.. _sphx_glr_auto_examples_model_selection_plot_roc_crossval.py: ============================================================= Receiver Operating Characteristic (ROC) with cross validation ============================================================= Example of Receiver Operating Characteristic (ROC) metric to evaluate classifier output quality using cross-validation. ROC curves typically feature true positive rate on the Y axis, and false positive rate on the X axis. This means that the top left corner of the plot is the "ideal" point - a false positive rate of zero, and a true positive rate of one. This is not very realistic, but it does mean that a larger area under the curve (AUC) is usually better. The "steepness" of ROC curves is also important, since it is ideal to maximize the true positive rate while minimizing the false positive rate. This example shows the ROC response of different datasets, created from K-fold cross-validation. Taking all of these curves, it is possible to calculate the mean area under curve, and see the variance of the curve when the training set is split into different subsets. This roughly shows how the classifier output is affected by changes in the training data, and how different the splits generated by K-fold cross-validation are from one another. .. note:: See also :func:`sklearn.metrics.auc_score`, :func:`sklearn.model_selection.cross_val_score`, :ref:`sphx_glr_auto_examples_model_selection_plot_roc.py`, .. code-block:: python print(__doc__) import numpy as np from scipy import interp import matplotlib.pyplot as plt from itertools import cycle from sklearn import svm, datasets from sklearn.metrics import roc_curve, auc from sklearn.model_selection import StratifiedKFold Data IO and generation .. code-block:: python # import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target X, y = X[y != 2], y[y != 2] n_samples, n_features = X.shape # Add noisy features random_state = np.random.RandomState(0) X = np.c_[X, random_state.randn(n_samples, 200 * n_features)] Classification and ROC analysis .. code-block:: python # Run classifier with cross-validation and plot ROC curves cv = StratifiedKFold(n_splits=6) classifier = svm.SVC(kernel='linear', probability=True, random_state=random_state) mean_tpr = 0.0 mean_fpr = np.linspace(0, 1, 100) colors = cycle(['cyan', 'indigo', 'seagreen', 'yellow', 'blue', 'darkorange']) lw = 2 i = 0 for (train, test), color in zip(cv.split(X, y), colors): probas_ = classifier.fit(X[train], y[train]).predict_proba(X[test]) # Compute ROC curve and area the curve fpr, tpr, thresholds = roc_curve(y[test], probas_[:, 1]) mean_tpr += interp(mean_fpr, fpr, tpr) mean_tpr[0] = 0.0 roc_auc = auc(fpr, tpr) plt.plot(fpr, tpr, lw=lw, color=color, label='ROC fold %d (area = %0.2f)' % (i, roc_auc)) i += 1 plt.plot([0, 1], [0, 1], linestyle='--', lw=lw, color='k', label='Luck') mean_tpr /= cv.get_n_splits(X, y) mean_tpr[-1] = 1.0 mean_auc = auc(mean_fpr, mean_tpr) plt.plot(mean_fpr, mean_tpr, color='g', linestyle='--', label='Mean ROC (area = %0.2f)' % mean_auc, lw=lw) plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc="lower right") plt.show() .. image:: /auto_examples/model_selection/images/sphx_glr_plot_roc_crossval_001.png :align: center **Total running time of the script:** (0 minutes 0.275 seconds) .. container:: sphx-glr-download **Download Python source code:** :download:`plot_roc_crossval.py ` .. container:: sphx-glr-download **Download IPython notebook:** :download:`plot_roc_crossval.ipynb `