Hn = _pos(Hn)
191 1474 48858 33.1 2.5 d = Hn - H
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192 1474 150407 102.0 7.8 gradd = np.sum(grad * d)
193 1474 515390 349.7 26.9 dQd = np.sum(np.dot(WtW, d) * d)
...

By looking at the top values of the % Time column it is really easy to pin-point the most expensive expressions that
would deserve additional care.

6.4.4 Memory usage profiling

You can analyze in detail the memory usage of any Python code with the help of memory_profiler. First, install the
latest version:

$ pip install -U memory_profiler

Then, setup the magics in a manner similar to line_profiler.

• Under IPython <= 0.10, edit ~/.ipython/ipy_user_conf.py and ensure the following lines are
present:

import IPython.ipapi
ip = IPython.ipapi.get()

Towards the end of the file, define the %memit and %mprun magics:

import memory_profiler
ip.expose_magic('memit', memory_profiler.magic_memit)
ip.expose_magic('mprun', memory_profiler.magic_mprun)

• Under IPython 0.11+, first create a configuration profile:

$ ipython profile create

Then create a file named ~/.ipython/extensions/memory_profiler_ext.py with the following
content:

import memory_profiler

def load_ipython_extension(ip):
ip.define_magic('memit', memory_profiler.magic_memit)
ip.define_magic('mprun', memory_profiler.magic_mprun)

Then register it in ~/.ipython/profile_default/ipython_config.py:

c.TerminalIPythonApp.extensions = [
'memory_profiler_ext',

]
c.InteractiveShellApp.extensions = [

'memory_profiler_ext',
]

This will register the %memit and %mprun magic commands in the IPython terminal application and the other
frontends such as qtconsole and notebook.

%mprun is useful to examine, line-by-line, the memory usage of key functions in your program. It is very similar to
%lprun, discussed in the previous section. For example, from the memory_profiler examples directory:

In [1] from example import my_func

In [2] %mprun -f my_func my_func()
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Filename: example.py

Line # Mem usage Increment Line Contents
==============================================

3 @profile
4 5.97 MB 0.00 MB def my_func():
5 13.61 MB 7.64 MB a = [1] * (10 ** 6)
6 166.20 MB 152.59 MB b = [2] * (2 * 10 ** 7)
7 13.61 MB -152.59 MB del b
8 13.61 MB 0.00 MB return a

Another useful magic that memory_profiler defines is %memit, which is analogous to %timeit. It can be used
as follows:

In [1]: import numpy as np

In [2]: %memit np.zeros(1e7)
maximum of 3: 76.402344 MB per loop

For more details, see the docstrings of the magics, using %memit? and %mprun?.

6.4.5 Performance tips for the Cython developer

If profiling of the Python code reveals that the Python interpreter overhead is larger by one order of magnitude or
more than the cost of the actual numerical computation (e.g. for loops over vector components, nested evaluation
of conditional expression, scalar arithmetic...), it is probably adequate to extract the hotspot portion of the code as a
standalone function in a .pyx file, add static type declarations and then use Cython to generate a C program suitable
to be compiled as a Python extension module.

The official documentation available at http://docs.cython.org/ contains a tutorial and reference guide for developing
such a module. In the following we will just highlight a couple of tricks that we found important in practice on the
existing cython codebase in the scikit-learn project.

TODO: html report, type declarations, bound checks, division by zero checks, memory alignment, direct blas calls...

• http://www.euroscipy.org/file/3696?vid=download

• http://conference.scipy.org/proceedings/SciPy2009/paper_1/

• http://conference.scipy.org/proceedings/SciPy2009/paper_2/

6.4.6 Profiling compiled extensions

When working with compiled extensions (written in C/C++ with a wrapper or directly as Cython extension), the default
Python profiler is useless: we need a dedicated tool to introspect what’s happening inside the compiled extension it-
self.

Using yep and google-perftools

Easy profiling without special compilation options use yep:

• http://pypi.python.org/pypi/yep

• http://fseoane.net/blog/2011/a-profiler-for-python-extensions/
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Note: google-perftools provides a nice ‘line by line’ report mode that can be triggered with the --lines option.
However this does not seem to work correctly at the time of writing. This issue can be tracked on the project issue
tracker.

Using gprof

In order to profile compiled Python extensions one could use gprof after having recompiled the project with gcc
-pg and using the python-dbg variant of the interpreter on debian / ubuntu: however this approach requires to also
have numpy and scipy recompiled with -pg which is rather complicated to get working.

Fortunately there exist two alternative profilers that don’t require you to recompile everything.

Using valgrind / callgrind / kcachegrind

TODO

6.4.7 Multi-core parallelism using joblib.Parallel

TODO: give a simple teaser example here.

Checkout the official joblib documentation:

• http://packages.python.org/joblib/

6.4.8 A sample algorithmic trick: warm restarts for cross validation

TODO: demonstrate the warm restart tricks for cross validation of linear regression with Coordinate Descent.

6.5 Advanced installation instructions

There are different ways to get scikit-learn installed:

• Install the version of scikit-learn provided by your operating system or Python distribution. This is the quickest
option for those who have operating systems that distribute scikit-learn.

• Install an official release. This is the best approach for users who want a stable version number and aren’t
concerned about running a slightly older version of scikit-learn.

• Install the latest development version. This is best for users who want the latest-and-greatest features and aren’t
afraid of running brand-new code.

Note: If you wish to contribute to the project, you need to install the latest development version.

6.5.1 Installing an official release

Scikit-learn requires:

• Python (>= 2.6 or >= 3.3),

• NumPy (>= 1.6.1),
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• SciPy (>= 0.9).

Mac OSX

Scikit-learn and its dependencies are all available as wheel packages for OSX:

pip install -U numpy scipy scikit-learn

Linux

At this time scikit-learn does not provide official binary packages for Linux so you have to build from source if
you want the lastest version. If you don’t need the newest version, consider using your package manager to install
scikit-learn. it is usually the easiest way, but might not provide the newest version.

installing build dependencies

installing from source requires you to have installed the scikit-learn runtime dependencies, python development head-
ers and a working c/c++ compiler. under debian-based operating systems, which include ubuntu, if you have python 2
you can install all these requirements by issuing:

sudo apt-get install build-essential python-dev python-setuptools \
python-numpy python-scipy \
libatlas-dev libatlas3gf-base

if you have python 3:

sudo apt-get install build-essential python3-dev python3-setuptools \
python3-numpy python3-scipy \
libatlas-dev libatlas3gf-base

on recent debian and ubuntu (e.g. ubuntu 13.04 or later) make sure that atlas is used to provide the implementation of
the blas and lapack linear algebra routines:

sudo update-alternatives --set libblas.so.3 \
/usr/lib/atlas-base/atlas/libblas.so.3

sudo update-alternatives --set liblapack.so.3 \
/usr/lib/atlas-base/atlas/liblapack.so.3

Note: in order to build the documentation and run the example code contains in this documentation you will need
matplotlib:

sudo apt-get install python-matplotlib

Note: the above installs the atlas implementation of blas (the basic linear algebra subprograms library). ubuntu 11.10
and later, and recent (testing) versions of debian, offer an alternative implementation called openblas.

using openblas can give speedups in some scikit-learn modules, but can freeze joblib/multiprocessing prior to openblas
version 0.2.8-4, so using it is not recommended unless you know what you’re doing.

if you do want to use openblas, then replacing atlas only requires a couple of commands. atlas has to be removed,
otherwise numpy may not work:

sudo apt-get remove libatlas3gf-base libatlas-dev
sudo apt-get install libopenblas-dev
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sudo update-alternatives --set libblas.so.3 \
/usr/lib/openblas-base/libopenblas.so.0

sudo update-alternatives --set liblapack.so.3 \
/usr/lib/lapack/liblapack.so.3

on red hat and clones (e.g. centos), install the dependencies using:

sudo yum -y install gcc gcc-c++ numpy python-devel scipy

building scikit-learn with pip

this is usually the fastest way to install or upgrade to the latest stable release:

pip install --user --install-option="--prefix=" -u scikit-learn

the --user flag asks pip to install scikit-learn in the $home/.local folder therefore not requiring root permission.
this flag should make pip ignore any old version of scikit-learn previously installed on the system while benefiting
from system packages for numpy and scipy. those dependencies can be long and complex to build correctly from
source.

the --install-option="--prefix=" flag is only required if python has a distutils.cfg configuration
with a predefined prefix= entry.

from source package

download the source package from pypi, , unpack the sources and cd into the source directory.

this packages uses distutils, which is the default way of installing python modules. the install command is:

python setup.py install

or alternatively (also from within the scikit-learn source folder):

pip install .

Warning: packages installed with the python setup.py install command cannot be uninstalled nor
upgraded by pip later. to properly uninstall scikit-learn in that case it is necessary to delete the sklearn folder
from your python site-packages directory.

windows

first, you need to install numpy and scipy from their own official installers.

wheel packages (.whl files) for scikit-learn from pypi can be installed with the pip utility. open a console and type the
following to install or upgrade scikit-learn to the latest stable release:

pip install -u scikit-learn

if there are no binary packages matching your python, version you might to try to install scikit-learn and its dependen-
cies from christoph gohlke unofficial windows installers or from a python distribution instead.
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6.5.2 third party distributions of scikit-learn

some third-party distributions are now providing versions of scikit-learn integrated with their package-management
systems.

these can make installation and upgrading much easier for users since the integration includes the ability to automati-
cally install dependencies (numpy, scipy) that scikit-learn requires.

the following is an incomplete list of python and os distributions that provide their own version of scikit-learn.

macports for mac osx

the macports package is named py<xy>-scikits-learn, where xy denotes the python version. it can be installed
by typing the following command:

sudo port install py26-scikit-learn

or:

sudo port install py27-scikit-learn

arch linux

arch linux’s package is provided through the official repositories as python-scikit-learn for python 3 and
python2-scikit-learn for python 2. it can be installed by typing the following command:

# pacman -s python-scikit-learn

or:

# pacman -s python2-scikit-learn

depending on the version of python you use.

netbsd

scikit-learn is available via pkgsrc-wip:

http://pkgsrc.se/wip/py-scikit_learn

fedora

the fedora package is called python-scikit-learn for the python 2 version and python3-scikit-learn
for the python 3 version. both versions can be installed using yum:

$ sudo yum install python-scikit-learn

or:

$ sudo yum install python3-scikit-learn
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building on windows

to build scikit-learn on windows you need a working c/c++ compiler in addition to numpy, scipy and setuptools.

picking the right compiler depends on the version of python (2 or 3) and the architecture of the python interpreter,
32-bit or 64-bit. you can check the python version by running the following in cmd or powershell console:

python --version

and the architecture with:

python -c "import struct; print(struct.calcsize('p') * 8)"

the above commands assume that you have the python installation folder in your path environment variable.

32-bit python

for 32-bit python it is possible use the standalone installers for microsoft visual c++ express 2008 for python 2 or
microsoft visual c++ express 2010 or python 3.

once installed you should be able to build scikit-learn without any particular configuration by running the following
command in the scikit-learn folder:

python setup.py install

64-bit python

for the 64-bit architecture, you either need the full visual studio or the free windows sdks that can be downloaded from
the links below.

the windows sdks include the msvc compilers both for 32 and 64-bit architectures. they come as a
grmsdkx_en_dvd.iso file that can be mounted as a new drive with a setup.exe installer in it.

