sklearn.linear_model
.RandomizedLogisticRegression¶
Warning
DEPRECATED

class
sklearn.linear_model.
RandomizedLogisticRegression
(*args, **kwargs)[source]¶ Randomized Logistic Regression
Randomized Logistic Regression works by subsampling the training data and fitting a L1penalized LogisticRegression model where the penalty of a random subset of coefficients has been scaled. By performing this double randomization several times, the method assigns high scores to features that are repeatedly selected across randomizations. This is known as stability selection. In short, features selected more often are considered good features.
Parameters: C : float or arraylike of shape [n_reg_parameter], optional, default=1
The regularization parameter C in the LogisticRegression. When C is an array, fit will take each regularization parameter in C one by one for LogisticRegression and store results for each one in
all_scores_
, where columns and rows represent corresponding reg_parameters and features.scaling : float, optional, default=0.5
The s parameter used to randomly scale the penalty of different features. Should be between 0 and 1.
sample_fraction : float, optional, default=0.75
The fraction of samples to be used in each randomized design. Should be between 0 and 1. If 1, all samples are used.
n_resampling : int, optional, default=200
Number of randomized models.
selection_threshold : float, optional, default=0.25
The score above which features should be selected.
tol : float, optional, default=1e3
tolerance for stopping criteria of LogisticRegression
fit_intercept : boolean, optional, default=True
whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).
verbose : boolean or integer, optional
Sets the verbosity amount
normalize : boolean, optional, default True
If True, the regressors X will be normalized before regression. This parameter is ignored when fit_intercept is set to False. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use preprocessing.StandardScaler before calling fit on an estimator with normalize=False.
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.
n_jobs : integer, optional
Number of CPUs to use during the resampling. If ‘1’, use all the CPUs
pre_dispatch : int, or string, optional
Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be:
 None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fastrunning jobs, to avoid delays due to ondemand spawning of the jobs
 An int, giving the exact number of total jobs that are spawned
 A string, giving an expression as a function of n_jobs, as in ‘2*n_jobs’
memory : Instance of sklearn.externals.joblib.Memory or string, optional (default=None)
Used for internal caching. By default, no caching is done. If a string is given, it is the path to the caching directory.
Attributes
scores_ (array, shape = [n_features]) Feature scores between 0 and 1. all_scores_ (array, shape = [n_features, n_reg_parameter]) Feature scores between 0 and 1 for all values of the regularization parameter. The reference article suggests scores_
is the max ofall_scores_
.See also
References
Stability selection Nicolai Meinshausen, Peter Buhlmann Journal of the Royal Statistical Society: Series B Volume 72, Issue 4, pages 417473, September 2010 DOI: 10.1111/j.14679868.2010.00740.x
Examples
>>> from sklearn.linear_model import RandomizedLogisticRegression >>> randomized_logistic = RandomizedLogisticRegression()
Methods
fit
(X, y)Fit the model using X, y as training data. fit_transform
(X[, y])Fit to data, then transform it. get_params
([deep])Get parameters for this estimator. get_support
([indices])Get a mask, or integer index, of the features selected inverse_transform
(X)Reverse the transformation operation set_params
(**params)Set the parameters of this estimator. transform
(X)Reduce X to the selected features. 
__init__
(*args, **kwargs)[source]¶ DEPRECATED: The class RandomizedLogisticRegression is deprecated in 0.19 and will be removed in 0.21.

fit
(X, y)[source]¶ Fit the model using X, y as training data.
Parameters: X : arraylike, shape = [n_samples, n_features]
Training data.
y : arraylike, shape = [n_samples]
Target values. Will be cast to X’s dtype if necessary
Returns: self : object
Returns an instance of self.

fit_transform
(X, y=None, **fit_params)[source]¶ Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters: X : numpy array of shape [n_samples, n_features]
Training set.
y : numpy array of shape [n_samples]
Target values.
Returns: X_new : numpy array of shape [n_samples, n_features_new]
Transformed array.

get_params
(deep=True)[source]¶ Get parameters for this estimator.
Parameters: deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: params : mapping of string to any
Parameter names mapped to their values.

get_support
(indices=False)[source]¶ Get a mask, or integer index, of the features selected
Parameters: indices : boolean (default False)
If True, the return value will be an array of integers, rather than a boolean mask.
Returns: support : array
An index that selects the retained features from a feature vector. If indices is False, this is a boolean array of shape [# input features], in which an element is True iff its corresponding feature is selected for retention. If indices is True, this is an integer array of shape [# output features] whose values are indices into the input feature vector.

inverse_transform
(X)[source]¶ Reverse the transformation operation
Parameters: X : array of shape [n_samples, n_selected_features]
The input samples.
Returns: X_r : array of shape [n_samples, n_original_features]
X with columns of zeros inserted where features would have been removed by transform.