.. _sphx_glr_auto_examples_cluster_plot_ward_structured_vs_unstructured.py: =========================================================== Hierarchical clustering: structured vs unstructured ward =========================================================== Example builds a swiss roll dataset and runs hierarchical clustering on their position. For more information, see :ref:`hierarchical_clustering`. In a first step, the hierarchical clustering is performed without connectivity constraints on the structure and is solely based on distance, whereas in a second step the clustering is restricted to the k-Nearest Neighbors graph: it's a hierarchical clustering with structure prior. Some of the clusters learned without connectivity constraints do not respect the structure of the swiss roll and extend across different folds of the manifolds. On the opposite, when opposing connectivity constraints, the clusters form a nice parcellation of the swiss roll. .. code-block:: python # Authors : Vincent Michel, 2010 # Alexandre Gramfort, 2010 # Gael Varoquaux, 2010 # License: BSD 3 clause print(__doc__) import time as time import numpy as np import matplotlib.pyplot as plt import mpl_toolkits.mplot3d.axes3d as p3 from sklearn.cluster import AgglomerativeClustering from sklearn.datasets.samples_generator import make_swiss_roll Generate data (swiss roll dataset) .. code-block:: python n_samples = 1500 noise = 0.05 X, _ = make_swiss_roll(n_samples, noise) # Make it thinner X[:, 1] *= .5 Compute clustering .. code-block:: python print("Compute unstructured hierarchical clustering...") st = time.time() ward = AgglomerativeClustering(n_clusters=6, linkage='ward').fit(X) elapsed_time = time.time() - st label = ward.labels_ print("Elapsed time: %.2fs" % elapsed_time) print("Number of points: %i" % label.size) .. rst-class:: sphx-glr-script-out Out:: Compute unstructured hierarchical clustering... Elapsed time: 0.06s Number of points: 1500 Plot result .. code-block:: python fig = plt.figure() ax = p3.Axes3D(fig) ax.view_init(7, -80) for l in np.unique(label): ax.plot3D(X[label == l, 0], X[label == l, 1], X[label == l, 2], 'o', color=plt.cm.jet(np.float(l) / np.max(label + 1))) plt.title('Without connectivity constraints (time %.2fs)' % elapsed_time) .. image:: /auto_examples/cluster/images/sphx_glr_plot_ward_structured_vs_unstructured_001.png :align: center Define the structure A of the data. Here a 10 nearest neighbors .. code-block:: python from sklearn.neighbors import kneighbors_graph connectivity = kneighbors_graph(X, n_neighbors=10, include_self=False) Compute clustering .. code-block:: python print("Compute structured hierarchical clustering...") st = time.time() ward = AgglomerativeClustering(n_clusters=6, connectivity=connectivity, linkage='ward').fit(X) elapsed_time = time.time() - st label = ward.labels_ print("Elapsed time: %.2fs" % elapsed_time) print("Number of points: %i" % label.size) .. rst-class:: sphx-glr-script-out Out:: Compute structured hierarchical clustering... Elapsed time: 0.16s Number of points: 1500 Plot result .. code-block:: python fig = plt.figure() ax = p3.Axes3D(fig) ax.view_init(7, -80) for l in np.unique(label): ax.plot3D(X[label == l, 0], X[label == l, 1], X[label == l, 2], 'o', color=plt.cm.jet(float(l) / np.max(label + 1))) plt.title('With connectivity constraints (time %.2fs)' % elapsed_time) plt.show() .. image:: /auto_examples/cluster/images/sphx_glr_plot_ward_structured_vs_unstructured_002.png :align: center **Total running time of the script:** (0 minutes 0.317 seconds) .. container:: sphx-glr-download **Download Python source code:** :download:`plot_ward_structured_vs_unstructured.py ` .. container:: sphx-glr-download **Download IPython notebook:** :download:`plot_ward_structured_vs_unstructured.ipynb `