• for python 2 you need sdk v7.0: ms windows sdk for windows 7 and .net framework 3.5 sp1

• for python 3 you need sdk v7.1: ms windows sdk for windows 7 and .net framework 4

both sdks can be installed in parallel on the same host. to use the windows sdks, you need to setup the environment of
a cmd console launched with the following flags (at least for sdk v7.0):

cmd /e:on /v:on /k

then configure the build environment with:

set distutils_use_sdk=1
set mssdk=1
"c:\program files\microsoft sdks\windows\v7.0\setup\windowssdkver.exe" -q -version:v7.0
"c:\program files\microsoft sdks\windows\v7.0\bin\setenv.cmd" /x64 /release

finally you can build scikit-learn in the same cmd console:

python setup.py install

replace v7.0 by the v7.1 in the above commands to do the same for python 3 instead of python 2.

replace /x64 by /x86 to build for 32-bit python instead of 64-bit python.
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building binary packages and installers

the .whl package and .exe installers can be built with:

pip install wheel
python setup.py bdist_wheel bdist_wininst -b doc/logos/scikit-learn-logo.bmp

the resulting packages are generated in the dist/ folder.

using an alternative compiler

it is possible to use mingw (a port of gcc to windows os) as an alternative to msvc for 32-bit python. not that extensions
built with mingw32 can be redistributed as reusable packages as they depend on gcc runtime libraries typically not
installed on end-users environment.

to force the use of a particular compiler, pass the --compiler flag to the build step:

python setup.py build --compiler=my_compiler install

where my_compiler should be one of mingw32 or msvc.

6.5.3 bleeding edge

see section Retrieving the latest code on how to get the development version. then follow the previous instructions to
build from source depending on your platform.

6.5.4 testing

testing scikit-learn once installed

testing requires having the nose library. after installation, the package can be tested by executing from outside the
source directory:

$ nosetests -v sklearn

under windows, it is recommended to use the following command (adjust the path to the python.exe program) as
using the nosetests.exe program can badly interact with tests that use multiprocessing:

c:\python34\python.exe -c "import nose; nose.main()" -v sklearn

this should give you a lot of output (and some warnings) but eventually should finish with a message similar to:

ran 3246 tests in 260.618s
ok (skip=20)

otherwise, please consider posting an issue into the bug tracker or to the Mailing List including the traceback of the
individual failures and errors. please include your operation system, your version of numpy, scipy and scikit-learn,
and how you installed scikit-learn.

testing scikit-learn from within the source folder

scikit-learn can also be tested without having the package installed. for this you must compile the sources inplace from
the source directory:
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python setup.py build_ext --inplace

test can now be run using nosetests:

nosetests -v sklearn/

this is automated by the commands:

make in

and:

make test

you can also install a symlink named site-packages/scikit-learn.egg-link to the development folder
of scikit-learn with:

pip install --editable .

6.6 Maintainer / core-developer information

6.6.1 Making a release

1. Update docs:

• edit the doc/whats_new.rst file to add release title and commit statistics. You can retrieve commit statistics
with:

$ git shortlog -ns 0.998..

• edit the doc/conf.py to increase the version number

• edit the doc/themes/scikit-learn/layout.html to change the ‘News’ entry of the front page.

2. Update the version number in sklearn/__init__.py, the __version__ variable

3. Create the tag and push it:

$ git tag 0.999

$ git push origin --tags

4. create tarballs:

• Wipe clean your repo:

$ git clean -xfd

• Register and upload on PyPI:

$ python setup.py sdist register upload

• Upload manually the tarball on SourceForge: https://sourceforge.net/projects/scikit-learn/files/

5. Push the documentation to the website (see README in doc folder)

6. Build binaries for windows and push them to PyPI:

$ python setup.py bdist_wininst upload

And upload them also to sourceforge
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method), 1125
__init__() (sklearn.decomposition.NMF method), 1120
__init__() (sklearn.decomposition.PCA method), 1093
__init__() (sklearn.decomposition.ProjectedGradientNMF

method), 1102
__init__() (sklearn.decomposition.RandomizedPCA

method), 1105
__init__() (sklearn.decomposition.SparseCoder method),

1128
__init__() (sklearn.decomposition.SparsePCA method),

1123
__init__() (sklearn.decomposition.TruncatedSVD

method), 1116
__init__() (sklearn.discriminant_analysis.LinearDiscriminantAnalysis

method), 1304
__init__() (sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis

method), 1307
__init__() (sklearn.dummy.DummyClassifier method),

1147
__init__() (sklearn.dummy.DummyRegressor method),
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1149
__init__() (sklearn.ensemble.AdaBoostClassifier

method), 1153
__init__() (sklearn.ensemble.AdaBoostRegressor

method), 1157
__init__() (sklearn.ensemble.BaggingClassifier method),

1161
__init__() (sklearn.ensemble.BaggingRegressor method),

1165
__init__() (sklearn.ensemble.ExtraTreesClassifier

method), 379, 1169
__init__() (sklearn.ensemble.ExtraTreesRegressor

method), 384, 1175
__init__() (sklearn.ensemble.GradientBoostingClassifier

method), 390, 1180
__init__() (sklearn.ensemble.GradientBoostingRegressor

method), 396, 1187
__init__() (sklearn.ensemble.RandomForestClassifier

method), 368, 1194
__init__() (sklearn.ensemble.RandomForestRegressor

method), 374, 1202
__init__() (sklearn.ensemble.RandomTreesEmbedding

method), 1198
__init__() (sklearn.ensemble.VotingClassifier method),

1206
__init__() (sklearn.feature_extraction.DictVectorizer

method), 1212
__init__() (sklearn.feature_extraction.FeatureHasher

method), 1215
__init__() (sklearn.feature_extraction.image.PatchExtractor

method), 1220
__init__() (sklearn.feature_extraction.text.CountVectorizer

method), 1223
__init__() (sklearn.feature_extraction.text.HashingVectorizer

method), 1227
__init__() (sklearn.feature_extraction.text.TfidfTransformer

method), 1230
__init__() (sklearn.feature_extraction.text.TfidfVectorizer

method), 1234
__init__() (sklearn.feature_selection.GenericUnivariateSelect

method), 1237
__init__() (sklearn.feature_selection.RFE method), 1254
__init__() (sklearn.feature_selection.RFECV method),

1258
__init__() (sklearn.feature_selection.SelectFdr method),

1246
__init__() (sklearn.feature_selection.SelectFpr method),

1244
__init__() (sklearn.feature_selection.SelectFromModel

method), 1249
__init__() (sklearn.feature_selection.SelectFwe method),

1251
__init__() (sklearn.feature_selection.SelectKBest

method), 1242

__init__() (sklearn.feature_selection.SelectPercentile
method), 1239

__init__() (sklearn.feature_selection.VarianceThreshold
method), 1262

__init__() (sklearn.gaussian_process.GaussianProcess
method), 1268

__init__() (sklearn.grid_search.GridSearchCV method),
1277

__init__() (sklearn.grid_search.RandomizedSearchCV
method), 1283

__init__() (sklearn.isotonic.IsotonicRegression method),
1287

__init__() (sklearn.kernel_approximation.AdditiveChi2Sampler
method), 1291

__init__() (sklearn.kernel_approximation.Nystroem
method), 1293

__init__() (sklearn.kernel_approximation.RBFSampler
method), 1295

__init__() (sklearn.kernel_approximation.SkewedChi2Sampler
method), 1297

__init__() (sklearn.kernel_ridge.KernelRidge method),
1300

__init__() (sklearn.linear_model.ARDRegression
method), 1315

__init__() (sklearn.linear_model.BayesianRidge
method), 1318

__init__() (sklearn.linear_model.ElasticNet method),
1321

__init__() (sklearn.linear_model.ElasticNetCV method),
320, 1327

__init__() (sklearn.linear_model.Lars method), 1332
__init__() (sklearn.linear_model.LarsCV method), 325,

1335
__init__() (sklearn.linear_model.Lasso method), 1338
__init__() (sklearn.linear_model.LassoCV method), 328,

1344
__init__() (sklearn.linear_model.LassoLars method),

1350
__init__() (sklearn.linear_model.LassoLarsCV method),

334, 1353
__init__() (sklearn.linear_model.LassoLarsIC method),

364, 1356
__init__() (sklearn.linear_model.LinearRegression

method), 1359
__init__() (sklearn.linear_model.LogisticRegression

method), 1363
__init__() (sklearn.linear_model.LogisticRegressionCV

method), 339, 1370
__init__() (sklearn.linear_model.MultiTaskElasticNet

method), 1380
__init__() (sklearn.linear_model.MultiTaskElasticNetCV

method), 344, 1391
__init__() (sklearn.linear_model.MultiTaskLasso

method), 1375
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__init__() (sklearn.linear_model.MultiTaskLassoCV
method), 349, 1385

__init__() (sklearn.linear_model.OrthogonalMatchingPursuit
method), 1395

__init__() (sklearn.linear_model.OrthogonalMatchingPursuitCV
method), 354, 1398

__init__() (sklearn.linear_model.PassiveAggressiveClassifier
method), 1401

__init__() (sklearn.linear_model.PassiveAggressiveRegressor
method), 1405

__init__() (sklearn.linear_model.Perceptron method),
1408

__init__() (sklearn.linear_model.RANSACRegressor
method), 1420

__init__() (sklearn.linear_model.RandomizedLasso
method), 1413

__init__() (sklearn.linear_model.RandomizedLogisticRegression
method), 1417

__init__() (sklearn.linear_model.Ridge method), 1423
__init__() (sklearn.linear_model.RidgeCV method), 357,

1432
__init__() (sklearn.linear_model.RidgeClassifier

method), 1426
__init__() (sklearn.linear_model.RidgeClassifierCV

method), 360, 1429
__init__() (sklearn.linear_model.SGDClassifier method),

1436
__init__() (sklearn.linear_model.SGDRegressor method),

1443
__init__() (sklearn.linear_model.TheilSenRegressor

method), 1447
__init__() (sklearn.manifold.Isomap method), 1460
__init__() (sklearn.manifold.LocallyLinearEmbedding

method), 1458
__init__() (sklearn.manifold.MDS method), 1463
__init__() (sklearn.manifold.SpectralEmbedding

method), 1465
__init__() (sklearn.manifold.TSNE method), 1468
__init__() (sklearn.mixture.DPGMM method), 1536
__init__() (sklearn.mixture.GMM method), 1532
__init__() (sklearn.mixture.VBGMM method), 1539
__init__() (sklearn.multiclass.OneVsOneClassifier

method), 1545
__init__() (sklearn.multiclass.OneVsRestClassifier

method), 1543
__init__() (sklearn.multiclass.OutputCodeClassifier

method), 1547
__init__() (sklearn.naive_bayes.BernoulliNB method),

1557
__init__() (sklearn.naive_bayes.GaussianNB method),

1550
__init__() (sklearn.naive_bayes.MultinomialNB method),

1553
__init__() (sklearn.neighbors.BallTree method), 1588

__init__() (sklearn.neighbors.DistanceMetric method),
1603

__init__() (sklearn.neighbors.KDTree method), 1593
__init__() (sklearn.neighbors.KNeighborsClassifier

method), 1567
__init__() (sklearn.neighbors.KNeighborsRegressor

method), 1577
__init__() (sklearn.neighbors.KernelDensity method),

1605
__init__() (sklearn.neighbors.LSHForest method), 1598
__init__() (sklearn.neighbors.NearestCentroid method),

