Fork me on GitHub

Who is using scikit-learn?


At INRIA, we use scikit-learn to support leading-edge basic research in many teams: Parietal for neuroimaging, Lear for computer vision, Visages for medical image analysis, Privatics for security. The project is a fantastic tool to address difficult applications of machine learing in an academic environment as it is performant and versatile, but all easy-to-use and well documented, which makes it well suited to grad students.

Gaël Varoquaux, research at Parietal


Building a classifier is typically an iterative process of exploring the data, selecting the features (the attributes of the data believed to be predictive in some way), training the models, and finally evaluating them. For many of these tasks, we relied on the excellent scikit-learn package for Python.

Read more

Mark Ayzenshtat, VP, Augmented Intelligence

Télécom ParisTech

At Telecom ParisTech, scikit-learn is used for hands-on sessions and home assignments in introductory and advanced machine learning courses. The classes are for undergrads and masters students. The great benefit of scikit-learn is its fast learning curve that allows students to quickly start working on interesting and motivating problems.

Alexandre Gramfort, Assistant Professor


The scikit-learn toolkit is indispensable for the Data Analysis and Management team at AWeber. It allows us to do AWesome stuff we would not otherwise have the time or resources to accomplish. The documentation is excellent, allowing new engineers to quickly evaluate and apply many different algorithms to our data. The text feature extraction utilities are useful when working with the large volume of email content we have at AWeber. The RandomizedPCA implementation, along with Pipelining and FeatureUnions, allows us to develop complex machine learning algorithms efficiently and reliably.

Anyone interested in learning more about how AWeber deploys scikit-learn in a production environment should check out talks from PyData Boston by AWeber’s Michael Becker available at

Michael Becker, Software Engineer, Data Analysis and Management Ninjas