1585
__init__() (sklearn.neighbors.NearestNeighbors method),

1561
__init__() (sklearn.neighbors.RadiusNeighborsClassifier

method), 1571
__init__() (sklearn.neighbors.RadiusNeighborsRegressor

method), 1581
__init__() (sklearn.neural_network.BernoulliRBM

method), 1610
__init__() (sklearn.pipeline.FeatureUnion method), 1633
__init__() (sklearn.pipeline.Pipeline method), 1630
__init__() (sklearn.preprocessing.Binarizer method),

1636
__init__() (sklearn.preprocessing.FunctionTransformer

method), 1638
__init__() (sklearn.preprocessing.Imputer method), 1640
__init__() (sklearn.preprocessing.KernelCenterer

method), 1641
__init__() (sklearn.preprocessing.LabelBinarizer

method), 1644
__init__() (sklearn.preprocessing.LabelEncoder method),

1646
__init__() (sklearn.preprocessing.MaxAbsScaler

method), 1650
__init__() (sklearn.preprocessing.MinMaxScaler

method), 1652
__init__() (sklearn.preprocessing.MultiLabelBinarizer

method), 1648
__init__() (sklearn.preprocessing.Normalizer method),

1654
__init__() (sklearn.preprocessing.OneHotEncoder

method), 1656
__init__() (sklearn.preprocessing.PolynomialFeatures

method), 1658
__init__() (sklearn.preprocessing.RobustScaler method),

1660
__init__() (sklearn.preprocessing.StandardScaler

method), 1663
__init__() (sklearn.random_projection.GaussianRandomProjection

method), 1671
__init__() (sklearn.random_projection.SparseRandomProjection

method), 1673
__init__() (sklearn.semi_supervised.LabelPropagation
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method), 1677
__init__() (sklearn.semi_supervised.LabelSpreading

method), 1681
__init__() (sklearn.svm.LinearSVC method), 1690
__init__() (sklearn.svm.LinearSVR method), 1703
__init__() (sklearn.svm.NuSVC method), 1695
__init__() (sklearn.svm.NuSVR method), 1706
__init__() (sklearn.svm.OneClassSVM method), 1709
__init__() (sklearn.svm.SVC method), 1685
__init__() (sklearn.svm.SVR method), 1700
__init__() (sklearn.tree.DecisionTreeClassifier method),

1717
__init__() (sklearn.tree.DecisionTreeRegressor method),

1723
__init__() (sklearn.tree.ExtraTreeClassifier method),

1727
__init__() (sklearn.tree.ExtraTreeRegressor method),

1730

A
absolute_exponential() (in module

sklearn.gaussian_process.correlation_models),
1271

accuracy_score() (in module sklearn.metrics), 1473
AdaBoostClassifier (class in sklearn.ensemble), 1151
AdaBoostRegressor (class in sklearn.ensemble), 1156
add_dummy_feature() (in module sklearn.preprocessing),

1664
additive_chi2_kernel() (in module

sklearn.metrics.pairwise), 1519
AdditiveChi2Sampler (class in

sklearn.kernel_approximation), 1290
adjusted_mutual_info_score() (in module

sklearn.metrics), 1506
adjusted_rand_score() (in module sklearn.metrics), 1507
affinity_propagation() (in module sklearn.cluster), 995
AffinityPropagation (class in sklearn.cluster), 965
AgglomerativeClustering (class in sklearn.cluster), 967
aic() (sklearn.mixture.DPGMM method), 1536
aic() (sklearn.mixture.GMM method), 1532
aic() (sklearn.mixture.VBGMM method), 1539
apply() (sklearn.ensemble.ExtraTreesClassifier method),

379, 1169
apply() (sklearn.ensemble.ExtraTreesRegressor method),

384, 1175
apply() (sklearn.ensemble.GradientBoostingClassifier

method), 390, 1180
apply() (sklearn.ensemble.GradientBoostingRegressor

method), 396, 1187
apply() (sklearn.ensemble.RandomForestClassifier

method), 368, 1194
apply() (sklearn.ensemble.RandomForestRegressor

method), 374, 1202

apply() (sklearn.ensemble.RandomTreesEmbedding
method), 1198

apply() (sklearn.tree.DecisionTreeClassifier method),
1717

apply() (sklearn.tree.DecisionTreeRegressor method),
1723

apply() (sklearn.tree.ExtraTreeClassifier method), 1727
apply() (sklearn.tree.ExtraTreeRegressor method), 1730
ARDRegression (class in sklearn.linear_model), 1313
auc() (in module sklearn.metrics), 1474
average_precision_score() (in module sklearn.metrics),

1475

B
BaggingClassifier (class in sklearn.ensemble), 1159
BaggingRegressor (class in sklearn.ensemble), 1163
BallTree (class in sklearn.neighbors), 1586
BaseEstimator (class in sklearn.base), 961
BayesianRidge (class in sklearn.linear_model), 1316
BernoulliNB (class in sklearn.naive_bayes), 1555
BernoulliRBM (class in sklearn.neural_network), 1609
bic() (sklearn.mixture.DPGMM method), 1536
bic() (sklearn.mixture.GMM method), 1532
bic() (sklearn.mixture.VBGMM method), 1539
biclusters_ (sklearn.cluster.bicluster.SpectralBiclustering

attribute), 1002
biclusters_ (sklearn.cluster.bicluster.SpectralCoclustering

attribute), 1005
binarize() (in module sklearn.preprocessing), 1665
Binarizer (class in sklearn.preprocessing), 1636
Birch (class in sklearn.cluster), 970
brier_score_loss() (in module sklearn.metrics), 1476,

1498
build_analyzer() (sklearn.feature_extraction.text.CountVectorizer

method), 1223
build_analyzer() (sklearn.feature_extraction.text.HashingVectorizer

method), 1227
build_analyzer() (sklearn.feature_extraction.text.TfidfVectorizer

method), 1234
build_preprocessor() (sklearn.feature_extraction.text.CountVectorizer

method), 1223
build_preprocessor() (sklearn.feature_extraction.text.HashingVectorizer

method), 1227
build_preprocessor() (sklearn.feature_extraction.text.TfidfVectorizer

method), 1234
build_tokenizer() (sklearn.feature_extraction.text.CountVectorizer

method), 1223
build_tokenizer() (sklearn.feature_extraction.text.HashingVectorizer

method), 1228
build_tokenizer() (sklearn.feature_extraction.text.TfidfVectorizer

method), 1234

C
CalibratedClassifierCV (class in sklearn.calibration),
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1612
calibration_curve() (in module sklearn.calibration), 1615
CCA (class in sklearn.cross_decomposition), 1624
check_cv() (in module sklearn.cross_validation), 1050
check_estimator() (in module

sklearn.utils.estimator_checks), 1735
check_increasing() (in module sklearn.isotonic), 1290
check_random_state() (in module sklearn.utils), 1735
chi2() (in module sklearn.feature_selection), 1263
chi2_kernel() (in module sklearn.metrics.pairwise), 1519
classification_report() (in module sklearn.metrics), 1478
ClassifierMixin (class in sklearn.base), 962
clear_data_home() (in module sklearn.datasets), 1051
clone() (in module sklearn.base), 964
ClusterMixin (class in sklearn.base), 963
completeness_score() (in module sklearn.metrics), 1509
confusion_matrix() (in module sklearn.metrics), 1479
consensus_score() (in module sklearn.metrics), 1518
constant() (in module sklearn.gaussian_process.regression_models),

1273
correct_covariance() (sklearn.covariance.EllipticEnvelope

method), 1010
correct_covariance() (sklearn.covariance.MinCovDet

method), 1022
CountVectorizer (class in sklearn.feature_extraction.text),

1221
coverage_error() (in module sklearn.metrics), 1504
cross_val_predict() (in module sklearn.cross_validation),

1047
cross_val_score() (in module sklearn.cross_validation),

1046
cross_validation() (in module sklearn.svm.libsvm), 1714
cubic() (in module sklearn.gaussian_process.correlation_models),

1272

D
data_min (sklearn.preprocessing.MinMaxScaler at-

tribute), 1652
data_range (sklearn.preprocessing.MinMaxScaler at-

tribute), 1652
DBSCAN (class in sklearn.cluster), 973
dbscan() (in module sklearn.cluster), 996
decision_function() (in module sklearn.svm.libsvm),

1713
decision_function() (sklearn.covariance.EllipticEnvelope

method), 1010
decision_function() (sklearn.discriminant_analysis.LinearDiscriminantAnalysis

method), 1304
decision_function() (sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis

method), 1307
decision_function() (sklearn.ensemble.AdaBoostClassifier

method), 1153
decision_function() (sklearn.ensemble.BaggingClassifier

method), 1161

decision_function() (sklearn.ensemble.GradientBoostingClassifier
method), 390, 1180

decision_function() (sklearn.ensemble.GradientBoostingRegressor
method), 396, 1187

decision_function() (sklearn.grid_search.GridSearchCV
method), 1277

decision_function() (sklearn.grid_search.RandomizedSearchCV
method), 1283

decision_function() (sklearn.linear_model.ARDRegression
method), 1315

decision_function() (sklearn.linear_model.BayesianRidge
method), 1318

decision_function() (sklearn.linear_model.ElasticNet
method), 1321

decision_function() (sklearn.linear_model.ElasticNetCV
method), 320, 1327

decision_function() (sklearn.linear_model.Lars method),
1332

decision_function() (sklearn.linear_model.LarsCV
method), 325, 1335

decision_function() (sklearn.linear_model.Lasso
method), 1338

decision_function() (sklearn.linear_model.LassoCV
method), 328, 1344

decision_function() (sklearn.linear_model.LassoLars
method), 1350

decision_function() (sklearn.linear_model.LassoLarsCV
method), 334, 1353

decision_function() (sklearn.linear_model.LassoLarsIC
method), 364, 1356

decision_function() (sklearn.linear_model.LinearRegression
method), 1359

decision_function() (sklearn.linear_model.LogisticRegression
method), 1363

decision_function() (sklearn.linear_model.LogisticRegressionCV
method), 339, 1370

decision_function() (sklearn.linear_model.MultiTaskElasticNet
method), 1380

decision_function() (sklearn.linear_model.MultiTaskElasticNetCV
method), 344, 1391

decision_function() (sklearn.linear_model.MultiTaskLasso
method), 1375

decision_function() (sklearn.linear_model.MultiTaskLassoCV
method), 349, 1385

decision_function() (sklearn.linear_model.OrthogonalMatchingPursuit
method), 1395

decision_function() (sklearn.linear_model.OrthogonalMatchingPursuitCV
method), 354, 1398

decision_function() (sklearn.linear_model.PassiveAggressiveClassifier
method), 1401

decision_function() (sklearn.linear_model.PassiveAggressiveRegressor
method), 1405

decision_function() (sklearn.linear_model.Perceptron
method), 1408
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decision_function() (sklearn.linear_model.Ridge
method), 1423

decision_function() (sklearn.linear_model.RidgeClassifier
method), 1426

decision_function() (sklearn.linear_model.RidgeClassifierCV
method), 360, 1429

decision_function() (sklearn.linear_model.RidgeCV
method), 357, 1432

decision_function() (sklearn.linear_model.SGDClassifier
method), 1436

decision_function() (sklearn.linear_model.SGDRegressor
method), 1443

decision_function() (sklearn.linear_model.TheilSenRegressor
method), 1447

decision_function() (sklearn.multiclass.OneVsOneClassifier
method), 1545

decision_function() (sklearn.multiclass.OneVsRestClassifier
method), 1543

decision_function() (sklearn.pipeline.Pipeline method),
1630

decision_function() (sklearn.svm.LinearSVC method),
1690

decision_function() (sklearn.svm.LinearSVR method),
1703

decision_function() (sklearn.svm.NuSVC method), 1695
decision_function() (sklearn.svm.NuSVR method), 1706
decision_function() (sklearn.svm.OneClassSVM

method), 1709
decision_function() (sklearn.svm.SVC method), 1685
decision_function() (sklearn.svm.SVR method), 1700
DecisionTreeClassifier (class in sklearn.tree), 1715
DecisionTreeRegressor (class in sklearn.tree), 1721
decode() (sklearn.feature_extraction.text.CountVectorizer

method), 1223
decode() (sklearn.feature_extraction.text.HashingVectorizer

method), 1228
decode() (sklearn.feature_extraction.text.TfidfVectorizer

method), 1234
densify() (sklearn.linear_model.LogisticRegression

method), 1364
densify() (sklearn.linear_model.LogisticRegressionCV

method), 339, 1370
densify() (sklearn.linear_model.PassiveAggressiveClassifier

method), 1401
densify() (sklearn.linear_model.PassiveAggressiveRegressor

method), 1405
densify() (sklearn.linear_model.Perceptron method),

1408
densify() (sklearn.linear_model.SGDClassifier method),

1437
densify() (sklearn.linear_model.SGDRegressor method),

1443
densify() (sklearn.svm.LinearSVC method), 1691
dict_learning() (in module sklearn.decomposition), 1141

dict_learning_online() (in module
sklearn.decomposition), 1143

DictionaryLearning (class in sklearn.decomposition),
1129

DictVectorizer (class in sklearn.feature_extraction), 1210
dist_to_rdist() (sklearn.neighbors.DistanceMetric

method), 1603
distance_metrics() (in module sklearn.metrics.pairwise),

1520
DistanceMetric (class in sklearn.neighbors), 1601
DPGMM (class in sklearn.mixture), 1534
DummyClassifier (class in sklearn.dummy), 1146
DummyRegressor (class in sklearn.dummy), 1149
dump_svmlight_file() (in module sklearn.datasets), 1071

E
ElasticNet (class in sklearn.linear_model), 1319
ElasticNetCV (class in sklearn.linear_model), 317, 1325
EllipticEnvelope (class in sklearn.covariance), 1008
empirical_covariance() (in module sklearn.covariance),

1030
EmpiricalCovariance (class in sklearn.covariance), 1006
error_norm() (sklearn.covariance.EllipticEnvelope

method), 1010
error_norm() (sklearn.covariance.EmpiricalCovariance

method), 1007
error_norm() (sklearn.covariance.GraphLasso method),

1013
error_norm() (sklearn.covariance.GraphLassoCV

method), 1017
error_norm() (sklearn.covariance.LedoitWolf method),

1019
error_norm() (sklearn.covariance.MinCovDet method),

1022
error_norm() (sklearn.covariance.OAS method), 1026
error_norm() (sklearn.covariance.ShrunkCovariance

method), 1028
estimate_bandwidth() (in module sklearn.cluster), 992
euclidean_distances() (in module

sklearn.metrics.pairwise), 1520
explained_variance_score() (in module sklearn.metrics),

1499
export_graphviz() (in module sklearn.tree), 1733
extract_patches_2d() (in module

sklearn.feature_extraction.image), 1217
ExtraTreeClassifier (class in sklearn.tree), 1726
ExtraTreeRegressor (class in sklearn.tree), 1730
ExtraTreesClassifier (class in sklearn.ensemble), 376,

1167
ExtraTreesRegressor (class in sklearn.ensemble), 382,

1172

F
f1_score() (in module sklearn.metrics), 1480
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f_classif() (in module sklearn.feature_selection), 1264
f_regression() (in module sklearn.feature_selection),

1265
FactorAnalysis (class in sklearn.decomposition), 1109
FastICA (class in sklearn.decomposition), 1112
fastica() (in module sklearn.decomposition), 1140
fbeta_score() (in module sklearn.metrics), 1481
feature_importances_ (sklearn.ensemble.AdaBoostClassifier

attribute), 1153
feature_importances_ (sklearn.ensemble.AdaBoostRegressor

attribute), 1157
feature_importances_ (sklearn.ensemble.ExtraTreesClassifier

attribute), 379, 1170
feature_importances_ (sklearn.ensemble.ExtraTreesRegressor

attribute), 384, 1175
feature_importances_ (sklearn.ensemble.GradientBoostingClassifier

attribute), 390, 1180
feature_importances_ (sklearn.ensemble.GradientBoostingRegressor

attribute), 397, 1187
feature_importances_ (sklearn.ensemble.RandomForestClassifier

attribute), 369, 1194
feature_importances_ (sklearn.ensemble.RandomForestRegressor

attribute), 374, 1202
feature_importances_ (sklearn.ensemble.RandomTreesEmbedding

attribute), 1199
feature_importances_ (sklearn.tree.DecisionTreeClassifier

attribute), 1718
feature_importances_ (sklearn.tree.DecisionTreeRegressor

attribute), 1723
feature_importances_ (sklearn.tree.ExtraTreeClassifier

attribute), 1727
feature_importances_ (sklearn.tree.ExtraTreeRegressor

attribute), 1731
FeatureAgglomeration (class in sklearn.cluster), 975
FeatureHasher (class in sklearn.feature_extraction), 1214
FeatureUnion (class in sklearn.pipeline), 1633
fetch_20newsgroups() (in module sklearn.datasets), 1052
fetch_20newsgroups_vectorized() (in module

sklearn.datasets), 1053
fetch_california_housing() (in module sklearn.datasets),

1064
fetch_covtype() (in module sklearn.datasets), 1065
fetch_lfw_pairs() (in module sklearn.datasets), 1059
fetch_lfw_people() (in module sklearn.datasets), 1060
fetch_mldata() (in module sklearn.datasets), 1061
fetch_olivetti_faces() (in module sklearn.datasets), 1063
fetch_rcv1() (in module sklearn.datasets), 1065
fit() (in module sklearn.svm.libsvm), 1711
fit() (sklearn.calibration.CalibratedClassifierCV method),

1613
fit() (sklearn.cluster.AffinityPropagation method), 966
fit() (sklearn.cluster.AgglomerativeClustering method),

969
fit() (sklearn.cluster.bicluster.SpectralBiclustering

method), 1002
fit() (sklearn.cluster.bicluster.SpectralCoclustering

method), 1005
fit() (sklearn.cluster.Birch method), 971
fit() (sklearn.cluster.DBSCAN method), 974
fit() (sklearn.cluster.FeatureAgglomeration method), 977
fit() (sklearn.cluster.KMeans method), 981
fit() (sklearn.cluster.MeanShift method), 988
fit() (sklearn.cluster.MiniBatchKMeans method), 984
fit() (sklearn.cluster.SpectralClustering method), 991
fit() (sklearn.covariance.EmpiricalCovariance method),

1007
fit() (sklearn.covariance.GraphLassoCV method), 1017
fit() (sklearn.covariance.LedoitWolf method), 1020
fit() (sklearn.covariance.MinCovDet method), 1023
fit() (sklearn.covariance.OAS method), 1026
fit() (sklearn.covariance.ShrunkCovariance method),

1029
fit() (sklearn.cross_decomposition.CCA method), 1626
fit() (sklearn.cross_decomposition.PLSCanonical

method), 1622
fit() (sklearn.cross_decomposition.PLSRegression

method), 1618
fit() (sklearn.decomposition.DictionaryLearning method),

1131
fit() (sklearn.decomposition.FactorAnalysis method),

1111
fit() (sklearn.decomposition.FastICA method), 1113
fit() (sklearn.decomposition.IncrementalPCA method),

1098
fit() (sklearn.decomposition.KernelPCA method), 1108
fit() (sklearn.decomposition.LatentDirichletAllocation

method), 1138
fit() (sklearn.decomposition.MiniBatchDictionaryLearning

method), 1134
fit() (sklearn.decomposition.MiniBatchSparsePCA

method), 1125
fit() (sklearn.decomposition.NMF method), 1120
fit() (sklearn.decomposition.PCA method), 1093
fit() (sklearn.decomposition.ProjectedGradientNMF

method), 1102
fit() (sklearn.decomposition.RandomizedPCA method),

1105
fit() (sklearn.decomposition.SparseCoder method), 1128
fit() (sklearn.decomposition.SparsePCA method), 1123
fit() (sklearn.decomposition.TruncatedSVD method),

1116
fit() (sklearn.discriminant_analysis.LinearDiscriminantAnalysis

method), 1304
fit() (sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis

method), 1307
fit() (sklearn.dummy.DummyClassifier method), 1147
fit() (sklearn.dummy.DummyRegressor method), 1149
fit() (sklearn.ensemble.AdaBoostClassifier method), 1153

Index 1781



scikit-learn user guide, Release 0.17

fit() (sklearn.ensemble.AdaBoostRegressor method),
1157

fit() (sklearn.ensemble.BaggingClassifier method), 1162
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get_params() (sklearn.linear_model.LarsCV method),
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get_params() (sklearn.linear_model.LassoCV method),
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get_params() (sklearn.linear_model.LassoLarsCV
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get_params() (sklearn.linear_model.LinearRegression

method), 1359
get_params() (sklearn.linear_model.LogisticRegression

method), 1364
get_params() (sklearn.linear_model.LogisticRegressionCV

method), 340, 1371
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method), 1380
get_params() (sklearn.linear_model.MultiTaskElasticNetCV

method), 345, 1392
get_params() (sklearn.linear_model.MultiTaskLasso

method), 1375
get_params() (sklearn.linear_model.MultiTaskLassoCV

method), 350, 1386
get_params() (sklearn.linear_model.OrthogonalMatchingPursuit

method), 1396
get_params() (sklearn.linear_model.OrthogonalMatchingPursuitCV

method), 355, 1399
get_params() (sklearn.linear_model.PassiveAggressiveClassifier

method), 1402
get_params() (sklearn.linear_model.PassiveAggressiveRegressor

method), 1405
get_params() (sklearn.linear_model.Perceptron method),

1409
get_params() (sklearn.linear_model.RandomizedLasso

method), 1414
get_params() (sklearn.linear_model.RandomizedLogisticRegression

method), 1417
get_params() (sklearn.linear_model.RANSACRegressor

method), 1420
get_params() (sklearn.linear_model.Ridge method), 1423
get_params() (sklearn.linear_model.RidgeClassifier

method), 1427
get_params() (sklearn.linear_model.RidgeClassifierCV

method), 361, 1430
get_params() (sklearn.linear_model.RidgeCV method),
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get_params() (sklearn.linear_model.SGDClassifier

method), 1437
get_params() (sklearn.linear_model.SGDRegressor

method), 1443
get_params() (sklearn.linear_model.TheilSenRegressor

method), 1447
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get_params() (sklearn.manifold.SpectralEmbedding

method), 1465
get_params() (sklearn.manifold.TSNE method), 1468
get_params() (sklearn.mixture.DPGMM method), 1536
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get_params() (sklearn.mixture.GMM method), 1533
get_params() (sklearn.mixture.VBGMM method), 1540
get_params() (sklearn.multiclass.OneVsOneClassifier

method), 1545
get_params() (sklearn.multiclass.OneVsRestClassifier

method), 1543
get_params() (sklearn.multiclass.OutputCodeClassifier

method), 1547
get_params() (sklearn.naive_bayes.BernoulliNB

method), 1557
get_params() (sklearn.naive_bayes.GaussianNB method),

1550
get_params() (sklearn.naive_bayes.MultinomialNB

method), 1553
get_params() (sklearn.neighbors.KernelDensity method),
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get_params() (sklearn.neighbors.KNeighborsClassifier

method), 1567
get_params() (sklearn.neighbors.KNeighborsRegressor

method), 1577
get_params() (sklearn.neighbors.LSHForest method),

1599
get_params() (sklearn.neighbors.NearestCentroid

method), 1585
get_params() (sklearn.neighbors.NearestNeighbors

method), 1561
get_params() (sklearn.neighbors.RadiusNeighborsClassifier

method), 1571
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method), 1581
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method), 1611
get_params() (sklearn.preprocessing.Binarizer method),

1637
get_params() (sklearn.preprocessing.FunctionTransformer

method), 1638
get_params() (sklearn.preprocessing.Imputer method),

1640
get_params() (sklearn.preprocessing.KernelCenterer

method), 1641
get_params() (sklearn.preprocessing.LabelBinarizer

method), 1644
get_params() (sklearn.preprocessing.LabelEncoder

method), 1646
get_params() (sklearn.preprocessing.MaxAbsScaler

method), 1650
get_params() (sklearn.preprocessing.MinMaxScaler

method), 1652
get_params() (sklearn.preprocessing.MultiLabelBinarizer

method), 1648
get_params() (sklearn.preprocessing.Normalizer

method), 1654
get_params() (sklearn.preprocessing.OneHotEncoder

method), 1657

get_params() (sklearn.preprocessing.PolynomialFeatures
method), 1659

get_params() (sklearn.preprocessing.RobustScaler
method), 1661

get_params() (sklearn.preprocessing.StandardScaler
method), 1663

get_params() (sklearn.random_projection.GaussianRandomProjection
method), 1671

get_params() (sklearn.random_projection.SparseRandomProjection
method), 1674

get_params() (sklearn.semi_supervised.LabelPropagation
method), 1677

get_params() (sklearn.semi_supervised.LabelSpreading
method), 1681

get_params() (sklearn.svm.LinearSVC method), 1691
get_params() (sklearn.svm.LinearSVR method), 1703
get_params() (sklearn.svm.NuSVC method), 1696
get_params() (sklearn.svm.NuSVR method), 1707
get_params() (sklearn.svm.OneClassSVM method), 1710
get_params() (sklearn.svm.SVC method), 1686
get_params() (sklearn.svm.SVR method), 1700
get_params() (sklearn.tree.DecisionTreeClassifier

method), 1719
get_params() (sklearn.tree.DecisionTreeRegressor

method), 1724
get_params() (sklearn.tree.ExtraTreeClassifier method),

1728
get_params() (sklearn.tree.ExtraTreeRegressor method),

1732
get_precision() (sklearn.covariance.EllipticEnvelope

method), 1011
get_precision() (sklearn.covariance.EmpiricalCovariance

method), 1007
get_precision() (sklearn.covariance.GraphLasso method),

1014
get_precision() (sklearn.covariance.GraphLassoCV

method), 1017
get_precision() (sklearn.covariance.LedoitWolf method),

1020
get_precision() (sklearn.covariance.MinCovDet method),

1023
get_precision() (sklearn.covariance.OAS method), 1026
get_precision() (sklearn.covariance.ShrunkCovariance

method), 1029
get_precision() (sklearn.decomposition.FactorAnalysis

method), 1111
get_precision() (sklearn.decomposition.IncrementalPCA

method), 1098
get_precision() (sklearn.decomposition.PCA method),

1094
get_scorer() (in module sklearn.metrics), 1473
get_shape() (sklearn.cluster.bicluster.SpectralBiclustering

method), 1003
get_shape() (sklearn.cluster.bicluster.SpectralCoclustering

1788 Index



scikit-learn user guide, Release 0.17

method), 1005
get_stop_words() (sklearn.feature_extraction.text.CountVectorizer

method), 1224
get_stop_words() (sklearn.feature_extraction.text.HashingVectorizer

method), 1228
get_stop_words() (sklearn.feature_extraction.text.TfidfVectorizer

method), 1235
get_submatrix() (sklearn.cluster.bicluster.SpectralBiclustering

method), 1003
get_submatrix() (sklearn.cluster.bicluster.SpectralCoclustering

method), 1005
get_support() (sklearn.feature_selection.GenericUnivariateSelect

method), 1237
get_support() (sklearn.feature_selection.RFE method),

1255
get_support() (sklearn.feature_selection.RFECV

method), 1259
get_support() (sklearn.feature_selection.SelectFdr

method), 1247
get_support() (sklearn.feature_selection.SelectFpr

method), 1245
get_support() (sklearn.feature_selection.SelectFromModel

method), 1249
get_support() (sklearn.feature_selection.SelectFwe

method), 1252
get_support() (sklearn.feature_selection.SelectKBest

method), 1242
get_support() (sklearn.feature_selection.SelectPercentile

method), 1240
get_support() (sklearn.feature_selection.VarianceThreshold

method), 1262
get_support() (sklearn.linear_model.RandomizedLasso

method), 1414
get_support() (sklearn.linear_model.RandomizedLogisticRegression

method), 1417
gibbs() (sklearn.neural_network.BernoulliRBM method),

1611
GMM (class in sklearn.mixture), 1530
GradientBoostingClassifier (class in sklearn.ensemble),

387, 1177
GradientBoostingRegressor (class in sklearn.ensemble),

393, 1184
graph_lasso() (in module sklearn.covariance), 1032
GraphLasso (class in sklearn.covariance), 1012
GraphLassoCV (class in sklearn.covariance), 1015
grid_to_graph() (in module

sklearn.feature_extraction.image), 1217
GridSearchCV (class in sklearn.grid_search), 1274

H
hamming_loss() (in module sklearn.metrics), 1483
HashingVectorizer (class in

sklearn.feature_extraction.text), 1225
hinge_loss() (in module sklearn.metrics), 1484

homogeneity_completeness_v_measure() (in module
sklearn.metrics), 1510

homogeneity_score() (in module sklearn.metrics), 1511

I
img_to_graph() (in module

sklearn.feature_extraction.image), 1216
Imputer (class in sklearn.preprocessing), 1639
IncrementalPCA (class in sklearn.decomposition), 1096
inverse_transform() (sklearn.cluster.FeatureAgglomeration

method), 977
inverse_transform() (sklearn.decomposition.FastICA

method), 1114
inverse_transform() (sklearn.decomposition.IncrementalPCA

method), 1098
inverse_transform() (sklearn.decomposition.KernelPCA

method), 1108
inverse_transform() (sklearn.decomposition.PCA

method), 1094
inverse_transform() (sklearn.decomposition.RandomizedPCA

method), 1105
inverse_transform() (sklearn.decomposition.TruncatedSVD

method), 1117
inverse_transform() (sklearn.feature_extraction.DictVectorizer

method), 1212
inverse_transform() (sklearn.feature_extraction.text.CountVectorizer

method), 1224
inverse_transform() (sklearn.feature_extraction.text.TfidfVectorizer

method), 1235
inverse_transform() (sklearn.feature_selection.GenericUnivariateSelect

method), 1238
inverse_transform() (sklearn.feature_selection.RFE

method), 1255
inverse_transform() (sklearn.feature_selection.RFECV

method), 1259
inverse_transform() (sklearn.feature_selection.SelectFdr

method), 1247
inverse_transform() (sklearn.feature_selection.SelectFpr

method), 1245
inverse_transform() (sklearn.feature_selection.SelectFromModel

method), 1249
inverse_transform() (sklearn.feature_selection.SelectFwe

method), 1252
inverse_transform() (sklearn.feature_selection.SelectKBest

method), 1242
inverse_transform() (sklearn.feature_selection.SelectPercentile

method), 1240
inverse_transform() (sklearn.feature_selection.VarianceThreshold

method), 1263
inverse_transform() (sklearn.grid_search.GridSearchCV

method), 1277
inverse_transform() (sklearn.grid_search.RandomizedSearchCV

method), 1284
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inverse_transform() (sklearn.linear_model.RandomizedLasso
method), 1414

inverse_transform() (sklearn.linear_model.RandomizedLogisticRegression
method), 1417

inverse_transform() (sklearn.pipeline.Pipeline method),
1631

inverse_transform() (sklearn.preprocessing.LabelBinarizer
method), 1644

inverse_transform() (sklearn.preprocessing.LabelEncoder
method), 1646

inverse_transform() (sklearn.preprocessing.MaxAbsScaler
method), 1650

inverse_transform() (sklearn.preprocessing.MinMaxScaler
method), 1652

inverse_transform() (sklearn.preprocessing.MultiLabelBinarizer
method), 1648

inverse_transform() (sklearn.preprocessing.RobustScaler
method), 1661

inverse_transform() (sklearn.preprocessing.StandardScaler
method), 1663

Isomap (class in sklearn.manifold), 1459
isotonic_regression() (in module sklearn.isotonic), 1289
IsotonicRegression (class in sklearn.isotonic), 1286

J
jaccard_similarity_score() (in module sklearn.metrics),

1485
johnson_lindenstrauss_min_dim() (in module

sklearn.random_projection), 1674

K
k_means() (in module sklearn.cluster), 992
KDTree (class in sklearn.neighbors), 1591
kernel_density() (sklearn.neighbors.BallTree method),

1588
kernel_density() (sklearn.neighbors.KDTree method),

1593
kernel_metrics() (in module sklearn.metrics.pairwise),

1521
KernelCenterer (class in sklearn.preprocessing), 1641
KernelDensity (class in sklearn.neighbors), 1604
KernelPCA (class in sklearn.decomposition), 1106
KernelRidge (class in sklearn.kernel_ridge), 1298
KFold (class in sklearn.cross_validation), 1034
KMeans (class in sklearn.cluster), 979
kneighbors() (sklearn.neighbors.KNeighborsClassifier

method), 1567
kneighbors() (sklearn.neighbors.KNeighborsRegressor

method), 1577
kneighbors() (sklearn.neighbors.LSHForest method),

1599
kneighbors() (sklearn.neighbors.NearestNeighbors

method), 1561
kneighbors_graph() (in module sklearn.neighbors), 1606

kneighbors_graph() (sklearn.neighbors.KNeighborsClassifier
method), 1568

kneighbors_graph() (sklearn.neighbors.KNeighborsRegressor
method), 1578

kneighbors_graph() (sklearn.neighbors.LSHForest
method), 1599

kneighbors_graph() (sklearn.neighbors.NearestNeighbors
method), 1562

KNeighborsClassifier (class in sklearn.neighbors), 1565
KNeighborsRegressor (class in sklearn.neighbors), 1574

L
l1_min_c() (in module sklearn.svm), 1711
label_binarize() (in module sklearn.preprocessing), 1665
label_ranking_average_precision_score() (in module

sklearn.metrics), 1505
label_ranking_loss() (in module sklearn.metrics), 1505
LabelBinarizer (class in sklearn.preprocessing), 1642
LabelEncoder (class in sklearn.preprocessing), 1645
LabelKFold (class in sklearn.cross_validation), 1035
LabelPropagation (class in sklearn.semi_supervised),

1676
LabelShuffleSplit (class in sklearn.cross_validation),

1036
LabelSpreading (class in sklearn.semi_supervised), 1678
laplacian_kernel() (in module sklearn.metrics.pairwise),

1526
Lars (class in sklearn.linear_model), 1330
lars_path() (in module sklearn.linear_model), 1448
LarsCV (class in sklearn.linear_model), 323, 1333
Lasso (class in sklearn.linear_model), 1336
lasso_path() (in module sklearn.linear_model), 1450
lasso_stability_path() (in module sklearn.linear_model),

1452
LassoCV (class in sklearn.linear_model), 326, 1342
LassoLars (class in sklearn.linear_model), 1348
LassoLarsCV (class in sklearn.linear_model), 332, 1351
LassoLarsIC (class in sklearn.linear_model), 362, 1355
LatentDirichletAllocation (class in

sklearn.decomposition), 1136
learning_curve() (in module sklearn.learning_curve),

1309
LeaveOneLabelOut (class in sklearn.cross_validation),

1037
LeaveOneOut (class in sklearn.cross_validation), 1038
LeavePLabelOut (class in sklearn.cross_validation), 1038
LeavePOut (class in sklearn.cross_validation), 1039
ledoit_wolf() (in module sklearn.covariance), 1030
LedoitWolf (class in sklearn.covariance), 1018
linear() (in module sklearn.gaussian_process.correlation_models),

1273
linear() (in module sklearn.gaussian_process.regression_models),

1273
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linear_kernel() (in module sklearn.metrics.pairwise),
1522

LinearDiscriminantAnalysis (class in
sklearn.discriminant_analysis), 1301

LinearRegression (class in sklearn.linear_model), 1358
LinearSVC (class in sklearn.svm), 1688
LinearSVR (class in sklearn.svm), 1701
load_boston() (in module sklearn.datasets), 1053
load_diabetes() (in module sklearn.datasets), 1054
load_digits() (in module sklearn.datasets), 1055
load_files() (in module sklearn.datasets), 1056
load_iris() (in module sklearn.datasets), 1057
load_linnerud() (in module sklearn.datasets), 1061
load_mlcomp() (in module sklearn.datasets), 1066
load_sample_image() (in module sklearn.datasets), 1067
load_sample_images() (in module sklearn.datasets), 1068
load_svmlight_file() (in module sklearn.datasets), 1068
load_svmlight_files() (in module sklearn.datasets), 1070
locally_linear_embedding() (in module

sklearn.manifold), 1469
LocallyLinearEmbedding (class in sklearn.manifold),

1456
log_loss() (in module sklearn.metrics), 1487
LogisticRegression (class in sklearn.linear_model), 1361
LogisticRegressionCV (class in sklearn.linear_model),

335, 1367
lower_bound() (sklearn.mixture.DPGMM method), 1536
lower_bound() (sklearn.mixture.VBGMM method), 1540
LSHForest (class in sklearn.neighbors), 1597

M
mahalanobis() (sklearn.covariance.EllipticEnvelope

method), 1011
mahalanobis() (sklearn.covariance.EmpiricalCovariance

method), 1008
mahalanobis() (sklearn.covariance.GraphLasso method),

1014
mahalanobis() (sklearn.covariance.GraphLassoCV

method), 1017
mahalanobis() (sklearn.covariance.LedoitWolf method),

1020
mahalanobis() (sklearn.covariance.MinCovDet method),

1023
mahalanobis() (sklearn.covariance.OAS method), 1026
mahalanobis() (sklearn.covariance.ShrunkCovariance

method), 1029
make_biclusters() (in module sklearn.datasets), 1089
make_blobs() (in module sklearn.datasets), 1072
make_checkerboard() (in module sklearn.datasets), 1090
make_circles() (in module sklearn.datasets), 1076
make_classification() (in module sklearn.datasets), 1074
make_friedman1() (in module sklearn.datasets), 1076
make_friedman2() (in module sklearn.datasets), 1077
make_friedman3() (in module sklearn.datasets), 1078

make_gaussian_quantiles() (in module sklearn.datasets),
1079

make_hastie_10_2() (in module sklearn.datasets), 1080
make_low_rank_matrix() (in module sklearn.datasets),

1081
make_moons() (in module sklearn.datasets), 1081
make_multilabel_classification() (in module

sklearn.datasets), 1082
make_pipeline() (in module sklearn.pipeline), 1634
make_regression() (in module sklearn.datasets), 1084
make_s_curve() (in module sklearn.datasets), 1085
make_scorer() (in module sklearn.metrics), 1472
make_sparse_coded_signal() (in module

sklearn.datasets), 1086
make_sparse_spd_matrix() (in module sklearn.datasets),

1086
make_sparse_uncorrelated() (in module sklearn.datasets),

1087
make_spd_matrix() (in module sklearn.datasets), 1088
make_swiss_roll() (in module sklearn.datasets), 1088
make_union() (in module sklearn.pipeline), 1635
manhattan_distances() (in module

sklearn.metrics.pairwise), 1522
matthews_corrcoef() (in module sklearn.metrics), 1488
maxabs_scale() (in module sklearn.preprocessing), 1666
MaxAbsScaler (class in sklearn.preprocessing), 1649
MDS (class in sklearn.manifold), 1461
mean_absolute_error() (in module sklearn.metrics), 1500
mean_shift() (in module sklearn.cluster), 998
mean_squared_error() (in module sklearn.metrics), 1501
MeanShift (class in sklearn.cluster), 986
median_absolute_error() (in module sklearn.metrics),

1502
MinCovDet (class in sklearn.covariance), 1021
MiniBatchDictionaryLearning (class in

sklearn.decomposition), 1132
MiniBatchKMeans (class in sklearn.cluster), 983
MiniBatchSparsePCA (class in sklearn.decomposition),

1124
minmax_scale() (in module sklearn.preprocessing), 1667
MinMaxScaler (class in sklearn.preprocessing), 1651
mldata_filename() (in module sklearn.datasets), 1061
multilabel_ (sklearn.multiclass.OneVsRestClassifier at-

tribute), 1543
MultiLabelBinarizer (class in sklearn.preprocessing),

1647
MultinomialNB (class in sklearn.naive_bayes), 1552
MultiTaskElasticNet (class in sklearn.linear_model),

1378
MultiTaskElasticNetCV (class in sklearn.linear_model),

342, 1389
MultiTaskLasso (class in sklearn.linear_model), 1373
MultiTaskLassoCV (class in sklearn.linear_model), 347,

1383
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mutual_info_score() (in module sklearn.metrics), 1512

N
NearestCentroid (class in sklearn.neighbors), 1584
NearestNeighbors (class in sklearn.neighbors), 1559
NMF (class in sklearn.decomposition), 1117
normalize() (in module sklearn.preprocessing), 1667
normalized_mutual_info_score() (in module

sklearn.metrics), 1513
Normalizer (class in sklearn.preprocessing), 1653
NuSVC (class in sklearn.svm), 1693
NuSVR (class in sklearn.svm), 1704
Nystroem (class in sklearn.kernel_approximation), 1292

O
OAS (class in sklearn.covariance), 1025
oas() (in module sklearn.covariance), 1032
OneClassSVM (class in sklearn.svm), 1708
OneHotEncoder (class in sklearn.preprocessing), 1655
OneVsOneClassifier (class in sklearn.multiclass), 1544
OneVsRestClassifier (class in sklearn.multiclass), 1542
orthogonal_mp() (in module sklearn.linear_model), 1453
orthogonal_mp_gram() (in module

sklearn.linear_model), 1455
OrthogonalMatchingPursuit (class in

sklearn.linear_model), 1394
OrthogonalMatchingPursuitCV (class in

sklearn.linear_model), 353, 1397
OutputCodeClassifier (class in sklearn.multiclass), 1546

P
pairwise() (sklearn.neighbors.DistanceMetric method),

1603
pairwise_distances() (in module sklearn.metrics), 1526
pairwise_distances() (in module

sklearn.metrics.pairwise), 1523
pairwise_distances_argmin() (in module sklearn.metrics),

1527
pairwise_distances_argmin_min() (in module

sklearn.metrics), 1528
pairwise_kernels() (in module sklearn.metrics.pairwise),

1524
ParameterGrid (class in sklearn.grid_search), 1279
ParameterSampler (class in sklearn.grid_search), 1280
partial_dependence() (in module

sklearn.ensemble.partial_dependence), 1208
partial_fit() (sklearn.cluster.Birch method), 972
partial_fit() (sklearn.cluster.MiniBatchKMeans method),

985
partial_fit() (sklearn.decomposition.IncrementalPCA

method), 1099
partial_fit() (sklearn.decomposition.LatentDirichletAllocation

method), 1138

partial_fit() (sklearn.decomposition.MiniBatchDictionaryLearning
method), 1134

partial_fit() (sklearn.feature_extraction.text.HashingVectorizer
method), 1228

partial_fit() (sklearn.feature_selection.SelectFromModel
method), 1250

partial_fit() (sklearn.linear_model.PassiveAggressiveClassifier
method), 1402

partial_fit() (sklearn.linear_model.PassiveAggressiveRegressor
method), 1405

partial_fit() (sklearn.linear_model.Perceptron method),
1409

partial_fit() (sklearn.linear_model.SGDClassifier
method), 1437

partial_fit() (sklearn.linear_model.SGDRegressor
method), 1444

partial_fit() (sklearn.naive_bayes.BernoulliNB method),
1557

partial_fit() (sklearn.naive_bayes.GaussianNB method),
1550

partial_fit() (sklearn.naive_bayes.MultinomialNB
method), 1554

partial_fit() (sklearn.neighbors.LSHForest method), 1600
partial_fit() (sklearn.neural_network.BernoulliRBM

method), 1611
partial_fit() (sklearn.preprocessing.MaxAbsScaler

method), 1650
partial_fit() (sklearn.preprocessing.MinMaxScaler

method), 1653
partial_fit() (sklearn.preprocessing.StandardScaler

method), 1663
PassiveAggressiveClassifier (class in

sklearn.linear_model), 1400
PassiveAggressiveRegressor (class in

sklearn.linear_model), 1403
PatchExtractor (class in

sklearn.feature_extraction.image), 1219
path() (sklearn.linear_model.ElasticNet static method),

1322
path() (sklearn.linear_model.ElasticNetCV static

method), 321, 1328
path() (sklearn.linear_model.Lasso static method), 1339
path() (sklearn.linear_model.LassoCV static method),

329, 1345
path() (sklearn.linear_model.MultiTaskElasticNet

method), 1381
path() (sklearn.linear_model.MultiTaskElasticNetCV

static method), 345, 1392
path() (sklearn.linear_model.MultiTaskLasso method),

1375
path() (sklearn.linear_model.MultiTaskLassoCV static

method), 350, 1386
PCA (class in sklearn.decomposition), 1091
Perceptron (class in sklearn.linear_model), 1407
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permutation_test_score() (in module
sklearn.cross_validation), 1048

perplexity() (sklearn.decomposition.LatentDirichletAllocation
method), 1139

Pipeline (class in sklearn.pipeline), 1629
plot_partial_dependence() (in module

sklearn.ensemble.partial_dependence), 1209
PLSCanonical (class in sklearn.cross_decomposition),

1620
PLSRegression (class in sklearn.cross_decomposition),

1616
PLSSVD (class in sklearn.cross_decomposition), 1628
polynomial_kernel() (in module

sklearn.metrics.pairwise), 1525
PolynomialFeatures (class in sklearn.preprocessing),

1657
pooling_func() (sklearn.cluster.FeatureAgglomeration

method), 977
precision_recall_curve() (in module sklearn.metrics),

1488
precision_recall_fscore_support() (in module

sklearn.metrics), 1490
precision_score() (in module sklearn.metrics), 1492
PredefinedSplit (class in sklearn.cross_validation), 1040
predict() (in module sklearn.svm.libsvm), 1713
predict() (sklearn.calibration.CalibratedClassifierCV

method), 1614
predict() (sklearn.cluster.AffinityPropagation method),

967
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1570

Index 1795



scikit-learn user guide, Release 0.17

RadiusNeighborsRegressor (class in sklearn.neighbors),
1579

RandomForestClassifier (class in sklearn.ensemble), 365,
1190

RandomForestRegressor (class in sklearn.ensemble), 371,
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method), 1199

set_params() (sklearn.ensemble.VotingClassifier
method), 1207

set_params() (sklearn.feature_extraction.DictVectorizer
method), 1213

set_params() (sklearn.feature_extraction.FeatureHasher
method), 1215

set_params() (sklearn.feature_extraction.image.PatchExtractor
method), 1220

set_params() (sklearn.feature_extraction.text.CountVectorizer
method), 1224

set_params() (sklearn.feature_extraction.text.HashingVectorizer
method), 1228

set_params() (sklearn.feature_extraction.text.TfidfTransformer
method), 1230

set_params() (sklearn.feature_extraction.text.TfidfVectorizer
method), 1235

set_params() (sklearn.feature_selection.GenericUnivariateSelect
method), 1238

set_params() (sklearn.feature_selection.RFE method),
1256

set_params() (sklearn.feature_selection.RFECV method),
1259

set_params() (sklearn.feature_selection.SelectFdr
method), 1247

set_params() (sklearn.feature_selection.SelectFpr
method), 1245

set_params() (sklearn.feature_selection.SelectFromModel
method), 1250

set_params() (sklearn.feature_selection.SelectFwe
method), 1252

set_params() (sklearn.feature_selection.SelectKBest
method), 1243

set_params() (sklearn.feature_selection.SelectPercentile
method), 1240

set_params() (sklearn.feature_selection.VarianceThreshold
method), 1263

set_params() (sklearn.gaussian_process.GaussianProcess
method), 1270

set_params() (sklearn.grid_search.GridSearchCV
method), 1278

set_params() (sklearn.grid_search.RandomizedSearchCV
method), 1285

set_params() (sklearn.isotonic.IsotonicRegression
method), 1288

set_params() (sklearn.kernel_approximation.AdditiveChi2Sampler
method), 1292

set_params() (sklearn.kernel_approximation.Nystroem
method), 1294

set_params() (sklearn.kernel_approximation.RBFSampler
method), 1296

set_params() (sklearn.kernel_approximation.SkewedChi2Sampler
method), 1298

set_params() (sklearn.kernel_ridge.KernelRidge method),
1301

set_params() (sklearn.linear_model.ARDRegression
method), 1316

set_params() (sklearn.linear_model.BayesianRidge
method), 1319

set_params() (sklearn.linear_model.ElasticNet method),
1324

set_params() (sklearn.linear_model.ElasticNetCV
method), 323, 1330

set_params() (sklearn.linear_model.Lars method), 1333
set_params() (sklearn.linear_model.LarsCV method),

326, 1336
set_params() (sklearn.linear_model.Lasso method), 1341
set_params() (sklearn.linear_model.LassoCV method),

331, 1347
set_params() (sklearn.linear_model.LassoLars method),

1351
set_params() (sklearn.linear_model.LassoLarsCV

method), 335, 1354
set_params() (sklearn.linear_model.LassoLarsIC

method), 365, 1358
set_params() (sklearn.linear_model.LinearRegression

method), 1360
set_params() (sklearn.linear_model.LogisticRegression

method), 1365
set_params() (sklearn.linear_model.LogisticRegressionCV

method), 341, 1372
set_params() (sklearn.linear_model.MultiTaskElasticNet

method), 1383
set_params() (sklearn.linear_model.MultiTaskElasticNetCV

method), 347, 1394
set_params() (sklearn.linear_model.MultiTaskLasso

method), 1378
set_params() (sklearn.linear_model.MultiTaskLassoCV

method), 353, 1388
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set_params() (sklearn.linear_model.OrthogonalMatchingPursuit
method), 1397

set_params() (sklearn.linear_model.OrthogonalMatchingPursuitCV
method), 355, 1399

set_params() (sklearn.linear_model.RandomizedLasso
method), 1414

set_params() (sklearn.linear_model.RandomizedLogisticRegression
method), 1417

set_params() (sklearn.linear_model.RANSACRegressor
method), 1420

set_params() (sklearn.linear_model.Ridge method), 1424
set_params() (sklearn.linear_model.RidgeClassifier

method), 1427
set_params() (sklearn.linear_model.RidgeClassifierCV

method), 361, 1430
set_params() (sklearn.linear_model.RidgeCV method),

358, 1433
set_params() (sklearn.linear_model.TheilSenRegressor
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set_params() (sklearn.manifold.LocallyLinearEmbedding
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set_params() (sklearn.manifold.MDS method), 1463
set_params() (sklearn.manifold.SpectralEmbedding
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set_params() (sklearn.manifold.TSNE method), 1469
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set_params() (sklearn.naive_bayes.GaussianNB method),
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method), 1555
set_params() (sklearn.neighbors.KernelDensity method),
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set_params() (sklearn.neighbors.KNeighborsClassifier

method), 1569
set_params() (sklearn.neighbors.KNeighborsRegressor
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set_params() (sklearn.neighbors.LSHForest method),
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set_params() (sklearn.neighbors.NearestCentroid

method), 1586
set_params() (sklearn.neighbors.NearestNeighbors

method), 1564
set_params() (sklearn.neighbors.RadiusNeighborsClassifier

method), 1574
set_params() (sklearn.neighbors.RadiusNeighborsRegressor

method), 1583
set_params() (sklearn.neural_network.BernoulliRBM

method), 1611
set_params() (sklearn.pipeline.FeatureUnion method),

1634
set_params() (sklearn.pipeline.Pipeline method), 1632
set_params() (sklearn.preprocessing.Binarizer method),

1637
set_params() (sklearn.preprocessing.FunctionTransformer

method), 1638
set_params() (sklearn.preprocessing.Imputer method),

1640
set_params() (sklearn.preprocessing.KernelCenterer

method), 1642
set_params() (sklearn.preprocessing.LabelBinarizer

method), 1645
set_params() (sklearn.preprocessing.LabelEncoder

method), 1647
set_params() (sklearn.preprocessing.MaxAbsScaler

method), 1650
set_params() (sklearn.preprocessing.MinMaxScaler

method), 1653
set_params() (sklearn.preprocessing.MultiLabelBinarizer

method), 1649
set_params() (sklearn.preprocessing.Normalizer method),

1654
set_params() (sklearn.preprocessing.OneHotEncoder

method), 1657
set_params() (sklearn.preprocessing.PolynomialFeatures

method), 1659
set_params() (sklearn.preprocessing.RobustScaler

method), 1661
set_params() (sklearn.preprocessing.StandardScaler

method), 1664
set_params() (sklearn.random_projection.GaussianRandomProjection

method), 1671
set_params() (sklearn.random_projection.SparseRandomProjection

method), 1674
set_params() (sklearn.semi_supervised.LabelPropagation

method), 1678
set_params() (sklearn.semi_supervised.LabelSpreading

method), 1682
set_params() (sklearn.svm.LinearSVC method), 1692
set_params() (sklearn.svm.LinearSVR method), 1704
set_params() (sklearn.svm.NuSVC method), 1698
set_params() (sklearn.svm.NuSVR method), 1707
set_params() (sklearn.svm.OneClassSVM method), 1710
set_params() (sklearn.svm.SVC method), 1687
set_params() (sklearn.svm.SVR method), 1701
set_params() (sklearn.tree.DecisionTreeClassifier

method), 1720
set_params() (sklearn.tree.DecisionTreeRegressor
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method), 1725
set_params() (sklearn.tree.ExtraTreeClassifier method),

1729
set_params() (sklearn.tree.ExtraTreeRegressor method),

1732
SGDClassifier (class in sklearn.linear_model), 1434
SGDRegressor (class in sklearn.linear_model), 1440
shrunk_covariance() (in module sklearn.covariance),

1031
ShrunkCovariance (class in sklearn.covariance), 1027
shuffle() (in module sklearn.utils), 1736
ShuffleSplit (class in sklearn.cross_validation), 1041
silhouette_samples() (in module sklearn.metrics), 1515
silhouette_score() (in module sklearn.metrics), 1514
SkewedChi2Sampler (class in

sklearn.kernel_approximation), 1296
sklearn.base (module), 961
sklearn.calibration (module), 1612
sklearn.cluster (module), 965
sklearn.cluster.bicluster (module), 1000
sklearn.covariance (module), 1006
sklearn.cross_decomposition (module), 1615
sklearn.cross_validation (module), 1034
sklearn.datasets (module), 1051
sklearn.decomposition (module), 1091
sklearn.discriminant_analysis (module), 1301
sklearn.dummy (module), 1146
sklearn.ensemble (module), 1151
sklearn.ensemble.partial_dependence (module), 1207
sklearn.feature_extraction (module), 1210
sklearn.feature_extraction.image (module), 1216
sklearn.feature_extraction.text (module), 1220
sklearn.feature_selection (module), 1236
sklearn.gaussian_process (module), 1265
sklearn.grid_search (module), 1274
sklearn.isotonic (module), 1285
sklearn.kernel_approximation (module), 1290
sklearn.kernel_ridge (module), 1298
sklearn.learning_curve (module), 1309
sklearn.linear_model (module), 1312
sklearn.manifold (module), 1456
sklearn.metrics (module), 1472
sklearn.metrics.cluster (module), 1506
sklearn.metrics.pairwise (module), 1518
sklearn.mixture (module), 1529
sklearn.multiclass (module), 1541
sklearn.naive_bayes (module), 1548
sklearn.neighbors (module), 1559
sklearn.neural_network (module), 1609
sklearn.pipeline (module), 1629
sklearn.preprocessing (module), 1635
sklearn.random_projection (module), 1669
sklearn.semi_supervised (module), 1675
sklearn.svm (module), 1682

sklearn.tree (module), 1715
sklearn.utils (module), 1735
sparse_coef_ (sklearn.linear_model.ElasticNet attribute),

1324
sparse_coef_ (sklearn.linear_model.Lasso attribute),

1341
sparse_coef_ (sklearn.linear_model.MultiTaskElasticNet

attribute), 1383
sparse_coef_ (sklearn.linear_model.MultiTaskLasso at-

tribute), 1378
sparse_encode() (in module sklearn.decomposition),

1144
SparseCoder (class in sklearn.decomposition), 1127
SparsePCA (class in sklearn.decomposition), 1122
SparseRandomProjection (class in

sklearn.random_projection), 1672
sparsify() (sklearn.linear_model.LogisticRegression

method), 1365
sparsify() (sklearn.linear_model.LogisticRegressionCV

method), 341, 1372
sparsify() (sklearn.linear_model.PassiveAggressiveClassifier

method), 1403
sparsify() (sklearn.linear_model.PassiveAggressiveRegressor

method), 1406
sparsify() (sklearn.linear_model.Perceptron method),

1410
sparsify() (sklearn.linear_model.SGDClassifier method),

1439
sparsify() (sklearn.linear_model.SGDRegressor method),

1444
sparsify() (sklearn.svm.LinearSVC method), 1692
spectral_clustering() (in module sklearn.cluster), 999
spectral_embedding() (in module sklearn.manifold), 1470
SpectralBiclustering (class in sklearn.cluster.bicluster),

1001
SpectralClustering (class in sklearn.cluster), 989
SpectralCoclustering (class in sklearn.cluster.bicluster),

1003
SpectralEmbedding (class in sklearn.manifold), 1464
squared_exponential() (in module

sklearn.gaussian_process.correlation_models),
1271

staged_decision_function()
(sklearn.ensemble.AdaBoostClassifier
method), 1155

staged_decision_function()
(sklearn.ensemble.GradientBoostingClassifier
method), 392, 1183

staged_decision_function()
(sklearn.ensemble.GradientBoostingRegressor
method), 398, 1189

staged_predict() (sklearn.ensemble.AdaBoostClassifier
method), 1155

staged_predict() (sklearn.ensemble.AdaBoostRegressor
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method), 1158
staged_predict() (sklearn.ensemble.GradientBoostingClassifier

method), 392, 1183
staged_predict() (sklearn.ensemble.GradientBoostingRegressor

method), 399, 1189
staged_predict_proba() (sklearn.ensemble.AdaBoostClassifier

method), 1155
staged_predict_proba() (sklearn.ensemble.GradientBoostingClassifier

method), 393, 1183
staged_score() (sklearn.ensemble.AdaBoostClassifier

method), 1155
staged_score() (sklearn.ensemble.AdaBoostRegressor

method), 1159
StandardScaler (class in sklearn.preprocessing), 1662
std_ (sklearn.preprocessing.StandardScaler attribute),

1664
StratifiedKFold (class in sklearn.cross_validation), 1042
StratifiedShuffleSplit (class in sklearn.cross_validation),

1043
SVC (class in sklearn.svm), 1683
SVR (class in sklearn.svm), 1698

T
TfidfTransformer (class in

sklearn.feature_extraction.text), 1229
TfidfVectorizer (class in sklearn.feature_extraction.text),

1231
TheilSenRegressor (class in sklearn.linear_model), 1445
train_test_split() (in module sklearn.cross_validation),

1044
transform() (sklearn.cluster.Birch method), 972
transform() (sklearn.cluster.FeatureAgglomeration

method), 979
transform() (sklearn.cluster.KMeans method), 982
transform() (sklearn.cluster.MiniBatchKMeans method),

985
transform() (sklearn.cross_decomposition.CCA method),

1627
transform() (sklearn.cross_decomposition.PLSCanonical

method), 1624
transform() (sklearn.cross_decomposition.PLSRegression

method), 1619
transform() (sklearn.cross_decomposition.PLSSVD

method), 1629
transform() (sklearn.decomposition.DictionaryLearning

method), 1131
transform() (sklearn.decomposition.FactorAnalysis

method), 1112
transform() (sklearn.decomposition.FastICA method),

1114
transform() (sklearn.decomposition.IncrementalPCA

method), 1099
transform() (sklearn.decomposition.KernelPCA method),

1109

transform() (sklearn.decomposition.LatentDirichletAllocation
method), 1139

transform() (sklearn.decomposition.MiniBatchDictionaryLearning
method), 1135

transform() (sklearn.decomposition.MiniBatchSparsePCA
method), 1126

transform() (sklearn.decomposition.NMF method), 1121
transform() (sklearn.decomposition.PCA method), 1095
transform() (sklearn.decomposition.ProjectedGradientNMF

method), 1103
transform() (sklearn.decomposition.RandomizedPCA

method), 1106
transform() (sklearn.decomposition.SparseCoder

method), 1128
transform() (sklearn.decomposition.SparsePCA method),

1124
transform() (sklearn.decomposition.TruncatedSVD

method), 1117
transform() (sklearn.discriminant_analysis.LinearDiscriminantAnalysis

method), 1305
transform() (sklearn.ensemble.ExtraTreesClassifier

method), 381, 1172
transform() (sklearn.ensemble.ExtraTreesRegressor

method), 386, 1176
transform() (sklearn.ensemble.GradientBoostingClassifier

method), 393, 1183
transform() (sklearn.ensemble.GradientBoostingRegressor

method), 399, 1189
transform() (sklearn.ensemble.RandomForestClassifier

method), 371, 1196
transform() (sklearn.ensemble.RandomForestRegressor

method), 376, 1204
transform() (sklearn.ensemble.RandomTreesEmbedding

method), 1199
transform() (sklearn.ensemble.VotingClassifier method),

1207
transform() (sklearn.feature_extraction.DictVectorizer

method), 1213
transform() (sklearn.feature_extraction.FeatureHasher

method), 1216
transform() (sklearn.feature_extraction.image.PatchExtractor

method), 1220
transform() (sklearn.feature_extraction.text.CountVectorizer

method), 1224
transform() (sklearn.feature_extraction.text.HashingVectorizer

method), 1228
transform() (sklearn.feature_extraction.text.TfidfTransformer

method), 1230
transform() (sklearn.feature_extraction.text.TfidfVectorizer

method), 1235
transform() (sklearn.feature_selection.GenericUnivariateSelect

method), 1238
transform() (sklearn.feature_selection.RFE method),

1256
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transform() (sklearn.feature_selection.RFECV method),
1260

transform() (sklearn.feature_selection.SelectFdr method),
1248

transform() (sklearn.feature_selection.SelectFpr method),
1245

transform() (sklearn.feature_selection.SelectFromModel
method), 1250

transform() (sklearn.feature_selection.SelectFwe
method), 1252

transform() (sklearn.feature_selection.SelectKBest
method), 1243

transform() (sklearn.feature_selection.SelectPercentile
method), 1240

transform() (sklearn.feature_selection.VarianceThreshold
method), 1263

transform() (sklearn.grid_search.GridSearchCV method),
1278

transform() (sklearn.grid_search.RandomizedSearchCV
method), 1285

transform() (sklearn.isotonic.IsotonicRegression
method), 1288

transform() (sklearn.kernel_approximation.AdditiveChi2Sampler
method), 1292

transform() (sklearn.kernel_approximation.Nystroem
method), 1294

transform() (sklearn.kernel_approximation.RBFSampler
method), 1296

transform() (sklearn.kernel_approximation.SkewedChi2Sampler
method), 1298

transform() (sklearn.linear_model.LogisticRegression
method), 1366

transform() (sklearn.linear_model.LogisticRegressionCV
method), 341, 1372

transform() (sklearn.linear_model.Perceptron method),
1410

transform() (sklearn.linear_model.RandomizedLasso
method), 1414

transform() (sklearn.linear_model.RandomizedLogisticRegression
method), 1418

transform() (sklearn.linear_model.SGDClassifier
method), 1439

transform() (sklearn.linear_model.SGDRegressor
method), 1445

transform() (sklearn.manifold.Isomap method), 1461
transform() (sklearn.manifold.LocallyLinearEmbedding

method), 1458
transform() (sklearn.neural_network.BernoulliRBM

method), 1611
transform() (sklearn.pipeline.FeatureUnion method),

1634
transform() (sklearn.pipeline.Pipeline method), 1632
transform() (sklearn.preprocessing.Binarizer method),

1637

transform() (sklearn.preprocessing.Imputer method),
1640

transform() (sklearn.preprocessing.KernelCenterer
method), 1642

transform() (sklearn.preprocessing.LabelBinarizer
method), 1645

transform() (sklearn.preprocessing.LabelEncoder
method), 1647

transform() (sklearn.preprocessing.MaxAbsScaler
method), 1651

transform() (sklearn.preprocessing.MinMaxScaler
method), 1653

transform() (sklearn.preprocessing.MultiLabelBinarizer
method), 1649

transform() (sklearn.preprocessing.Normalizer method),
1654

transform() (sklearn.preprocessing.OneHotEncoder
method), 1657

transform() (sklearn.preprocessing.PolynomialFeatures
method), 1659

transform() (sklearn.preprocessing.RobustScaler
method), 1661

transform() (sklearn.preprocessing.StandardScaler
method), 1664

transform() (sklearn.random_projection.GaussianRandomProjection
method), 1671

transform() (sklearn.random_projection.SparseRandomProjection
method), 1674

transform() (sklearn.svm.LinearSVC method), 1692
transform() (sklearn.tree.DecisionTreeClassifier method),

1720
transform() (sklearn.tree.DecisionTreeRegressor

method), 1725
transform() (sklearn.tree.ExtraTreeClassifier method),

1729
transform() (sklearn.tree.ExtraTreeRegressor method),

1733
TransformerMixin (class in sklearn.base), 964
TruncatedSVD (class in sklearn.decomposition), 1115
TSNE (class in sklearn.manifold), 1466
two_point_correlation() (sklearn.neighbors.BallTree

method), 1591
two_point_correlation() (sklearn.neighbors.KDTree

method), 1596

V
v_measure_score() (in module sklearn.metrics), 1516
validation_curve() (in module sklearn.learning_curve),

1311
VarianceThreshold (class in sklearn.feature_selection),

1260
VBGMM (class in sklearn.mixture), 1538
VotingClassifier (class in sklearn.ensemble), 1204
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W
ward_tree() (in module sklearn.cluster), 994

Z
zero_one_loss() (in module sklearn.metrics), 1497
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